RACINES CARREES
ET DISTANCES SUR 1iC

La fonction racine carrée est une des fonctions fondamentales et est

nécessaire dans de nombreux calculs.

On l'utilisera par exemple pour calculer ArcSin(x) (1) ou ArcCos(x) (2) a

partir de la fonction ArcTan(x) déja décrite dans ces colonnes, pour

calculer des distances euclidiennes ou dans tout autre calcul.

L'algorithme le plus connu de calcul de racine carré est la méthode de

NEWTON qui peut se résumer

r=(x+r?)/(2.r)

typedef union{
ursigned long . |;
unsigried int 2%
Hong. int:

#define MSB.1

de la maniére suivante ;

/* long_int est soit */
1t unlong (32 bits) */
2P s0it deux int de 16 bits */

#* dépend de la:machine */

[*-calcul de racine carrée d’une valeur entiere */
unsigned char squarefunsigned int value)

long:int valeur; -
unsigned. int résultat;
unsigned.int-. - temporaire;
unsighed int loop;

valeur.l = (unSIgned lonhg)value;
résultat = O
for(tcop 0 loop < §; loop++){
“résultat <<=1;

‘valeurl<<_2 :

temporaire = (resultat*Z) +1;

if(valeur.i{MSB] >—temporanre){

valeur:i[MSB] -~tempora|re
résultat++;

3

retirn résultat;

L'idée est d’essayer une racine (r) de la
valeur dont on désire extraire la racine
(x), puis de réintroduire la nouvelle va-
leur de r trouvée. En réitérant I'opéra-
tion plusieurs fois, la valeur r coniverge-
ra rapidement vers la valeur désirée.
Par exemple, calculons la racine carrée
de 100 :

x = 100, on prend comme valeur ap-
prochée de la racine la valeur 100 (pas
une trés bonne approximation)
r=(100+ (100 X 100)) / (2 X 100)

= 50,50

r= (100 + (50,50 X 50,50)) /

(2 X 50,50) = 26,24

wf% valeur‘entrée */
/* résultat intermédiaire */

/* compteur de boucle*/

/% initialise Ta valeur ¥/

7*-et le résultat */

/% pousse le reésultat précédant ¥/
/*-prend les deux bits MSB */

/*teste la‘racine carrée */
/* recadrele MSB */
* racine carrée = 1%/

W Listing 2 : la version C

r= (100 + (26,24 X 26,24)) /
(2 X 26,24) = 15,03

r=..=1084
r=..=10,03
r=. ~1000OO1
r=..=10,00000

Chaque nouveau calcul nous rap-
proche de la solution on pourra donc
théoriquement arréter les itérations
quand on obtiendra la précision sou-
haitée. En fait si on effectue les calculs
en flottant, les erreurs de troncature
sur les calculs flottants limiteront rapi-
dement la précision du résultat. Il sera
prudent de limiter le nombre d’itéra-

tions pour éviter d'osciller indéfini-
ment autour de la solution si la préci-
sion souhaitée est importante.

De méme un bon choix de la racine de
départ diminuera sensiblement le
nombre d’itérations a effectuer. On
pourra aussi réécrire |’équation :
r=(r+x/r)/ 2 pour limiter les débor-
dements dans les calculs intermé-
diaires.

Cet algorithme universellement em-
ployé pour les calculs en flottant nest
pas optimum pour des calculs entiers.
[l oblige a fixer le nombre d’itérations
pour éviter I'oscillation du résultat. De
plus sur les processeurs qui ne dispo-
sent pas de division cablée suffisante,
(ce qui est le cas des microprocesseurs
80CS5X, 68HC11 et 68HCO5), cet algo-
rithme est inutilement lent.

Il existe un autre algorithme trés
simple pour extraire les racines carrées
qui ne nécessite pas de division (ni de
multiplication).

Considérons le tableau 1.

Dans la derniére colonne, la différence
de deux carrés successifs est la suite
des nombres impairs. On peut donc
écrire I'algorithme suivant :

