
1 #include "all03.h"
2
3 // AMD AM29{F,LV,BV}0{1,2,4}0/A/B
4 //
5 // MFG ID AA->555 55->2AA 90->555 X00->id (01)
6 // DEV ID AA->555 55->2AA 90->555 X01->id (6E)
7 // SECERA AA->555 55->2AA 80->555 AA->555 55->2AA 30->aaaaa
8 //
9 // PROG 555,AA 2AA,55 555,A0 aaaaa,dd

10 // CHPERA 555,AA 2AA,55 555,80 555,AA 2AA,55 555,10
11 //
12
13 //0.4 5: A18 VCC :36 4.3
14 //0.5 6: A16 /WE :35 4.2
15 //0.6 7: A15 A17 :34 4.1
16 //0.7 8: A12 A14 :33 4.0
17 //1.0 9: A7 A13 :32 3.7
18 //1.1 10: A6 A8 :31 3.6
19 //1.2 11: A5 A9 :30 3.5 VID=+12V (from VOP) \ SECTOR (UN)PROTECT
20 //1.3 12: A4 A11 :29 3.4 +
21 //1.4 13: A3 /OE :28 3.3 VID=+12V (from VOP) / SECTOR PROTECT VERIFY
22 //1.5 14: A2 A10 :27 3.2
23 //1.6 15: A1 /CE :26 3.1
24 //1.7 16: A0 D7 :25 3.0
25 //2.0 17: D0 D6 :24 2.7
26 //2.1 18: D1 D5 :23 2.6
27 //2.2 19: D2 D4 :22 2.5
28 // 20: GND D3 :21 2.4
29
30 #define _CE 26
31 #define _OE 28
32 #define _WE 35
33
34 static char apin[] = { 16,15,14,13,12,11,10,9,31,30,27,29,8,32,33,7,6,34,5 };
35 static char dpin[] = { 17,18,19,21,22,23,24,25 };
36
37 struct DEV {
38 char name[20];
39 long Size;
40 char VCC;
41 };
42
43 struct DEV AMD_devs[] = {
44 { "Am29LV010/A/B", 0x20000L, 33 },
45 { "Am29LV020/A/B", 0x40000L, 33 },
46 { "Am29LV040/A/B", 0x80000L, 33 },
47 { "Am29F010", 0x20000L, 50 },
48 { "Am29F020", 0x40000L, 50 },
49 { "Am29F040", 0x80000L, 50 }
50 };
51
52 struct DEV MXIC_devs[] = {
53 { "MX29F010", 0x20000L, 50 },
54 { "MX29F020", 0x40000L, 50 },
55 { "MX29F040", 0x80000L, 50 }
56 };
57
58 struct {
59 char name[20];
60 int numdevs;
61 struct DEV *dev;
62 } mfr[] = {
63 { "AMD/MMI", sizeof(AMD_devs)/sizeof(struct DEV), AMD_devs },
64 { "MXIC", sizeof(MXIC_devs)/sizeof(struct DEV), MXIC_devs }
65 };
66
67 int mfrno = 0, devno = 0;
68
69 long DevStart= 0L;
70 long Counter = 0L;
71 long lastaddr;
72

page 1 EEP3.C

73 void ShowCounter(long val)
74 {
75 struct text_info ti;
76
77 gettextinfo(&ti);
78
79 textattr((BLUE << 4) + WHITE);
80 locate(8,71); cprintf(" %05lX ", val);
81
82 textattr(ti.attribute);
83 gotoxy(ti.curx, ti.cury);
84 }
85
86 void power(int state)
87 {
88 int i;
89
90 // we dont need these...
91 setdac(VHHID, 0); // VHH = 0V
92 setdac(VOPID, 0); // VOP = 0V
93
94 setport(OTHERENID, 0, 0); // Pin20 = GND
95
96 setport(VHHENCID,0, 0); // no VHHC
97 setport(VHHENCID,1, 0); // no VHHC
98
99 setport(VCCENID, 0, 0); // no VCC

100 setport(VCCENID, 1, 0); // no VCC
101
102 for(i = 0; i <= 4; ++i)
103 {
104 setport(VOPENID, i, 0); // no VOP
105 setport(VHHENID, i, 0); // no VHH
106 setport(TTLID, i, 0xFF); // TTL hi on all pins
107 }
108
109 lastaddr = -1L;
110
111 // VCC is pin 32 (programmer socket pin 36)
112
113 if(state)
114 {
115 setdac(VCCID, mfr[mfrno].dev[devno].VCC); // VCC = 3.3/5.0V
116 waitms(100);
117 setpin(36, VCCENID, 1);
118 }
119 else
120 {
121 setdac(VCCID, 0); // VCC = 0V
122 waitms(100);
123 setpin(36, VCCENID, 0);
124 }
125 }
126
127 void setaddr(unsigned long addr)
128 {
129 register unsigned char i;
130 register unsigned a, b;
131
132 a = (unsigned)(addr & 0xFFFF);
133 b = (unsigned)(lastaddr & 0xFFFF);
134
135 for(i = 0; i < 16; ++i) // A0..A15
136 {
137 if((a & 1) != (b & 1))
138 setpin(apin[i], TTLID, a & 1);
139 a >>= 1; b >>= 1;
140 }
141
142 a = (unsigned)(addr >> 16);
143 b = (unsigned)(lastaddr >> 16);
144

