
1 #include "all03.h"
2
3 #define _VERSION_ "1.04"
4
5 //----------------------------
6 #define PIC_LOAD_CFG 0x00 // (16<-) switch to 0x2000 (0x4000)
7 #define PIC_INCREMENT 0x06 // next address
8
9 #define PIC_LOAD_CODE 0x02 // (16<-)

10 #define PIC_READ_CODE 0x04 // (->16)
11
12 #define PIC_START_PROG 0x08 // some devices ERASE & PROGRAM !
13
14 #define PIC_PROG_ONLY 0x18 //
15 #define PIC_END_PROG 0x0E //
16
17 // Devices with ERASE function
18 //----------------------------
19 #define PIC_CHIP_ERASE 0x1F // Chip Erase TYPE=1
20
21 #define PIC_CODE_ERASE 0x09 // Single mem Erase TYPE=1
22
23 #define PIC_BULK_SETUP1 0x01 // Erase Setup TYPE=0
24 #define PIC_BULK_SETUP2 0x07 // ChipErase if ADDR=2007
25
26 // Flash chips only
27 //----------------------------
28 #define PIC_LOAD_DATA 0x03 // (16<-)
29 #define PIC_READ_DATA 0x05 // (->16)
30
31 #define PIC_DATA_ERASE 0x0B // works only if not protected
32
33 // Segment names
34 //----------------------------
35 #define CFG_SEG PIC_LOAD_CFG
36 #define DATA_SEG PIC_LOAD_DATA
37 #define CODE_SEG PIC_LOAD_CODE
38
39 //----------------------------
40 int _MCLR, _DATA, _CLK, _PGM, _LVP;
41 int _VCC1, _VCC2, _GND1, _GND2;
42 int _UB, _VPP;
43
44 struct DEV {
45 char name[20];
46 unsigned Size, DataSize; // ROM & EEPROM sizes in bytes(!)
47 char mclr,dat,clk, lvp; // MCLR, DATA, CLOCK and LVP pin numbers (*)
48 char vcc1,vcc2, gnd1,gnd2; // Pins numbers for VCC(s) and GND(s) (*)
49 int UB, UBmin, UBmax; // Norm, min. & max. Vcc
50 int VPP, VPP1st; // VPP value, apply Vpp **BEFORE** Vcc
51 char erase_type; // if electrically erasable, type of erase
52 char NumProgBytes; // Number of words to load for 1 prog cycle
53 char prog_type; // prog pulse type
54 unsigned cfg_mask; // implemented bits in CONFIG word
55 };
56 // (*) Pin numbers on 40pin socket !!!
57 // erase types =
58 // 0 : device has no erase function
59 // 1 : LOAD_XXX with 3FFF, BULK_SETUP, START_PROG, BULK_SETUP
60 // 2 : XXX_ERASE, START_PROG
61 // 3 : LOAD_XXX with 3FFF, XXX_ERASE, START_PROG (all cmds with appended loads)
62
63 // prog types =
64 // 0 : max. 25 * (START_PROG / wait 100us / END_PROG) + 3*n postpulses
65 // 1 : 1 PROG_ONLY pulse, then 4ms delay
66 // 2 : 1 START_PROG pulse, then 8ms delay
67 // 3 : 1 PROG_ONLY pulse, then 20ms delay, END_PROG
68
69 struct DEV PIC_devs[] = {
70 // TYPE ROMSIZE EESIZE mclr dat clk lvp vcc vcc gnd gnd Ub UbL UbH

Vpp 1st ERA NUM PRG MASK
71 /* 0*/ { "PIC16C554", 0x0400, 0x0000, 15, 24, 23, 0, 25, 0, 16, 27, 50, 20, 65,

page 1 MPU4.c

120,0, 0, 1, 0, 0x3F3F },
72 /* 1*/ { "PIC16C557", 0x1000, 0x0000, 34, 31, 30, 0, 8, 0, 10, 33, 50, 20, 65,

120,0, 0, 1, 0, 0x3F3F },
73 /* 2*/ { "PIC16C558", 0x1000, 0x0000, 15, 24, 23, 0, 25, 0, 16, 27, 50, 20, 65,

120,0, 0, 1, 0, 0x3F3F },
74 /* 3*/ { "PIC16C710", 0x0800, 0x0000, 15, 24, 23, 0, 25, 0, 16, 0, 50, 25, 55,

120,0, 0, 1, 0, 0x001F },
75 /* 4*/ { "PIC16C71", 0x1000, 0x0000, 15, 24, 23, 0, 25, 0, 16, 0, 50, 25, 55,

120,0, 0, 1, 0, 0x001F },
76 /* 5*/ { "PIC16C711", 0x1000, 0x0000, 15, 24, 23, 0, 25, 0, 16, 0, 50, 25, 55,

120,0, 0, 1, 0, 0x001F },
77 /* 6*/ { "PIC16C715", 0x2000, 0x0000, 15, 24, 23, 0, 25, 0, 16, 0, 50, 25, 55,

120,0, 0, 1, 0, 0x001F },
78 /* 7*/ { "PIC16F870", 0x1000, 0x0040, 7, 34, 33, 0, 26, 0, 14, 25, 50, 25, 55,

120,0, 1, 1, 1, 0x3BFF },
79 /* 8*/ { "PIC16F871", 0x1000, 0x0040, 1, 40, 39, 0, 11, 32, 12, 31, 50, 25, 55,

120,0, 1, 1, 1, 0x3BFF },
80 /* 9*/ { "PIC16F872", 0x1000, 0x0040, 7, 34, 33, 0, 26, 0, 14, 25, 50, 25, 55,

120,0, 1, 1, 1, 0x3BFF },
81 /*10*/ { "PIC16F873", 0x2000, 0x0080, 7, 34, 33, 0, 26, 0, 14, 25, 50, 25, 55,

120,0, 1, 1, 1, 0x3BFF },
82 /*11*/ { "PIC16F873A", 0x2000, 0x0080, 7, 34, 33, 0, 26, 0, 14, 25, 50, 20, 55,

120,0, 2, 8, 2, 0x3BFF },
83 /*12*/ { "PIC16F874", 0x2000, 0x0080, 1, 40, 39, 0, 11, 32, 12, 31, 50, 25, 55,

120,0, 1, 1, 1, 0x3BFF },
84 /*13*/ { "PIC16F874A", 0x2000, 0x0080, 1, 40, 39, 0, 11, 32, 12, 31, 50, 20, 55,

120,0, 2, 8, 2, 0x3BFF },
85 /*14*/ { "PIC16F876", 0x4000, 0x0100, 7, 34, 33, 0, 26, 0, 14, 25, 50, 25, 55,

120,0, 1, 1, 1, 0x3BFF },
86 /*15*/ { "PIC16F876A", 0x4000, 0x0100, 7, 34, 33, 0, 26, 0, 14, 25, 50, 20, 55,

120,0, 2, 8, 2, 0x3BFF },
87 /*16*/ { "PIC16F877", 0x4000, 0x0100, 1, 40, 39, 0, 11, 32, 12, 31, 50, 25, 55,

120,0, 1, 1, 1, 0x3BFF },
88 /*17*/ { "PIC16F877A", 0x4000, 0x0100, 1, 40, 39, 0, 11, 32, 12, 31, 50, 20, 55,

120,0, 2, 8, 2, 0x3BFF },
89 /*18*/ { "PIC16F83", 0x0400, 0x0040, 15, 24, 23, 0, 25, 0, 16, 27, 50, 20, 60,

120,0, 1, 1, 3, 0x3FFF },
90 /*19*/ { "PIC16F84", 0x0800, 0x0040, 15, 24, 23, 0, 25, 0, 16, 27, 50, 20, 60,

120,0, 1, 1, 3, 0x3FFF },
91 /*20*/ { "PIC16F84A", 0x0800, 0x0040, 15, 24, 23, 0, 25, 0, 16, 27, 50, 20, 60,

120,0, 1, 1, 2, 0x3FFF },
92 /*21*/ { "PIC16F627", 0x0800, 0x0080, 15, 24, 23, 21, 25, 0, 16, 27, 50, 30, 55,

120,1, 3, 1, 2, 0x3DFF },
93 /*22*/ { "PIC16F627A", 0x0800, 0x0080, 15, 24, 23, 21, 25, 0, 16, 27, 50, 30, 55,

120,1, 2, 1, 2, 0x21FF },
94 /*23*/ { "PIC16F628", 0x1000, 0x0080, 15, 24, 23, 21, 25, 0, 16, 27, 50, 30, 55,

