1 #include "all03.h"
2
3 #define _VERSION "1.04"
4
5 [/ = e
6 #define PIC LOAD CFG 0x00 // (16<-) switch to 0x2000 (0x4000)
7 #define PIC_ INCREMENT 0x06 // next address
8
9 #define PIC LOAD CODE 0x02 // (16<-)
10 #define PIC_READ CODE 0x04 // (=>16)
11
12 #define PIC START PROG 0x08 // some devices ERASE & PROGRAM !
13
14 #define PIC_PROG_ONLY 0x18 //
15 #define PIC_END PROG 0x0E //
16
17 // Devices with ERASE function
18 [/
19 #define PIC CHIP ERASE 0x1F // Chip Erase TYPE=1
20
21 #define PIC CODE ERASE 0x09 // Single mem Erase TYPE=1
22
23 #define PIC BULK SETUPI1 0x01 // Erase Setup TYPE=0
24 #define PIC BULK_ SETUP2 0x07 // ChipErase if ADDR=2007
25
26 // Flash chips only
27 [/
28 #define PIC_LOAD DATA 0x03 // (16<-)
29 #define PIC READ DATA 0x05 /] (=>16)
30
31 #define PIC DATA ERASE 0x0B // works only if not protected
32
33 // Segment names
34 [/ =
35 #define CFG_SEG PIC_LOAD CFG
36 #define DATA SEG PIC LOAD DATA
37 #define CODE_SEG PIC LOAD_ CODE
38
39 [/ =
40 int MCLR, DATA, CLK, PGM, LVP;
41 int VCCl, VCC2, GND1, GND2;
42 int UB, VPP;
43
44 struct DEV {
45 char name[20];
46 unsigned Size, DataSize; // ROM & EEPROM sizes in bytes(!)
47 char mclr,dat,clk, 1lvp; // MCLR, DATA, CLOCK and LVP pin numbers (*)
48 char veccl,vecec2, gndl,gnd2; // Pins numbers for VCC(s) and GND(s) (*)
49 int UB, UBmin, UBmax; // Norm, min. & max. Vcc
50 int VPP, VPPlst; // VPP value, apply Vpp **BEFORE** Vcc
51 char erase type; // 1f electrically erasable, type of erase
52 char NumProgBytes; // Number of words to load for 1 prog cycle
53 char prog type; // prog pulse type
54 unsigned cfg mask; // implemented bits in CONFIG word
55 };
56 // (*) Pin numbers on 40pin socket !!!
57 // erase types =
58 // 0 : device has no erase function
59 // 1 LOAD XXX with 3FFF, BULK SETUP, START PROG, BULK SETUP
60 // 2 XXX ERASE, START PROG
61 // 3 : LOAD XXX with 3FFF, XXX ERASE, START PROG (all cmds with appended loads)
62
63 // prog types =
64 // 0 max. 25 * (START PROG / wait 100us / END PROG) + 3*n postpulses
65 // 1 1 PROG ONLY pulse, then 4ms delay
66 // 2 1 START PROG pulse, then 8ms delay
67 // 3 1 PROG ONLY pulse, then 20ms delay, END PROG
68
69 struct DEV PIC devs[] = {
70 // TYPE ROMSIZE EESIZE mclr dat clk lvp vcc vce gnd gnd Ub UbL UbH
Vpp lst ERA NUM PRG MASK
71 /* 0*/ { "PIC16C554", 0x0400, 0x0000, 15, 24, 23, 0, 25, 0, 16, 27, 50, 20, 65,
page 1 MPU4.c

120,0, 0, 1, O,

0x3F3F },

72 /* 1*/ { "PICl6C557", oxooo0o, 34, 31, 30, 0, 8, O, 10, 33, 50, 20, 65,
20,0, O, 1, 0O, Ox3F3F },
73 /* 2%/ { "PICle6C558", 0x0000, 15, 24, 23, 0, 25, 0, 16, 27, 50, 20, 65,
20,0, O, 1, 0O, Ox3F3F },
74 /* 3%/ { "PICleC710", 0x0000, 15, 24, 23, 0, 25, 0, 16, 0, 50, 25, 55,
20,0, O, 1, 0O, Ox001F 1},
75 /* 4%/ { "PICleC71", 0x0000, 15, 24, 23, 0, 25, 0, 16, 0, 50, 25, 55,
20,0, O, 1, 0O, Ox001F 1},
76 /* 5%/ { "PICleC711", 0x0000, 15, 24, 23, 0, 25, 0, 16, 0, 50, 25, 55,
20,0, O, 1, 0O, Ox001F 1},
77 /* 6*/ { "PICl6C715", 0x0000, 15, 24, 23, 0, 25, 0, 16, 0, 50, 25, 55,
20,0, O, 1, 0O, Ox001F 1},
78 /* 7%/ { "PICle6F870", oxoo40, 7, 34, 33, 0, 26, 0O, 14, 25, 50, 25, 55,
20,0, 1, 1, 1, Ox3BFF 1},
79 /* 8%/ { "PICle6F871", oxoo040, 1, 40, 39, 0, 11, 32, 12, 31, 50, 25, 55,
20,0, 1, 1, 1, Ox3BFF 1},
80 /* 9%/ { "PICl6F872", oxoo040, 7, 34, 33, 0, 26, 0O, 14, 25, 50, 25, 55,
20,0, 1, 1, 1, Ox3BFF 1},
81 /*10*/ { "PICl6EF873", oxooso, 7, 34, 33, 0, 26, O, 14, 25, 50, 25, 55,
20,0, 1, 1, 1, Ox3BFF 1},
82 /*11*/ { "PICl6F873A", oxooso, 7, 34, 33, 0, 26, O, 14, 25, 50, 20, 55,
20,0, 2, 8, 2, O0x3BFF },
83 /*12*/ { "PICl6F874", oxooso0, 1, 40, 39, 0, 11, 32, 12, 31, 50, 25, 55,
20,0, 1, 1, 1, Ox3BFF 1},
84 /*13*/ { "PICl6F874A"™, oxoos8o0, 1, 40, 39, 0, 11, 32, 12, 31, 50, 20, 55,
20,0, 2, 8, 2, O0x3BFF },
85 /*14*/ { "PICl6EF876", ox0i00, 7, 34, 33, 0, 26, 0O, 14, 25, 50, 25, 55,
20,0, 1, 1, 1, Ox3BFF 1},
86 /*15*/ { "PICl6F876A", ox0i00, 7, 34, 33, 0, 26, O, 14, 25, 50, 20, 55,
20,0, 2, 8, 2, O0x3BFF },
87 /*1l6*/ { "PICl6E877", ox01i00, 1, 40, 39, 0, 11, 32, 12, 31, 50, 25, 55,
20,0, 1, 1, 1, Ox3BFF 1},
88 /*17*/ { "PICl6F877A", ox01i00, 1, 40, 39, O, 11, 32, 12, 31, 50, 20, 55,
20,0, 2, 8, 2, O0x3BFF },
89 /*18*/ { "PICl6F83", 0x0040, 15, 24, 23, 0, 25, 0, 16, 27, 50, 20, 60,
20,0, 1, 1, 3, Ox3FFF 1},
90 /*19*/ { "PIClo6Frg4", 0x0040, 15, 24, 23, 0, 25, 0, 16, 27, 50, 20, 60,
20,0, 1, 1, 3, Ox3FFF 1},
91 /*20*/ { "PICl6F84A", 0x0040, 15, 24, 23, 0, 25, 0, 16, 27, 50, 20, 60,
20,0, 1, 1, 2, Ox3FFF 1},
92 /*21*/ { "PICl6F627", 0x0080, 15, 24, 23, 21, 25, 0, 16, 27, 50, 30, 55,
120,12, 3, 1, 2, Ox3DFF },
93 /*22*/ { "PICl6F627A", 0x0080, 15, 24, 23, 21, 25, 0, 16, 27, 50, 30, 55,
120,12, 2, 1, 2, O0x21FF 1},
94 /*23*/ { "PICl6Fo628", 0x0080, 15, 24, 23, 21, 25, 0, 16, 27, 50, 30, 55,
120,12, 3, 1, 2, Ox3DFF },
95 /*24*/ { "PICl6F628A", 0x0080, 15, 24, 23, 21, 25, 0, 16, 27, 50, 30, 55,
120,12, 2, 1, 2, O0x21FF },
96 /*25*/ { "PICl6F648A", 0x0100, 15, 24, 23, 21, 25, 0, 16, 27, 50, 30, 55,
120,12, 2, 1, 2, Ox21FF }
97 };
98
99 struct {
100 char name[20];
101 int numdevs;
102 struct DEV *dev;
103 } mfr[] = {
104 { "MICROCHIP", sizeof(PIC devs)/sizeof(struct DEV), PIC devs }
105 };
106
107 int mfrno = 0, devno =
108
109 #define BUFSIZE 0x8000U
110
111 long addr;
112 long DevStart= 0x0000;
113 long Counter = 0x0000;
114 int last volt;
115
116 /* 123456789012345678901234567 */
117 const char *memareas|] ",
page 2 MPU4.c

