O J oy Ul WDN -

LJdJdJ OGO RO GOTOOTdE DS BRDDEDNDDEDNWWWWWWWWWWNRNNNRNONNNNNNNNNR PR R PR R R
NFRPOW®O-JOUBRWNRFROWOW®®-JIANNTDEWNRPROWOWOM-JONNERWNROW®O-JOURWNROWOW®-JAOAUDWNRLOWOWWJO O S WNR O

#include "all03.h"

// AMD AM29{F,LV,BV}0{1,2,4}0/A/B

//

// MFG ID AA->555 55->2AA 90->555

// DEV ID AA->555 55->2AA 90->555

// SECERA AA->555 55->2AA 80->555

//

// PROG 555,AA 2AA,55 555,A0 aaaaa,dd
// CHPERA 555,AA 2AA,55 555,80 555,AA
//

//0.4 5: AlS8 VCC :36 4.3

//0.5 6: Al6 /WE :35 4.2

//0.6 7: Al5 Al7 :34 4.1

//0.7 8: Al2 Al4 :33 4.0

//1.0 9: A7 Al3 :32 3.7

//1.1 10: A6 A8 :31 3.6

//1.2 11: A5 A9 :30 3.5 VID=+12V
//1.3 12: A4 All :29 3.4

//1.4 13: A3 /JOE :28 3.3 VID=+12V
//1.5 14: A2 A10 :27 3.2

//1.6 15: Al /JCE :26 3.1

//1.7 16: A0 D7 :25 3.0

//2.0 17: DO D6 224 2.7

//2.1 18: D1 D5 :23 2.6

//2.2 19: D2 D4 222 2.5

// 20: GND D3 121 2.4

#define CE 26

#define OE 28

#define WE 35

static char apinl[]
static char dpinl[]

struct DEV {
char name[20];
long Size;
char VCC;

};

struct DEV AMD devs[] = {

{ "Am29LV010/A/B", 0x20000L,
{ "Am29LV020/A/B", 0x40000L,
{ "Am29LV040/A/B", 0x80000L,
{ "Am29F010", 0x20000L,
{ "Am29F020", 0x40000L,
{ "Am29F040", 0x80000L,
};
struct DEV MXIC devs[] = {
{ "MX29r010", 0x20000L, 50 }
{ "MX29Fr020", 0x40000L, 50 }
{ "MX29F040", 0x80000L, 50 }
};
struct {

char name[20];

int numdevs;

struct DEV *dev;
} mfr[] = {

33
33
33
50
50
50

4

4

X00->id
X01->id
AA->555

e o o o o o
N~ N N N~ 0~

55->2AA

(from VOP) \

(from VOP) /

30->aaaaa

555,10

SECTOR (UN) PROTECT
+
SECTOR PROTECT VERIFY

{ 16,15,14,13,12,11,10,9,31,30,27,29,8,32,33,7,6,34,5 };
{ 17,18,19,21,22,23,24,25 };

{ "AMD/MMI", sizeof (AMD devs)/sizeof(struct DEV), AMD devs },
{ "MxXIC", sizeof (MXIC devs)/sizeof(struct DEV), MXIC devs }

};
int mfrno = 0, devno = 0;
long DevStart= 0L;

long Counter = 0L;
long lastaddr;

page 1

EEP3.C

73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144

void ShowCounter(long val)

{

}

struct text info ti;

gettextinfo(&ti);

textattr((BLUE << 4) + WHITE);
locate(8,71); cprintf(" 2051x ", val);

textattr(ti.attribute);
gotoxy(ti.curx, ti.cury

void power(int state)

{

}

int i;

// we dont need these...
setdac(VHHID, 0);
setdac(VOPID, 0);

setport(OTHERENID, 0, O

setport(VHHENCID,O0, 0O);
setport(VHHENCID,1, 0O);

setport(VCCENID, O, 0O);
setport(VCCENID, 1, 0);

for(i = 0; i <= 4; ++i)
{
setport(VOPENID, i,
setport(VHHENID, i,
setport(TTLID, i,
}

lastaddr = -1L;

)

)

0
0);
OxXFF);

//
//

//

//
//

//
//

//
//

VHH =
VOP =

Pin20

no VHH
no VHH

no VCC
no VCC

no VOP
no VHH

TTL hi on all pins

// VCC is pin 32 (programmer socket pin 36)

if(state)

ov
ov

C
C

setdac(VCCID, mfr[mfrno].dev[devno].VCC) ;

{
waitms(100);
setpin(36, VCCENID,
}
else
{
setdac(VCCID, 0);
waitms(100);
setpin(36, VCCENID,
}

1)

0);

void setaddr(unsigned long addr)

{

register unsigned char i;
register unsigned a, b;

a

for(i = 0; i < 16; ++i)
{
if((a & 1) '= (Db
setpin(apin[i],
a >>= 1; b >>= 1;