120,1, 3, 1, 2, 0x3DFF },
95 /*24*/ { "PIC16F628A", 0x1000, 0x0080, 15, 24, 23, 21, 25, 0, 16, 27, 50, 30, 55,

120,1, 2, 1, 2, 0x21FF },
96 /*25*/ { "PIC16F648A", 0x2000, 0x0100, 15, 24, 23, 21, 25, 0, 16, 27, 50, 30, 55,

120,1, 2, 1, 2, 0x21FF }
97 };
98
99 struct {

100 char name[20];
101 int numdevs;
102 struct DEV *dev;
103 } mfr[] = {
104 { "MICROCHIP", sizeof(PIC_devs)/sizeof(struct DEV), PIC_devs }
105 };
106
107 int mfrno = 0, devno = 0;
108
109 #define BUFSIZE 0x8000U
110
111 long addr;
112 long DevStart= 0x0000;
113 long Counter = 0x0000;
114 int last_volt;
115
116 /* 123456789012345678901234567 */
117 const char *memareas[] = { " ",

page 2 MPU4.c

118 "(Program memory) ",
119 "(Data memory) ",
120 "(Program & Data memory) " };
121 int area = 3;
122
123 void dly2u(void)
124 {
125 dly1u();
126 dly1u();
127 }
128
129 void dly5u(void)
130 {
131 dly2u();
132 dly2u();
133 dly1u();
134 }
135
136 void ShowCounter(long val)
137 {
138 struct text_info ti;
139
140 gettextinfo(&ti);
141
142 textattr((BLUE << 4) + WHITE);
143 locate(5, 73); cprintf("%04lX", val);
144
145 textattr(ti.attribute);
146 gotoxy(ti.curx, ti.cury);
147 }
148
149 void ShowConfig(void)
150 {
151 struct text_info ti;
152 int i;
153
154 gettextinfo(&ti);
155
156 textattr((BLUE << 4) + WHITE);
157 locate(8,54);
158 for(i = 0x4000; i < 0x4008; i += 2)
159 cprintf("%02X ", buffer[i]);
160
161 locate(9,63);
162 cprintf("%04X ID : %04X",
163 *(unsigned*)(buffer+0x400E), i = *(unsigned*)(buffer+0x400C));
164
165 switch(i & 0x3FE0) // mask off revision number (last 5bits)
166 {
167 case 0x0D00: if(devno != 7) i = 1; break; // PIC16F870
168 case 0x0D20: if(devno != 8) i = 1; break; // PIC16F871
169 case 0x08E0: if(devno != 9) i = 1; break; // PIC16F872
170 case 0x0960: if(devno != 10) i = 1; break; // PIC16F873
171 case 0x0E40: if(devno != 11) i = 1; break; // PIC16F873A
172 case 0x0920: if(devno != 12) i = 1; break; // PIC16F874
173 case 0x0E60: if(devno != 13) i = 1; break; // PIC16F874A
174 case 0x09E0: if(devno != 14) i = 1; break; // PIC16F876
175 case 0x0E00: if(devno != 15) i = 1; break; // PIC16F876A
176 case 0x09A0: if(devno != 16) i = 1; break; // PIC16F877
177 case 0x0E20: if(devno != 17) i = 1; break; // PIC16F877A
178
179 case 0x07A0: if(devno != 21) i = 1; break; // PIC16F627
180 case 0x1040: if(devno != 22) i = 1; break; // PIC16F627A
181 case 0x07C0: if(devno != 23) i = 1; break; // PIC16F628
182 case 0x1060: if(devno != 24) i = 1; break; // PIC16F628A
183
184 case 0x1100: if(devno != 25) i = 1; break; // PIC16F648A
185
186 case 0x3FE0: break; // ID not read yet
187 default: i = 0; break; // unknown ID
188 }
189

page 3 MPU4.c

190 if(i == 1)
191 {
192 locate(0, 77); cprintf("??");
193 }
194
195 locate(2, 69); cprintf("%04X", mfr[mfrno].dev[devno].DataSize);
196
197 textattr((CYAN<< 4) + WHITE);
198 locate(8, 75); cprintf("OFF");
199
200 textattr(ti.attribute);
201 gotoxy(ti.curx, ti.cury);
202 }
203
204 void ShowType(void)
205 {
206 if(mfrno < 0 || mfrno > sizeof(mfr) / sizeof(mfr[0]))
207 mfrno = 0;
208 if(devno < 0 || devno >= mfr[mfrno].numdevs)
209 devno = 0;
210
211 bufsize = mfr[mfrno].dev[devno].Size;
212 BufEnd = bufsize - 1;
213
214 textattr((BLUE << 4) | WHITE);
215
216 locate(0,40); cprintf("*Mfr.: %s", mfr[mfrno].name);
217 locate(0,60); cprintf("*TYPE: %s", mfr[mfrno].dev[devno].name);
218
219 locate(3,41); cprintf(" end addr.: %04lX", BufEnd);
220
221 textattr((CYAN << 4) | WHITE);
222 }
223
224 // Check, if Pin can be pulled LOW constantly
225 static int pinused(int pin)
226 {
227 return(_MCLR == pin || _DATA == pin || _CLK == pin ||
228 _VCC1 == pin || _VCC2 == pin);
229 }
230
231 void DeviceSetup(void)
232 {
233 _MCLR = mfr[mfrno].dev[devno].mclr;
234 _DATA = mfr[mfrno].dev[devno].dat;
235 _CLK = mfr[mfrno].dev[devno].clk;
236 _LVP = mfr[mfrno].dev[devno].lvp;
237
238 _UB = mfr[mfrno].dev[devno].UB;
239 _VPP = mfr[mfrno].dev[devno].VPP;
240
241 _VCC1 = mfr[mfrno].dev[devno].vcc1;
242 _VCC2 = mfr[mfrno].dev[devno].vcc2;
243
244 _GND1 = mfr[mfrno].dev[devno].gnd1;
245 _GND2 = mfr[mfrno].dev[devno].gnd2;
246
247 // Can't use Pins 2,3,4,6 and 8 for neither Vop nor Vhh
248 if(_MCLR == 2 || _MCLR == 3 || _MCLR == 4 || _MCLR == 6 || _MCLR == 8)
249 {
250 errbeep();
251 textattr((RED << 4) | WHITE);
252 locate(23, 41); cprintf("Connect socket pin 1 to IC pin %d", _MCLR);
253 textattr((CYAN << 4) | WHITE);
254 _MCLR = 1; // force using Pin 1
255 }
256
257 // Check, if Pin20 is a pin we can pull LOW all the time
258 if(!pinused(20))
259 setport(OTHERENID, 0, 0); // Pin 20 = GND
260
261 // If not: check, if Pins 11 and 30 can be pulled LOW constantly

page 4 MPU4.c

262 else if(!pinused(11) && !pinused(30))
263 setport(OTHERENID, 0, 1); // Pin 11,30 = GND
264
265 // Else emit warning, force adapter usage with Pin20 low
266 else
267 {
268 errbeep();
269 textattr((RED << 4) | WHITE);
270 locate(41, 23); cprintf("Use adapter ADP-MPU4");
271 textattr((CYAN << 4) | WHITE);
272 setport(OTHERENID, 0, 0); // Pin 20 = GND
273 }
274
275 if(mfr[mfrno].dev[devno].DataSize == 0)
276 area = 0;
277 else
278 area = 3;
279 }
280
281 void power(int voltage, int vpp)
282 {
283 int i;
284
285 // we dont need VHH
286 setdac(VHHID, 0); // VHH = 0V
287 for(i = 0; i <= 4; ++i) setport(VHHENID, i, 0); // no VHH
288 setport(VHHENCID,0, 0); // no VHHC
289 setport(VHHENCID,1, 0); // no VHHC
290
291 if(voltage)
292 {
293 // Set all pins LOW
294 for(i = 1; i <= 40; ++i)
295 {
296 setpin(i, VOPENID, 0); // remove Vpp
297 setpin(i, TTLID, 0); // set low
298 }
299
300 if(!vpp && !_LVP)
301 {
302 errbeep();
303 textattr((RED << 4) | WHITE);
304 locate(23, 41); cprintf("ERROR: neither Vpp nor LVP mode");
305 textattr((CYAN << 4) | WHITE);
306 }
307
308 if(!_LVP && _VPP) // chip has no LVP mode
309 vpp = _VPP; // or we don't want it...
310
311 if(mfr[mfrno].dev[devno].VPP1st && // apply VPP before VCC
312 vpp)
313 {
314 setdac(VOPID, vpp); // raise Vpp to xV
315 setdac(VCCID, voltage); // raise Vcc to xV
316 last_volt = voltage;
317 delay(100); // let stabilize
318
319 setpin(_MCLR, TTLID, 1); // remove reset from MCLR
320 setpin(_MCLR, VOPENID, 1); // apply Vpp to it
321 dly10u();
322
323 setpin(_VCC1, TTLID, 1); // apply Vcc1 & Vcc2
324 setpin(_VCC2, TTLID, 1);
325 setpin(_VCC1, VCCENID, 1);
326 setpin(_VCC2, VCCENID, 1);
327
328 dly10m();
329 }
330 else // apply VCC, then VPP
331 {
332 setdac(VCCID, voltage); // raise Vcc to xV
333 setdac(VOPID, vpp); // raise Vpp to xV

