OvrERrATIONS
ARITHMETIQUES SUR
MICROCONTROLEURS
8 BITS

; Multiplication 16 X 16 de R6:R7 X R4:R5 . les microprocesseurs sont
; résultat 32 bits dans R4:R5:R6:R7, RO est utilisé, R1, R2, R3 inchangés

; Multiplicande X multiplicateur MSBM:LSBM X MSBm:LSBm

Les opérations arithmétiques sur

; Taille de MUL16 : 41 octets

; MSBM:LSBM (R6:R7) souvent limitées aux opérations
; X MSBm:LSBm (R4:RS) K

; LSBMxLSBm (MSBI:LSB1) RES1= LSBT sur 8 bits. Cette précision est

;' MSBMxLSBm (MSB2:LSB2) RES2= MSB1+LSB2+LSB3

; LSBmxMSBm (MSB3:LSB3) RES3 = MSB2+MSB3+LSB4+retenue ‘

; MSBMxMSBm (MSB4LSB4) RES4 = MSB4+retenue) souvent Insufﬁsante et || est

; RES4:RES3:RES2:REST ‘

nécessaire de créer ses sous-

MUL16: MOV - AR7: = ; LSBM muiltiplicande

MOV - RCA ; sauve dans RO programmes pour faire des
MOV . BRS. i ‘; LSBm multiplicateur -
MULZ:AB o ¢ s MSB1:LSB1 =B:A = LSBM X LSBm
MOV RZA * ~“:saveleREST - opérations avec une précision
MOV AR5 = ; LSBm multiplicateur
XCH = AB il ; dans'B,.dans A le MSB1
XCH -AR6 i+ ; sauve dans R6, dans A MSBM mu!tlpllcande supérieure.
MOV R1,A ; sauve MSBM :
MUL - AB" ; MSB2:LSB2 = B:A = MSBM X LSBm
ADD ARG i M5BT + L3B2 Les sous-programmes
MOV " R6,A ; RES2 = MSB1 + LSB2 :
; les trois lignes suivantes ne sont necessalres que pour un résultat 32 bits
MOV ~AB ; M5B2 , ‘ d’addition et de soustraction ne
ADDC A#0 ; MSB2 + retenue partielle de RES2
; FF X FF=FEQ1, la retenue additionnée 3 MSB2 l'améne au maximum 3 FE+ 1 = FF
MOV RS,A : RES3 = MSB2 (inutile si résultat sur 16 bItS) posent pas de problémel
MOV AR4 ; MSBm multiplicateur . ’
MOV BRO ; LSBM multiplicande
MUL AB s MSB3:LSB3 = B:A = MSBm X LSBM par contre la multiplication et la
ADD AR6 ; RES2 = RES2 + LSB3
MOV R6,A ; sauve RES2 définitif
; arrét ici si résultat sur 16 bit seul désiré dans R6:R7 division sont plus délicates.
MOV AB ; MSB3
ADDC AR5 ; MSB2 + MSB3 + retenue partielle
?:AL%V is’A ; sauve RES3 temporaire Dans 90% des applications, une préci-
RIC A . d laret de RES3 sion de 16 bits est suffisante, ce qui né-
+ prendlaretenue ge cessite des multiplications de 16x16
XCH AR4 ; &change avec MSBm (sauve RES4) avec résultat sur 32 bits et des divisions
MOV BRI i MSBM 32/32 avec un résultat sur 16 ou 32
MUL AB ; MSB4:LSB4 = B:A = MSBM X MSBm bits. Quand on dispose d’une multipli-
ADD AR5 . ; L5B4 + RES3 cation 8x8 (cas du 8051, 68HCOS,
MOV RS,A RES3 = retenue + MSB2 + MSB3 + LSB4 68HC11)’ la multip“cation multipréci_
MOV . AB ; MSB4 : L0 sion s'effectue comme les multiplica-
ADDC. AR4 ; MSB4 + retenue(s) R T . tions décimales classiques en calculant
MOV R4,A ‘ ;sauve MSB4 . T des produits partiels puis en addition-
; resultat dans R4:R5:R6:R7 ' nant ceux-ci pour obtenir le résultat.
RET Au contraire de la multiplication, la

présence de division 8 bits dans le mi-
croprocesseur ne simplifie pas le calcul
de la division multiprécision. On est
obligé, comme dans le cas de la divi-

B Listing multiplication’16x16

556/ 29

; Division 32 bits de ACCU32 par R4:R5:R6:R7. Le résultat est dans ACCU32

; et le reste de la division dans RO:R1:R2:R3. R4:R5:R6:R7 sont inchangés,

; B est modifié et vaut 0 en sortie-de la division. ACCU32 est constitué de

; 4 octets ACCU32+0:ACCU32+1:ACCU32+2:ACCU32+3 (ACCU32+0 est le MSB)
; La division par 0 donne pour résultat FFFFH. e

; Taille de div32: 67 octets . = .5

; temps d’execution : 7+ (35+[11]) X 32+ 4 -

; soit dans le pire cas (FFFFH / 1) : 46 X 32 + 11 = 1483 cycles

; Dans certains cas, on est siir de n'avoir un résultat que sur 16 bits et on

; peut modifier le programme pour n’effectuer que 16 décalages et donc diviser
; le temps par deux (par exemple quand le résultat est issu d’une régle de 3 de
;type Y =X*n/ p avec p > n). Dans ce cas, on initialisera la division avec