page 2 EEP3.C

145 for(i = 16; i < 19; ++i) // A16..A18
146 {
147 if((a & 1) != (b & 1))
148 setpin(apin[i], TTLID, a & 1);
149 a >>= 1; b >>= 1;
150 }
151
152 lastaddr = addr;
153 }
154
155 void f_write(long addr, register unsigned char d)
156 {
157 register int i;
158
159 setaddr(addr);
160
161 for(i = 0; i < 8; ++i)
162 {
163 setpin(dpin[i], TTLID, d & 1);
164 d >>= 1;
165 }
166
167 setpin(_OE, TTLID, 1);
168 setpin(_CE, TTLID, 0);
169 setpin(_WE, TTLID, 0);
170
171 setpin(_WE, TTLID, 1);
172 setpin(_CE, TTLID, 1);
173 }
174
175 void f_prepare(void)
176 {
177 int i;
178
179 for(i = 0; i < 8; ++i)
180 setpin(dpin[i], TTLID, 1); // set D0..D7 to 1 for reading
181 }
182
183 unsigned char f_read(void)
184 {
185 register unsigned char d = 0;
186 register int i;
187
188 setpin(_WE, TTLID, 1);
189 setpin(_CE, TTLID, 0);
190 setpin(_OE, TTLID, 0);
191
192 for(i = 7; i >= 0; --i)
193 d = (d << 1) | getpin(dpin[i]);
194
195 setpin(_OE, TTLID, 1);
196 setpin(_CE, TTLID, 1);
197
198 return d;
199 }
200
201 int do_erase(void)
202 {
203 unsigned char d, n;
204 int i;
205
206 for(i = 0; i < 2; ++i)
207 {
208 f_write(0x555L, 0xAA);
209 f_write(0x2AAL, 0x55);
210 f_write(0x555L, 0x80);
211
212 f_write(0x555L, 0xAA);
213 f_write(0x2AAL, 0x55);
214 f_write(0x555L, 0x10);
215
216 f_prepare();

page 3 EEP3.C

217
218 d = f_read();
219
220 while(((n = f_read()) ^ d) & 0x40) // while D6 toggles
221 {
222 if((d = n) & 0x20) // D5=1 : timeout
223 {
224 if((f_read() ^ f_read()) & 0x40) // still toggling
225 {
226 f_write(0L, 0xF0); // reset device
227 f_prepare();
228 waitms(10);
229 return 0; // failure
230 }
231 break; // just in time
232 }
233 }
234 }
235 return 1;
236 }
237
238 int do_sector_erase(int block)
239 {
240 unsigned char d, n;
241 int i;
242
243 for(i = 0; i < 2; ++i)
244 {
245 f_write(0x555L, 0xAA);
246 f_write(0x2AAL, 0x55);
247 f_write(0x555L, 0x80);
248
249 f_write(0x555L, 0xAA);
250 f_write(0x2AAL, 0x55);
251
252 f_write(block * (bufsize/8), 0x30);
253
254 f_prepare();
255
256 d = f_read();
257
258 while(((n = f_read()) ^ d) & 0x40) // while D6 toggles
259 {
260 if((d = n) & 0x20) // D5=1 : timeout
261 {
262 if((f_read() ^ f_read()) & 0x40) // still toggling
263 {
264 f_write(0L, 0xF0); // reset device
265 f_prepare();
266 waitms(10);
267 return 0; // failure
268 }
269 break; // just in time
270 }
271 }
272 }
273 return 1;
274 }
275
276 int do_program(long addr, unsigned char val)
277 {
278 unsigned char d, n;
279
280 f_write(0x555L, 0xAA);
281 f_write(0x2AAL, 0x55);
282 f_write(0x555L, 0xA0);
283
284 f_write(addr, val);
285
286 f_prepare();
287
288 d = f_read();