(unsigned) (addr & OxFEEFE);
b = (unsigned) (lastaddr & OxFEFEF);

//

VCC =

// BA0..AL5

& 1))
TTLID, a &

}
a = (unsigned) (addr >> 16);
b = (unsigned) (lastaddr

>> 16);

)

ov

GND

// VCC

page 2

EEP3.C

145 for(i = 16; i < 19; ++i) // Al6..Al8

146 {

147 if((a & 1) '= (b & 1))
148 setpin(apin[i], TTLID, a & 1);
149 a >>= 1; b >>= 1;

150 }

151

152 lastaddr = addr;

153 }

154

155 void f write(long addr, register unsigned char d)
156 {

157 register int 1i;

158

159 setaddr (addr);

160

161 for(i = 0; 1 < 8; ++1)

162 {

163 setpin(dpin[i], TTLID, d & 1);
164 d >>= 1;

165 }

166

167 setpin(OE, TTLID, 1);

168 setpin(CE, TTLID, O);

169 setpin(WE, TTLID, O);

170

171 setpin(WE, TTLID, 1);

172 setpin(CE, TTLID, 1);

173 }

174

175 void f prepare(void)

176 {

177 int i;

178

179 for(1 = 0; 1 < 8; ++1)

180 setpin(dpin[i], TTLID, 1); // set DO..D7 to 1 for reading
181 }

182

183 unsigned char f read(void)

184 {

185 register unsigned char d = 0;
186 register int 1i;

187

188 setpin(WE, TTLID, 1);

189 setpin(CE, TTLID, O);

190 setpin(OE, TTLID, O);

191

192 for(i =7; i >= 0; --1)
193 d=(d<< 1) | getpin(dpin[i])
194

195 setpin(OE, TTLID, 1);

196 setpin(CE, TTLID, 1);

197

198 return d;

199 }

200

201 int do_erase(void)

202 {

203 unsigned char d, n;

204 int i;

205

206 for(1 =0; 1 < 2; ++1)

207 {

208 f write(0x555L, OxAA);
209 f write(Ox2AAL, 0x55);
210 f write(0x555L, 0x80);
211

212 f write(0x555L, OxAA);
213 f write(Ox2AAL, 0x55);
214 f write(0x555L, 0x10);
215

216 f prepare();

page 3 EEP3.C

217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288

}

d = f read()

while(((n

I

= f read()) ~ d) & 0x40)

if((d=n) & 0220)

if((£ read() *~ £ read()) & 0x40)

{
{
{
}
brea
}
}

}

return |;

f write(0L,

f prepare();

waitms(10);
return 0O;

k;

int do sector erase(int block)

{

int

unsigned char d,
int i;
for(i =0; i<
{
f write(0x5
f write(0x2
f write(0x5

f write(0x5
f write(0x2

f write(blo
f prepare();
d = f read()

while(((n

n;

25 ++1i)

55L, OxAA);
AAL, 0x55);
55L, 0x80);

55L, OxAA);
AAL, 0x55);

ck * (bufsize/8),

I

= f read()) ~ d) & 0x40)

0xF0);

if((d=n) & 0220)

if((£ read() * £ read()

{
{
{
}
brea
}
}

}

return 1;

do program(long
unsigned char d,
f write(0x555L,
f write(Ox2AAL,
f write(0x555L,
f write(addr, v
f prepare();

d = £ read();

f write(0L,

f prepare();

waitms(10);
return 0O;

k;

addr, unsigned char wval)

ny;

OxAA);
0x55)7
0xA0);

al)

0xF0);

0x30);

) & 0x40)

//
//
//
//

//
//

//
//
//
//

//
//

while D6 toggles
D5=1 : timeout
still toggling

reset device

failure

just in time

while D6 toggles
D5=1 : timeout
still toggling

reset device

failure

just in time

page 4

EEP3.C

289

290 while(((n = f read()) ~ d) & 0x40) // while D6 toggles
291 {

292 if((d=n) & 0x20) // D5=1 : timeout
293 {

294 if((£ read() ~ f read()) & 0x40) // still toggling
295 {

296 f write(0L, O0xFO); // reset device
297 f prepare();

298 waitms(10);

299 return 0O; // failure
300 }

301 n = f read();

302 break; // Jjust in time
303 }

304 }

305 return (n == val);

306 }

307

308 void ShowProtect(void)

309 {

310 int i,v;

311

312 // BAl6..Al4 = sector#

313 // A13..A10 = x -=> 0

314 // A9 = Vvid (12V)

315 // A8 .. A7 = x -> 0

316 // A6 =0

317 // BS .. A2 = x -> 0

318 // Bl .. A0 = 2

319

320 textattr((LIGHTGRAY << 4) | WHITE);

321 locate(24, 41); cprintf("*Protect bit[7..0] =");

322

323 for(i =7; 1 > 0; --1)