23 | 1 0 73/23=3 ; le numérateur dans R2:R3:ACCU32+0:ACCU32+1, on supprimera Vinitialisation
41203 ‘ ; de R2 et R3 3 0, et on chargera B avec 16 au lieu de 32.
. 42 1 031 ACCU32 EQU 8H ; registre 32 bits externe
/23— 42/23=1 '
19 | résultat 21 reste 19 DIV32: CIR A ; initialise le MSB du numérateur
. Mov RO,A
B Figure 1 MOV R1,A
MOV R2,A ; @ supprimer si on est sur d’avoir un
sion décimale classique de faire des MoV R3,A ; résultat sur 16 bits (voir en en-téte)
soustractions successives pour arriver MoV B#32 ; compteur de décalage
au résultat. Pour optimiser le calcul ; 7 cycles
celui-ci est effectué d’une maniére non DIV320: CiR C ; multiplie le numérateur par 2 et laisse la
conventionnelle, la figure 1 explicite MOV AACCU32+3 ; place pour le résultat (voir plus bas)
I"algorithme utilisé en I'appliquant a . RLC A
une division décimale «classique». MOV ACCU3243,A
Dans le cas d’opérations signées, il fau- MOV AACCU32+2
dra au préalable rendre les arguments RLC A
po§iti_fs avant d’ef[ectuer Igs o’pératipns MOV ACCU32+2,A
puis inverser le résultat si nécessaire. MOV AACCU32+1
On pourra se passer de ces inversions si RLC A
on effectue une multiplication 16x16 MOV ACCU32+1,A
avec un résultat sur 16 bits. Dans ce MOV AACCU32+0
cas les 16 bits de poids faible du résul- RLC A
tat sont valides méme si I'opération est : MOV ACCU32+0,A
signée. Nous verrons prochainement ;
comment utiliser ses sous-pro- MOV AR3 ; et pousse les bits dans RO:R1:R2:R3 <- C
grammes pour réaliser d’autres fonc- RLC A ‘
:leons) (racine carrée, sinus, arc tangen- MOV R3A ; Dans une division sur papier, le numérateur
Les listings fournis donnent deux Mov AR2 ; ne “bouge pas” et c'est le dénominateur qui
exemples, une multiplication 16x16 et RLC A ; est divise par 2 (o’u par 10 si onesten
une division par 32 en assembleur AS1 MoV RZ,A ’ en baseul 0). Ici, est lg’numerateur qut
ue l'on retrouvera sur le serveur MoV AR ; "bouge” et est multiplié par 2 et fe
(3615 ERP) avec le code objet corres- RLC A ; dénominateur reste fixe. On pourrait faire
pondant. MOV R1,A ; les divisions sur papier exactement de la
J.L. VERN m%v ﬁ,RO ; méme maniére,
Mov RO,A
MOV AR3 ; compare le numérateur et le dénominateur
suBB AR7 ; la retenue est propagée
MoV AR2 ; vers le MSB :
SUBB AR6 ; (une manigre de comparer sur le 8051 est de
MOV AR1 ; faire une soustraction et de tester C.
SUBB AR5 ; Ici la comparaison est effectuée sur deux
MoV ARO ; mots de 32 bits : RO:R1:R2:R3 et R4:R5:R6:R7)
SUBB AR4
jC Div321 ; dénominateur > numérateur, résultat = 0
_ 35 cycles
; dénominateur <= numérateur, effectue la soustraction et résultat = 1
MOV RO,A ; sauve le nouveau MSB du numérateur
MoV AR3 ; recalcule fa soustraction
SUBB AR7 ; numérateur - dénominateur
MoV R3,A ; en sauvant cette fois le résultat
, MOV AR2 ; {Les bits a droite de la partie qui sert 3 la
\ SUBB AR6 ; comparaison du numérateur ne sont pas
‘ E I s F MOV R2,A ; affectés par la soustraction. Dans une
Ll e o . MoV AR1 ; division effectuée sur papier, on compléte de
g y - SUBB AR5 ; maniére sous-entendue le dénominateur avec
, reCherChe MOV R1,A ; des zéros, il en est de méme ici)
; le numérateur était plus grand que le dénominateur, un 1 est donc poussé dans
auteurs. ; le /ésultat. Celui-ci prend place dans la place laissée libre par le
' L 2 , ; L nérateur lorsqu'il est décalé. A la fin de la division, le résultat occupe
Contacter - = ; don< entiérement la place qui é}ait prise initialement par le numérateur. Le
BT ; décalege du résultat et du numérateur s'effectue donc en une seule méme
: - ; opérauon.
Cla ude Ducros INC ACCU32+3 ; enfait met un 1 dans le LSB (voir au dessus)
; 11 cycles
au 42 00 33 05 DIV321: DINZ B,DIV320 ; passe ainsi les 32 bits
: o RET
‘ ; 4 cycles

B Listing division par 32

	556_01.tif
	556_02.tif