page 4 EEP3.C

289
290 while(((n = f_read()) ^ d) & 0x40) // while D6 toggles
291 {
292 if((d = n) & 0x20) // D5=1 : timeout
293 {
294 if((f_read() ^ f_read()) & 0x40) // still toggling
295 {
296 f_write(0L, 0xF0); // reset device
297 f_prepare();
298 waitms(10);
299 return 0; // failure
300 }
301 n = f_read();
302 break; // just in time
303 }
304 }
305 return (n == val);
306 }
307
308 void ShowProtect(void)
309 {
310 int i,v;
311
312 // A16..A14 = sector#
313 // A13..A10 = x -> 0
314 // A9 = Vid (12V)
315 // A8 .. A7 = x -> 0
316 // A6 = 0
317 // A5 .. A2 = x -> 0
318 // A1 .. A0 = 2
319
320 textattr((LIGHTGRAY << 4) | WHITE);
321 locate(24, 41); cprintf("*Protect bit[7..0] :");
322
323 for(i = 7; i >= 0; --i)
324 {
325 setaddr(0x00202L | 0x04000L * i); // A9=1, A1=1, all others=0
326
327 setpin(30, VOPENID, 1); // A9 = Vid (12V)
328 v = f_read();
329 setpin(30, VOPENID, 0);
330
331 cprintf("%c", !v ? '0':'1');
332 }
333 }
334
335 void ShowDevice(void)
336 {
337 int mfr,dev;
338
339 // A16..A14 = x
340 // A13..A10 = x -> 0
341 // A9 = Vid (12V)
342 // A8 .. A7 = x -> 0
343 // A6 = 0
344 // A5 .. A2 = x -> 0
345 // A1 .. A0 = 0:MFGID, 1:DEVID
346
347 power(1);
348 #if(0)
349
350 setaddr(0x00200L); // A9=1, all others=0
351
352 setpin(apin[9], VOPENID, 1); // A9 = Vid (12V)
353 mfr = f_read();
354 setpin(apin[9], VOPENID, 0);
355
356 setpin(apin[0], TTLID, 1); // A0=1
357 setpin(apin[9], VOPENID, 1); // A9 = Vid (12V)
358 dev = f_read();
359 setpin(apin[9], VOPENID, 0);
360

page 5 EEP3.C

361 #else
362
363 f_write(0x555L, 0xAA);
364 f_write(0x2AAL, 0x55);
365 f_write(0x555L, 0x90);
366 f_prepare();
367 setaddr(0L); mfr = f_read();
368
369 f_write(0x555L, 0xAA);
370 f_write(0x2AAL, 0x55);
371 f_write(0x555L, 0x90);
372 f_prepare();
373 setaddr(1L); dev = f_read();
374
375 #endif
376 power(0);
377
378 textattr((BLUE << 4) | WHITE);
379 locate(2, 40); cprintf("*MFR/DEV : %02X/%02X", mfr, dev);
380 }
381
382 void ShowType(void)
383 {
384 if(mfrno < 0 || mfrno > sizeof(mfr) / sizeof(mfr[0]))
385 mfrno = 0;
386 if(devno < 0 || devno >= mfr[mfrno].numdevs)
387 devno = 0;
388
389 bufsize = mfr[mfrno].dev[devno].Size;
390 BufEnd = bufsize - 1;
391
392 textattr((BLUE << 4) | WHITE);
393
394 locate(0,40); cprintf("*Mfr.: %s", mfr[mfrno].name);
395 locate(1,40); cprintf("*TYPE: %s", mfr[mfrno].dev[devno].name);
396
397 locate(0,62); cprintf("*BLANK BIT: 1");
398 locate(1,62); cprintf("*PGMSPEED: INTL");
399 locate(2,62); cprintf("*VCP :%3.1fV", 0.1 * mfr[mfrno].dev[devno].VCC);
400
401 locate(6,41); cprintf(" end addr.: %05lX", BufEnd);
402
403 textattr((CYAN << 4) | WHITE);
404 }
405
406 int flash_check(void)
407 {
408 int done;
409 long addr;
410
411 textattr((CYAN << 4) | WHITE);
412 _window(11,40, 23,79);
413
414 textattr((BLUE << 4) | WHITE);
415 locate(11, 45); cprintf(" BLANK CHECK device:");
416
417 for(;;)
418 {
419 textattr((CYAN << 4) | WHITE);
420 locate(12, 41); cprintf("Ready to check (Y/<CR>)? ");
421
422 for(done = 0; !done;)
423 {
424 switch(getch())
425 {
426 case 0:
427 getch();
428 break;
429
430 case '\n':
431 case '\r':
432 case 0x1B:

page 6 EEP3.C

433 return;
434
435 case 'y':
436 case 'Y':
437 done = 1;
438 }
439 }
440
441 clscrn(13,41, 22,78);
442
443 power(1);
444 setport(USERBITS, 0, 0);
445
446 textattr(BLINK | (LIGHTGREEN << 4) | WHITE);
447 locate(13, 41); cprintf("Blank checking now... ");
448
449 ShowCounter(BufStart);
450 for(addr = BufStart; addr <= BufEnd; ++addr)
451 {
452 if((addr & 0xFF) == 0)
453 ShowCounter(addr);
454
455 setaddr(addr);
456 if((done = f_read()) != 0xFF)
457 break;
458 }
459
460 textattr((CYAN << 4) | WHITE);
461 locate(13, 41); cprintf("Blank checking now... ");
462
463 locate(14, 41);
464 if(addr > BufEnd)
465 {
466 ShowCounter(BufEnd);
467 putchar(7);
468 cprintf(" OK !");
469 setport(USERBITS, 0, 8);
470 }
471 else
472 {
473 errbeep();
474 textattr((RED << 4) | WHITE);
475 cprintf("Blank check error at %05lX (%02X)", addr, done);
476 textattr((CYAN << 4) | WHITE);
477 }
478
479 power(0);
480 }
481 }
482
483 void flash_program(void)
484 {
485 int done;
486 long addr;
487 FILE *f;
488
489 textattr((CYAN << 4) | WHITE);
490 _window(11,40, 23,79);
491
492 textattr((BLUE << 4) | WHITE);
493 locate(11, 45); cprintf(" PROGRAM :");
494
495 for(;;)
496 {
497 textattr((CYAN << 4) | WHITE);
498 locate(12, 41); cprintf("Ready to program (Y/<CR>)? ");
499
500 for(done = 0; !done;)
501 {
502 switch(getch())
503 {
504 case 0:

