Micro Design 2

Lab #1

Byte Memory Result CRC

CRC
Address Contents Bit

(Binary) (Hex)

o 0000 0000 0000 0000 0000

. _ birl
€000 FC=1111 1100“0 Step 1

EOR>

\ 0000 0000 0000 9000

0000 0000 0000 0000

Step 3 bit 5

0000 0000 0000 0000
bit 14

step 4 CEORS

—_—
0

0000 0000 0000 0000

P
Step 5: Multiply by 2

After bit 0 of memory
location C0O00 has been
processed, the CRC is 0000.
Now continue with the rest
of the data bits in CO00
before going on to CO01.

0000 0000 0000 0000‘>

Step 6: Ada
0

in result bit

0000 0000 0000 0000 0000

New CRC Value!

Programming
with the
ICC11 C Compiler

Introduction

Microcomputer Design 1 introduced you to the basic principles of design, construction and
programming for an embedded microcomputer. You have successfully designed and built
the kernel and you have written programs which exercise the digital I/O (parallel and serial).
Among the many new challenges that await you in Micro Design 2, the first hardware topics
will be analog interfacing (A/D and D/A). Adding new devices to the 68HC11 prototype board
will also require a greater understanding of how to interface non-Motorola devices to the
68HC11. Following the A/D and D/A will be liquid crystal displays. The addition of an LCD will
greatly enhance the information available to the user of an “embedded” computer system.
Following the LCD is the HC11 Timer Subsystem. The Timer section also includes in-depth
coverage of interrupts. Thus the ground-work has been set to investigate real-time
programming concepts and (real) multi-tasking.

Before we add all of this new hardware to our micro boards we must work on our software.
Lab #1 is an introduction to C programming for microcontrollers. While the intent in using C is
to make your programming job easier, you may be surprised at the challenge this type of C
programming presents. Hopefully your HC11 programs will fall together faster and your C and
assembly language programming skills, in general, will improve.

As always, because we are building dedicated microprocessor systems, our objective is to
write ROMable code. Fortunately this is a relatively easy matter given the straightforwardness
of both the HC11 and the ICC11 C compiler. ICC11 is provided courtesy of ImageCiratft Ltd.
of Sunnyvale, California and like many of our development tools it has be provided free of
charge.

So here's hoping that you enjoy the term and that you learn a great deal more about
embedded systems.

CNT-442 3 Jan - Apr 1997
Computer Engineering Technology Microcomputer Design 2

Lab Outline

PRE-LAB: Endian Test Program

A short test program has been provided that should work under MSDOS on your PC as well as
on your HC11 board. Obviously the program will need to be compiled for the appropriate
target. The prelab is designed to give you a feel for the ICC11 compiler and the program
development process.

SECTION 1: CRC Algorithm under Turbo C

You must create an algorithm which performs a Kontron CRC on a series of numbers. This
program is to run under Turbo C and will be “ported” to the HC11 later.

SECTION 2: HC11 User Interface (Ul)

Right off the bat it will be necessary to create a handful of routines for gathering input from a
human and displaying that information on the terminal and PIA Test Board. Two basic families
of routines will be developed: I/O routines and data conversion routines. There are no
provided libraries with ICC11. If you need a routine, you must roll up your sleeves and build it.
The Ul must be completely bullet-proof.

SECTION 3: Combined Program

The previous two programs are merged to produce a working program on the HC11 which
prompts the user for the addresses and then performs the CRC over the specified range.
SECTION 4: Program Execution from EEPROM

Making the code from the previous section ROMable should be a trivial matter. This will give
you an opportunity to modify your own CRT.S start-up file and having gone from paper to

EEPROM should give you a good understanding of the entire program development process
using ICC11.

CNT-442 4 Jan - Apr 1997
Computer Engineering Technology Microcomputer Design 2

Pre-Lab

This prelab will require work outside of the lab as well as a checkoff at the start of your first lab
period. You should copy the files indicated below to your own floppy then install ICC11 at
home. Run the program below on both the PC and the HC11 board. At the start of your first
lab class you will be required to demonstrate this program for your instructor.