324 {

325 setaddr(0x00202L | 0x04000L * i); // A9=1, Al=1, all others=0
326

327 setpin(30, VOPENID, 1); // A9 = Vvid (12V)
328 v = f read();

329 setpin(20, VOPENID, 0);

330

331 cprintf("%c", 'v ? '0':'1'"),

332 }

333 }

334

335 void ShowDevice(void)

336 {

337 int mfr,dev;

338

339 // Al6..Ald = x

340 // A13..A10 = x -=> 0

341 // A9 = Vvid (12V)

342 // A8 .. A7 = x -> 0

343 // A6 =0

344 // BS .. A2 = x -> 0

345 // Al .. AO = 0:MFGID, 1:DEVID

346

347 power (1) ;

348 #1if (0)

349

350 setaddr (0x00200L); // BA9=1, all others=0

351

352 setpin(apin[9], VOPENID, 1); // A9 = vid (12V)

353 mfr = £ read();

354 setpin(apin[9], VOPENID, 0);

355

356 setpin(apin[0], TTLID, 1); // AO=1

357 setpin(apin[9], VOPENID, 1); // A9 = vid (12V)

358 dev = f read();

359 setpin(apin[9], VOPENID, 0);

360

page 5 EEP3.C

361 #else

362

363 f write(0x555L, OxAA);

364 f write(Ox2AAL, 0x55);

365 f write(0x555L, 0x90);

366 f prepare();

367 setaddr(0L); mfr = £ read();

368

369 f write(0x555L, OxAA);

370 f write(Ox2AAL, 0x55);

371 f write(0x555L, 0x90);

372 f prepare();

373 setaddr(1L); dev = f read();

374

375 #endif

376 power (0) ;

377

378 textattr((BLUE << 4) | WHITE);

379 locate(2, 40); cprintf("*MFR/DEV : %$02X/%02X", mfr, dev);
380 }

381

382 void ShowType(void)

383 {

384 if(mfrno < 0 || mfrno > sizeof (mfr) / sizeof (mfr[0]))
385 mfrno = 0;

386 if(devno < 0 || devno >= mfr[mfrno].numdevs)

387 devno = 0;

388

389 bufsize = mfr[mfrno].dev[devno].Size;

390 BufEnd = bufsize - 1;

391

392 textattr((BLUE << 4) | WHITE);

393

394 locate(0,40); cprintf("*Mfr.: %s", mfr[mfrno].name);
395 locate(1,40); cprintf("*TYPE: %s", mfr[mfrno].dev[devno].name);
396

397 locate(0,62); cprintf("*BLANK BIT: 1");

398 locate(1,62); cprintf("*PGMSPEED: INTL");

399 locate(2,62); cprintf("*vCP :%3.1£fV", 0.1 * mfr[mfrno].dev[devno].VCC);
400

401 locate(6,41); cprintf(" end addr.: %051X", BufEnd);
402

403 textattr((CYAN << 4) | WHITE);

404 }

405

406 int flash check(void)

407 {

408 int done;

409 long addr;

410

411 textattr((CYAN << 4) | WHITE);

412 ~window(11,40, 23,79);

413

414 textattr((BLUE << 4) | WHITE);

415 locate(11, 45); cprintf(" BLANK CHECK device:");
416

417 for(;;)

418 {

419 textattr((CYAN << 4) | WHITE);

420 locate(12, 41); cprintf("Ready to check (Y/<CR>)? ");
421

422 for(done = 0; 'done;)

423 {

424 switch(getch())

425 {

426 case 0:

427 getch () ;

428 break;

429

430 case '\n':

431 case '\r':

432 case 0x1B:

page 6 EEP3.C

433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504

return;

case 'y':
case 'Y':
done = 1;
}

clscrn(13,41, 22,

power (1) ;
setport (USERBITS,

textattr(BLINK |
locate(13, 41);

78°);

0, 0

(LIGHTGREEN << 4) | WHITE);
cprintf("Blank checking now... ");

ShowCounter (BufStart);

for(addr = BufStart;

if((done = f read()) !'= OxFr)

{
if((addr & OxiT) == 0)
ShowCounter (addr);
setaddr (addr);
break;
}

textattr((CYAN << 4) | WHITE);

locate(13, 41); cprintf("Blank checking now... ");
locate(14, 41);
if(addr > BufEnd)
{
ShowCounter (BufEnd) ;
putchar(7);
cprintf(" OK ");
setport(USERBITS, 0, 8);
}
else
{
errbeep () ;
textattr((RED << 4) | WHITE);
cprintf("Blank check error at %051X (%02X)", addr,
textattr((CYAN << 4) | WHITE);
}
power (0) ;

}

void flash program(void)

{
int done;
long addr;
FILE *f;

textattr((CYAN << 4
_window(11,40, 23,79

textattr((BLUE << 4

locate(11, 45); cprintf("

for(;;)
{

) | WHITE);

) | WHITE);
PROGRAM :") ;

textattr((CYAN << 4) | WHITE);

locate(12, 41);

cprintf("Ready to program

for(done = 0; 'done;)
{

switch(getch())

{

case 0:

addr <= BufEnd; ++addr)

(Y/<CR>) ?