page 7 EEP3.C

505 getch();
506 break;
507
508 case '\n':
509 case '\r':
510 case 0x1B:
511 return;
512
513 case 'y':
514 case 'Y':
515 done = 1;
516 }
517 }
518
519 clscrn(13,41, 22,78);
520
521 setport(USERBITS, 0, 0);
522 power(1);
523
524 if(!buffer && (f = fopen(buffile, "rb")) == NULL)
525 {
526 errbeep();
527 textattr((RED << 4) | WHITE);
528 locate(13, 41); cprintf("File open error !");
529 textattr((CYAN << 4) | WHITE);
530 delay(1000);
531 break;
532 }
533
534 textattr(BLINK | (LIGHTGREEN << 4) | WHITE);
535 locate(13, 41); cprintf("Programming now... ");
536
537 ShowCounter(BufStart);
538 for(addr = BufStart; addr <= BufEnd; ++addr)
539 {
540 if((addr & 0xFF) == 0)
541 ShowCounter(addr);
542
543 if(!do_program(addr, (buffer ? buffer[addr] : getc(f))))
544 break;
545 }
546
547 if(!buffer) fclose(f);
548
549 textattr((CYAN << 4) | WHITE);
550 locate(13, 41); cprintf("Programming now... ");
551
552 locate(14, 41);
553 if(addr > BufEnd)
554 {
555 ShowCounter(BufEnd);
556 putchar(7);
557 setport(USERBITS, 0, 8);
558 cprintf(" OK !");
559 }
560 else
561 {
562 errbeep();
563 textattr((RED << 4) | WHITE);
564 cprintf("Program error ! at %05lX", addr);
565 textattr((CYAN << 4) | WHITE);
566 }
567
568 power(0);
569 }
570 }
571
572 void flash_read(void)
573 {
574 int done;
575 long addr;
576 unsigned char val;

page 8 EEP3.C

577 FILE *f;
578
579 textattr((CYAN << 4) | WHITE);
580 _window(11,40, 23,79);
581
582 textattr((BLUE << 4) | WHITE);
583 locate(11, 45); cprintf(" READ to buffer :");
584
585 for(;;)
586 {
587 textattr((CYAN << 4) | WHITE);
588 locate(12, 41); cprintf("Ready to start (Y/Even/Odd/<CR>)? ");
589
590 for(done = 0; !done;)
591 {
592 switch(getch())
593 {
594 case 0:
595 getch();
596 break;
597
598 case '\n':
599 case '\r':
600 case 0x1B:
601 return;
602
603 case 'y':
604 case 'Y':
605 done = 1;
606
607 case 'e':
608 case 'E':
609 case 'o':
610 case 'O':
611 done = 1;
612 }
613 }
614
615 clscrn(13,41, 22,78);
616
617 setport(USERBITS, 0, 0);
618 power(1);
619
620 if(!buffer && (f = fopen(buffile, "wb")) == NULL)
621 {
622 errbeep();
623 textattr((RED << 4) | WHITE);
624 locate(13, 41); cprintf("File open error !");
625 textattr((CYAN << 4) | WHITE);
626 delay(1000);
627 break;
628 }
629
630 textattr(BLINK | (LIGHTGREEN << 4) | WHITE);
631 locate(13, 41); cprintf("Reading now... ");
632
633 Chks = 0;
634
635 ShowCounter(BufStart);
636 for(addr = BufStart; addr <= BufEnd; ++addr)
637 {
638 if((addr & 0xFF) == 0)
639 ShowCounter(addr);
640
641 setaddr(addr);
642
643 Chks += (val = f_read());
644
645 if(buffer) buffer[addr] = val;
646 else putc(val, f);
647 }
648 ShowCounter(BufEnd);

page 9 EEP3.C

649
650 textattr((BLUE << 4) | WHITE);
651 locate(7,41); cprintf(" Check Sum : %04X", Chks);
652
653 if(!buffer) fclose(f);
654
655 textattr((CYAN << 4) | WHITE);
656 locate(13, 41); cprintf("Reading now... ");
657
658 locate(14, 41);
659 putchar(7);
660 cprintf(" OK !");
661
662 power(0);
663 }
664 }
665
666 void flash_verify(void)
667 {
668 int done;
669 long addr;
670 FILE *f;
671
672 textattr((CYAN << 4) | WHITE);
673 _window(11,40, 23,79);
674
675 textattr((BLUE << 4) | WHITE);
676 locate(11, 45); cprintf(" VERIFY with buffer :");
677
678 for(;;)
679 {
680 textattr((CYAN << 4) | WHITE);
681 locate(12, 41); cprintf("Ready to verify (Y/Even/Odd/<CR>)? ");
682
683 for(done = 0; !done;)
684 {
685 switch(getch())
686 {
687 case 0:
688 getch();
689 break;
690
691 case '\n':
692 case '\r':
693 case 0x1B:
694 return;
695
696 case 'y':
697 case 'Y':
698 done = 1;
699
700 case 'e':
701 case 'E':
702 case 'o':
703 case 'O':
704 done = 1;
705 }
706 }
707
708 clscrn(13,41, 22,78);
709
710 setport(USERBITS, 0, 0);
711 power(1);
712
713 if(!buffer && (f = fopen(buffile, "rb")) == NULL)
714 {
715 errbeep();
716 textattr((RED << 4) | WHITE);
717 locate(13, 41); cprintf("File open error !");
718 textattr((CYAN << 4) | WHITE);
719 delay(1000);
720 break;