() Step1l: CopyICC11 Files

The first thing you must do is copy the executable files from the lab C:\ICC11 directory to your
floppy so that they may copied to your computer at home. As with AS6811, you should
create a new directory on your harddrive at home (C:\ICC11) and then copy all of the files to
it. Also, add the new directory to your path. ICC11 can be run from the DOS command line
or from within the Turbo IDE. You will be expected to do both.

() Step 2: Copy LAB1 files

On the lab computers you will notice a C:\ICC11\LAB1 subdirectory that contains a set of
source files. You should take these home too and place them in a directory that will contain
all of your Micro2 labs. These provided files are to give you a starting point. They contain all
of the Micro 1 library routines converted to C. You should see that there is a PIA library in C
which contains the equates and a delay() function. There should also be an SCI library which
contains some equates, a puts() function and a cgets() function. The character functions
getch() and putchar() are actually located in the CRI.S run-time assembly file, but the
prototypes appear in the SCl library. Every time you compile a program it must be done in a
directory that contains YOUR CRT.S file. After you copy the lab files to your floppy, edit each
of the files to place your name in the header! What's missing to tie everything together and
run a program is a C file with a main(). That comes next.

() Step 3: Endian Program (MSDOS)

While it will not always be practical to move C programs back and forth from the PC world to
the HC11 one, it is useful to understand that various pieces of code (such as algorithms) can
easily be developed and tested in the familiar Borland IDE. Once the code is sound it can
be moved to the HC11. The biggest drawback with this technique is that the I/O is vastly
different. While both can support text based I/O, the PC does not have the control based I/O
found on the HC11 (LED, D/A, A/D, ...).

The program in question is shown on the next page. Type the program in exactly, compile it
under Turbo C and run it on the PC. This program must be in the same directory as your lab
files.

CNT-442 5 Jan - Apr 1997
Computer Engineering Technology Microcomputer Design 2

#include “sci_lib.c”

typedef union { unsigned char byte;
unsigned int word; } TWOBYTES;

int main(void)

1
TWOBYTES MyWord;

MyWord.word = 1,

puts(“\x1b[2J\x1b[1m\x1b[33m\x1b[5;26HMicro Design 2 — Lab #1");
puts(“\x1b[7;28HEndian Test Program”);

if(MyWord.byte == 1)

puts(“\x1b[10;22HThis computer is little endian!”);
else

puts(*\x1b[10;24HThis computer is big endian!”);

getch();
return O;

}

The #include will not upset Turbo C because it is being used to provide the various prototypes
as well as the actual puts() C source. Hence you will notice a complete absence of other
#include's.

If your PC has the ANSI.SYS driver installed you should get a colorful message when the
program is executed. Without ANSI.SYS you will get a bunch of cursor positioning gibberish,
but in either case you should be able to determine whether the PC is big or little endian.

() Step 4: Endian Program (HC11)

The same program should run without modification on your HC11 board. Using the
information provided in class, compile the program from the DOS command line, download
it to your HC11 and run it. Then go through the same steps from within the Turbo IDE. Once
you have successfully run the program in all the various ways, answer the questions below
and get your pre-lab checked off.

Q1. The IBM PC (Intel)is endian.
Q2. The HC11 (Motorola) is endian.
Have your Pre-Lab checked off at this point. You must demonstrate the program

running on the PC and HC11. You must show HC11 compilation using both the
IDE and DOS command line.

CNT-442 6 Jan - Apr 1997
Computer Engineering Technology Microcomputer Design 2

Procedure

Section 1: CRC Algorithm (Turbo C)

() Step 1:Background

The very nature of programmed memory devices (EPROM, OTP, EEPROM) makes them
subject to long time reliability concerns by the designers of computer equipment. A typical
failure mechanism of an EPROM is for cells to “drop bits”. A dropped bit means that an
erased state of '1' (high energy) leaks and falls to a '0' (low energy) state some time after
being programmed. EEPROMs have other failure modes as well and all semiconductor
devices are subject to weakening or destruction by ESD.

We have seen in Micro 1 that parity bits can detect errors in serial data transmission, but that
they do a marginal job at best. The additive checksum found in every Motorola S19 record is
again a poor method for detecting errors. Hard drive controllers, industrial networks, and
other “mission critical” systems need a more useful method of detecting errors. That method
is the Cyclic Redundancy Check (CRC).