118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161l
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189

" (Program memory)

" (Data memory)

" (Program & Data memory)
int area = 3;

void dly2u(void)

{
dlylu();
dlylu() ;
}
void dly5u(void)
{
dly2u() ;
dly2u() ;
dlylu() ;
}
void ShowCounter(long val)
{
struct text info ti;
gettextinfo(&ti);
textattr((BLUE << 4) + WHITE);
locate(5, 732); cprintf("2041X", val);
textattr(ti.attribute);
gotoxy(ti.curx, ti.cury);
}

void ShowConfig(void)
{
struct text info ti;
int 1i;
gettextinfo(&ti);
textattr((BLUE << 4) + WHITE);
locate(8,54);

for(i = 0x4000; i < 0x4008; 1 4= 2)
cprintf("%02X ", buffer[i])

locate(9,63);
cprintf("%04X ID : S04X",

* (unsigned*) (buffer+0x400E), i = *(unsigned*) (buffer+0x400C)

switch(1 & Ox3FEOD)

{

case 0x0D0O0: if(devno !'= 7) i = 1; break;
case 0x0D20: if(devno !'= 8) i = 1; break;
case 0x08E0: if(devno !'= 9) i = 1; break;
case 0x0960: if(devno !'= 10) i = 1; break;
case 0x0E40: if(devno !'= 11) i = 1; break;
case 0x0920: if(devno !'= 12) i = 1; break;
case 0x0E6O: if(devno !'= 13) i = 1; break;
case 0x09E0: if(devno !'= 14) i = 1; break;
case 0Ux0E0O0: if(devno !'= 15) i = 1; break;
case 0Ux09A0: if(devno !'= 16) i1 = 1; break;
case 0x0E20: if(devno !'= 17) i = 1; break;
case 0x07A0: if(devno !'= 21) i = 1; break;
case 0x1040: if(devno !'= 22) i = 1; break;
case 0x07CO: if(devno !'= 23) i = 1; break;
case 0x1060: if(devno !'= 24) i = 1; break;
case 0x1100: if(devno !'= 25) i = 1; break;
case 0x3FEO: break;

default: i = 0; break;

}

// mask off revision number

(last 5bits)

PIC16F870
PICl6F871
PICl16F872
PIC16F873
PICl16F873A
PICl16F874
PIC16F874A
PIC16F876
PICl16F876A
PICl16F877
PICl16F877A

PICl6F627
PICl6F627A
PICl6F628
PICl6F628A

PICl16F648A

ID not read yet

unknown ID

page 3

MPU4.c

190 if(1 == 1)

191 {

192 locate(0, 77); cprintf("22");

193 }

194

195 locate(2, 69); cprintf("204X", mfr[mfrno].dev[devno].DataSize);
196

197 textattr((CYAN< 4) + WHITE);

198 locate(&, 75); cprintf("OFE"™);

199

200 textattr(ti.attribute);

201 gotoxy(ti.curx, ti.cury);

202 }

203

204 void ShowType(void)

205 {

206 if(mfrno < 0 || mfrno > sizeof (mfr) / sizeof (mfr[0]))
207 mfrno = 0;

208 if(devno < 0 || devno >= mfr[mfrno].numdevs)

209 devno = 0;

210

211 bufsize = mfr[mfrno].dev[devno].Size;

212 BufEnd = bufsize - 1;

213

214 textattr((BLUE << 4) | WHITE);

215

216 locate(0,40); cprintf("*Mfr.: %s", mfr[mfrno].name);
217 locate(0,60); cprintf("*TYPE: %s", mfr[mfrno].dev[devno].name);
218

219 locate(3,41); cprintf(" end addr.: %041X", BufEnd);
220

221 textattr((CYAN << 4) | WHITE);

222 }

223

224 // Check, if Pin can be pulled LOW constantly
225 static int pinused(int pin)

226 {

227 return(MCLR == pin || DATA == pin || CLK == pin ||

228 _VCCl == pin || _VCC2 == pin);

229 }

230

231 void DeviceSetup(void)

232 {

233 _MCLR = mfr[mfrno].dev[devno] .mclr;

234 _DATA = mfr[mfrno].dev[devno].dat;

235 _CLK = mfr[mfrno].dev[devno].clk;

236 _LvP = mfr[mfrno].dev[devno].lvp;

237

238 _UB = mfr[mfrno].dev[devno] .UB;

239 VPP = mfr[mfrno].dev[devno].VPP;

240

241 _VCC1 = mfr[mfrno].dev[devno].vccl;

242 _VCC2 = mfr[mfrno].dev[devno].vcc2;

243

244 _GND1 = mfr[mfrno].dev[devno].gndl;

245 ~GND2 = mfr[mfrno].dev[devno].gnd2;

246

247 // Can't use Pins 2,3,4,6 and 8 for neither Vop nor Vhh

248 if(MCLR == 2 || MCLR == 3 || MCLR == 4 || MCLR == ¢ || MCLR == 8)
249 {

250 errbeep () ;

251 textattr((RED << 4) | WHITE);

252 locate(23, 41); cprintf("Connect socket pin 1 to IC pin %d", MCLR);
253 textattr((CYAN << 4) | WHITE);

254 _MCLR = 1; // force using Pin 1
255 }

256

257 // Check, if Pin20 is a pin we can pull LOW all the time

258 if('pinused(20))

259 setport (OTHERENID, O, 0); // Pin 20 = GND

260

261 // If not: check, if Pins 11 and 30 can be pulled LOW constantly

page 4 MPU4.c

262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333

else if('pinused(11

// Else emit warning,
else

{

errbeep () ;

) && !'pinused(30))
setport(OTHERENID, O, 1);

// Pin 11,30 = GND

force adapter usage with Pin20 low

textattr((RED << 4) | WHITE);
cprintf("Use adapter ADP-MPU4");
textattr((CYAN << 4) | WHITE);
setport(OTHERENID, O, 0O);

locate(41, 23);

}

if(mfr[mfrno].dev[devno] .DataSize == 0)
area = 0;

else
area = 3;

}

void power(int voltage,

{

int i;

// we dont need VHH
setdac(VHHID, 0);
for(i = 0;
setport(VHHENCID,0, O
setport(VHHENCID,1, O

if(voltage)

1<= 4; 441)

int vpp)

)
) .

r

O; ++i)

{
// Set all pins LOW
for(i =1; i <=4
{

setpin(i, VOPENID, 0);
setpin(i, TTLID, O);

}
if('vpp && ! LVP)
{
errbeep () ;
textattr((RED << 4) | WHITE);
locate(23, 41
textattr((CYAN << 4) | WHITE);
}

if(' LVP && VPP
vpp = VPP;

); cprintf("ERROR:

)

if(mfr[mfrno].dev[devno] .VPPlst &&

vpp)
{
setdac(VOPID,

setdac(VCCID,

vpp)
voltage);

last volt = voltage;

delay(100);

setpin(MCIR,
setpin(MCIR,
dlylOu() ;

setpin(_VCC1,
setpin(_VCC2,
setpin(_VCC1,
setpin(_VCC2,

dlylO0m() ;

}

else

{
setdac(VCCID,
setdac(VOPID,

TTLID, 1);
VOPENID, 1);

TTLID, 1);
TTLID, 1);
VCCENID, 1);
VCCENID, 1);

voltage);
vpp)

setport (VHHENID,

//

i,

//
//

neither Vpp nor LVP mode"

//

//

//

//

//

//

//

//
//

Pin 20 = GND

// VHH = 0V

// no VHH
// no VHHC
// no VHHC

0);

remove Vpp
set low

chip has no LVP mode
or we don't want it..

apply VPP before VCC

raise Vpp to xV
raise Vcc to xV

let stabilize

remove reset from MCLR

apply Vpp to it

apply Vccl & Vcc2

apply VCC, then VPP

raise Vcc to xV
raise Vpp to xV

)

page 5

MPU4.c

334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405

last volt = vol
delay(100);

setpin(VCC1,
setpin(_VCC2,
setpin(VCCI1,
setpin(_VCC2,
dlyl0u() ;

if(vpp)

{
setpin(MC
setpin(MC

dlyl0u() ;
}
else
{
setpin(MC
setpin(LV
}

}

locate(2, 75);
B

tage;

TTLID, 1
TTLID,
VCCENID, 1);
VCCENID, 1)

~ ~—
~e.

LR, TTLID, 1);
LR, VOPENID, 1);

LR, TTLID, 1);
P, TTLID, 1);

// let stabilize

// apply Vccl & Vcc2

// remove reset
// .. and apply Vpp t

// remove reset

// activate LVP mode

(vpp ? "HVP" : "222"

// wait to stabilize

// remove LVP voltage

// remove Vpp
// and reset chip

// Vpp = 0V
// Vcc ov

// disable Vcc (s)

LSB first

14 bits (LSB first),

textattr((BLUE << 4) | WHITE);
cprintf("%s", (!'vpp && LVP) ? "LVP"
textattr((CYAN << 4) | WHITE);
delay(100);
}
else
{
setpin(LVP, TTLID, 0);
setpin(MCLR, VOPENID, 0);
setpin(MCLR, TTLID, O);
setdac(VOPID, 0);
setdac(VCCID, 0);
setpin(VCC1l, VCCENID, O);
setpin(VCC2, VCCENID, O);
// Set all pins LOW
for(i = 1; i <= 40; ++i)
setpin(i, TTLID, O);
}
}
void pic command(int c)
{
int 1i;
for(i =0; 1 < 6; ++1i) // 6 bits,
{
setpin(CLK, TTLID, 1); dlylOu();
setpin(DATA, TTLID, c & 1); dlylOu();
c >>= 1;
setpin(CLK, TTLID, O); dlyloOu();
}
dly50u() ;
}
void pic data(unsigned d)
{
int 1i;
d=(d & Ox3FFF) << 15
for(i = 0; 1 < 16; ++1i) // START=L,
{
setpin(CLK, TTLID, 1); dlyloOu();

setpin(DATA, TTLID, d & 1); dlylOu();

from MCLR

o it

from MCLR

))

STOP=L

page 6

MPU4.c

406 d >>= 1;

407 setpin(CLK, TTLID, O); dlylOu();

408 }

409 dly50u() ;

410 }

411

412 unsigned pic read(int seg /* 0: CODE, 1: DATA(EEPROM) */)
413 {

414 unsigned i, d = 0;

415

416 pic _command(seg ? PIC READ DATA : PIC READ CODE);
417

418 setpin(DATA, TTLID, 1); dlylOu(); // make pin an input and wait a bit
419

420 for(i =0; 1 < 16; ++1)

421 {

422 setpin(CLK, TTLID, 1); dlylOu();

423 d |= (getpin(DATA) ? 0x8000 : 0); // LSB first
424 dlylOu() ;

425 d >>= 1;

426 setpin(CLK, TTLID, O); dlylOu();

4277 }

428 dly50u() ;

429 return d & Ox3FFE; // Bit0 and 15 where read from HiZ...
430 }

431

432 void reset(int vpp)

433 {

434 power(O, 0);

435 delay(100);

436 power(last volt, vpp);

437 }

438

439 void do_increment(int num)

440 {

441 while(num--)

442 {

443 pic _command(PIC INCREMENT) ;

444 if(addr < 0x4200) addr += 2;

445 else ++addr;

446 dly50u() ;

447 }

448 }

449

450 void do load(int seg, unsigned wval)

451 |

452 pic _command(seg); pic data(val);

453 }

454

455 int do progl(unsigned lastval)

456 {

457 int num, end = 25, step = 1;

458 unsigned mask;

459

460 mask = mfr[mfrno].dev[devno].cfg mask;

461

462 switch(mfr[mfrno].dev[devno].prog type)

463 {

464 case 0: // max. 25 pulses of 100us + 3*n additional pulses
465

466 for(num = 1; num !'= end; num += step)

467 {

468 pic command(PIC START PROG);

469 dlyl00u() ;

470 pic command(PIC END PROG) ;

471

472 if(step == 1)

473 {

474 if (addr >= 024200) // DATA
475 {

476 if((pic read(1) & OxFF) == lastval)
477 {

page 7 MPU4.c

478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

int

//

case

case

case

}

retu

eras

rese

num *= 3; end = 0; step = -1;
}
}
else if(addr == 0x400E) // CONFIG word
{
if(((pic_read(0) ~ lastval) & mask) == 0)
{
num *= 3; end = 0; step = -1;
}
}
else if(pic read(0) == lastval) // CODE & ID
{
num *= 3; end = 0; step = -1;
}
}
}
return num;
1: // PROG ONLY, wait 4ms (10ms), no END (program only)
pic _command(PIC PROG ONLY);
delay(20);
if(addr >= 0x4200)
return((pic read(1) & OxFF) == lastval);
else if(addr == 0x400E)
return((pic read(0) #* lastval) & mask) == 0;
else
return(pic read(0) == lastval);
2: // START PROG, wait 8ms (10ms), no END (erase/program)
pic _command(PIC_ START PROG);
delay(20);
if(addr >= 0x4200)
return((pic read(1) & OxFF) == lastval);
else if(addr == 0x400E)
return((pic read(0) #* lastval) & mask) == 0;
else
return(pic read(0) == lastval);
3: // PROG_ONLY, wait 20ms, END_ PROG
pic _command(PIC PROG ONLY) ;
dly20m() ;
pic _command(PIC END PROG);
if(addr >= 0x4200)
return((pic read(1) & OxFF) == lastval);
else if(addr == 0x400E)
return((pic read(0) #* lastval) & mask) == 0;
else
return(pic read(0) == lastval);

rn O;

e(void)

Tt

switch(mfr[mfrno].dev[devno].erase type)

{

case

N

0: // Ooops,

return 0O;

case 1:

switch(area)

{
case (0: /* none */
case 1: /* CODE only */

do load(CODE_SEG,
break;

(

i

no ERASE function

)

page 8

MPU4.c

550 case 2: /* DATA only */

551 do_load(DATA SEG, 0x3FFF);
552 break;

553

554 case 3: /* CHIP */

555 do_load(CFG SEG, 0x3FFF);

556 do_increment(7); // advance to 0x2007 = CFG WORD
557 break;

558 }

559

560 pic _command(PIC BULK SETUPL);

561 pic _command(PIC BULK SETUP2);

562 pic _command(PIC_ START PROG); dlylOm();
563 pic _command(PIC BULK SETUPL);

564 pic _command(PIC BULK SETUP2);

565 break;

566

567 case 2:

568

569 switch(area)