page 5 MPU4.c

334 last_volt = voltage;
335 delay(100); // let stabilize
336
337 setpin(_VCC1, TTLID, 1); // apply Vcc1 & Vcc2
338 setpin(_VCC2, TTLID, 1);
339 setpin(_VCC1, VCCENID, 1);
340 setpin(_VCC2, VCCENID, 1);
341 dly10u();
342
343 if(vpp)
344 {
345 setpin(_MCLR, TTLID, 1); // remove reset from MCLR
346 setpin(_MCLR, VOPENID, 1); // .. and apply Vpp to it
347 dly10u();
348 }
349 else
350 {
351 setpin(_MCLR, TTLID, 1); // remove reset from MCLR
352 setpin(_LVP, TTLID, 1); // activate LVP mode
353 }
354 }
355
356 locate(2, 75);
357 textattr((BLUE << 4) | WHITE);
358 cprintf("%s", (!vpp && _LVP) ? "LVP" : (vpp ? "HVP" : "???"));
359 textattr((CYAN << 4) | WHITE);
360
361 delay(100); // wait to stabilize
362 }
363 else
364 {
365 setpin(_LVP, TTLID, 0); // remove LVP voltage
366
367 setpin(_MCLR, VOPENID, 0); // remove Vpp
368 setpin(_MCLR, TTLID, 0); // and reset chip
369
370 setdac(VOPID, 0); // Vpp = 0V
371 setdac(VCCID, 0); // Vcc = 0V
372
373 setpin(_VCC1, VCCENID, 0); // disable Vcc(s)
374 setpin(_VCC2, VCCENID, 0);
375
376 // Set all pins LOW
377 for(i = 1; i <= 40; ++i)
378 setpin(i, TTLID, 0);
379 }
380 }
381
382 void pic_command(int c)
383 {
384 int i;
385
386 for(i = 0; i < 6; ++i) // 6 bits, LSB first
387 {
388 setpin(_CLK, TTLID, 1); dly10u();
389 setpin(_DATA, TTLID, c & 1); dly10u();
390 c >>= 1;
391 setpin(_CLK, TTLID, 0); dly10u();
392 }
393 dly50u();
394 }
395
396 void pic_data(unsigned d)
397 {
398 int i;
399
400 d = (d & 0x3FFF) << 1;
401
402 for(i = 0; i < 16; ++i) // START=L, 14 bits (LSB first), STOP=L
403 {
404 setpin(_CLK, TTLID, 1); dly10u();
405 setpin(_DATA, TTLID, d & 1); dly10u();

page 6 MPU4.c

406 d >>= 1;
407 setpin(_CLK, TTLID, 0); dly10u();
408 }
409 dly50u();
410 }
411
412 unsigned pic_read(int seg /* 0: CODE, 1: DATA(EEPROM) */)
413 {
414 unsigned i, d = 0;
415
416 pic_command(seg ? PIC_READ_DATA : PIC_READ_CODE);
417
418 setpin(_DATA, TTLID, 1); dly10u(); // make pin an input and wait a bit
419
420 for(i = 0; i < 16; ++i)
421 {
422 setpin(_CLK, TTLID, 1); dly10u();
423 d |= (getpin(_DATA) ? 0x8000 : 0); // LSB first
424 dly10u();
425 d >>= 1;
426 setpin(_CLK, TTLID, 0); dly10u();
427 }
428 dly50u();
429 return d & 0x3FFF; // Bit0 and 15 where read from HiZ...
430 }
431
432 void reset(int vpp)
433 {
434 power(0, 0);
435 delay(100);
436 power(last_volt, vpp);
437 }
438
439 void do_increment(int num)
440 {
441 while(num--)
442 {
443 pic_command(PIC_INCREMENT);
444 if(addr < 0x4200) addr += 2;
445 else ++addr;
446 dly50u();
447 }
448 }
449
450 void do_load(int seg, unsigned val)
451 {
452 pic_command(seg); pic_data(val);
453 }
454
455 int do_prog1(unsigned lastval)
456 {
457 int num, end = 25, step = 1;
458 unsigned mask;
459
460 mask = mfr[mfrno].dev[devno].cfg_mask;
461
462 switch(mfr[mfrno].dev[devno].prog_type)
463 {
464 case 0: // max. 25 pulses of 100us + 3*n additional pulses
465
466 for(num = 1; num != end; num += step)
467 {
468 pic_command(PIC_START_PROG);
469 dly100u();
470 pic_command(PIC_END_PROG);
471
472 if(step == 1)
473 {
474 if(addr >= 0x4200) // DATA
475 {
476 if((pic_read(1) & 0xFF) == lastval)
477 {

page 7 MPU4.c

478 num *= 3; end = 0; step = -1;
479 }
480 }
481 else if(addr == 0x400E) // CONFIG word
482 {
483 if(((pic_read(0) ^ lastval) & mask) == 0)
484 {
485 num *= 3; end = 0; step = -1;
486 }
487 }
488 else if(pic_read(0) == lastval) // CODE & ID
489 {
490 num *= 3; end = 0; step = -1;
491 }
492 }
493 }
494 return num;
495
496 case 1: // PROG_ONLY, wait 4ms (10ms), no END (program only)
497 pic_command(PIC_PROG_ONLY);
498 delay(20);
499 if(addr >= 0x4200)
500 return((pic_read(1) & 0xFF) == lastval);
501 else if(addr == 0x400E)
502 return((pic_read(0) ^ lastval) & mask) == 0;
503 else
504 return(pic_read(0) == lastval);
505
506 case 2: // START_PROG, wait 8ms (10ms), no END (erase/program)
507 pic_command(PIC_START_PROG);
508 delay(20);
509 if(addr >= 0x4200)
510 return((pic_read(1) & 0xFF) == lastval);
511 else if(addr == 0x400E)
512 return((pic_read(0) ^ lastval) & mask) == 0;
513 else
514 return(pic_read(0) == lastval);
515
516 case 3: // PROG_ONLY, wait 20ms, END_PROG
517 pic_command(PIC_PROG_ONLY);
518 dly20m();
519 pic_command(PIC_END_PROG);
520 if(addr >= 0x4200)
521 return((pic_read(1) & 0xFF) == lastval);
522 else if(addr == 0x400E)
523 return((pic_read(0) ^ lastval) & mask) == 0;
524 else
525 return(pic_read(0) == lastval);
526 }
527
528 return 0;
529 }
530
531 int erase(void)
532 {
533 // reset();
534
535 switch(mfr[mfrno].dev[devno].erase_type)
536 {
537 case 0: // Ooops, no ERASE function
538
539 return 0;
540
541 case 1:
542
543 switch(area)
544 {
545 case 0: /* none */
546 case 1: /* CODE only */
547 do_load(CODE_SEG, 0x3FFF);
548 break;
549

page 8 MPU4.c

550 case 2: /* DATA only */
551 do_load(DATA_SEG, 0x3FFF);
552 break;
553
554 case 3: /* CHIP */
555 do_load(CFG_SEG, 0x3FFF);
556 do_increment(7); // advance to 0x2007 = CFG WORD
557 break;
558 }
559
560 pic_command(PIC_BULK_SETUP1);
561 pic_command(PIC_BULK_SETUP2);
562 pic_command(PIC_START_PROG); dly10m();
563 pic_command(PIC_BULK_SETUP1);
564 pic_command(PIC_BULK_SETUP2);
565 break;
566
567 case 2:
568
569 switch(area)
570 {
571 case 0: /* none */
572 case 1: /* CODE only */
573 pic_command(PIC_CODE_ERASE);
574 break;
575
576 case 2: /* DATA only */
577 pic_command(PIC_DATA_ERASE);
578 break;
579
580 case 3: /* CHIP */
581 pic_command(PIC_CHIP_ERASE);
582 break;
583 }
584 pic_command(PIC_START_PROG);
585 dly10m();
586 break;
587
588 case 3:
589
590 switch(area)
591 {
592 case 0: /* none */
593 case 1: /* CODE only */
594
595 do_load(CODE_SEG, 0x3FFF);
596 pic_command(PIC_CODE_ERASE);
597 pic_command(PIC_START_PROG);
598 dly10m();
599 break;
600
601 case 2: /* DATA only */
602
603 do_load(DATA_SEG, 0x3FFF);
604 pic_command(PIC_DATA_ERASE);
605 pic_command(PIC_START_PROG);
606 dly10m();
607 break;
608
609 case 3: /* CHIP */
610
611 do_load(CFG_SEG, 0x3FFF);
612 do_increment(7); // advance to 0x2007 = CFG WORD
613 pic_command(PIC_BULK_SETUP1);
614 pic_command(PIC_BULK_SETUP2);
615 pic_command(PIC_START_PROG); dly20m();
616 pic_command(PIC_BULK_SETUP1);
617 pic_command(PIC_BULK_SETUP2);
618
619 reset(_VPP);
620
621 do_load(CODE_SEG, 0x3FFF);