page 10 EEP3.C

721 }
722
723 textattr(BLINK | (LIGHTGREEN << 4) | WHITE);
724 locate(13, 41); cprintf("Verifying now... ");
725
726 ShowCounter(BufStart);
727 for(addr = BufStart; addr <= BufEnd; ++addr)
728 {
729 if((addr & 0xFF) == 0)
730 ShowCounter(addr);
731
732 setaddr(addr);
733
734 if(((buffer ? buffer[addr] : getc(f)) & 0xFF) != f_read())
735 break;
736 }
737
738 if(!buffer) fclose(f);
739
740 textattr((CYAN << 4) | WHITE);
741 locate(13, 41); cprintf("Verifying now... ");
742
743 locate(14, 41);
744 if(addr > BufEnd)
745 {
746 ShowCounter(BufEnd);
747 putchar(7);
748 cprintf(" OK !");
749 setport(USERBITS, 0, 8);
750 }
751 else
752 {
753 errbeep();
754 textattr((RED << 4) | WHITE);
755 cprintf(" VERIFY ERROR ! at %05lX", addr);
756 textattr((CYAN << 4) | WHITE);
757 }
758
759 power(0);
760 }
761 }
762
763 void flash_erase(void)
764 {
765 int i, done, sel=8, er=0xFF;
766
767 textattr((CYAN << 4) | WHITE);
768 _window(10,40, 23,79);
769
770 textattr((BLUE << 4) | WHITE);
771 locate(10, 45); cprintf(" EEPROM Erase:");
772
773 for(;;)
774 {
775 textattr((CYAN << 4) | WHITE);
776 locate(11, 41); cprintf("Ready to erase (Y/<CR>)? ");
777
778 for(done = 0; !done;)
779 {
780 for(i = 0; i < 9; ++i)
781 {
782 locate(12+i, 45);
783 if(i == sel)
784 {
785 textattr((RED << 4) | WHITE);
786 cprintf("> ");
787 }
788 else
789 {
790 textattr((CYAN << 4) | WHITE);
791 cprintf(" ");
792 }

page 11 EEP3.C

793
794 if(i == 8)
795 cprintf("[9] ALL %s",
796 (er == 0xFF) ? "erase":" ");
797 else
798 cprintf("[%d] %05lX - %05lX %s",
799 i+1, i * (bufsize/8), (i+1) * (bufsize/8) - 1,
800 (er & (1<<i)) ? "erase":" ");
801 }
802
803 textattr((CYAN << 4) | WHITE);
804 locate(21, 41); cprintf("press space to select erase status");
805 locate(22, 41); cprintf("press <CR> to go to main menu");
806
807 switch(i = getch())
808 {
809 case 0:
810 switch(getch())
811 {
812 case 72: // UP
813 if(sel > 0)
814 --sel;
815 break;
816
817 case 80: // DOWN
818 if(sel < 8)
819 ++sel;
820 break;
821 }
822 break;
823
824 case '\n':
825 case '\r':
826 case 0x1B:
827 return;
828
829 case 0x20:
830 if(sel == 8)
831 {
832 if(er == 0xFF)
833 er = 0;
834 else
835 er = 0xFF;
836 }
837 else
838 er ^= (1 << sel);
839 break;
840
841 case 'y':
842 case 'Y':
843 done = 1;
844
845 default:
846 if(i >= '1' && i <= '8')
847 er ^= (1 << (i-'1'));
848 else if(i == '9')
849 {
850 if(er == 0xFF)
851 er = 0;
852 else
853 er = 0xFF;
854 }
855 break;
856 }
857 }
858
859 if(!er) continue; // nothing to do
860
861 clscrn(12,41, 22,78);
862
863 setport(USERBITS, 0, 0);
864 power(1);