"

done) ;

)

page 7

EEP3.C

505 getch();

506 break;

507

508 case '\n':

509 case '\r':

510 case (Ux1B:

511 return;

512

513 case 'y':

514 case 'Y':

515 done = 1;

516 }

517 }

518

519 clscrn(13,41, 22,78);

520

521 setport(USERBITS, 0, 0);

522 power (1) ;

523

524 if('buffer && (£ = fopen(buffile, "rb")) == NULL)
525 {

526 errbeep () ;

527 textattr((RED << 4) | WHITE);

528 locate(13, 41); cprintf("File open error !");
529 textattr((CYAN << 4) | WHITE);

530 delay (1000) ;

531 break;

532 }

533

534 textattr(BLINK | (LIGHTGREEN << 4) | WHITE);
535 locate(13, 41); cprintf("Programming now... ");
536

537 ShowCounter (BufStart);

538 for(addr = BufStart; addr <= BufEnd; ++addr)
539 {

540 if((addr & OxFF) == 0)

541 ShowCounter (addr);

542

543 if('do program(addr, (buffer ? buffer[addr] : getc(f))))
544 break;

545 }

546

547 if('buffer) fclose(£);

548

549 textattr((CYAN << 4) | WHITE);

550 locate(13, 41); cprintf("Programming now... ");
551

552 locate(14, 41);

553 if(addr > BufEnd)

554 {

555 ShowCounter (BufEnd) ;

556 putchar(7);

557 setport(USERBITS, 0, 8);

558 cprintf(" OK ");

559 }

560 else

561 {

562 errbeep () ;

563 textattr((RED << 4) | WHITE);

564 cprintf("Program error ! at %051X", addr);
565 textattr((CYAN << 4) | WHITE);

566 }

567

568 power (0) ;

569 }

570 }

571

572 void flash read(void)

573 {

574 int done;

575 long addr;

576 unsigned char val;

page 8 EEP3.C

577 FILE *f;

578

579 textattr((CYAN << 4) | WHITE);

580 ~window(11,40, 23,79);

581

582 textattr((BLUE << 4) | WHITE);

583 locate(11, 45); cprintf(" READ to buffer :");
584

585 for(;;)

586 {

587 textattr((CYAN << 4) | WHITE);

588 locate(12, 41); cprintf("Ready to start (Y/Even/Odd/<CR>)? ");
589

590 for(done = 0; 'done;)

591 {

592 switch(getch())

593 {

594 case 0:

595 getch();

596 break;

597

598 case '\n':

599 case '\r':

600 case (Ux1B:

601 return;

602

603 case 'y':

604 case 'Y':

605 done = 1;

606

607 case 'e':

608 case 'E':

609 case 'o':

610 case 'O':

611 done = 1;

612 }

613 }

614

615 clscrn(13,41, 22,78);

616

617 setport(USERBITS, 0, 0);

618 power (1) ;

619

620 if('buffer && (£ = fopen(buffile, "wb")) == NULL)
621 {

622 errbeep () ;

623 textattr((RED << 4) | WHITE);
624 locate(13, 41); cprintf("File open error !");
625 textattr((CYAN << 4) | WHITE);
626 delay (1000) ;

627 break;

628 }

629

630 textattr(BLINK | (LIGHTGREEN << 4) | WHITE);
631 locate(13, 41); cprintf("Reading now... ");
632

633 Chks = 0;

634

635 ShowCounter (BufStart);

636 for(addr = BufStart; addr <= BufEnd; ++addr)
637 {

638 if((addr & OxFE) == 0)

639 ShowCounter (addr);

640

041 setaddr (addr);

642

643 Chks += (val = £ read());

644

645 if(buffer) buffer[addr] = val;
646 else putc(val, £);

647 }

648 ShowCounter (BufEnd) ;

page 9 EEP3.C

649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720

}

textattr((BLUE << 4) | WHITE);
locate(7,41); cprintf("

if('buffer) fclose(£);

textattr((CYAN << 4) | WHITE);

locate(13, 41); cprintf("Reading now...

locate(14, 41);
putchar(7);
cprintf(" OK ");

power (0) ;

void flash verify(void)

{

)
~window(11,40, 23,79);

int done;
long addr;
FILE *f;

textattr((CYAN << 4 | WHITE);

textattr((BLUE << 4) | WHITE);
locate(11, 45); cprintf(" VERIFY

for(;;)
{
textattr((CYAN << 4) | WHITE);

locate(12, 41); cprintf("Ready to verify

for(done = 0; !done;)
{
switch(getch())
{
case 0:
getch();
break;

case '\n':

case '\r':

case 0Ux1B:
return;

case 'y':
case 'Y':
done 1;

case 'e':
case 'E':
case 'o':
case '0O':
done 1;

}
clscrn(13,41, 22,78);

setport(USERBITS, 0, 0);
power (1) ;

Check Sum

with buffer

if('buffer && (£ = fopen(buffile, "rb"

{

errbeep () ;

textattr((RED << 4) | WHITE);
locate(13, 41); cprintf("File open error !"
textattr((CYAN << 4) | WHITE);

delay (1000) ;
break;

"

))

$04X",

. .
. r

== NULL)

(Y/Even/0dd/<CR>) ?