page 9 MPU4.c

622 pic_command(PIC_CODE_ERASE);
623 pic_command(PIC_START_PROG);
624 dly10m();
625
626 do_load(DATA_SEG, 0x3FFF);
627 pic_command(PIC_DATA_ERASE);
628 pic_command(PIC_START_PROG);
629 dly10m();
630
631 break;
632 }
633 break;
634 }
635 return 1;
636 }
637
638 int check(void) // BLANK check, return 1 on success
639 {
640 unsigned end, val;
641
642 if((end = mfr[mfrno].dev[devno].DataSize) != 0)
643 end += 0x4200;
644 else
645 end = 0x4010;
646
647 for(addr = BufStart; addr < end;)
648 {
649 if((addr & 0xFF) == 0) ShowCounter(addr);
650
651 if(addr < 0x4200) // CODE & CONFIG
652 {
653 val = pic_read(0) ^ 0x3FFF;
654
655 if(addr == 0x400E)
656 val &= mfr[mfrno].dev[devno].cfg_mask;
657
658 if(val)
659 {
660 ShowCounter(addr);
661 return 0;
662 }
663 }
664 else if((pic_read(1) & 0xFF) != 0xFF) // DATA
665 {
666 ShowCounter(addr);
667 return 0;
668 }
669
670 do_increment(1);
671
672 if(addr == bufsize) // continue in CONFIG space
673 {
674 do_load(CFG_SEG, 0x3FFF); // goto 0x2000 (0x4000)
675 addr = 0x4000;
676 }
677
678 else if(addr == 0x4008) // ID locations checked
679 do_increment(3); // advance to CFG WORD location
680
681 else if(addr == 0x4010) // config space checked,
682 {
683 reset(_VPP); // reset device and check DATA
684 addr = 0x4200;
685 }
686
687 }
688 ShowCounter(addr);
689 return 1;
690 }
691
692 int read_verify(int verify)
693 {

page 10 MPU4.c

694 unsigned val, end, res = 1;
695
696 if((end = mfr[mfrno].dev[devno].DataSize) != 0)
697 end += 0x4200;
698 else
699 end = 0x4010;
700
701 for(addr = BufStart; addr < end;)
702 {
703 if((addr & 0xFF) == 0) ShowCounter(addr);
704
705 if(verify)
706 {
707 if(addr < 0x4200)
708 {
709 val = buffer[addr];
710 val |= (buffer[addr+1] & 0x3F) << 8;
711 val ^= pic_read(0);
712
713 if(addr == 0x400E)
714 val &= mfr[mfrno].dev[devno].cfg_mask;
715
716 if(val)
717 {
718 ShowCounter(addr);
719 res = 0;
720 break;
721 }
722 }
723 else if((pic_read(1) & 0xFF) != buffer[addr])
724 {
725 ShowCounter(addr);
726 res = 0;
727 break;
728 }
729 }
730 else
731 {
732 if(addr < 0x4200)
733 {
734 val = pic_read(0);
735 Chks += (buffer[addr] = val & 0xFF);
736 Chks += (buffer[addr+1] = (val >> 8) & 0x3F);
737 }
738 else
739 Chks += (buffer[addr] = pic_read(1) & 0xFF);
740 }
741
742 do_increment(1);
743
744 if(addr == bufsize) // continue in CONFIG space
745 {
746 do_load(CFG_SEG, 0x3FFF); // goto 0x2000 (0x4000)
747 addr = 0x4000;
748 }
749
750 else if(addr == 0x4008) // ID locations done
751 do_increment(verify ? 3 : 2); // advance to DEVID or CFG word
752
753 else if(addr == 0x4010) // config space done,
754 {
755 reset(_VPP); // reset device and check DATA
756 addr = 0x4200;
757 }
758 }
759 ShowCounter(addr);
760
761 return res;
762 }
763
764 int program(void)
765 {

page 11 MPU4.c

766 int i, n, val;
767 unsigned end;
768
769 if((end = mfr[mfrno].dev[devno].DataSize) != 0)
770 end += 0x4200;
771 else
772 end = 0x4010;
773
774 n = mfr[mfrno].dev[devno].NumProgBytes;
775
776 for(addr = BufStart; addr < end;)
777 {
778 if((addr & 0xFF) == 0) ShowCounter(addr);
779
780 i = n;
781
782 while(i--)
783 {
784 if(addr < 0x4200) // CODE & CONFIG space
785 {
786 val = buffer[addr];
787 val |= (buffer[addr+1] & 0x3F) << 8;
788 do_load(CODE_SEG, val);
789 }
790 else
791 {
792 val = buffer[addr];
793 do_load(DATA_SEG, val);
794 }
795
796 if(i) do_increment(1); // don't increment after n-th load
797 }
798
799 if(!do_prog1(val))
800 return 0;
801
802 do_increment(1);
803
804 if(addr == bufsize) // CODE space done
805 {
806 do_load(CFG_SEG, 0x3FFF); // goto 0x2000 (0x4000)
807 addr = 0x4000;
808 }
809
810 else if(addr == 0x4008) // ID locations checked
811 do_increment(3); // advance to CFG WORD location
812
813 else if(addr == 0x4010) // CONFIG space done,
814 {
815 reset(_VPP); // reset device and do DATA
816 addr = 0x4200;
817 }
818 }
819 ShowCounter(addr);
820 return 1;
821 }
822
823 int config(void)
824 {
825 int i, n, val;
826
827 if((n = mfr[mfrno].dev[devno].NumProgBytes) > 4)
828 n = 4;
829
830 do_load(CFG_SEG, 0x3FFF); // goto 0x2000 (0x4000)
831
832 for(addr = 0x4000; addr < 0x4010;)
833 {
834 i = n;
835 while(i--)
836 {
837 val = buffer[addr];

page 12 MPU4.c

838 val |= (buffer[addr+1] & 0x3F) << 8;
839 do_load(CODE_SEG, val);
840 if(i) do_increment(1); // don't increment after n-th load
841 }
842
843 if(!do_prog1(val))
844 return 0;
845
846 do_increment(1);
847
848 if(addr == 0x4008)
849 do_increment(3); // advance to CFG word
850 }
851 return 1;
852 }
853
854 int flash_check(void)
855 {
856 int done;
857
858 textattr((CYAN << 4) | WHITE);
859 _window(12,40, 23,79);
860
861 textattr((BLUE << 4) | WHITE);
862 locate(12, 45); cprintf(" BLANK CHECK device:");
863
864 for(;;)
865 {
866 textattr((CYAN << 4) | WHITE);
867 locate(13, 41); cprintf("Ready to check (Y/<CR>)? ");
868
869 for(done = 0; !done;)
870 {
871 switch(getch())
872 {
873 case 0:
874 getch();
875 break;
876
877 case '\n':
878 case '\r':
879 case 0x1B:
880 return;
881
882 case 'y':
883 case 'Y':
884 done = 1;
885 }
886 }
887
888 clscrn(14,41, 22,78);
889
890 setport(USERBITS, 0, 0);
891
892 textattr(BLINK | (LIGHTGREEN << 4) | WHITE);
893 locate(14, 41); cprintf("Blank checking now... ");
894
895 power(_UB, _VPP); done = check(); power(0, 0);
896
897 textattr((CYAN << 4) | WHITE);
898 locate(14, 41); cprintf("Blank checking now... ");
899
900 locate(15, 41);
901 if(done)
902 {
903 ShowCounter(BufEnd);
904 putchar(7);
905 cprintf(" OK !");
906 setport(USERBITS, 0, 8);
907 }
908 else
909 {

