
1 #include "all03.h"
2
3 long start = 0, end = 0, dest = 0;
4 static char cmd[80], *pos;
5 static FILE *f = NULL;
6
7 void dos_shell(char *cmd)
8 {
9 textattr(LIGHTGRAY); clrscr();

10 printf("Type EXIT to return to Programmer menu\n");
11 system(cmd);
12 }
13
14 static void displine(long addr)
15 {
16 int i, c;
17 unsigned char buf[16];
18
19 if(buffer)
20 memcpy(buf, (void far *)(buffer+addr), 16);
21 else
22 {
23 fseek(f, addr, SEEK_SET);
24 fread(buf, 1, 16, f);
25 }
26
27 cprintf("%05lX ", addr);
28
29 for(i = 0; i < 8; ++i)
30 cprintf("%02X ", buf[i]);
31
32 cprintf("--");
33
34 for(i = 8; i < 16; ++i)
35 cprintf("%02X ", buf[i]);
36
37 for(i = 0; i < 16; ++i)
38 putch(isprint(c = buf[i]) ? c : '.');
39
40 cprintf("\r\n");
41 }
42
43 static void dispbuf(void)
44 {
45 int c;
46
47 cprintf("Press <ESC> to terminate display\n\r\n");
48 delay(500);
49
50 while(start <= end)
51 {
52 if(kbhit())
53 {
54 if((c = getch()) == 0x1B)
55 break;
56 else if(c == 0)
57 getch();
58 }
59 displine(start); start += 16;
60 }
61 }
62
63 void disp_buffer(void)
64 {
65 textattr((CYAN << 4) + WHITE); clrscr();
66
67 start = 0; end = bufsize; dispbuf();
68
69 cprintf("Press any key to continue");
70 if(getch() == 0) getch();
71 }
72

page 1 BUFFUNCS.C

73 static unsigned char xval(char c)
74 {
75 if((c = toupper(c)) > '9')
76 return c - 'A' + 10;
77 else
78 return c - '0';
79 }
80
81 static void hexedit(void)
82 {
83 int i, c, loop, changed = 0;
84 long addr, top = start, lasttop = -1L;
85 int ascii = 0, right = 0, curx = 0, cury = 0;
86
87 textattr((CYAN << 4) + WHITE); clrscr();
88
89 for(;;)
90 {
91 if(top != lasttop)
92 {
93 lasttop = top;
94 changed = 0;
95
96 locate(0,0);
97 for(addr = top; addr < top + 24*16; addr += 16)
98 if(addr < start + bufsize)
99 displine(addr);

100
101 textattr((BLUE << 4) + WHITE); clreol();
102 cprintf(" [ESC]: Back to command prompt, [TAB]: Toggle entry mode,

[ALT-G] Goto address");
103 textattr((CYAN << 4) + WHITE);
104 }
105 else if(changed)
106 {
107 changed = 0;
108 c = !curx ? cury-1 : cury; // check for wrap
109 locate(c, 0);
110 displine(top + 16*c);
111 }
112
113 locate(cury, !ascii ? ((curx<8) ? 7:9) + 3*curx + right : 57+curx);
114
115 for(loop = 1; loop;)
116 {
117 switch(c = getch())
118 {
119 case 0:
120 switch(getch())
121 {
122 case 34: // ALT-G
123 locate(24,0);
124 textattr((BLUE << 4) + WHITE); clreol();
125 cprintf("Enter Address:");
126 cmd[0] = 79; xgets(cmd);
127 textattr((CYAN << 4) + WHITE);
128
129 sscanf(cmd+2, "%X", &addr);
130 if(addr >= start && addr < start + bufsize)
131 {
132 top = addr & 0xFFF00L;
133 if(top > start + bufsize - 24*16)
134 top = start +bufsize - 24*16;
135 if(top < 0)
136 top = 0;
137 curx = (int)(addr & 0x0F); right = 0;
138 cury = (int)((addr - top) >> 4);
139 loop = 0;
140 lasttop = -1L;
141 }
142 break;
143