As a simple comparison, the first three bytes in the Microl1l Monitor EPROM, along with the
corresponding checksum and CRC are shown below:

Address Data Address Data
0xC000 OxFC 0xC000 OxFC
0xC001 Ox7F 0xC001 Ox7F
0xC002 OxFE 0xC002 OxFE
Additive Result: 0x0279 CRC Result: 0x7123

Both the checksum and CRC would detect a simple change in data such as the OxFC
becoming OxF8 (“dropping” bit 2 in the lowest memory location). Now consider a simple
switch in data:

Address Data Address Data
0xC000 Ox7F 0xC000 Ox7F
0xC001 OxFC 0xC001 OxFC
0xC002 OxFE 0xC002 OxFE
Additive Result: 0x0279 CRC Result: 0x30B8
CNT-442 7 Jan - Apr 1997

Computer Engineering Technology Microcomputer Design 2

The CRC has detected the error, where the additive checksum has not. The Xeltek
programmer employs only a simple additive checksum. Professional models such as the
Kontron employ CRC methods. For this lab you will code, in C, the CRC algorithm used by

the Kontron programmer.

Professional programmers often use CRC's to “hack-proof” their final programs. A quick CRC
of a program as part of a start-up self-test can determine if any contents (even text strings)

have been altered.

This is a tool you should keep!

Byte Memory Result CRC CRC
Address Contents Bit (Binary) (Hex)
L' ! _______________________'___________________ __________________________J
0 0000 0000 0000 0000 0000
CO000 FC=11111100 bit 1
it 0 Step 1
TN
SoD—
0
0000 0000 0000 0000
Step 2 bit 3
0000 0000 0000 0000
Step 3 bit 5
0
0000 0000 0000 0000
bit 14
Step 4 CXORD
0—
0000 0000 0000 0000
D R -
Step 5: Multiply by 2
e ™
After bit 0 of memory

location COD0 has been
processed, the CRC is 0000.
Now continue with the rest
of the data bits in C000
before going on to C001.

CNT-442
Computer Engineering Technology

0000 0000 0000 0000
0

Step 6: Ada
in result bit

+

0000 0000 0000 0000 0000

New CRC Value!

Jan - Apr 1997
Microcomputer Design 2

() Step 2: Algorithm Specification

The Kontron CRC algorithm performs six operations on each bit of each byte of memory
under test to come up with a unique 16 bit signature. This algorithm has a very high
probability of detecting any change in the EPROM's data.

Two variables will be required by the CRC (not including loop counters):

ResultBit: The algorithm requires a boolean variable (single bit) to hold
intermediate CRC results. Since this value will be exclusive-ored
against an unsigned int, it might be wise to use an unsigned int.
Note that since the HC11 treats zero values so efficiently you may
just consider this value zero or nonzero.

CRC: A 16 bit unsigned variable will be needed to store the CRC result.

The algorithm is performed on successive memory locations (eg. C0O00 to FFFF). Each bitin a
byte under test (say, each bit in C000) is processed in the bit sequence 0, 7, 6, 5, 4, 3, 2, 1.
Thus, the algorithm is performed on each bit of each byte under test. Therefore, when each
bit of CO00 has been processed then each bit of CO01 must be processed, etc. . . .

The six steps for each bit are:

1. Bit 1 of the 16 bit CRC is exclusive-ORed (XOR) with the bit under test (recall that
The orderis07 654 321). The result of this XOR is saved in ResultBit.

2. Bit 3 of the CRC is XORed with ResultBit. The result of this step is stored back
in ResultBit.

3. Bit 5 of the CRC is XORed with ResultBit. The result of this step is stored back
in ResultBit.

4. Bit 14 of the CRC is XORed with ResultBit. The result of this step is stored back
in ResultBit.

5. Ignoring ResultBit for a moment, the CRC is multiplied by 2 and it's carry discarded.

6. Step 5 will result in a “vacancy” in bit O of the CRC (ie. a zero was shifted into the
LSB). ResultBit is added to the CRC at bit O.