)

"

)

page 10

EEP3.C

721 }

722

723 textattr(BLINK | (LIGHTGREEN << 4) | WHITE);
724 locate(13, 41); cprintf("Verifying now... ");
725

726 ShowCounter (BufStart);

727 for(addr = BufStart; addr <= BufEnd; ++addr)
728 {

729 if((addr & OxFE) == 0)

730 ShowCounter (addr);

731

732 setaddr (addr);

733

734 if(((buffer ? buffer[addr] : getc(f)) & OxFE) '= f read())
735 break;

736 }

737

738 if('buffer) fclose(£);

739

740 textattr((CYAN << 4) | WHITE);

741 locate(13, 41); cprintf("Verifying now... ");
742

743 locate(14, 41);

744 if(addr > BufEnd)

745 {

746 ShowCounter (BufEnd) ;

747 putchar(7);

748 cprintf(" OK ");

749 setport(USERBITS, 0, 8);

750 }

751 else

752 {

753 errbeep () ;

754 textattr((RED << 4) | WHITE);

755 cprintf(" VERIFY ERROR ! at %051X", addr);
756 textattr((CYAN << 4) | WHITE);

757 }

758

759 power (0) ;

760 }

761 }

762

763 void flash erase(void)

764 {

765 int i, done, sel=8, er=0xIr;

766

767 textattr((CYAN << 4) | WHITE);

768 ~window(10,40, 23,79);

769

770 textattr((BLUE << 4) | WHITE);

771 locate(10, 45); cprintf(" EEPROM Erase:");
772

773 for(;;)

774 {

775 textattr((CYAN << 4) | WHITE);

776 locate(11, 41); cprintf("Ready to erase (Y/<CR>)? ");
777

778 for(done = 0; 'done;)

779 {

780 for(1 =0; 1 < 9; ++1)

781 {

782 locate(12+4i, 45);

783 if(i == sel)

784 {

785 textattr((RED << 4) | WHITE);
786 cprintf("> ");

787 }

788 else

789 {

790 textattr((CYAN << 4) | WHITE);
791 cprintf(" ");

792 }

page 11 EEP3.C

793

794 if(i == 8)

795 cprintf("[9] ALL ss",

796 (er == OxFF) ? "erase":" ")

797 else

798 cprintf("[%d] %051X - 051X %s",

799 i+1, 1 * (bufsize/8), (i+1) * (bufsize/8) - 1,
800 (er & (I<<i)) ? "erase":" ")

801 }

802

803 textattr((CYAN << 4) | WHITE);

804 locate(21, 41); cprintf("press space to select erase status");
805 locate(22, 41); cprintf("press <CR> to go to main menu");
806

807 switch(1 = getch())

808 {

809 case 0:

810 switch(getch())

811 {

812 case /2: // UP

813 if(sel > 0)

814 --sel;

815 break;

816

817 case 350: // DOWN

818 if(sel < 8)

819 ++sel;

820 break;

821 }

822 break;

823

824 case '\n':

825 case '\r':

826 case (x1B:

827 return;

828

829 case 0x20:

830 if(sel == 8)

831 {

832 if(er == OxPF)

833 er = 0y

834 else
835 er
836 }
837 else
838 er *= (1 << sel);

839 break;

840

841 case 'y':

842 case 'Y':

843 done = 1;

844

845 default:

846 if(i > "'1" && 1 <= '8")
847 er *= (1 << (1i=-"1")),
848 else if(i == '9")

849 {

850 if(er == OxFE)

851 er = 0y

852 else

853 er = OxFE;

854 }

855 break;

856 }

857 }

858

859 if('er) continue; // nothing to do
860

861 clscrn(12,41, 22,78);

862

863 setport(USERBITS, 0, 0);

864 power (1) ;

OxFFE;

page 12 EEP3.C

865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936

}

textattr(BLINK | (LIGHTGREEN << 4) | WHITE);

locate(12, 41); cprintf("Erase now... ");
if(er == OxFE)
done = do_erase();
else
{
textattr((CYAN << 4) | WHITE);
for(i = 0; i < 8; ++i)
{
if(er & (1<<i))
{
locate(20, 41); cprintf("Block : %d", i+1);
if((done = do_sector erase(i)) == 0)
break;
}
}
}
textattr((CYAN << 4) | WHITE);
locate(12, 41); cprintf("Erase now... ");

locate(13, 41);

if(done)