570 {

571 case 0: /* none */

572 case 1: /* CODE only */

573 pic _command(PIC CODE ERASE);
574 break;

575

576 case 2: /* DATA only */

577 pic _command(PIC DATA ERASE);
578 break;

579

580 case 3: /* CHIP */

581 pic _command(PIC CHIP ERASE);
582 break;

583 }

584 pic command(PIC START PROG);

585 dlylO0m() ;

586 break;

587

588 case 3:

589

590 switch(area)

591 {

592 case 0: /* none */

593 case 1: /* CODE only */

594

595 do load(CODE SEG, O0x3EFFE);
596 pic _command(PIC CODE ERASE);
597 pic command(PIC START PROG);
598 dlylO0m() ;

599 break;

600

601 case 2: /* DATA only */

602

603 do load(DATA SEG, O0x3FFE);
604 pic _command(PIC DATA ERASE);
605 pic command(PIC START PROG);
606 dlylO0m() ;

607 break;

608

609 case 3: /* CHIP */

610

611 do_load(CFG SEG, 0x3FFF);

612 do_increment(7); // advance to 0x2007 = CFG WORD
613 pic _command(PIC BULK SETUPL);
614 pic _command(PIC BULK SETUP2);
615 pic _command(PIC_START PROG); dly20m();
616 pic_command(PIC BULK SETUPL);
617 pic _command(PIC BULK SETUP2);
618

619 reset(VPP);

620

621 do load(CODE _SEG, 0x3FFE);

page 9 MPU4.c

622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693

int

}

int

{

pic _command(PIC CODE ERASE);
pic _command(PIC START PROG);
dlylO0m() ;

do load(DATA SEG, Ox3EFFE);
pic _command(PIC DATA ERASE);
pic _command(PIC START PROG);
dlylO0m() ;

break;

}

break;

}
return |;
check(void) // BLANK check, return 1 on success
unsigned end, val;
if((end = mfr[mfrno].dev[devno].DataSize) '= 0)
end += 0x4200;
else

end = 0x4010;

for(addr = BufStart; addr < end;)

{ if((addr & OxFF) == 0) ShowCounter(addr);
if(addr < 0x4200) // CODE & CONFIG
{ val = pic read(0) * Ox3FFE;
if(addr == 0x400E)
val &= mfr[mfrno].dev[devno].cfg mask;
if(val)
{

ShowCounter (addr);
return O;
}
}
else if((pic _read(l) & OxFr) != OxFE) // DATA
{
ShowCounter (addr);
return O;

}

do_increment(1);
if(addr == bufsize) // continue in CONFIG space
{

do load(CFG_SEG, 0x3FFE); // goto 0x2000 (0x4000)

addr = 0x4000;
}

else if(addr == 0x4008) // ID locations checked
do_increment(3); // advance to CFG WORD location
else if(addr == 0x4010) // config space checked,
{
reset(VPP); // reset device and check DATA

addr = 0x4200;

}
ShowCounter (addr);
return |;

read verify(int verify)

page 10

MPU4.c

694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765

}

unsigned val, end, res = 1;

if((end = mfr[mfrno].dev[devno].DataSize) != 0)

end += 0x4200;
else
end = 0x4010;

for(addr = BufStart; addr < end;)

{
if((addr & OxFF) == 0) ShowCounter(addr);
if(verify)
{
if(addr < 0x4200)
{
val = buffer[addr];
val |= (buffer[addr+1] & 0x3F) << 8;
val #= pic read(0);
if(addr == 0x400E)
val &= mfr[mfrno].dev[devno].cfg mask;
if(val)
{
ShowCounter (addr);
res = 0;
break;
}
}
else if((pic read(l) & OxEFF) != buffer[addr])
{
ShowCounter (addr);
res = 0;
break;
}
}
else
{
if(addr < 0x4200)
{
val = pic read(0);
Chks += (buffer[addr] = val & OxFE);
Chks += (buffer[addr+l] = (val >> 8) & 0x3F);
}
else
Chks += (buffer[addr] = pic read(l) & OxFF);
}
do_increment(1);
if(addr == bufsize) // continue in CONFIG space
{
do load(CFG SEG, Ox3FEFE); // goto 0x2000 (0x4000)
addr = 0x4000;
}
else if(addr == 0x4008) // ID locations done
do_increment(verify ? 3 : 2); // advance to DEVID or CFG word
else if(addr == 0x4010) // config space done,
{
reset(VPP); // reset device and check DATA
addr = 0x4200;
}
}

ShowCounter (addr);

return res;

int program(void)

{

page 11

MPU4.c

766 int i, n, val;

767 unsigned end;

768

769 if((end = mfr[mfrno].dev[devno].DataSize) = 0)

770 end += 0x4200;

771 else

772 end = 0x4010;

773

774 n = mfr[mfrno].dev[devno] .NumProgBytes;

775

776 for(addr = BufStart; addr < end;)

777 {

778 if((addr & OxFF) == 0) ShowCounter(addr);

779

780 i =n;

781

782 while(i--)

783 {

784 if(addr < 0x4200) // CODE & CONFIG space
785 {

786 val = buffer[addr];

787 val |= (buffer[addr+1] & 0x3F) << 8;

788 do load(CODE SEG, val);

789 }

790 else

791 {

792 val = buffer[addr];

793 do load(DATA SEG, val);

794 }

795

796 if(i) do increment(1); // don't increment after n-th load
797 }

798

799 if('do progl(val))

800 return 0O;

801

802 do_increment(1);

803

804 if(addr == bufsize) // CODE space done
805 {

806 do load(CFG_SEG, 0x3FFE); // goto 0x2000 (0x4000)
807 addr = 0x4000;

808 }

809

810 else if(addr == 0x4008) // ID locations checked
811 do_increment(3); // advance to CFG WORD location
812

813 else if(addr == 0x4010) // CONFIG space done,
814 {

815 reset(VPP); // reset device and do DATA
816 addr = 0x4200;

817 }

818 }

819 ShowCounter (addr);

820 return |;

821 }

822

823 int config(void)

824 {

825 int i, n, val;

826

827 if((n = mfr[mfrno].dev[devno] .NumProgBytes) > 4)

828 n =4

829

830 do load(CFG_SEG, O0x3FFE); // goto 0x2000 (0x4000)
831

832 for(addr = 0x4000; addr < 0x4010;)

833 {

834 i =n;

835 while(i--)

836 {

837 val = buffer[addr];

page 12 MPU4.c

838 val |= (buffer[addr+1] & 0x3F) << 8;

839 do load(CODE SEG, val);

840 if(1) do_increment(1); // don't increment after n-th load
841 }

842

843 if('do progl(val))

844 return 0O;

845

846 do_increment(1);

847

848 if(addr == 0x4008)

849 do_increment(3); // advance to CFG word
850 }

851 return |;

852 }

853

854 int flash check(void)

855 {

856 int done;

857

858 textattr((CYAN << 4) | WHITE);

859 ~window(12,40, 23,79);

860

861 textattr((BLUE << 4) | WHITE);

862 locate(12, 45); cprintf(" BLANK CHECK device:");
863

864 for(;;)

865 {

866 textattr((CYAN << 4) | WHITE);

867 locate(13, 41); cprintf("Ready to check (Y/<CR>)? ");
868

869 for(done = 0; 'done;)

870 {

871 switch(getch())

872 {

873 case 0:

874 getch () ;

875 break;

876

877 case '\n':

878 case '\r':

879 case (x1B:

880 return;

881

882 case 'y':

883 case 'Y':

884 done = 1;

885 }

886 }

887

888 clscrn(14,41, 22,78);

889

890 setport(USERBITS, 0, 0);

891

892 textattr(BLINK | (LIGHTGREEN << 4) | WHITE);
893 locate(14, 41); cprintf("Blank checking now... ");
894

895 power(UB, VPP); done = check(); power(0, 0);
896

897 textattr((CYAN << 4) | WHITE);

898 locate(14, 41); cprintf("Blank checking now... ");
899

900 locate(15, 41);