These six operations are performed on each bit for CO00 and then for each bit in C001, etc.
The final result is obtained after all bits in all memory locations have been processed. The
diagram on the previous page illustrates the six steps for the first bit under test for location
CO000. Note that at the top of the page the CRC has been initialized to 0000 before the
program begins (same as the additive checksum).

CNT-442 9 Jan - Apr 1997
Computer Engineering Technology Microcomputer Design 2

The following table provides sample data for the first 3 bytes under test:

Location Contents Bt #
0xC000 OxFC b0=0
b7 =
b6 =
b5 =
b4=1
b3 =
b2 =
bl =
0xC001 Ox7F b0=1
b7=0
b6 =1
b5=1
b4=1
b3=1
b2=1
bl1=1
0xC002 OxFE b0=0
b7=1
b6 =1
b5=1
b4=1
b3=1
b2=1
bl1=1

() Step 3: Program Definition

ResultBit CRC (after all 6 steps)

POOORrREFrREFO POOOORrEFrO

PPRPOOOPFr OO

0000 0000 0000 0000 = 0x0000

0000 0000 0000 0000 = 0x0000
0000 0000 0000 0001 = 0x0001
0000 0000 0000 0011 = 0x0003
0000 0000 0000 0110 = 0x0006
0000 0000 0000 1100 = 0x000C
0000 0000 0001 1000 = 0x0018
0000 0000 0011 0000 = 0x0030
0000 0000 0110 0001 = 0x0061

0000 0000 1100 0010 = 0Ox00C2
0000 0001 1000 0101 = 0x0185
0000 0011 0000 1011= 0x030B

0000 0110 0001 0111 = 0x0617
0000 1100 0010 1110 = Ox0OC2E
0001 1000 0101 1100 = 0x185C
0011 0000 1011 1000 = 0x30B8
0110 0001 0111 0001 = 0x6171

1100 0010 1110 0010 = 0xC2E2
1000 0101 1100 0100 = 0x85C4
0000 1011 1000 1001 = 0x0B89
0001 0111 0001 0010 = Ox1712
0010 1110 0010 0100 = 0x2E24
0101 1100 0100 1000 = 0x5C48
1011 1000 1001 0001 = 0xB891
0111 0001 0010 0011 = 0x7123

The following main program is to be used for this section of the lab. Your job is to write the
CRC() function code. The programming is to be done under Turbo C (and/or UNIX).

/***

* CRC.C - BasicKontron CRC algorithm operating on a set of four *
* numbers. Writtenin ANSI-C, but requires stdio.h. *

*

* by YourName Here
* Today's Date

*

*

*

***/

#include <stdio.h>

/*
| Prototype(s)
*/

unsigned int CRC(unsigned char * StartAddr, unsigned char * EndAddr);

CNT-442

10

Computer Engineering Technology

Jan - Apr 1997
Microcomputer Design 2

/***

* int main(void) *
* *
* Reqguires: No command line parameters *
* Return value: 0 (always) *

***/
int main(void)

{
unsigned char MemoryArray[3] = { OxFC, Ox7F, OXFE };

unsigned int FinalResult;

FinalResult = CRC(& MemoryArray[0], & MemoryArray[2]);
printf(“\nFinal CRC: 0x%04x”, FinalResult);

return O;
}

#

| unsigned int CRC(unsigned char * StartAddr, unsigned char *EndAddr); |

I I
| PerformsaKontron CRC algorithm over the address range provided. |

I I
| Requires: StartAddr - address of lowest memory location under test. |
| EndAddr - address of highest memory location under test. |
| Returns: The 16-bit Kontron CRC result value. |

*/
unsigned int CRC(unsigned char * StartAddr, unsigned char * EndAddr)

{
happy coding!

() Step 4: Verification

When you have verified that your solution works using the above three test values, check it
against some other values courtesy your HC11 board. Do a quick Memory/Dump of the
CO000 block on the HC11 board and try running Options/Rom Test over some small ranges.
Plug some of those Microll memory values into the MemoryArray[] and rerun the program.
Once you are sure that your algorithm is operating properly, have it checked off.

Have a copy of your documented source file(s) available for viewing by your
instructor. All files must be completely documented at the time of checkoff.