{
putchar(7);
cprintf(" OK ");
setport(USERBITS, 0, 8);

}
else
{
errbeep () ;
textattr((RED << 4) | WHITE);
cprintf(" ERROR ! ");
textattr((CYAN << 4) | WHITE);
locate(21, 41); cprintf("press any key to continue");
if(getch() == 0) getch();
}

clscrn(11,41, 22,78);

power (0) ;

void flash auto(void)

{

int done, 1;
long addr;
FILE *f;

textattr((CYAN << 4) | WHITE);

~window(11,40, 23,79);

textattr((BLUE << 4) | WHITE);
locate(11, 45); cprintf(" AUTO :");

for(;;)
{
textattr((CYAN << 4) | WHITE);
locate(12, 41); cprintf("Ready to start

for(done = 0; 'done;)
{

switch(getch())

{

case 0:

getch();

(Y/Even/0dd/<CR>) ?

"

)

page 13

EEP3.C

937 break;

938
939 case '\n':
940 case '\r':
941 case (x1B:
942 return;
943
944 case 'y':
945 case 'Y':
946 done = 1;
947
948 case 'e':
949 case 'E':
950 case 'o':
951 case 'O':
952 done = 1;
953 }
954 }
955
956 clscrn(13,41, 22,78);
957
958 setport(USERBITS, 0, 0);
959 power (1) ;
960
961 1 = 13;
962
963 // BLANK CHECK
964
965 textattr(BLINK | (LIGHTGREEN << 4) | WHITE);
966 locate(1, 41); cprintf("Blank checking now... ");
967
968 ShowCounter (BufStart);
969 for(addr = BufStart; addr <= BufEnd; ++addr)
970 {
971 if((addr & OxFE) == 0)
972 ShowCounter (addr);
973
974 setaddr (addr);
975 if(£ read() !'= OxFE)
976 break;
977 }
978
979 textattr((CYAN << 4) | WHITE);
980 locate(14+, 41); cprintf("Blank checking now... ");
981
982 locate(1++, 41);
983 if(addr > BufEnd)
984 {
985 ShowCounter (BufEnd) ;
986 cprintf(" OK ");
987 }
988 else
989 {
990 errbeep () ;
991 textattr((RED << 4) | WHITE);
992 cprintf("Blank check error at %051X", addr);
993 textattr((CYAN << 4) | WHITE);
994
995 // ERASE
996
997 1 -=2;
998
999 clscrn(1, 41, 1+1, 78);
1000
1001 textattr(BLINK | (LIGHTGREEN << 4) | WHITE);
1002 locate(1, 41); cprintf("Erase now... ");
1003
1004 done = do_erase();
1005
1006 textattr((CYAN << 4) | WHITE);
1007 locate(14+, 41); cprintf("Erase now... ");
1008

page 14 EEP3.C

1009 locate(1++, 41);

1010 if(done)

1011 cprintf(" OK ");

1012 else

1013 {

1014 errbeep () ;

1015 textattr((RED << 4) | WHITE);

1016 cprintf(" ERROR");

1017 textattr((CYAN << 4) | WHITE);

1018

1019 power (0) ;

1020 continue;

1021 }

1022 }

1023

1024 // PROGRAM

1025

1026 if('buffer && (£ = fopen(buffile, "rb")) == NULL)
1027 {

1028 errbeep () ;

1029 textattr((RED << 4) | WHITE);

1030 locate(13, 41); cprintf("File open error !");
1031 textattr((CYAN << 4) | WHITE);

1032 delay (1000) ;

1033 break;

1034 }

1035

1036 textattr(BLINK | (LIGHTGREEN << 4) | WHITE);
1037 locate(1, 41); cprintf("Programming now... ");
1038

1039 ShowCounter (BufStart);

1040 for(addr = BufStart; addr <= BufEnd; ++addr)
1041 {

1042 if((addr & OxFF) == 0)

1043 ShowCounter (addr);

1044

1045 if('do program(addr, (buffer ? buffer[addr] : getc(f))))
1046 break;

1047 }

1048

1049 textattr((CYAN << 4) | WHITE);

1050 locate(14+, 41); cprintf("Programming now... ");
1051

1052 locate(1++, 41);

1053 if(addr > BufEnd)

1054 {

1055 ShowCounter (BufEnd) ;

1056 cprintf(" OK ");

1057 }

1058 else

1059 {

1060 if('buffer) fclose(£);

1061

1062 errbeep () ;

1063 textattr((RED << 4) | WHITE);

1064 cprintf("Program error ! at %$051X", addr);
1065 textattr((CYAN << 4) | WHITE);

1066

1067 power (0) ;

1068 continue;

1069 }

1070

1071 // VERIFY

1072

1073 textattr(BLINK | (LIGHTGREEN << 4) | WHITE);
1074 locate(1, 41); cprintf("Verifying now... ");
1075