page 13 MPU4.c

910 errbeep();
911 textattr((RED << 4) | WHITE);
912 cprintf("Blank check error at %04lX", addr);
913 textattr((CYAN << 4) | WHITE);
914 }
915 }
916 }
917
918 void flash_program(void)
919 {
920 int done;
921
922 textattr((CYAN << 4) | WHITE);
923 _window(12,40, 23,79);
924
925 textattr((BLUE << 4) | WHITE);
926 locate(12, 45); cprintf(" PROGRAM :");
927
928 for(;;)
929 {
930 textattr((CYAN << 4) | WHITE);
931 locate(13, 41); cprintf("Ready to program (Y/<CR>)? ");
932
933 for(done = 0; !done;)
934 {
935 switch(getch())
936 {
937 case 0:
938 getch();
939 break;
940
941 case '\n':
942 case '\r':
943 case 0x1B:
944 return;
945
946 case 'y':
947 case 'Y':
948 done = 1;
949 }
950 }
951
952 clscrn(14,41, 22,78);
953
954 setport(USERBITS, 0, 0);
955
956 textattr(BLINK | (LIGHTGREEN << 4) | WHITE);
957 locate(14, 41); cprintf("Programming now... ");
958
959 power(_UB, _VPP); done = program(); power(0, 0);
960
961 textattr((CYAN << 4) | WHITE);
962 locate(14, 41); cprintf("Programming now... ");
963
964 locate(15, 41);
965 if(done)
966 {
967 ShowCounter(BufEnd);
968 putchar(7);
969 setport(USERBITS, 0, 8);
970 cprintf(" OK !");
971 }
972 else
973 {
974 errbeep();
975 textattr((RED << 4) | WHITE);
976 cprintf("Program error ! at %04lX", addr);
977 textattr((CYAN << 4) | WHITE);
978 }
979 }
980 }
981

page 14 MPU4.c

982 void flash_config(void)
983 {
984 int done;
985
986 textattr((CYAN << 4) | WHITE);
987 _window(12,40, 23,79);
988
989 textattr((BLUE << 4) | WHITE);
990 locate(12, 42); cprintf(" Program ID & CFG & protect bits: ");
991
992 for(;;)
993 {
994 textattr((CYAN << 4) | WHITE);
995 locate(13, 41); cprintf("Ready to program (Y/<CR>)? ");
996
997 for(done = 0; !done;)
998 {
999 switch(getch())

1000 {
1001 case 0:
1002 getch();
1003 break;
1004
1005 case '\n':
1006 case '\r':
1007 case 0x1B:
1008 return;
1009
1010 case 'y':
1011 case 'Y':
1012 done = 1;
1013 }
1014 }
1015
1016 clscrn(14,41, 22,78);
1017
1018 setport(USERBITS, 0, 0);
1019
1020 textattr(BLINK | (LIGHTGREEN << 4) | WHITE);
1021 locate(14, 41); cprintf("Programming now... ");
1022
1023 power(_UB, _VPP); done = config(); power(0, 0);
1024
1025 textattr((CYAN << 4) | WHITE);
1026 locate(14, 41); cprintf("Programming now... ");
1027
1028 locate(15, 41);
1029 if(done)
1030 {
1031 ShowCounter(BufEnd);
1032 putchar(7);
1033 setport(USERBITS, 0, 8);
1034 cprintf(" OK !");
1035 }
1036 else
1037 {
1038 errbeep();
1039 textattr((RED << 4) | WHITE);
1040 cprintf("Program error ! at %04lX", addr);
1041 textattr((CYAN << 4) | WHITE);
1042 }
1043 }
1044 }
1045
1046 void flash_read(void)
1047 {
1048 int done;
1049
1050 textattr((CYAN << 4) | WHITE);
1051 _window(12,40, 23,79);
1052
1053 textattr((BLUE << 4) | WHITE);

page 15 MPU4.c

1054 locate(12, 45); cprintf(" READ to buffer :");
1055
1056 for(;;)
1057 {
1058 textattr((CYAN << 4) | WHITE);
1059 locate(13, 41); cprintf("Ready to start (Y/Even/Odd/<CR>)? ");
1060
1061 for(done = 0; !done;)
1062 {
1063 switch(getch())
1064 {
1065 case 0:
1066 getch();
1067 break;
1068
1069 case '\n':
1070 case '\r':
1071 case 0x1B:
1072 return;
1073
1074 case 'y':
1075 case 'Y':
1076 done = 1;
1077
1078 case 'e':
1079 case 'E':
1080 case 'o':
1081 case 'O':
1082 done = 1;
1083 }
1084 }
1085
1086 clscrn(14,41, 22,78);
1087
1088 setport(USERBITS, 0, 0);
1089
1090 textattr(BLINK | (LIGHTGREEN << 4) | WHITE);
1091 locate(14, 41); cprintf("Reading now... ");
1092
1093 Chks = 0;
1094 power(_UB, _VPP); read_verify(0); power(0, 0);
1095
1096 textattr((CYAN << 4) | WHITE);
1097 locate(14, 41); cprintf("Reading now... ");
1098
1099 locate(15, 41);
1100 putchar(7);
1101 cprintf(" OK !");
1102
1103 textattr((BLUE << 4) | WHITE);
1104 locate(4, 41); cprintf(" Check Sum : %04X", Chks);
1105
1106 ShowConfig();
1107 }
1108 }
1109
1110 void flash_verify(void)
1111 {
1112 int done;
1113
1114 textattr((CYAN << 4) | WHITE);
1115 _window(12,40, 23,79);
1116
1117 textattr((BLUE << 4) | WHITE);
1118 locate(12, 45); cprintf(" VERIFY with buffer :");
1119
1120 for(;;)
1121 {
1122 textattr((CYAN << 4) | WHITE);
1123 locate(13, 41); cprintf("Ready to verify (Y/Even/Odd/<CR>)? ");
1124
1125 for(done = 0; !done;)

page 16 MPU4.c

1126 {
1127 switch(getch())
1128 {
1129 case 0:
1130 getch();
1131 break;
1132
1133 case '\n':
1134 case '\r':
1135 case 0x1B:
1136 return;
1137
1138 case 'y':
1139 case 'Y':
1140 done = 1;
1141
1142 case 'e':
1143 case 'E':
1144 case 'o':
1145 case 'O':
1146 done = 1;
1147 }
1148 }
1149
1150 clscrn(14,41, 22,78);
1151
1152 setport(USERBITS, 0, 0);
1153
1154 textattr(BLINK | (LIGHTGREEN << 4) | WHITE);
1155 locate(14, 41); cprintf("Verifying now @ VDDmin... ");
1156
1157 power(mfr[mfrno].dev[devno].UBmin, _VPP);
1158 done = read_verify(1);
1159 power(0, 0);
1160
1161 textattr((CYAN << 4) | WHITE);
1162 locate(14, 41); cprintf("Verifying now @ VDDmin... ");
1163
1164 locate(15, 41);
1165 if(done)
1166 {
1167 ShowCounter(BufEnd);
1168 putchar(7);
1169 cprintf(" OK !");
1170 setport(USERBITS, 0, 8);
1171 }
1172 else
1173 {
1174 errbeep();
1175 textattr((RED << 4) | WHITE);
1176 cprintf(" VERIFY ERROR ! at %04lX", addr);
1177 textattr((CYAN << 4) | WHITE);
1178 continue;
1179 }
1180
1181 textattr(BLINK | (LIGHTGREEN << 4) | WHITE);
1182 locate(16, 41); cprintf("Verifying now @ VDDmax... ");
1183
1184 power(mfr[mfrno].dev[devno].UBmax, _VPP);
1185 done = read_verify(1);
1186 power(0, 0);
1187
1188 textattr((CYAN << 4) | WHITE);
1189 locate(16, 41); cprintf("Verifying now @ VDDmax... ");
1190
1191 locate(17, 41);
1192 if(done)
1193 {
1194 ShowCounter(BufEnd);
1195 putchar(7);
1196 cprintf(" OK !");
1197 setport(USERBITS, 0, 8);