901 if(done)

902 {

903 ShowCounter (BufEnd) ;

904 putchar(7);

905 cprintf(" OK ");

906 setport(USERBITS, 0, 8);

907 }

908 else

909 {

page 13 MPU4.c

910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981

errbeep() ;
textattr((RED << 4)

cprintf("Blank check error at %041X",

textattr((CYAN << 4)

}

void flash program(void)

{

int done;

textattr((CYAN << 4) |
~window(12,40, 23,79);

textattr((BLUE << 4) |
locate(12, 45); cprintf("

for(;;)

{
textattr((
locate(13,

CYAN << 4) |
41);

for(done = 0;

{

'done;)

switch (

{

case 0:
getch();
break;

getch())

case '\n':

case '\r':

case 0Ux1B:
return;

case 'y':
case 'Y':
done = 1;

}
clscrn(14,41, 22,78);

setport(USERBITS, 0, 0);

textattr(BLINK |
locate(14, 41);

WHITE) ;

WHITE) ;

WHITE) ;

WHITE) ;

PROGRAM :");

WHITE) ;
cprintf("Ready to

(LIGHTGREEN << 4) |
cprintf("Programming now... "

program

WHITE) ;

power(UB, VPP); done = program(); power(O,

textattr((CYAN << 4) |
locate(14, 41);

locate(15, 41);

if(done)

{
ShowCounter (BufEnd) ;
putchar(7);
setport(USERBITS, 0, 8
cprintf(" OK ");

else

errbeep () ;

textattr((RED << 4)
cprintf("Program error
textattr((CYAN << 4)

) .

!

WHITE) ;
cprintf("Programming now... "

r

WHITE) ;
at %041x",
WHITE) ;

addr);

0

addr) ;

(Y/<CR>) ?

)
)

)

"

)

page 14

MPU4.c

982 void flash config(void)

983 {
984 int done;
985
986 textattr((CYAN << 4) | WHITE);
987 ~window(12,40, 23,79);
988
989 textattr((BLUE << 4) | WHITE);
990 locate(12, 42); cprintf(" Program ID & CFG & protect bits: ");
991
992 for(;;)
993 {
994 textattr((CYAN << 4) | WHITE);
995 locate(13, 41); cprintf("Ready to program (Y/<CR>)? ");
996
997 for(done = 0; 'done;)
998 {
999 switch(getch())
1000 {
1001 case 0:
1002 getch();
1003 break;
1004
1005 case '\n':
1006 case '\r':
1007 case (x1B:
1008 return;
1009
1010 case 'y':
1011 case 'Y':
1012 done = 1;
1013 }
1014 }
1015
1016 clscrn(14,41, 22,78);
1017
1018 setport(USERBITS, 0, 0);
1019
1020 textattr(BLINK | (LIGHTGREEN << 4) | WHITE);
1021 locate(14, 41); cprintf("Programming now... ");
1022
1023 power(UB, VPP); done = config(); power(O, 0);
1024
1025 textattr((CYAN << 4) | WHITE);
1026 locate(14, 41); cprintf("Programming now... ");
1027
1028 locate(15, 41);
1029 if(done)
1030 {
1031 ShowCounter (BufEnd) ;
1032 putchar(7);
1033 setport(USERBITS, 0, 8);
1034 cprintf(" OK ");
1035 }
1036 else
1037 {
1038 errbeep () ;
1039 textattr((RED << 4) | WHITE);
1040 cprintf("Program error ! at %$041X", addr);
1041 textattr((CYAN << 4) | WHITE);
1042 }
1043 }
1044 '}
1045
10406 void flash read(void)
1047 {
1048 int done;
1049
1050 textattr((CYAN << 4) | WHITE);
1051 ~window(12,40, 23,79);
1052
1053 textattr((BLUE << 4) | WHITE);

page 15 MPU4.c

1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125

locate(12, 45);

for(;;)
{

textattr((CYAN << 4) |

locate(13, 41);

for(done = 0;

{

cprintf("

READ to buffer

WHITE) ;
cprintf("Ready to start

'done;)

switch(getch())

{

case 0:
getch();
break;

case '\n':

case '\r':

case 0Ux1B:
return;

case 'y':
case 'Y':
done

I
—
~

leV:
IEV.
IOV.
IOV.
done

case
case
case
case

I
—
~

}
clscrn(14,41, 22,
setport (USERBITS,

textattr(BLINK |
locate(14, 41);

Chks = 0;

78°);
0, 0

(LIGHTGREEN << 4) |
cprintf("Reading now. ..

(Y/Even/0dd/<CR>) ?

"

WHITE) ;

)

power(UB, VPP); read verify(0); power(O, 0);

textattr((CYAN << 4) | WHITE);
locate(14, 41); cprintf("Reading now... ");
locate(15, 41);
putchar(7);
cprintf(" OK ");
textattr((BLUE << 4) | WHITE);
locate(4, 41); cprintf(" Check Sum $04X", Chks);
ShowConfig() ;
}
}
void flash verify(void)
{
int done;
textattr((CYAN << 4) | WHITE);
~window(12,40, 23,79);
textattr((BLUE << 4) | WHITE);
locate(12, 45); cprintf(" VERIFY with buffer :");
for(;;)
{
textattr((CYAN << 4) | WHITE);

locate(13, 41);

for(done = 0;

cprintf("Ready to verify

'done;)

(Y/Even/0dd/<CR>) ?

"

"

)

)

page 16

MPU4.c

1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197

switch(getch())
{
case 0:
getch();
break;

case '\n':

case '\r':

case 0Ux1B:
return;

case 'y':
case 'Y':
done

I
—
~

case 'e':
case 'E':
case 'o':
case '0O':

done

I
—
~

}
clscrn(14,41, 22,78);
setport(USERBITS, 0, 0);

textattr(BLINK | (LIGHTGREEN << 4) | WHITE);

locate(14, 41); cprintf("Verifying now @ VDDmin...

power (mfr[mfrno].dev[devno] .UBmin, VPP);
done = read verify(l);
power(O, 0);

textattr((CYAN << 4) | WHITE);

locate(14, 41); cprintf("Verifying now @ VDDmin...

locate(15, 41);

if(done)

{
ShowCounter (BufEnd) ;
putchar(7);
cprintf(" OK ");
setport(USERBITS, 0, 8);

}
else
{
errbeep () ;
textattr((RED << 4) | WHITE);
cprintf(" VERIFY ERROR ! at %041X", addr);
textattr((CYAN << 4) | WHITE);
continue;
}

textattr(BLINK | (LIGHTGREEN << 4) | WHITE);

locate(16, 41); cprintf("Verifying now @ VDDmax...

power (mfr[mfrno].dev[devno] .UBmax, VPP);
done = read verify(l);
power(O, 0);

textattr((CYAN << 4) | WHITE);

locate(16, 41); cprintf("Verifying now @ VDDmax...

locate(17, 41);

if(done)

{
ShowCounter (BufEnd) ;
putchar(7);
cprintf(" OK ");
setport(USERBITS, 0, 8);

page 17

MPU4.c

1198 }

1199 else

1200 {

1201 errbeep () ;

1202 textattr((RED << 4) | WHITE);

1203 cprintf(" VERIFY ERROR ! at %041X", addr);
1204 textattr((CYAN << 4) | WHITE);

1205 }

1206 }

1207 }

1208

1209 void flash erase(void)

1210 {

1211 int done;

1212

1213 textattr((CYAN << 4) | WHITE);

1214 ~window(12,40, 23,79);

1215

1216 textattr((BLUE << 4) | WHITE);

1217 locate(12, 45); cprintf(" EEPROM Erase:");
1218

1219 if('mfr[mfrno].dev[devno] .erase type)

1220 {

1221 errbeep () ;

1222 textattr((RED << 4) | WHITE);

1223 locate(13, 41); cprintf("No ERASE function");
1224 textattr((CYAN << 4) | WHITE);