1076 if('buffer) rewind(£);

1077

1078 ShowCounter (BufStart);

1079 for(addr = BufStart; addr <= BufEnd; ++addr)
1080 {

page 15 EEP3.C

1081 if((addr & OxrF) == 0)

1082 ShowCounter (addr);

1083

1084 setaddr (addr);

1085

1086 if(((buffer ? buffer[addr] : getc(f)) & OxFE) '= f read())
1087 break;

1088 }

1089

1090 if('buffer) fclose(f);

1091

1092 textattr((CYAN << 4) | WHITE);

1093 locate(14+, 41); cprintf("Verifying now... ");
1094

1095 locate(1, 41);

1096 if(addr > BufEnd)

1097 {

1098 ShowCounter (BufEnd) ;

1099 cprintf(" OK ");

1100 setport(USERBITS, 0, 8);

1101 putchar(7);

1102 }

1103 else

1104 {

1105 textattr((RED << 4) | WHITE);

1106 cprintf(" VERIFY ERROR ! at %051X", addr);
1107 textattr((CYAN << 4) | WHITE);
1108 errbeep () ;

1109 }

1110

1111 power (0) ;

1112 }

1113 power (0) ;

1114}

1115

1116 void type select(void)

1117 {

1118 int done, 1i;

1119 char no[l10];

1120

1121 textattr((CYAN << 4) | WHITE);

1122 ~window(11,40, 23,79);

1123

1124 textattr((BLUE << 4) | WHITE);

1125 locate(11, 45); cprintf(" TYPE SELECT:");
1126

1127 textattr((CYAN << 4) | WHITE);

1128

1129 for(i = 0; i < mfr[mfrno].numdevs; ++1i)

1130 {

1131 locate(12+4i, 41); cprintf("%d.%s", i, mfr[mfrno].dev[i].name);
1132 }

1133

1134 locate(21, 41); cprintf("<CR> back to main menu.");
1135 locate(22, 41); cprintf("SELECT NUMBER 2");
1136

1137 for(;;)

1138 {

1139 for(no[0] = done = 0; !done;)

1140 {

1141 locate(22, 56); cprintf("%s ", no);
1142 locate(22, S6+strlen(no));

1143

1144 switch(1 = getch())

1145 {

1146 case 0:

1147 getch () ;

1148 break;

1149

1150 case S:

1151 if((i = strlen(no)) !'= 0)

1152 no[i-1] = 0;

page 16 EEP3.C

1153 break;

1154

1155 case '\n':

1156 case '\r':

1157 if(strlen(no) &&

1158 (1 =atoi(no)) > 0 && i < mfr[mfrno].numdevs)
1159 {

1160 devno = 1i;

1161 ShowType () ;

1162 return;

1163 }

1164 break;

1165

1166 case (Ux1B:

1167 return;

1168

1169 default:

1170 if(isdigit(1))

1171 strcat(no, (char*)e&i);

1172 break;
1173 }

1174 }

1175 }

1176 '}

1177

1178 void mfr select(void)
1179 {

1180 int done, 1i;

1181 char no[l10];

1182

1183 textattr((CYAN << 4
1184 _window(11,40, 23,79
1185

1186 textattr((BLUE << 4) | WHITE);

1187 locate(11, 45); cprintf(" MFR SELECT:");

1188

1189 textattr((CYAN << 4) | WHITE);

1190

1191 for(i = 0; 1 < sizeof(mfr) / sizeof(mfr[0]); ++1i)

1192 {

1193 locate(12+4i, 41); cprintf("%d.%s", i, mfr[i].name);
1194 }

1195

1196 locate(21,
1197 locate(22,
1198

1199 for(;;)
1200 {

1201 for(no[0] = done = 0; 'done;)
1202 {

1203 locate(22,
1204 locate(22,
1205

1206 switch(1 = getch())

1207 {

1208 case 0:

1209 getch();

1210 break;

1211

1212 case S:

1213 if((1 = strlen(no)) '= 0)

1214 no[i-1] = 0;

1215 break;

1216

1217 case '\n':

1218 case '\r':

1219 if(strlen(no) &&

1220 (i =atoi(no)) > 0 && i < sizeof(mfr) / sizeof(mfr[0]))
1221 {

1222 mfrno = i;

1223 if(devno >= mfr[mfrno].numdevs)

1224 devno = 0;

) | WHITE);
) .

r

; cprintf("<CR> back to main menu.");

41)
41); cprintf("SELECT NUMBER 2");

6); cprintf("%s ", no);
6+strlen(no));

page 17 EEP3.C

1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296

ShowType () ;
return;