page 17 MPU4.c

1198 }
1199 else
1200 {
1201 errbeep();
1202 textattr((RED << 4) | WHITE);
1203 cprintf(" VERIFY ERROR ! at %04lX", addr);
1204 textattr((CYAN << 4) | WHITE);
1205 }
1206 }
1207 }
1208
1209 void flash_erase(void)
1210 {
1211 int done;
1212
1213 textattr((CYAN << 4) | WHITE);
1214 _window(12,40, 23,79);
1215
1216 textattr((BLUE << 4) | WHITE);
1217 locate(12, 45); cprintf(" EEPROM Erase:");
1218
1219 if(!mfr[mfrno].dev[devno].erase_type)
1220 {
1221 errbeep();
1222 textattr((RED << 4) | WHITE);
1223 locate(13, 41); cprintf("No ERASE function");
1224 textattr((CYAN << 4) | WHITE);
1225
1226 locate(21, 41); cprintf("press any key to continue");
1227 if(getch() == 0) getch();
1228 return;
1229 }
1230
1231 for(;;)
1232 {
1233 textattr((CYAN << 4) | WHITE);
1234 locate(13, 41); cprintf("Ready to erase (Y/<CR>)? ");
1235
1236 for(done = 0; !done;)
1237 {
1238 switch(getch())
1239 {
1240 case 0:
1241 getch();
1242 break;
1243
1244 case '\n':
1245 case '\r':
1246 case 0x1B:
1247 return;
1248
1249 case 'y':
1250 case 'Y':
1251 done = 1;
1252 }
1253 }
1254
1255 clscrn(14,41, 22,78);
1256
1257 setport(USERBITS, 0, 0);
1258
1259 textattr(BLINK | (LIGHTGREEN << 4) | WHITE);
1260 locate(14, 41); cprintf("Erase now... ");
1261
1262 power(_UB, _VPP); done = erase(); power(0, 0);
1263
1264 textattr((CYAN << 4) | WHITE);
1265 locate(14, 41); cprintf("Erase now... ");
1266
1267 locate(15, 41);
1268 if(done)
1269 {

page 18 MPU4.c

1270 putchar(7);
1271 cprintf(" OK !");
1272 setport(USERBITS, 0, 8);
1273 }
1274 else
1275 {
1276 errbeep();
1277 textattr((RED << 4) | WHITE);
1278 cprintf(" ERROR ! ");
1279 textattr((CYAN << 4) | WHITE);
1280
1281 locate(21, 41); cprintf("press any key to continue");
1282 if(getch() == 0) getch();
1283 }
1284
1285 clscrn(13,41, 22,78);
1286 }
1287 }
1288
1289 void flash_auto(void)
1290 {
1291 int done, l;
1292
1293 textattr((CYAN << 4) | WHITE);
1294 _window(12,40, 23,79);
1295
1296 textattr((BLUE << 4) | WHITE);
1297 locate(12, 45); cprintf(" AUTO :");
1298
1299 for(;;)
1300 {
1301 textattr((CYAN << 4) | WHITE);
1302 locate(13, 41); cprintf("Ready to start (Y/Even/Odd/<CR>)? ");
1303
1304 for(done = 0; !done;)
1305 {
1306 switch(getch())
1307 {
1308 case 0:
1309 getch();
1310 break;
1311
1312 case '\n':
1313 case '\r':
1314 case 0x1B:
1315 return;
1316
1317 case 'y':
1318 case 'Y':
1319 done = 1;
1320
1321 case 'e':
1322 case 'E':
1323 case 'o':
1324 case 'O':
1325 done = 1;
1326 }
1327 }
1328
1329 clscrn(14,41, 22,78);
1330
1331 setport(USERBITS, 0, 0);
1332
1333 l = 14;
1334
1335 // BLANK CHECK
1336
1337 textattr(BLINK | (LIGHTGREEN << 4) | WHITE);
1338 locate(l, 41); cprintf("Blank checking now... ");
1339
1340 power(_UB, _VPP); done = check(); power(0, 0);
1341

page 19 MPU4.c

1342 textattr((CYAN << 4) | WHITE);
1343 locate(l++, 41); cprintf("Blank checking now... ");
1344
1345 locate(l++, 41);
1346
1347 if(done)
1348 {
1349 ShowCounter(BufEnd);
1350 cprintf(" OK !");
1351 }
1352 else
1353 {
1354 errbeep();
1355 textattr((RED << 4) | WHITE);
1356 cprintf("Blank check error at %04lX", addr);
1357 textattr((CYAN << 4) | WHITE);
1358
1359 // ERASE
1360
1361 l -= 2;
1362
1363 clscrn(l, 41, l+1, 78);
1364
1365 if(!mfr[mfrno].dev[devno].erase_type)
1366 {
1367 errbeep();
1368 textattr((RED << 4) | WHITE);
1369 cprintf("No ERASE function");
1370 textattr((CYAN << 4) | WHITE);
1371
1372 continue;
1373 }
1374
1375 textattr(BLINK | (LIGHTGREEN << 4) | WHITE);
1376 locate(l, 41); cprintf("Erase now... ");
1377
1378 power(_UB, _VPP); done = erase(); power(0, 0);
1379
1380 textattr((CYAN << 4) | WHITE);
1381 locate(l++, 41); cprintf("Erase now... ");
1382
1383 locate(l++, 41);
1384
1385 if(done)
1386 cprintf(" OK !");
1387 else
1388 {
1389 errbeep();
1390 textattr((RED << 4) | WHITE);
1391 cprintf(" ERROR");
1392 textattr((CYAN << 4) | WHITE);
1393
1394 continue;
1395 }
1396 }
1397
1398 // PROGRAM
1399
1400 textattr(BLINK | (LIGHTGREEN << 4) | WHITE);
1401 locate(l, 41); cprintf("Programming now... ");
1402
1403 power(_UB, _VPP); done = program(); power(0, 0);
1404
1405 textattr((CYAN << 4) | WHITE);
1406 locate(l++, 41); cprintf("Programming now... ");
1407
1408 locate(l++, 41);
1409 if(done)
1410 {
1411 ShowCounter(BufEnd);
1412 cprintf(" OK !");
1413 }

page 20 MPU4.c

1414 else
1415 {
1416 errbeep();
1417 textattr((RED << 4) | WHITE);
1418 cprintf("Program error ! at %04lX", addr);
1419 textattr((CYAN << 4) | WHITE);
1420
1421 continue;
1422 }
1423
1424 // VERIFY
1425
1426 textattr(BLINK | (LIGHTGREEN << 4) | WHITE);
1427 locate(l, 41); cprintf("VDD max verifying now...");
1428
1429 power(mfr[mfrno].dev[devno].UBmax, _VPP);
1430 done = read_verify(1);
1431 power(0, 0);
1432
1433 textattr((CYAN << 4) | WHITE);
1434 locate(l++, 41); cprintf("VDD max verifying now...");
1435
1436 locate(l++, 41);
1437 if(done)
1438 {
1439 ShowCounter(BufEnd);
1440 putchar(7);
1441 cprintf(" OK !");
1442 setport(USERBITS, 0, 8);
1443 }
1444 else
1445 {
1446 errbeep();
1447 textattr((RED << 4) | WHITE);
1448 cprintf(" VERIFY ERROR ! at %04lX", addr);
1449 textattr((CYAN << 4) | WHITE);
1450 continue;
1451 }
1452
1453 textattr(BLINK | (LIGHTGREEN << 4) | WHITE);
1454 locate(l, 41); cprintf("VDD min verifying now...");
1455
1456 power(mfr[mfrno].dev[devno].UBmin, _VPP);
1457 done = read_verify(1);
1458 power(0, 0);
1459
1460 textattr((CYAN << 4) | WHITE);
1461 locate(l++, 41); cprintf("VDD min verifying now...");
1462
1463 locate(l, 41);
1464 if(done)
1465 {
1466 ShowCounter(BufEnd);
1467 cprintf(" OK !");
1468 setport(USERBITS, 0, 8);
1469 putchar(7);
1470 }
1471 else
1472 {
1473 textattr((RED << 4) | WHITE);
1474 cprintf(" VERIFY ERROR ! at %04lX", addr);
1475 textattr((CYAN << 4) | WHITE);
1476 errbeep();
1477 }
1478 }
1479 }
1480
1481 void change_area(void)
1482 {
1483 if(mfr[mfrno].dev[devno].DataSize == 0)
1484 area = 0;
1485 else if(area >= 3)