page 12 EEP3.C

865
866 textattr(BLINK | (LIGHTGREEN << 4) | WHITE);
867 locate(12, 41); cprintf("Erase now... ");
868
869 if(er == 0xFF)
870 done = do_erase();
871 else
872 {
873 textattr((CYAN << 4) | WHITE);
874
875 for(i = 0; i < 8; ++i)
876 {
877 if(er & (1<<i))
878 {
879 locate(20, 41); cprintf("Block : %d", i+1);
880
881 if((done = do_sector_erase(i)) == 0)
882 break;
883 }
884 }
885 }
886
887 textattr((CYAN << 4) | WHITE);
888 locate(12, 41); cprintf("Erase now... ");
889
890 locate(13, 41);
891 if(done)
892 {
893 putchar(7);
894 cprintf(" OK !");
895 setport(USERBITS, 0, 8);
896 }
897 else
898 {
899 errbeep();
900 textattr((RED << 4) | WHITE);
901 cprintf(" ERROR ! ");
902 textattr((CYAN << 4) | WHITE);
903
904 locate(21, 41); cprintf("press any key to continue");
905 if(getch() == 0) getch();
906 }
907
908 clscrn(11,41, 22,78);
909
910 power(0);
911 }
912 }
913
914 void flash_auto(void)
915 {
916 int done, l;
917 long addr;
918 FILE *f;
919
920 textattr((CYAN << 4) | WHITE);
921 _window(11,40, 23,79);
922
923 textattr((BLUE << 4) | WHITE);
924 locate(11, 45); cprintf(" AUTO :");
925
926 for(;;)
927 {
928 textattr((CYAN << 4) | WHITE);
929 locate(12, 41); cprintf("Ready to start (Y/Even/Odd/<CR>)? ");
930
931 for(done = 0; !done;)
932 {
933 switch(getch())
934 {
935 case 0:
936 getch();

page 13 EEP3.C

937 break;
938
939 case '\n':
940 case '\r':
941 case 0x1B:
942 return;
943
944 case 'y':
945 case 'Y':
946 done = 1;
947
948 case 'e':
949 case 'E':
950 case 'o':
951 case 'O':
952 done = 1;
953 }
954 }
955
956 clscrn(13,41, 22,78);
957
958 setport(USERBITS, 0, 0);
959 power(1);
960
961 l = 13;
962
963 // BLANK CHECK
964
965 textattr(BLINK | (LIGHTGREEN << 4) | WHITE);
966 locate(l, 41); cprintf("Blank checking now... ");
967
968 ShowCounter(BufStart);
969 for(addr = BufStart; addr <= BufEnd; ++addr)
970 {
971 if((addr & 0xFF) == 0)
972 ShowCounter(addr);
973
974 setaddr(addr);
975 if(f_read() != 0xFF)
976 break;
977 }
978
979 textattr((CYAN << 4) | WHITE);
980 locate(l++, 41); cprintf("Blank checking now... ");
981
982 locate(l++, 41);
983 if(addr > BufEnd)
984 {
985 ShowCounter(BufEnd);
986 cprintf(" OK !");
987 }
988 else
989 {
990 errbeep();
991 textattr((RED << 4) | WHITE);
992 cprintf("Blank check error at %05lX", addr);
993 textattr((CYAN << 4) | WHITE);
994
995 // ERASE
996
997 l -= 2;
998
999 clscrn(l, 41, l+1, 78);

1000
1001 textattr(BLINK | (LIGHTGREEN << 4) | WHITE);
1002 locate(l, 41); cprintf("Erase now... ");
1003
1004 done = do_erase();
1005
1006 textattr((CYAN << 4) | WHITE);
1007 locate(l++, 41); cprintf("Erase now... ");
1008

page 14 EEP3.C

1009 locate(l++, 41);
1010 if(done)
1011 cprintf(" OK !");
1012 else
1013 {
1014 errbeep();
1015 textattr((RED << 4) | WHITE);
1016 cprintf(" ERROR");
1017 textattr((CYAN << 4) | WHITE);
1018
1019 power(0);
1020 continue;
1021 }
1022 }
1023
1024 // PROGRAM
1025
1026 if(!buffer && (f = fopen(buffile, "rb")) == NULL)
1027 {
1028 errbeep();
1029 textattr((RED << 4) | WHITE);
1030 locate(13, 41); cprintf("File open error !");
1031 textattr((CYAN << 4) | WHITE);
1032 delay(1000);
1033 break;
1034 }
1035
1036 textattr(BLINK | (LIGHTGREEN << 4) | WHITE);
1037 locate(l, 41); cprintf("Programming now... ");
1038
1039 ShowCounter(BufStart);
1040 for(addr = BufStart; addr <= BufEnd; ++addr)
1041 {
1042 if((addr & 0xFF) == 0)
1043 ShowCounter(addr);
1044
1045 if(!do_program(addr, (buffer ? buffer[addr] : getc(f))))
1046 break;
1047 }
1048
1049 textattr((CYAN << 4) | WHITE);
1050 locate(l++, 41); cprintf("Programming now... ");
1051
1052 locate(l++, 41);
1053 if(addr > BufEnd)
1054 {
1055 ShowCounter(BufEnd);
1056 cprintf(" OK !");
1057 }
1058 else
1059 {
1060 if(!buffer) fclose(f);
1061
1062 errbeep();
1063 textattr((RED << 4) | WHITE);
1064 cprintf("Program error ! at %05lX", addr);
1065 textattr((CYAN << 4) | WHITE);
1066
1067 power(0);
1068 continue;
1069 }
1070
1071 // VERIFY
1072
1073 textattr(BLINK | (LIGHTGREEN << 4) | WHITE);
1074 locate(l, 41); cprintf("Verifying now... ");
1075
1076 if(!buffer) rewind(f);
1077
1078 ShowCounter(BufStart);
1079 for(addr = BufStart; addr <= BufEnd; ++addr)
1080 {