1225

1226 locate(21, 41); cprintf("press any key to continue");
1227 if(getch() == 0) getch();

1228 return;

1229 }

1230

1231 for(;;)

1232 {

1233 textattr((CYAN << 4) | WHITE);

1234 locate(13, 41); cprintf("Ready to erase (Y/<CR>)? ");
1235

1236 for(done = 0; !done;)

1237 {

1238 switch(getch())

1239 {

1240 case 0:

1241 getch();

1242 break;

1243

1244 case '\n':

1245 case '\r':

1246 case (x1B:

1247 return;

1248

1249 case 'y':

1250 case 'Y':

1251 done = 1;

1252 }

1253 }

1254

1255 clscrn(14,41, 22,78);

1256

1257 setport(USERBITS, 0, 0);

1258

1259 textattr(BLINK | (LIGHTGREEN << 4) | WHITE);
1260 locate(14, 41); cprintf("Erase now... ");
1261

1262 power(UB, VPP); done = erase(); power(0, 0);
1263

1264 textattr((CYAN << 4) | WHITE);

1265 locate(14, 41); cprintf("Erase now... ");
1266

1267 locate(15, 41);

1268 if(done)

1269 {

page 18 MPU4.c

1270 putchar(7);

1271 cprintf(" OK !);

1272 setport(USERBITS, 0, 8);

1273 }

1274 else

1275 {

1276 errbeep () ;

1277 textattr((RED << 4) | WHITE);
1278 cprintf(" ERROR ! ");

1279 textattr((CYAN << 4) | WHITE);
1280

1281 locate(21, 41); cprintf("press any key to continue");
1282 if(getch() == 0) getch();

1283 }

1284

1285 clscrn(13,41, 22,78);

1286 }

1287 }

1288

1289 void flash auto(void)

1290 {

1291 int done, 1;

1292

1293 textattr((CYAN << 4) | WHITE);

1294 ~window(12,40, 23,79);

1295

1296 textattr((BLUE << 4) | WHITE);

1297 locate(12, 45); cprintf(" AUTO :");
1298

1299 for(;;)

1300 {

1301 textattr((CYAN << 4) | WHITE);
1302 locate(13, 41); cprintf("Ready to start (Y/Even/Odd/<CR>)? ");
1303

1304 for(done = 0; !done;)

1305 {

1306 switch(getch())

1307 {

1308 case 0:

1309 getch();

1310 break;

1311

1312 case '\n':

1313 case '\r':

1314 case (x1B:

1315 return;

1316

1317 case 'y':

1318 case 'Y':

1319 done = 1;

1320

1321 case 'e':

1322 case 'E':

1323 case 'o':

1324 case 'O':

1325 done = 1;

1326 }

1327 }

1328

1329 clscrn(14,41, 22,78);

1330

1331 setport(USERBITS, 0, 0);

1332

1333 1 = 14;

1334

1335 // BLANK CHECK

1336

1337 textattr(BLINK | (LIGHTGREEN << 4) | WHITE);
1338 locate(1, 41); cprintf("Blank checking now... ");
1339

1340 power(UB, VPP); done = check(); power(0, 0);
1341

page 19 MPU4.c

1342 textattr((CYAN << 4) | WHITE);

1343 locate(14+, 41); cprintf("Blank checking now... ");
1344

1345 locate(1++, 41);

1346

1347 if(done)

1348 {

1349 ShowCounter (BufEnd) ;

1350 cprintf(" OK !);

1351 }

1352 else

1353 {

1354 errbeep () ;

1355 textattr((RED << 4) | WHITE);

1356 cprintf("Blank check error at %041X", addr);
1357 textattr((CYAN << 4) | WHITE);

1358

1359 // ERASE

1360

1361 1 -=2;

1362

1363 clscrn(1, 41, 1+1, 78);

1364

1365 if('mfr[mfrno].dev[devno] .erase type)

1366 {

1367 errbeep () ;

1368 textattr((RED << 4) | WHITE);

1369 cprintf("No ERASE function™™);

1370 textattr((CYAN << 4) | WHITE);

1371

1372 continue;

1373 }

1374

1375 textattr(BLINK | (LIGHTGREEN << 4) | WHITE);
1376 locate(1, 41); cprintf("Erase now... ");
1377

1378 power(UB, VPP); done = erase(); power(0, 0);
1379

1380 textattr((CYAN << 4) | WHITE);

1381 locate(14+, 41); cprintf("Erase now... ");
1382

1383 locate(1++, 41);

1384

1385 if(done)

1386 cprintf(" OK ");

1387 else

1388 {

1389 errbeep () ;

1390 textattr((RED << 4) | WHITE);

1391 cprintf(" ERROR");

1392 textattr((CYAN << 4) | WHITE);

1393

1394 continue;

1395 }

1396 }

1397

1398 // PROGRAM

1399

1400 textattr(BLINK | (LIGHTGREEN << 4) | WHITE);
1401 locate(1, 41); cprintf("Programming now... ");
1402

1403 power(UB, VPP); done = program(); power(0, 0);
1404

1405 textattr((CYAN << 4) | WHITE);

1406 locate(14+, 41); cprintf("Programming now... ");
1407

1408 locate(1++, 41);

1409 if(done)

1410 {

1411 ShowCounter (BufEnd) ;

1412 cprintf(" OK ");

1413 }

page 20 MPU4.c

1414 else

1415 {

1416 errbeep () ;

1417 textattr((RED << 4) | WHITE);

1418 cprintf("Program error ! at %041X", addr);
1419 textattr((CYAN << 4) | WHITE);

1420

1421 continue;

1422 }

1423

1424 // VERIFY

1425

1426 textattr(BLINK | (LIGHTGREEN << 4) | WHITE);
1427 locate(1, 41); cprintf("VDD max verifying now...");
1428

1429 power (mfr[mfrno].dev[devno] .UBmax, VPP);

1430 done = read verify(l);

1431 power(O, 0);

1432

1433 textattr((CYAN << 4) | WHITE);

1434 locate(14+, 41); cprintf("VDD max verifying now...");
1435

1436 locate(1++, 41);

1437 if(done)

1438 {

1439 ShowCounter (BufEnd) ;

1440 putchar(7);

1441 cprintf(" OK ");

1442 setport(USERBITS, 0, 8);

1443 }

1444 else

1445 {

1446 errbeep () ;

1447 textattr((RED << 4) | WHITE);

1448 cprintf(" VERIFY ERROR ! at %041X", addr);
1449 textattr((CYAN << 4) | WHITE);

1450 continue;

1451 }

1452

1453 textattr(BLINK | (LIGHTGREEN << 4) | WHITE);
1454 locate(1, 41); cprintf("VDD min verifying now...");
1455

1456 power (mfr[mfrno].dev[devno] .UBmin, VPP);

1457 done = read verify(l);

1458 power(O, 0);

1459

1460 textattr((CYAN << 4) | WHITE);

1461 locate(14+, 41); cprintf("VDD min verifying now...");
1462

1463 locate(1, 41);

1464 if(done)

1465 {

1466 ShowCounter (BufEnd) ;

1467 cprintf(" OK ");

1468 setport(USERBITS, 0, 8);

1469 putchar(7);

1470 }

1471 else

1472 {

1473 textattr((RED << 4) | WHITE);

1474 cprintf(" VERIFY ERROR ! at %041X", addr);
1475 textattr((CYAN << 4) | WHITE);

1476 errbeep () ;

1477 }

1478 }

1479 '}

1480

1481 void change area(void)

1482 {

1483 if(mfr[mfrno].dev[devno].DataSize == 0)

1484 area = 0y

1485 else if(area >= 3)

page 21 MPU4.c

1486 area = 1; /* CODE only */

1487 else if(area == 1)

1488 area = 2; /* DATA only */

1489 else if(area == 2)

1490 area = 3; /* CODE+DATA */

1491 '}

1492

1493 void edit config(void)