page 21 MPU4.c

1486 area = 1; /* CODE only */
1487 else if(area == 1)
1488 area = 2; /* DATA only */
1489 else if(area == 2)
1490 area = 3; /* CODE+DATA */
1491 }
1492
1493 void edit_config(void)
1494 {
1495 static char *osctype[4] = { "LP","XT","HS","RC" };
1496 int i, done;
1497 unsigned val, cfg = *(unsigned*)(buffer + 0x400E);
1498
1499 textattr((CYAN << 4) | WHITE);
1500 _window(1,0, 10,39);
1501 _window(11,1, 24,78);
1502
1503 locate(2, 1); cprintf("Current Oscillator Selection :");
1504 locate(3, 1); cprintf(" Watchdog :");
1505 locate(4, 1); cprintf("Power-up timer :");
1506 locate(5, 1); cprintf("CODE Protection:");
1507 locate(6, 1); cprintf("DATA Protection:");
1508 locate(7, 1); cprintf("User FLASH pgm :");
1509 locate(8, 1); cprintf("Brownout reset :");
1510 locate(9, 1); cprintf("Low voltage pgm:");
1511
1512 locate(12, 4); cprintf("A : Oscillator option toggle");
1513 locate(12,43); cprintf("B : Watchdog Option toggle");
1514 locate(13, 4); cprintf("C : Power-up timer Option toggle");
1515 locate(13,43); cprintf("D : Brown-out reset Option toggle");
1516 locate(14, 4); cprintf("E : Low voltage pgm Option toggle");
1517
1518 locate(16, 4); cprintf("K : CODE protection toggle");
1519 locate(16,43); cprintf("L : DATA protection toggle");
1520 locate(17, 4); cprintf("M : FLASH User write Option toggle");
1521 locate(17,43); cprintf("N : DEBUG enable toggle");
1522
1523 locate(19, 4); cprintf("1 : edit ID code");
1524 locate(19,43); cprintf("2 : set serial on of off");
1525 locate(20, 4); cprintf("3 : read ID code");
1526 locate(20,43); cprintf("4 : program ID code");
1527 locate(21, 4); cprintf("5 : read configuration code");
1528 locate(21,43); cprintf("6 : program configuration code");
1529
1530 locate(23, 4); cprintf("Select options or <CR><ESC> to go back to the main

menu ?");
1531
1532 textattr((BLUE << 4) | WHITE);
1533 locate(1, 5); cprintf(" Configuration Bit Setting :");
1534 locate(11,28); cprintf(" Configuration Options :");
1535
1536 for(;;)
1537 {
1538 textattr((BLUE << 4) | WHITE);
1539
1540 locate(9,63); cprintf("%04X", cfg);
1541
1542 locate(2,32); /* OSC */ cprintf(osctype[cfg & 0x003]);
1543 locate(3,18); /* WDT */ cprintf((cfg & 0x004) ? "Enabled " : "Disabled");
1544 locate(4,18); /* PWT */ cprintf((cfg & 0x008) ? "Disabled" : "Enabled ");
1545 locate(5,18); /* CPT */
1546 switch((cfg & 0x030) >> 4)
1547 {
1548 case 0: cprintf("All protected"); break;
1549 case 1: cprintf(" %04lX - %04lX ", bufsize/2, bufsize-1); break;
1550 case 2: cprintf(" %04X - %04lX ", 0, bufsize/2 - 1); break;
1551 case 3: cprintf("Not protected"); break;
1552 }
1553 locate(6,18); cprintf((cfg & 0x100) ? "Disabled" : "Enabled ");
1554 locate(7,18); cprintf((cfg & 0x200) ? "Enabled " : "Disabled");
1555 locate(8,18); cprintf((cfg & 0x040) ? "Enabled " : "Disabled");
1556 locate(9,18); cprintf((cfg & 0x080) ? "Enabled " : "Disabled");

page 22 MPU4.c

1557
1558 for(done = 0; !done;)
1559 {
1560 done = 1;
1561
1562 switch(toupper(getch()))
1563 {
1564 case 0: getch(); done = 0; break;
1565
1566 case '\n':
1567 case '\r':
1568 case 0x1B:
1569 *(unsigned*)(buffer + 0x400E) = cfg;
1570 return;
1571
1572 case 'A' : // Oscillator option toggle
1573 cfg = (cfg & ~0x003) | ((cfg + 1) & 0x003); break;
1574
1575 case 'B' : // Watchdog Option toggle
1576 cfg ^= 0x004; break;
1577
1578 case 'C' : // Power-up timer Option toggle
1579 cfg ^= 0x008; break;
1580
1581 case 'D' : // Brown-out reset Option toggle
1582 cfg ^= 0x040; break;
1583
1584 case 'E' : // Low voltage pgm Option toggle
1585 cfg ^= 0x080; break;
1586
1587 case 'K' : // CODE protection toggle
1588 cfg = (cfg & ~0x3030) | (((cfg&0x3030) + 0x1010) & 0x3030);

break;
1589
1590 case 'L' : // DATA protection toggle
1591 cfg ^= 0x100; break;
1592
1593 case 'M' : // FLASH User write Option toggle
1594 cfg ^= 0x200; break;
1595
1596 case 'N' : // DEBUG Option toggle
1597 cfg ^= 0x400; break;
1598
1599 case '1' : // edit ID code
1600 case '2' : // set serial on of off
1601
1602 done = 0; break;
1603
1604 case '3' : // read ID code
1605 power(_UB, _VPP);
1606 do_load(CFG_SEG, 0x3FFF); // goto 0x2000 (0x4000)
1607 for(i = 0x4000; i < 0x4008; i += 2)
1608 {
1609 val = pic_read(0);
1610 buffer[i] = val & 0xFF;
1611 buffer[i+1] = (val >> 8) & 0xFF;
1612 do_increment(1);
1613 }
1614 power(0, 0); break;
1615
1616 case '4' : // program ID code
1617 power(_UB, _VPP);
1618 do_load(CFG_SEG, 0x3FFF); // goto 0x2000 (0x4000)
1619 for(i = 0x4000; i < 0x4008; i += 2)
1620 {
1621 int n = mfr[mfrno].dev[devno].NumProgBytes;
1622 while(n--)
1623 {
1624 val = buffer[i];
1625 val |= (buffer[i+1] << 8);
1626 do_load(CODE_SEG, val);
1627 if(n) do_increment(1);

page 23 MPU4.c

1628 }
1629 do_prog1(val);
1630 do_increment(1);
1631 }
1632 power(0, 0); break;
1633
1634 case '5' : // read configuration code
1635 power(_UB, _VPP);
1636 do_load(CFG_SEG, 0x3FFF); // goto 0x2000 (0x4000)
1637 do_increment(7);
1638 cfg = pic_read(0);
1639 power(0, 0); break;
1640
1641 case '6' : // program configuration code
1642 power(_UB, _VPP);
1643 do_load(CFG_SEG, cfg); // goto 0x2000 (0x4000)
1644 do_increment(7);
1645 do_prog1(cfg);
1646 power(0, 0); break;
1647
1648 default: done = 0;
1649 }
1650 }
1651 }
1652 }
1653
1654
1655 void type_select(void)
1656 {
1657 int done, i, num, len=15, left = 40;
1658 char no[10];
1659
1660 if((num = mfr[mfrno].numdevs) > 14)
1661 {
1662 left = 0;
1663 for(i = len = 0; i < num; ++i)
1664 if((done = strlen(mfr[mfrno].dev[i].name)) > len)
1665 len = done;
1666 }
1667
1668 textattr((CYAN << 4) | WHITE);
1669 _window(12,left, 23,79);
1670
1671 textattr((BLUE << 4) | WHITE);
1672 locate(12, left+5); cprintf(" TYPE SELECT:");
1673
1674 textattr((CYAN << 4) | WHITE);
1675
1676 for(i = 0; i < num; ++i)
1677 {
1678 locate(13+(i%7), left + 1 + (i/7)*(len+4));
1679 cprintf("%d.%s", i, mfr[mfrno].dev[i].name);
1680 }
1681
1682 locate(21, left+1); cprintf("<CR> back to main menu.");
1683 locate(22, left+1); cprintf("SELECT NUMBER ?");
1684
1685 for(;;)
1686 {
1687 for(no[0] = done = 0; !done;)
1688 {
1689 locate(22, left+16); cprintf("%s ", no);
1690 locate(22, left+16+strlen(no));
1691
1692 switch(i = getch())
1693 {
1694 case 0:
1695 getch();
1696 break;
1697
1698 case 8:
1699 if((i = strlen(no)) != 0)