page 15 EEP3.C

1081 if((addr & 0xFF) == 0)
1082 ShowCounter(addr);
1083
1084 setaddr(addr);
1085
1086 if(((buffer ? buffer[addr] : getc(f)) & 0xFF) != f_read())
1087 break;
1088 }
1089
1090 if(!buffer) fclose(f);
1091
1092 textattr((CYAN << 4) | WHITE);
1093 locate(l++, 41); cprintf("Verifying now... ");
1094
1095 locate(l, 41);
1096 if(addr > BufEnd)
1097 {
1098 ShowCounter(BufEnd);
1099 cprintf(" OK !");
1100 setport(USERBITS, 0, 8);
1101 putchar(7);
1102 }
1103 else
1104 {
1105 textattr((RED << 4) | WHITE);
1106 cprintf(" VERIFY ERROR ! at %05lX", addr);
1107 textattr((CYAN << 4) | WHITE);
1108 errbeep();
1109 }
1110
1111 power(0);
1112 }
1113 power(0);
1114 }
1115
1116 void type_select(void)
1117 {
1118 int done, i;
1119 char no[10];
1120
1121 textattr((CYAN << 4) | WHITE);
1122 _window(11,40, 23,79);
1123
1124 textattr((BLUE << 4) | WHITE);
1125 locate(11, 45); cprintf(" TYPE SELECT:");
1126
1127 textattr((CYAN << 4) | WHITE);
1128
1129 for(i = 0; i < mfr[mfrno].numdevs; ++i)
1130 {
1131 locate(12+i, 41); cprintf("%d.%s", i, mfr[mfrno].dev[i].name);
1132 }
1133
1134 locate(21, 41); cprintf("<CR> back to main menu.");
1135 locate(22, 41); cprintf("SELECT NUMBER ?");
1136
1137 for(;;)
1138 {
1139 for(no[0] = done = 0; !done;)
1140 {
1141 locate(22, 56); cprintf("%s ", no);
1142 locate(22, 56+strlen(no));
1143
1144 switch(i = getch())
1145 {
1146 case 0:
1147 getch();
1148 break;
1149
1150 case 8:
1151 if((i = strlen(no)) != 0)
1152 no[i-1] = 0;

page 16 EEP3.C

1153 break;
1154
1155 case '\n':
1156 case '\r':
1157 if(strlen(no) &&
1158 (i = atoi(no)) >= 0 && i < mfr[mfrno].numdevs)
1159 {
1160 devno = i;
1161 ShowType();
1162 return;
1163 }
1164 break;
1165
1166 case 0x1B:
1167 return;
1168
1169 default:
1170 if(isdigit(i))
1171 strcat(no, (char*)&i);
1172 break;
1173 }
1174 }
1175 }
1176 }
1177
1178 void mfr_select(void)
1179 {
1180 int done, i;
1181 char no[10];
1182
1183 textattr((CYAN << 4) | WHITE);
1184 _window(11,40, 23,79);
1185
1186 textattr((BLUE << 4) | WHITE);
1187 locate(11, 45); cprintf(" MFR SELECT:");
1188
1189 textattr((CYAN << 4) | WHITE);
1190
1191 for(i = 0; i < sizeof(mfr) / sizeof(mfr[0]); ++i)
1192 {
1193 locate(12+i, 41); cprintf("%d.%s", i, mfr[i].name);
1194 }
1195
1196 locate(21, 41); cprintf("<CR> back to main menu.");
1197 locate(22, 41); cprintf("SELECT NUMBER ?");
1198
1199 for(;;)
1200 {
1201 for(no[0] = done = 0; !done;)
1202 {
1203 locate(22, 56); cprintf("%s ", no);
1204 locate(22, 56+strlen(no));
1205
1206 switch(i = getch())
1207 {
1208 case 0:
1209 getch();
1210 break;
1211
1212 case 8:
1213 if((i = strlen(no)) != 0)
1214 no[i-1] = 0;
1215 break;
1216
1217 case '\n':
1218 case '\r':
1219 if(strlen(no) &&
1220 (i = atoi(no)) >= 0 && i < sizeof(mfr) / sizeof(mfr[0]))
1221 {
1222 mfrno = i;
1223 if(devno >= mfr[mfrno].numdevs)
1224 devno = 0;