}

break;

case 0Ux1B:
return;

default:
if (isdigit(i))
strcat(no, (char*)é&i);

break;
}
}
}
}
/* ==*/
int main(void)
{
int ch = 0, redraw, first = 1;
/* ___ */
/* main program starts here */
/* ___ */
getcwd(oldpath, 260);
strcpy(path, oldpath);
ReadConfig() ;
for(;;)
{
if(first)
{
first = 0;
init hw();
initdacs () ;
setport(USERBITS, 0, 0);
#ifdef WIN32
if('buffer) buffer = farmalloc(bufsize);
else buffer = farrealloc(buffer, bufsize);
#else
if('buffer) buffer = (void huge *)farmalloc(bufsize);
else buffer = (void huge*)farrealloc((void far*)buffer, bufsize);
fendif

}

textattr((LIGHTGRAY << 4) | YELLOW); clscrn(0,0, 24,79);

r

locate(0,0); cprintf("Universal Programmer") ;
locate(1,0); cprintf("MODEL: PC Based");
locate(2,0); cprintf("FLASH section V1.00");

textattr((BLUE << 4) + WHITE); clscrn(0,40, 8,79);

ShowType () ;

power (0) ;

textattr((BLUE << 4) + WHITE); window(3,40, 9,79);

locate(4,41); cprintf(" TARGET ZONE");

locate(5,41); cprintf("Buffer start addr.: %051X (BYTE WIDE)'",
locate(6,41); cprintf(" end addr.: %051X", BufEnd);
locate(7,41); cprintf(" Check Sum : %04X", Chks);
locate(8,41); cprintf("Device start addr.: %$051X", DevStart);

_window(6,69, 9,79);
locate(7,71); cprintf("COUNTER");

ShowCounter (0L);

BufStart);

page 18

EEP3.C

1297

1298 textattr((CYAN << 4) | WHITE); clscrn(3,0, 23,38);

1299

1300 locate(3,0); cprintf("-——-------—~ Main Menu -———-—-—-——————--— R
1301 locate(4,0); cprintf("1. DOS SHELL ")
1302 locate(5,0); cprintf("2. Load BIN or HEX file to buffer R
1303 locate(6,0); cprintf("3. Save buffer to disk R
1304 locate(7,0); cprintf("4. Edit buffer 7. Display buffer R
1305 locate(8,0); cprintf("5. Change I/0 base address R
1306 locate(9,0); cprintf("6. Display loaded file history R
1307 locate (10,0); cprintf("9. Modify buffer structure R
1308 locate (11,0); cprintf("W. swapping LOW-HI byte in buffer ")
1309 locate (12,0); cprintf("T. Type select M. Mfr. select R
1310 locate (13,0); cprintf("Z. Target zone ")
1311 locate (14,0); cprintf(" ")
1312 locate (15,0); cprintf("B. Blank check D. Display R
1313 locate (16,0); cprintf("P. Program A. Auto (B&P&S&V) R
1314 locate(17,0); cprintf("R. Read V. Verify ")
1315 locate (18,0); cprintf("C. Compare and display error R
1316 locate (19,0); cprintf("E. Erase S. Data protection ");
1317 locate (20,0); cprintf("O. Quit ")
1318 locate(21,0); cprintf("-— - ")
1319 locate (22,0); cprintf("Buffer size : %1dK bytes"™, bufsize / 1024);
1320 locate (23,0); cprintf("Buffer structure : %s", buffile);

1321

1322 ShowProtect () ;

1323 // ShowDevice () ;

1324

1325 for(redraw = 0; 'redraw;)

1326 {

1327 textattr((BLUE << 4) + WHITE); clscrn(24,0, 24,38);

1328

1329 locate(24,0); cprintf("Select function 2 ");

1330

1331 for(;;)

1332 {

1333 if((ch = getch()) '= 0)

1334 break;

1335 getch(); /* neglect extended code */
1336 }

1337

1338 switch(ch = toupper(ch))

1339 {

1340 case 'l': dos shell(""); redraw = 1; break;

1341 case '2': load file(); redraw = 1; break;

1342 case '3': save file(); break;

1343 case '4': edit buffer(); redraw = 1; break;

1344 case '5': set io adr(); redraw = first = 1; break;

1345

1346 case 'M': mfr select(); redraw = first = 1; break;

1347 case 'T': type select(); redraw = first = 1; break;

1348

1349 case 'B': flash check(); break;

1350 case 'E': flash erase(); break;

1351 case 'P': flash program(); break;

1352 case 'V': flash verify(); break;

1353 case 'A': flash auto(); break;

1354 case 'R': flash read(); break;

1355

1356 case '\n':

1357 case '\r': redraw = 1; break; // refresh

1358 }

1359

1360 setport(USERBITS, 0, 0);

1361

1362 if(ch == "0")

1363 {

1364 WriteConfig() ;

1365 textattr(LIGHTGRAY); clrscr();

1366 chdir(oldpath);

1367 return(0);

1368 }

page 19 EEP3.C

1369
1370 textattr((LIGHTGRAY << 4) | YELLOW); clscrn(10,40, 23,79);
1371 }

1372 }

1373}

1374

page 20 EEP3.C