page 24 MPU4.c

1700 no[i-1] = 0;
1701 break;
1702
1703 case '\n':
1704 case '\r':
1705 if(strlen(no) &&
1706 (i = atoi(no)) >= 0 && i < mfr[mfrno].numdevs)
1707 {
1708 devno = i;
1709 ShowType();
1710 return;
1711 }
1712 break;
1713
1714 case 0x1B:
1715 return;
1716
1717 default:
1718 if(isdigit(i))
1719 strcat(no, (char*)&i);
1720 break;
1721 }
1722 }
1723 }
1724 }
1725
1726 void mfr_select(void)
1727 {
1728 int done, i;
1729 char no[10];
1730
1731 textattr((CYAN << 4) | WHITE);
1732 _window(12,40, 23,79);
1733
1734 textattr((BLUE << 4) | WHITE);
1735 locate(12, 45); cprintf(" MFR SELECT:");
1736
1737 textattr((CYAN << 4) | WHITE);
1738
1739 for(i = 0; i < sizeof(mfr) / sizeof(mfr[0]); ++i)
1740 {
1741 locate(13+i, 41); cprintf("%d.%s", i, mfr[i].name);
1742 }
1743
1744 locate(21, 41); cprintf("<CR> back to main menu.");
1745 locate(22, 41); cprintf("SELECT NUMBER ?");
1746
1747 for(;;)
1748 {
1749 for(no[0] = done = 0; !done;)
1750 {
1751 locate(22, 56); cprintf("%s ", no);
1752 locate(22, 56+strlen(no));
1753
1754 switch(i = getch())
1755 {
1756 case 0:
1757 getch();
1758 break;
1759
1760 case 8:
1761 if((i = strlen(no)) != 0)
1762 no[i-1] = 0;
1763 break;
1764
1765 case '\n':
1766 case '\r':
1767 if(strlen(no) &&
1768 (i = atoi(no)) >= 0 && i < sizeof(mfr) / sizeof(mfr[0]))
1769 {
1770 mfrno = i;
1771 if(devno >= mfr[mfrno].numdevs)

page 25 MPU4.c

1772 devno = 0;
1773 ShowType();
1774 return;
1775 }
1776 break;
1777
1778 case 0x1B:
1779 return;
1780
1781 default:
1782 if(isdigit(i))
1783 strcat(no, (char*)&i);
1784 break;
1785 }
1786 }
1787 }
1788 }
1789
1790 /*===*/
1791 int main(void)
1792 {
1793 int ch = 0, redraw, first = 1;
1794 long tmpval;
1795
1796 /*---*/
1797 /* main program starts here */
1798 /*---*/
1799
1800 getcwd(oldpath, 260);
1801 strcpy(path, oldpath);
1802
1803 if((buffer = farmalloc(BUFSIZE)) == NULL)
1804 return -1;
1805
1806 memset((void far *)buffer, 0, BUFSIZE);
1807
1808 ReadConfig();
1809 delay(0);
1810
1811 for(;;)
1812 {
1813 if(first)
1814 {
1815 first = 0;
1816
1817 area = 3;
1818
1819 init_hw();
1820 initdacs();
1821 setport(USERBITS, 0, 0);
1822
1823 DeviceSetup();
1824 }
1825
1826 textattr((LIGHTGRAY << 4) | YELLOW); clscrn(0,0, 24,79);
1827
1828 locate(0,0); cprintf("Universal Programmer");
1829 locate(1,0); cprintf("MODEL: PC Based");
1830 locate(2,0); cprintf("MPU PIC16 section " _VERSION_);
1831
1832 textattr((BLUE << 4) + WHITE); clscrn(0,40, 6,79);
1833
1834 ShowType();
1835
1836 textattr((BLUE << 4) + WHITE); _window(1,40, 6,79);
1837 locate(1,53); cprintf(" TARGET ZONE ");
1838 locate(2,41); cprintf("Buffer start addr.: %04lX", BufStart);
1839 locate(3,41); cprintf(" end addr.: %04lX", BufEnd);
1840 locate(4,41); cprintf(" Check Sum : %04X", Chks);
1841 locate(5,41); cprintf("Device start addr.: %04lX", DevStart);
1842
1843 _window(3,69, 6,79);

page 26 MPU4.c

1844 locate(4,71); cprintf("COUNTER");
1845 ShowCounter(0);
1846
1847 _window(7,40, 10,79);
1848 locate(7,43); cprintf(" Device ID & Configuration bits ");
1849 locate(8,42); cprintf("ID3 - ID0 :");
1850 locate(8,42); cprintf("Lock Bits :");
1851 locate(8,67); cprintf("*Fuses :");
1852 locate(9,42); cprintf("Configuration bits : ");
1853 ShowConfig();
1854
1855 textattr((CYAN << 4) | WHITE); clscrn(3,0, 23,38);
1856
1857 locate(3,0); cprintf("------------- Main Menu -------------");
1858 locate(4,0); cprintf("1. DOS SHELL ");
1859 locate(5,0); cprintf("2. Load BIN or HEX file to buffer ");
1860 locate(6,0); cprintf("3. Save buffer to disk ");
1861 locate(7,0); cprintf("4. Edit buffer 7. Display buffer ");
1862 locate(8,0); cprintf("5. Change I/O base address ");
1863 locate(9,0); cprintf("6. Display loaded file history ");
1864 locate(10,0); cprintf("W. Swap hi-low bytes in buffer ");
1865 locate(11,0); cprintf("T. Type select Z. Target zone ");
1866 locate(12,0); cprintf("B. Blank check D. Display ");
1867 locate(13,0);
1868 if(mfr[mfrno].dev[devno].erase_type == 0)
1869 cprintf(" ");
1870 else
1871 cprintf("S. Erase %s ", memareas[area]);
1872
1873 locate(14,0); cprintf("P. Program %s ", memareas[area]);
1874 locate(15,0);
1875 if(mfr[mfrno].dev[devno].erase_type == 0)
1876 cprintf("A. Auto(B&P&V&L) ");
1877 else
1878 cprintf("A. Auto(B&S&P&V&L) ");
1879
1880 locate(15,19);
1881 if(mfr[mfrno].dev[devno].DataSize != 0)
1882 cprintf("X. Change Mem area ");
1883 else
1884 cprintf(" ");
1885
1886 locate(16,0); cprintf("R. Read V. Verify ");
1887 locate(17,0); cprintf("C. Compare and display error ");
1888 locate(18,0); cprintf("E. Configuration & ID code function ");
1889 locate(19,0); cprintf("L. Program ID & config. & protect bits ");
1890 locate(20,0); cprintf("Q. Quit ");
1891 locate(21,0); cprintf("---------------------------------------");
1892 locate(22,0); cprintf("Allocation Buffer size : %uK bytes", BUFSIZE/1024);
1893 if((ch = mfr[mfrno].dev[devno].DataSize) != 0) {
1894 locate(23,0); cprintf("Data memory buffer at 4200 ~ %04X", 0x4200 + ch - 1

);
1895 }
1896
1897 for(redraw = 0; !redraw;)
1898 {
1899 textattr((BLUE << 4) + WHITE); clscrn(24,0, 24,38);
1900
1901 locate(24,0); cprintf("Select function ? ");
1902
1903 for(;;)
1904 {
1905 if((ch = getch()) != 0)
1906 break;
1907 getch(); /* neglect extended code */
1908 }
1909
1910 switch(ch = toupper(ch))
1911 {
1912 case '1': dos_shell(""); redraw = 1; break;
1913 case '2': tmpval = bufsize; bufsize = 0x8000;
1914 memset((void far *)buffer, 0, BUFSIZE);

page 27 MPU4.c

1915 load_file();
1916 bufsize= tmpval;
1917 redraw = 1; ShowConfig(); break;
1918 case '3': save_file(); break;
1919 case '4': tmpval = bufsize; bufsize = 0x8000;
1920 edit_buffer();
1921 bufsize= tmpval;
1922 redraw = 1; break;
1923 case '5': set_io_adr(); first = redraw = 1; break;
1924 case '7': disp_buffer(); redraw = 1; break;
1925
1926 case 'M': mfr_select(); redraw = first = 1; break;
1927 case 'T': type_select(); redraw = first = 1; break;
1928 case 'E': edit_config(); redraw = 1; break;
1929
1930 case 'X': change_area(); redraw = 1; break;
1931 case 'R': flash_read(); break;
1932 case 'B': flash_check(); break;
1933 case 'S': flash_erase(); break;
1934 case 'P': flash_program(); break;
1935 case 'V': flash_verify(); break;
1936 case 'L': flash_config(); break;
1937 case 'A': flash_auto(); break;
1938
1939 // case '\n':
1940 // case '\r': redraw = 1; break; // refresh
1941 }
1942
1943 setport(USERBITS, 0, 0);
1944
1945 if(ch == 'Q')
1946 {
1947 WriteConfig();
1948 textattr(LIGHTGRAY); clrscr();
1949 chdir(oldpath);
1950 if(buffer) farfree((void far *)buffer);
1951 return(0);
1952 }
1953
1954 textattr((LIGHTGRAY << 4) | YELLOW); clscrn(11,40, 23,79);
1955 }
1956 }
1957 }
1958

page 28 MPU4.c