page 17 EEP3.C

1225 ShowType();
1226 return;
1227 }
1228 break;
1229
1230 case 0x1B:
1231 return;
1232
1233 default:
1234 if(isdigit(i))
1235 strcat(no, (char*)&i);
1236 break;
1237 }
1238 }
1239 }
1240 }
1241
1242 /*===*/
1243 int main(void)
1244 {
1245 int ch = 0, redraw, first = 1;
1246
1247 /*---*/
1248 /* main program starts here */
1249 /*---*/
1250
1251 getcwd(oldpath, 260);
1252 strcpy(path, oldpath);
1253
1254 ReadConfig();
1255
1256 for(;;)
1257 {
1258 if(first)
1259 {
1260 first = 0;
1261
1262 init_hw();
1263 initdacs();
1264 setport(USERBITS, 0, 0);
1265
1266 #ifdef WIN32
1267 if(!buffer) buffer = farmalloc(bufsize);
1268 else buffer = farrealloc(buffer, bufsize);
1269 #else
1270 if(!buffer) buffer = (void huge *)farmalloc(bufsize);
1271 else buffer = (void huge*)farrealloc((void far*)buffer, bufsize);
1272 #endif
1273 }
1274
1275 textattr((LIGHTGRAY << 4) | YELLOW); clscrn(0,0, 24,79);
1276
1277 locate(0,0); cprintf("Universal Programmer");
1278 locate(1,0); cprintf("MODEL: PC Based");
1279 locate(2,0); cprintf("FLASH section V1.00");
1280
1281 textattr((BLUE << 4) + WHITE); clscrn(0,40, 8,79);
1282
1283 ShowType();
1284 power(0);
1285
1286 textattr((BLUE << 4) + WHITE); _window(3,40, 9,79);
1287 locate(4,41); cprintf(" TARGET ZONE");
1288 locate(5,41); cprintf("Buffer start addr.: %05lX (BYTE WIDE)", BufStart);
1289 locate(6,41); cprintf(" end addr.: %05lX", BufEnd);
1290 locate(7,41); cprintf(" Check Sum : %04X", Chks);
1291 locate(8,41); cprintf("Device start addr.: %05lX", DevStart);
1292
1293 _window(6,69, 9,79);
1294 locate(7,71); cprintf("COUNTER");
1295
1296 ShowCounter(0L);

page 18 EEP3.C

1297
1298 textattr((CYAN << 4) | WHITE); clscrn(3,0, 23,38);
1299
1300 locate(3,0); cprintf("------------- Main Menu -------------");
1301 locate(4,0); cprintf("1. DOS SHELL ");
1302 locate(5,0); cprintf("2. Load BIN or HEX file to buffer ");
1303 locate(6,0); cprintf("3. Save buffer to disk ");
1304 locate(7,0); cprintf("4. Edit buffer 7. Display buffer ");
1305 locate(8,0); cprintf("5. Change I/O base address ");
1306 locate(9,0); cprintf("6. Display loaded file history ");
1307 locate(10,0); cprintf("9. Modify buffer structure ");
1308 locate(11,0); cprintf("W. swapping LOW-HI byte in buffer ");
1309 locate(12,0); cprintf("T. Type select M. Mfr. select ");
1310 locate(13,0); cprintf("Z. Target zone ");
1311 locate(14,0); cprintf(" ");
1312 locate(15,0); cprintf("B. Blank check D. Display ");
1313 locate(16,0); cprintf("P. Program A. Auto(B&P&S&V) ");
1314 locate(17,0); cprintf("R. Read V. Verify ");
1315 locate(18,0); cprintf("C. Compare and display error ");
1316 locate(19,0); cprintf("E. Erase S. Data protection ");
1317 locate(20,0); cprintf("Q. Quit ");
1318 locate(21,0); cprintf("---------------------------------------");
1319 locate(22,0); cprintf("Buffer size : %ldK bytes", bufsize / 1024);
1320 locate(23,0); cprintf("Buffer structure : %s", buffile);
1321
1322 ShowProtect();
1323 // ShowDevice();
1324
1325 for(redraw = 0; !redraw;)
1326 {
1327 textattr((BLUE << 4) + WHITE); clscrn(24,0, 24,38);
1328
1329 locate(24,0); cprintf("Select function ? ");
1330
1331 for(;;)
1332 {
1333 if((ch = getch()) != 0)
1334 break;
1335 getch(); /* neglect extended code */
1336 }
1337
1338 switch(ch = toupper(ch))
1339 {
1340 case '1': dos_shell(""); redraw = 1; break;
1341 case '2': load_file(); redraw = 1; break;
1342 case '3': save_file(); break;
1343 case '4': edit_buffer(); redraw = 1; break;
1344 case '5': set_io_adr(); redraw = first = 1; break;
1345
1346 case 'M': mfr_select(); redraw = first = 1; break;
1347 case 'T': type_select(); redraw = first = 1; break;
1348
1349 case 'B': flash_check(); break;
1350 case 'E': flash_erase(); break;
1351 case 'P': flash_program(); break;
1352 case 'V': flash_verify(); break;
1353 case 'A': flash_auto(); break;
1354 case 'R': flash_read(); break;
1355
1356 case '\n':
1357 case '\r': redraw = 1; break; // refresh
1358 }
1359
1360 setport(USERBITS, 0, 0);
1361
1362 if(ch == 'Q')
1363 {
1364 WriteConfig();
1365 textattr(LIGHTGRAY); clrscr();
1366 chdir(oldpath);
1367 return(0);
1368 }

page 19 EEP3.C

1369
1370 textattr((LIGHTGRAY << 4) | YELLOW); clscrn(10,40, 23,79);
1371 }
1372 }
1373 }
1374

page 20 EEP3.C