CNT-442 11 Jan - Apr 1997
Computer Engineering Technology Microcomputer Design 2

Section 2: HC11 User Interface

() Step 1: Library Routines

Several C-callable assembly language routines have been provided for you in CRT.S. They
are the character routines putchar() and getch(). Also, several “library” string routines are
found in sci_lib.c. They are puts() and cgets(). Any other routines you need for input, output
or data conversion must be coded in C and placed in an appropriate include library file.

The objective for this section of the lab is to create a character-based front end for the CRC
algorithm. Therefore, an operator will be entering the starting and ending addresses via the
keyboard. The labcheck for Section 2 will be satisfied when you have a working program that
does the following:

I. Initialize the SCI.

ii. Prompt the user with a colorful and attractive screen (containing your name and
course number). The prompt should ask for a starting address. Using cgets(), you
must get a 4 character address from the user. cgets() must be properly used to
prevent the user from entering more than 4 characters.

ii. After getting the starting address, convert that value to hex and store it at address
0x6000 (the particular address is of no concern, just place the hex value
somewhere so it can be verified using memory dump after the program is finished.
If the user entered an improper value, inform the user and return to step ii. The
address input code must be bulletproof and flawless. Any input that cannot be
properly interpreted as a hex address, must be rejected. Correct input would be
an address expressed using the characters 0-9, a-f and A-F.

Iv. In the same manner, prompt for and get the ending address. Place that address
(in hex, not ASCII) at 0x6002. If the user entered an improper value, again inform
Them and reprompt.

v. After pausing for a keypress or a predetermined delay, the program should repeat.

That's it! The “gotcha” with all of this is that you currently have no routines for data conversion
or typechecking. Therefore, you must create your own routines for these various activities.
Also, there should be no global variables in this program (or at any point in Lab #1).

You may use a global or an address expression like *(unsigned char*)0x6000 to store the test
addresses values to memory. If you prefer, you may write the values to the LED a byte at a
time, pausing with delay() in between.

SUGGESTION: Do not attempt to develop the whole application at once. Use your Turbo C
environment to create a routines which perform ASCII-to-hex, ixdigit and/or upcase functions.
All of these routines should work for both the PC and the HC11 in the same manner as the
endian.c program did.

Have a copy of your source file(s) available for check-off. All fles must be
completely documented at the time of checkoff.

CNT-442 13 Jan - Apr 1997
Computer Engineering Technology Microcomputer Design 2

(

1.

Section 3: Combined Program on the HC11

) Step 1: Code Merging

Take the code from the previous two sections and combine them to create a
complete program which prompts the user for starting and ending addresses and then
Performs a CRC over the specified range. Watch out for the dreaded “address wrap™!
Since you are using the supplied addresses in loops, there is the potential to create an
infinite loop if the user enters FFFF for the ending address. You will probably have to
treat this as a special condition.

As an additional specification, output each byte-under test to the LED display.
Once your program is operational, run it over the entire range C000 - FFFF. This

should match the value reported by Microl1 for running the Options/Rom Test over
the same range (as should any other set of EFROM addresses).

Have a copy of your source file(s) available for check-off. All fles must be
completely documented at the time of checkoff.

CNT-442 15 Jan - Apr 1997
Computer Engineering Technology Microcomputer Design 2

Section 4: Program Execution from EEPROM

() Step 1: Modifications to CRT.S

The only changes that need to be made are a few equates at the start of your CRT.S file.
There are three equates in particular:

CODE This defines the starting code address. Usually this will be 0x1040 for execution
From RAM. Change it to 0xC00O0 for execution from EEPROM.

GDATA The global data section normally resides somewhere past the end of the code
Area (0x5000). There aren't any global variables, so this shouldn't be an issue. For
future reference, ICC11 doesn't like global variables in the range 0x0000 - OxOOFF.

STACK For execution from RAM, this is normally set to the same value that Microll uses
(Ox7F6A). For the memory test program running from EEPROM move it to the top of
the internal RAM (OxOO0FF). Note that this will set the amount of space you have for
a stack to 256 bytes (which should be more than plenty, but you should keep an
Eye on it). Having done this, you should be able to run your program without the
62256 SRAM chip installed.