n n? différence
o | O

1 1 1

2 4 3

3 9 5

4 16 7

5 25 9

W Tableau 1

r=1,;
dof

}
while(x >=0);
r=(/2)-1;
C’est vraisemblablement l'algorithme
le plus simple de calcul de racine car-
rée.
Petit probléme : le nombre d’itérations
est égal a la valeur de la racine carrée.
Fort heureusement, on peut limiter les
itérations si on se limite a des calculs
de petites racines carrées. Quand on
réalise une racine carrée a la main, on
groupe les chiffres deux par deux, et
on calcule la racine carrée deux chiffres
par deux chiffres. De méme, en base
deux, on pourra grouper les bits deux
par deux et chercher la racine carrée
de ces deux bits (0 ou 1), exactement
comme dans la méthode manuelle. Le
nombre d’itérations n’est donc plus
que de un, en revanche, il faudra effec-
tuer n calculs de racines carrées, n
étant le nombre de bits du résultat. Le
listing 1 réalise le calcul de la racine
carrée d’une valeur 32 bits contenue
dans ACCU32 et restitue le résultat
dans R6:R7 en assembleur 80C31. La
durée d’exécution est au maximum de
1,5 millisecondes pour un micropro-
cesseur cadencé a 12 MHz. Le listing 2
est une implémentation du méme al-
gorithme en langage C.
Le calcul de racine carrée est souvent
utilisé pour évaluer des distances. La
distance de deux points de coordon-
nées (xq, y1) et (x,, y,) est :
d = racine(X? + Y?) avec X = x1- X, et
Y=y1-y2
Dans les cas ou il n’est pas nécessaire
de faire un calcul avec une grande pré-
cision, on peut utiliser les approxima-
tions (4) et (5) pour évaluer la distance.
Max(x, y) et Min(x, y) sont respective-
ment des fonctions qui renvoient les
valeurs maximum et minimum de x et
dey. Ixl est la valeur absolue de x.
L’approximation (4) donne un résultat
avec une erreur minimum de 0 et une
erreur maximum de 11,76 % soit une
erreur inférieure a 1 dB.
Si cette approximation est insuffisante,
on utilisera la formule (5). L'erreur mi-
nimum est ici de -2,77 % et 'erreur
maximum de 0,78 %. Ces deux ap-
proximations pourront étre tres facile-
ment programmeées en n’utilisant que
des additions, soustractions et déca-
lages.

‘(1):Am5in(x)=AmTan(--L)
2
1-x

[2
1-x
X

1 (2): ArcCos (x)= ArcTan (

)
@3):Distance (XY)=/ X'+ Y
@):Distance (X,Y)= Max (IX, ¥l)+ ;—Min (X1, V1)

7 1 1 7
(5):Distance (X, Y)= Max (IXI, §|Xl + Z—IYI , Z—IXI + 8—IY| YD)

. mulacc: MOV

ADD
MOV
ADDC
MOV
MOV
ADDC
MOV
MOV

ADDC
MOV

MOV
ADDC
MOV
MOV
ADDC
MOV
MOV
ADDC
MOV
RET

AACCU3243
AACCU3243
ACCU32+3,A
AACCU32+2
AACCU32+2
ACCU3242,A
AACCU32+1
AACCU32+1
ACCU32+1,A
AACCU3240
AACCU32+0
ACCU32+0,A
AR3

AR3

R3,A

AR2

AR2

‘R2,A

ARI
ARI

- REA

i multlphe Rl 'R2 R3 ACCU32 par 2
+équivalent a.uridécalage a gauche

s décale.les MISB de ACCLI32
;7dans R1:R2:R3

; ent fait on n‘utilise que .
;- les deux bits LSB de R1

- square cak:ule Ia racine carrée de ACCUI32 et place le résultat dans Ré: R7
; R4:RS est un intermediaire de calcul qui contient ((R6:R7) * 2) + 1

R1 RZ:R3 accimule les bits décales de ACCU32

(RO estle compteur de boucle
~;alafinde l'exécution, ACCU32 =0

; Lalgorithme est tres proche de I’algnnthme de division mis a part que

. ; dans la recherche de fa facine carrée, le «numerateurs €st décalé par blocs
de deux bits.

, résultat R6:R7
=0
teste sEACCU32=0

+ACCU32 =0, sortavec 0

s accumulateur de bits-a 0

; résultat sur 16 bits

: résultat =résultat * 2

; décaleles-deux prochains bits
;- dont on veut extraire la racine carrée -
; temp = (résultat *'2).+ 1

i C=0

+st.msb non-nul
= R1:R2:R3 > R4:R5

R4:R5 > R1:R2:R3

< squa
RT R2 R3 >= R4 RS, calcule RLR2:R3 = R1 :R2:R3 =:R4:R5

squar3: RET

; partne haute = partie haute - temp

;résultat =résultat + 1

: dans le pire cas, 'exécution dure 1494 cycles
__square! :
‘ CLR A
MOV R6,A
MOV RZA
MOV AACCU3243
ORL AACCU32+2
ORL AACCU32+1
ORL AACCU32+0
. squar3
CIR . A
MOV . RLA
MOV R2,A
MOV R3,A
MOV RO,#16
boucle de calcul effectuee 16 fois
squaro MOV AR7
ADD A R7
MOV .. R7Z,A
MOV AR6
‘ADDC " AR6
.. MOV R6,A
CALL mulacc
CALL mulacc
MOV . AR7
ADD. o AR7
MOV R4,A
MOV AR6
~ADDC ARG
MOV . R5A
MOV AR4
. ADD A#l
= XCH = AR5
ADDC . A#0
MOV R4A
teste $i R1:R2:R3 >= R4:RS (partne hatite >= temp)
MOV AR]
INZ “squart
MOV AR3
. SUBB AR5
MOV o AR2
‘ SUBB ,AR4
squaﬂ MOV AR3
‘ SUBB. AR5
MOV . R3A
MOV ARZC
SUBB AR4
MOV R2,A
MOV JARY
SUBB A#O
MOV RLA
MOV AR7
ADD A#l
MOV RZA:
MOV AR6
ADDC: - A#0
‘ MOV R6 A
squarZ DINZ RO,squar0

B Listing 1.: calcul de racine en assembleur 51.

	564_01.tif
	564_02.tif