page 2 BUFFUNCS.C

144 case 71: // HOME
145 curx = cury = 0;
146 top = start;
147 loop = 0;
148 break;
149
150 case 79: // END
151 curx = 15; cury = 23;
152 top = start + bufsize - 24*16;
153 if(top < 0) top = 0;
154 loop = 0;
155 break;
156
157 case 75: // LEFT
158 if(!ascii && right)
159 {
160 right = 0;
161 loop = 0;
162 break;
163 }
164 right = 1;
165 if(curx)
166 {
167 --curx;
168 loop = 0;
169 break;
170 }
171 curx = 15;
172 loop = 0;
173
174 // fall through
175
176 case 72: // UP
177 if(cury == 0)
178 {
179 if(top > start)
180 {
181 loop = 0;
182 top -= 16;
183 }
184 }
185 else
186 {
187 loop = 0;
188 --cury;
189 }
190 break;
191
192 case 77: // RIGHT
193 Advance: if(!ascii && !right)
194 {
195 right = 1;
196 loop = 0;
197 break;
198 }
199 right = 0;
200 if(curx < 15)
201 {
202 ++curx;
203 loop = 0;
204 break;
205 }
206 curx = 0;
207 loop = 0;
208
209 // fall through
210
211 case 80: // DOWN
212 if(cury < 23)
213 {
214 loop = 0;
215 ++cury;

page 3 BUFFUNCS.C

216 }
217 else if(top < start + bufsize - 24*16)
218 {
219 loop = 0;
220 top += 16;
221 }
222 break;
223
224 case 73: // PGUP
225 if(top >= start + 24*16)
226 {
227 top -= 24*16;
228 if(top < 0) top = 0;
229 loop = 0;
230 }
231 else if(top != start)
232 {
233 loop = 0;
234 top = start;
235 }
236 break;
237
238 case 81: // PGDN
239 if(top + 24*16 <= start + bufsize - 24*16)
240 {
241 top += 24*16;
242 loop = 0;
243 }
244 else if(top != start + bufsize - 24*16)
245 {
246 top = start + bufsize - 24*16;
247 if(top < 0) top = 0;
248 loop = 0;
249 }
250 break;
251 }
252 break;
253
254 case 0x1B: locate(24, 0); clreol(); return;
255
256 case 0x09: ascii ^= 1; loop = 0; break;
257
258 default:
259 addr = top + 16*cury + curx;
260
261 if(!ascii)
262 {
263 if(isxdigit(c))
264 {
265 loop = 0;
266 changed = 1;
267 if(!right)
268 {
269 right = 1;
270 if(buffer)
271 buffer[addr] = (buffer[addr] & 0x0F) | (xval(c)

<< 4);
272 else
273 {
274 fseek(f, addr, SEEK_SET); i = getc(f);
275 i = (i & 0x0F) | (xval(c) << 4);
276 fseek(f, addr, SEEK_SET); putc(i, f);
277 }
278 }
279 else
280 {
281 if(buffer)
282 buffer[addr] = (buffer[addr] & 0xF0) | xval(c);
283 else
284 {
285 fseek(f, addr, SEEK_SET); i = getc(f);
286 i = (i & 0xF0) | xval(c);

page 4 BUFFUNCS.C

287 fseek(f, addr, SEEK_SET); putc(i, f);
288 }
289 goto Advance;
290 }
291 }
292 }
293 else
294 {
295 changed = 1;
296 loop = 0;
297 if(buffer)
298 buffer[addr] = c;
299 else
300 {
301 fseek(f, addr, SEEK_SET); putc(c, f);
302 }
303 goto Advance;
304 }
305 break;
306 }
307 }
308 }
309 }
310
311 static void split(void)
312 {
313 end = dest = -1L;
314
315 if((pos = strtok(pos, ", \t\n\r")) != NULL)
316 sscanf(pos, "%X", &start);
317 if((pos = strtok(NULL, ", \t\n\r")) != NULL)
318 sscanf(pos, "%X", &end);
319 if((pos = strtok(NULL, ", \t\n\r")) != NULL)
320 sscanf(pos, "%X", &dest);
321
322 start &= 0xFFFF0L;
323 if(end == -1L) end = start + 0x7F;
324 }
325
326 void edit_buffer(void)
327 {
328 int redraw, i, l;
329 unsigned char str[16];
330 unsigned Ck;
331 long x;
332
333 if(!buffer && (f = fopen(buffile, "rb+")) == NULL)
334 return;
335
336 textattr((CYAN << 4) + WHITE); clrscr();
337
338 for(;;)
339 {
340 cprintf("\n\r EDITING COMMAND SUMMARY\n\r");
341 cprintf("D [start],[end] <RETURN> : DUMP\n\r");
342 cprintf("E start <RETURN> : EDIT\n\r");
343 cprintf("M start,end,destination <RETURN> : MOVE BLOCK\n\r");
344 cprintf("F start,end,data <RETURN> : FILL BLOCK\n\r");
345 cprintf("P start,end <RETURN> : PRINT BLOCK\n\r");
346 cprintf("C start,end <RETURN> : CHECK SUM\n\r");
347 cprintf("S start,end,ASCII data <RETURN> : ASCII SEARCH MAX. 15