The reset vector is automatically established for you. Recompile your program, blast your
EEPROM from your .S19 file using BOOTLOAD.EXE and run your program over the entire range
of OxC000 to OxFFFF. Write the value you obtained on the lab check sheet.

() Step 2: Kontron CRC Verification

The Kontron does not support EEPROMs, but by picking a similar EPROM, the Kontron’s internal
CRC test can be run on an EEPROM. The steps below describe how to perform a CRC on a
27128A EPROM. Alternatively you may select a 27256 or 27C256 and run the test over half of
the device (the half with your program in it, remember...?):

1. Turn on the Kontron. The display should read SELECT EPROM. Press ENTER to
accept this option (other options would be PALs, etc).

2. The display should now read DIAL TYPE 2716. Type in 27128A on the keypad and
then press ENTER to accept that device choice.

3. Press the red button marked CHK. The display wil read CH 00. There are several
types of checks that can be done. We want Check #3 (CRC) so you must enter 03
and then press ENTER.

4. The display will now read CH SA 0000. The programmer is prompting you for the
starting base address (SA). Since the start BASE address for a 27128A is 0000,
accept the value in the display (0000) by pressing ENTER.

CNT-442 17 Jan - Apr 1997
Computer Engineering Technology Microcomputer Design 2

3. The display should now read CH EA 3FFF. The programmer is prompting you for
The ending base address (EA). Since the ending BASE address is 3FFF for a
27128A, accept this value by pressing ENTER. The display will now read CH P>>.
The programmer is now prompting you to place your device into the zero insertion
force (ZIF) socket. Place your 27128A into the socket to the right of the small
lluminated LED. Make sure that pin 1 is toward the back of the unit. Pull the small
green lever toward you to lock the 27128A in place.

5. Press the ENTER key. The display will count out the addresses as the CRC is being

calculated. When the result is shown, fill in the number on your LABCHECK sheet
and have it initialed by your instructor.

() Step 3: CvsAssembly Analysis
Fill in the following information and then get your program checked off by your instructor.
C Version:

Bytes of code:

Using your .LST file determine the highest address (not including the reset vector) of
your code and then subtract 0xC000 from this.

Execution time: seconds.
Using a stopwatch, time the execution of your CRC test program over the range
0xCO000 to OxFFFF.

Assembly Version:

Using Microl1 as the assembly language comparison, run the Options/Rom Test
over the range 0xCO0O0O0 to OxFFFF. and time it's execution.

Execution time: seconds.

Have a copy of your source file(s) available for check-off. All files must be
completely documented at the time of checkoff.

YOU MUST HAND IN ALL OF YOUR .C SOURCE FILES FOR EVALUATION.
Make sure that the files have been printed with the Cprint utility.

CNT-442 18 Jan - Apr 1997
Computer Engineering Technology Microcomputer Design 2

LAB #1: LABCHECK SUMMARY

NAME:

PRE-LAB: Endian Test Program
Questions 12
Program execution for PC and HC11. Show your source files with your name to
your instructor.

Date: Instructor: /3

LABCHECK #1: CRC Algorithm
Milestone checkoff. Have a copy of your source files on paper or PC screen.

Date: Instructor: /5

LABCHECK #2: User Interface
Milestone checkoff. Have a copy of your source files on paper or PC screen.

Date: Instructor: /5

LABCHECK #3: Combined Program (Final Program in RAM)
Milestone checkoff. Have a copy of your source files on paper or PC screen.

Date: Instructor: /5

LABCHECK #4: EPROM Version

Kontron CRC: Instructor:
Questions (C vs Assembly) 16
Operation (You must hand in your source files)

CNT-442 19 Jan - Apr 1997
Computer Engineering Technology Microcomputer Design 2

Date: Instructor: 14

PROGRAM DOCUMENTATION 120

Note: The FINAL source files are marked for quality of documentation (commenting,
use of identifiers, proper headers, proper equates, etc...). Your instructor may
require that you turn in your structure charts or pseudocode for marking also.

TOTAL /50

CNT-442 20 Jan - Apr 1997
Computer Engineering Technology Microcomputer Design 2