1494 {

1495 static char *osctype[4] = { "LP","XT","HS","RC" };

1496 int i, done;

1497 unsigned val, cfg = *(unsigned*) (buffer + 0x400E);

1498

1499 textattr((CYAN << 4) | WHITE);

1500 ~window(1,0, 10,39);

1501 ~window(11,1, 24,78);

1502

1503 locate(2, 1); cprintf("Current Oscillator Selection :");

1504 locate(3, 1); cprintf(" Watchdog :"),

1505 locate(4, 1); cprintf("Power-up timer :");

1506 locate(5, 1); cprintf("CODE Protection:");

1507 locate(6, 1); cprintf("DATA Protection:");

1508 locate(7, 1); cprintf("User FLASH pgm :");

1509 locate(&, 1); cprintf("Brownout reset :");

1510 locate(9, 1); cprintf("Low voltage pgm:");

1511

1512 locate(12, 4); cprintf("A Oscillator option toggle");

1513 locate(12,43); cprintf("B Watchdog Option toggle™);

1514 locate(13, 4); cprintf("C Power-up timer Option toggle");

1515 locate(13,43); cprintf("D Brown-out reset Option toggle");

1516 locate(14, 4); cprintf("E Low voltage pgm Option toggle");

1517

1518 locate(16, 4); cprintf("K CODE protection toggle");

1519 locate(16,43); cprintf("L DATA protection toggle");

1520 locate(17, 4); cprintf("M FLASH User write Option toggle");

1521 locate(17,43); cprintf("N DEBUG enable toggle");

1522

1523 locate(19, 4); cprintf("1 edit ID code");

1524 locate(19,43); cprintf("2 set serial on of off");

1525 locate(20, 4); cprintf("3 read ID code");

1526 locate(20,43); cprintf("4 program ID code");

1527 locate(21, 4); cprintf("5 read configuration code");

1528 locate(21,43); cprintf("6 program configuration code");

1529

1530 locate(23, 4); cprintf("Select options or <CR><ESC> to go back to the main
menu 2");

1531

1532 textattr((BLUE << 4) | WHITE);

1533 locate(1, 5); cprintf(" Configuration Bit Setting :");

1534 locate(11,28); cprintf(" Configuration Options :");

1535

1536 for(;;)

1537 {

1538 textattr((BLUE << 4) | WHITE);

1539

1540 locate(9,63); cprintf("204X", cfg);

1541

1542 locate(2,32); /* 0SC */ cprintf(osctypel[cfg & 0x003 1);

1543 locate(3,18); /* WDT */ cprintf((cfg & 0x004) ? "Enabled " : "Disabled");

1544 locate(4,18); /* PWT */ cprintf((cfg & 0x008) ? "Disabled" : "Enabled ");

1545 locate(5,18); /* CPT */

1546 switch((cfg & 0x030) >> 4)

1547 {

1548 case 0: cprintf("All protected"); break;

1549 case 1: cprintf(" %041X - %041X ", bufsize/2, bufsize-1); break;

1550 case 2: cprintf(" 204X - %041%X ", 0, bufsize/? - 1); break;

1551 case 3: cprintf("Not protected"); break;

1552 }

1553 locate(6,18); cprintf((cfg & 0x100) ? "Disabled" : "Enabled ");

1554 locate(7,18); cprintf((cfg & 0x200) ? "Enabled " : "Disabled");

1555 locate(8,18); cprintf((cfg & 0x040) ? "Enabled " : "Disabled");

1556 locate(9,18); cprintf((cfg & 0x080) ? "Enabled " : "Disabled");

page 22 MPU4.c

1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588

1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611l
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627

for(done = 0; 'done;)

{

done

switch(toupper(getch()))

{

case

case
case
case

case

case

case

case

case

case

case

case

case

case
case

case

case

= 1;

0: getch(); done = 0; break;

"\n"':

"\r':

0x1B:
* (unsigned*) (buffer + 0x400E) = cfg;
return;

"A' : // Oscillator option toggle

cfg = (cfg & ~0x003)

'B' : // Watchdog Option toggle
cfg #= 0x004; break;

'C' : // Power-up timer Option toggle

cfg #= 0x008; break;

'D' : // Brown-out reset Option toggle

cfg #= 0x040; break;

'E' : // Low voltage pgm Option toggle

cfg #= 0x080; break;

"K' : // CODE protection toggle
cfg = (cfg & ~0x3030)
break;

'L' : // DATA protection toggle

cfg #= 0x100; break;

'M'" : // FLASH User write Option toggle

cfg #= 0x200; break;

'N'" : // DEBUG Option toggle

cfg #= 0x400; break;

'1' ¢ // edit ID code

'2'" : // set serial on of off

done = 0; break;

'3'" : // read ID code

power (UB,

do load(CFG_SEG, 0x3FFE);

VPP);

// goto 0x2000

for(i = 0x4000; 1 < 0x4008; i += 2)

{
val = pic read(0);
buffer[1] = val & OxIEy;
buffer[i+l] = (val >> 8) & Oxit;
do_increment(1);

}

power(O, 0O); break;

'4' : // program ID code
power(UB, VPP);

do load(CFG_SEG, 0x3FFE);
for(i = 0x4000;

{

int n =

mfr[mfrno].dev[devno] .NumProgBytes;

while(n--)

{

val = buffer[1],

val

i < 0x4008;

// goto 0x2000

i4=2)

I= (buffer[i+l] << 8);
do load(CODE SEG, val);
if(n) do_increment(1);

((cfg + 1) & 0x003); break;

(((cfg&0x3030) + 0x1010) & 0x3030

(0x4000)

(0x4000)

page 23

MPU4.c

1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
le41l
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699

case

case

}
do progl(val);
do_increment(1);
}
power(O, 0); break;

'5"'" : // read configuration code
power(UB, VPP);
do load(CFG _SEG, Ox3FFE);
do_increment(7);
cfg = pic read(0);
power(O, 0O); break;

// goto 0x2000

'6' : // program configuration code
power(UB, VPP);
do load(CFG SEG, cfg);
do_increment(7);
do progl(cfg);
power(O, O); break;

// goto 0x2000

default: done = 0;

}

void type select(void)

{

int done,

if((num

{

}

left
for(i

if((done

i,
char no[l10];

0;

num, len=15, left = 40;
mfr[mfrno] .numdevs) > 14)

len = 0; i < num; ++i)

len = done;

textattr((CYAN << 4) | WHITE);
12,1left, 23,79);

~window (

textattr((BLUE << 4) | WHITE);

locate (

12,

left+5); cprintf(" TYPE SELECT:");

textattr((CYAN << 4) | WHITE);

for(i = 0; i < num; ++i)
{
locate(134+(i%7), left + 1 4+ (i/7)*(len+4));
cprintf("%d.%s", i, mfr[mfrno].dev[i].name);
}

locate(21,
locate(22,

left+l); cprintf("<CR> back to main menu.");
left+l); cprintf("SELECT NUMBER 2");

for(;;)

{
for(no[0] = done = 0; 'done;)
{

locate(22, left+16); cprintf("%s ", no);
locate(22, left+lo+strlen(no));

switch(i = getch())

{

case 0:

getch();
break;

case §:

if((1 = strlen(no)) '= 0)

(0x4000)

(0x4000)

strlen(mfr[mfrno].dev[i].name)) > len)

page 24

MPU4.c

1700 no[i-1] = 0;

1701 break;

1702

1703 case '\n':

1704 case '\r':

1705 if(strlen(no) &&

1706 (1 =atoi(no)) > 0 && i < mfr[mfrno].numdevs)
1707 {

1708 devno = 1i;

1709 ShowType () ;

1710 return;

1711 }

1712 break;

1713

1714 case (Ux1B:

1715 return;

1716

1717 default:

1718 if(isdigit(1))

1719 strcat(no, (char*)e&i);

1720 break;

1721 }

1722 }

1723 }

1724 '}

1725

1726 void mfr select(void)

1727 {

1728 int done, 1i;