characters\n\r");
348 cprintf("B start,end,BINARY data <RETURN> : BINARY SEARCH MAX. 7 BYTEs\n\r"

);
349 cprintf(". filename [args]* <RETURN> : SHELL\n\r");
350 cprintf("? <RETURN> : HELP\n\r");
351 cprintf("Q <RETURN> : QUIT\n\r");
352 cprintf("===\n\r");
353
354 for(redraw = 0; !redraw;)
355 {
356 cprintf("\r\n\=="); cmd[0] = 79; xgets(cmd); cprintf("\n\r");

page 5 BUFFUNCS.C

357
358 if(cmd[1] == 0)
359 continue;
360
361 i = toupper(cmd[2]);
362
363 for(pos = cmd+3; isspace(*pos); ++pos);
364
365 switch(i)
366 {
367 case 'Q': if(!buffer)
368 {
369 fseek(f, bufsize, SEEK_SET);
370 fclose(f);
371 }
372 return;
373 case '?': redraw = 1; break;
374 case '.': system(pos); break;
375 case 'D': split(); if(end == -1L) end = start + 0x7F;
376 dispbuf();
377 break;
378 case 'E': start = 0L; split(); hexedit(); break;
379 case 'M': split();
380 if(start != -1L && end != -1L && dest != -1L)
381 {
382 if(buffer)
383 {
384 memcpy((char far *)(buffer+dest),
385 (char far *)(buffer+start),
386 (unsigned)(end-start+1));
387 }
388 else
389 {
390 for(x = 0; x <= end-start; ++x)
391 {
392 fseek(f, start+x, SEEK_SET); i = getc(f);
393 fseek(f, dest+x, SEEK_SET); putc(i,f);
394 }
395 }
396 }
397 break;
398 case 'F': split();
399 if(start != -1L && end != -1L && dest != -1L)
400 {
401 if(buffer)
402 {
403 memset((char far *)(buffer+start),
404 (unsigned char)(dest & 0xFF),
405 (unsigned)(end-start+1));
406 }
407 else
408 {
409 dest &= 0xFF;
410 fseek(f, start+x, SEEK_SET);
411 for(x = 0; x <= end-start; ++x)
412 putc(dest, f);
413 }
414 }
415 break;
416 case 'C': split();
417 if(start != -1L && end != -1L)
418 {
419 Ck = 0;
420 if(!buffer) fseek(f, start+x, SEEK_SET);
421 for(x = start; x <= end; ++x)
422 Ck += (buffer ? buffer[x] : getc(f));
423 cprintf("%04X", Ck);
424 }
425 break;
426 case 'S': split();
427 if(start != -1L && end != -1L && pos && buffer)
428 {

page 6 BUFFUNCS.C

429 l = strlen(pos);
430 cprintf("%05lX-%05lX: '%s'\n\r", start, end, pos);
431 for(x = start; x <= end-l+1; ++x)
432 {
433 if(!strncmpi((char far *)(buffer+x), pos, l))
434 cprintf("%05lX\n\r", x);
435 }
436 }
437 break;
438 case 'B': split();
439 if(start != -1L && end != -1L && dest != -1 && buffer)
440 {
441 str[0] = dest; l = 1;
442 while((pos = strtok(NULL, ", \t\n\r")) != NULL)
443 sscanf(pos, "%x", &str[l++]);
444 cprintf("%05lX-%05lX: ", start, end);
445 for(i = 0; i < l; ++i)
446 cprintf("%02X ", str[i]);
447 cprintf("\n\r");
448 for(x = start; x <= end-l+1; ++x)
449 {
450 if(!memcmp((char far *)(buffer+x), str, l))
451 cprintf("%05lX\n\r", x);
452 }
453 }
454 break;
455 }
456 }
457 }
458 }
459

page 7 BUFFUNCS.C