1729 char no[l10];

1730

1731 textattr((CYAN << 4 | WHITE);

1732 ~window(12,40, 23,79);

1733

1734 textattr((BLUE << 4) | WHITE);

1735 locate(12, 45); cprintf(" MFR SELECT:");

1736

1737 textattr((CYAN << 4) | WHITE);

1738

1739 for(i = 0; 1 < sizeof(mfr) / sizeof(mfr[0]); ++1i)

1740 {

1741 locate(13+4i, 41); cprintf("%d.%s", i, mfr[i].name);
1742 }

1743

1744 locate(21,
1745 locate(22,
1746

1747 for(;;)
1748 {

1749 for(no[0] = done = 0; 'done;)
1750 {

1751 locate(22,
1752 locate(22,
1753

1754 switch(1 = getch())

1755 {

1756 case 0:

1757 getch();

1758 break;

1759

1760 case S:

1761 if((1 = strlen(no)) '= 0)

1762 no[i-1] = 0;

1763 break;

1764

1765 case '\n':

1766 case '\r':

1767 if(strlen(no) &&

1768 (i =atoi(no)) > 0 && i < sizeof(mfr) / sizeof(mfr[0]))
1769 {

1770 mfrno = i;

1771 if(devno >= mfr[mfrno].numdevs)

; cprintf("<CR> back to main menu.");

41)
41); cprintf("SELECT NUMBER 2");

6); cprintf("%s ", no);
6+strlen(no));

page 25 MPU4.c

1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843

devno = 0;
ShowType () ;
return;

}
break;

case 0Ux1B:
return;

default:
if (isdigit(i))
strcat(no, (char*)e&i);
break;

}

2 T ———.

int main(void)

{
int ch = 0, redraw, first = 1;
long tmpval;
2 ————— * /
/* main program starts here */
2 .. * /

getcwd(oldpath, 260);
strcpy(path, oldpath);

if((buffer = farmalloc(BUFSIZE)) == NULL)
return -1;

memset ((void far *)buffer, 0, BUFSIZE);

ReadConfig() ;
delay(0);

for(;;)
{
if(first)
{
first = 0;

area = 3;
init hw();
initdacs();

setport(USERBITS, 0, 0);

DeviceSetup() ;

}

textattr((LIGHTGRAY << 4) | YELLOW); clscrn(0,0, 24,79);

locate(0,0); cprintf("Universal Programmer") ;
locate(1,0); cprintf("MODEL: PC Based");
locate(2,0); cprintf("MPU PICl6 section " VERSION);

textattr((BLUE << 4) + WHITE); clscrn(0,40, 6,79);
ShowType () ;
textattr((BLUE << 4) + WHITE); window(1,40, 6,79);

locate(1,53); cprintf(" TARGET ZONE ");
locate(2,41); cprintf("Buffer start addr.:

)
locate(3,41); cprintf(" end addr.: %041X", BufEnd);
locate(4,41); cprintf(" Check Sum : %04X", Chks);
locate(5,41); cprintf("Device start addr.: %$041X", DevStart);

_window(3,69, 6,79);

$041xX"™, BufStart);

page 26

MPU4.c

1844 locate(4,71); cprintf("COUNTER") ;

1845 ShowCounter(0);

1846

1847 _window(7,40, 10,79);

1848 locate(7,43); cprintf(" Device ID & Configuration bits ");

1849 locate(8,42); cprintf("ID3 - IDO :");

1850 locate(8,42); cprintf("Lock Bits :");

1851 locate(8,67); cprintf("*Fuses :");

1852 locate(9,42); cprintf("Configuration bits : ");

1853 ShowConfig() ;

1854

1855 textattr((CYAN << 4) | WHITE); clscrn(3,0, 23,38);

1856

1857 locate(3,0); cprintf("-——-------—- Main Menu -—--—-—-—————---- R

1858 locate(4,0); cprintf("1. DOS SHELL ")

1859 locate(5,0); cprintf("2. Load BIN or HEX file to buffer R

1860 locate(6,0); cprintf("3. Save buffer to disk R

1861 locate(7,0); cprintf("4. Edit buffer 7. Display buffer R

1862 locate(8,0); cprintf("5. Change I/0 base address R

1863 locate(9,0); cprintf("6. Display loaded file history R

1864 locate (10,0); cprintf("W. Swap hi-low bytes in buffer R

1865 locate (11,0); cprintf("T. Type select Z. Target zone R

1866 locate (12,0); cprintf("B. Blank check D. Display R

1867 locate (13,0);

1868 if (mfr[mfrno].dev[devno].erase type == 0)

1869 cprintf(" ")

1870 else

1871 cprintf("S. Erase %s ", memareas[areal]);

1872

1873 locate (14,0); cprintf("P. Program %s ", memareas[areal]);

1874 locate (15,0);

1875 if (mfr[mfrno].dev[devno].erase type == 0)

1876 cprintf("A. Auto (B&P&VEL) ")

1877 else

1878 cprintf("A. Auto (B&S&P&VeEL) M)

1879

1880 locate(15,19);

1881 if(mfr[mfrno].dev[devno].DataSize '= 0)

1882 cprintf ("X. Change Mem area ");

1883 else

1884 cprintf (" ")

1885

1886 locate (16,0); cprintf("R. Read V. Verify ")

1887 locate(17,0); cprintf("C. Compare and display error R

1888 locate (18,0); cprintf("E. Configuration & ID code function R

1889 locate (19,0); cprintf("L. Program ID & config. & protect bits ");

1890 locate (20,0); cprintf("O. Quit ")

1891 locate(21,0); cprintf("-———""""" - ")

1892 locate (22,0); cprintf("Allocation Buffer size : %uK bytes", BUFSIZE/1024);

1893 if((ch = mfr[mfrno].dev[devno] .DataSize) '= 0) {

1894 locate (23,0); cprintf("Data memory buffer at 4200 ~ %04X", 0x4200 + ch - 1
)i

1895 }

1896

1897 for(redraw = 0; 'redraw;)

1898 {

1899 textattr((BLUE << 4) + WHITE); clscrn(24,0, 24,38);

1900

1901 locate(24,0); cprintf("Select function 2 ");

1902

1903 for(;;)

1904 {

1905 if((ch = getch()) '= 0)

1906 break;

1907 getch(); /* neglect extended code */

1908 }

1909

1910 switch(ch = toupper(ch))

1911 {

1912 case 'l': dos shell(""); redraw = 1; break;

1913 case '2': tmpval = bufsize; bufsize = 0x8000;

1914 memset ((void far *)buffer, 0, BUFSIZE);

page 27 MPU4.c

1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958

//
//

case
case

case
case

case
case
case

case
case
case
case
case
case
case
case

case
case

}

|3|:
|4|:

|5|:
|7|:

'M':
'T':
'E':

X'
'R':
'B':
'S':
'P':
'V':
'L':
'A':

'"\n':
"\r':

load file();
bufsize= tmpval;

redraw = 1; ShowConfig(); break;

save file(); break;

tmpval = bufsize; bufsize

edit buffer();
bufsize= tmpval;
redraw = 1; break;
set io adr(); first =
disp buffer(); redraw

mfr select(); redraw =
type select(); redraw
edit config(); redraw

change area(); redraw
flash read(); break;
flash check(); break;
flash erase(); break;
flash program(); break
flash verify(); break;
flash config(); break;
flash auto(); break;

redraw = 1; break;

setport(USERBITS, 0, 0);

if(c
{

o)

WriteConfig() ;

textattr(LIGHTGRAY) ;

chdir(oldpath);

if(buffer)

return(0);

}

textattr((LIGHTGRAY << 4) | YELLOW);

= NwvQNN(
= UXoUU

U7

redraw = 1; break;
= 1, break;
first = 1; break;
= first = 1; break;
= 1, break;
= 1, break;
// refresh

clrscr();

clscrn(

farfree((void far *)buffer);

11,40

page 28

MPU4.c

