
1 #include "all03.h"
2
3 #include <bios.h>
4
5 #define _VERSION_ "1.00"
6
7 #define MODE_WRITE 0x0E // Bit 0 - 3 : P3.3 - P3.7
8 #define MODE_READ 0x0C
9 #define MODE_LOCK1 0x0F

10 #define MODE_LOCK2 0x03
11 #define MODE_ERASE 0x01
12 #define MODE_SIGNAT 0x00
13
14 unsigned char _RST, _RDY, _PROG, _XTAL;
15 unsigned char _VCC, _GND, _MODE[4], _DATA[8];
16
17 struct DEV {
18 char name[20];
19 unsigned Size, DataSize; // ROM & EEPROM sizes in bytes
20 char rst,rdy,prog,xtal; // Pin numbers for RESET,RDY/BUSY,PROG and XTAL
21 char vcc, gnd, mode[4]; // Pin numbers for VCC, GND and MODE0..3
22 char data[8]; // Pin numbers for data0..7
23 unsigned char UBmin, UBmax; // min. and max. Vcc value
24 };
25
26 struct DEV ATMEL_devs[] = {
27 // TYPE ROMSIZE EESIZE rst rdy prg xtl vcc gnd md0 md1 md2 md3 d0

d1 d2 d3 d4 d5 d6 d7 Umin Umax
28 /* 0*/ { "AT89C1051", 0x0400, 0x0000, 11, 13, 16, 15, 30, 20, 17, 18, 19, 21,

22,23,24,25,26,27,28,29, 30, 60 },
29 /* 1*/ { "AT89C2051", 0x0800, 0x0000, 11, 13, 16, 15, 30, 20, 17, 18, 19, 21,

22,23,24,25,26,27,28,29, 30, 60 },
30 /* 2*/ { "AT89C4051", 0x1000, 0x0000, 11, 13, 16, 15, 30, 20, 17, 18, 19, 21,

22,23,24,25,26,27,28,29, 30, 60 }
31 };
32
33 struct {
34 char name[20];
35 int numdevs;
36 struct DEV *dev;
37 } mfr[] = {
38 { "ATMEL", sizeof(ATMEL_devs)/sizeof(struct DEV), ATMEL_devs }
39 };
40
41 int mfrno = 0, devno = 0;
42
43 #define BUFSIZE 0x8000U
44
45 long addr;
46 long DevStart= 0x0000;
47 long Counter = 0x0000;
48
49 void ShowCounter(long val)
50 {
51 struct text_info ti;
52
53 gettextinfo(&ti);
54
55 textattr((BLUE << 4) + WHITE);
56 locate(5, 73); cprintf("%04lX", val);
57
58 textattr(ti.attribute);
59 gotoxy(ti.curx, ti.cury);
60 }
61
62 void ShowType(void)
63 {
64 if(mfrno < 0 || mfrno > sizeof(mfr) / sizeof(mfr[0]))
65 mfrno = 0;
66 if(devno < 0 || devno >= mfr[mfrno].numdevs)
67 devno = 0;
68

page 1 MPU5.C

69 bufsize = mfr[mfrno].dev[devno].Size;
70 BufEnd = bufsize - 1;
71
72 textattr((BLUE << 4) | WHITE);
73
74 locate(0,40); cprintf("*Mfr.: %s", mfr[mfrno].name);
75 locate(0,60); cprintf("*TYPE: %s", mfr[mfrno].dev[devno].name);
76
77 locate(3,41); cprintf(" end addr.: %04lX", BufEnd);
78
79 textattr((CYAN << 4) | WHITE);
80 }
81
82 void setmode(int md)
83 {
84 setpin(_MODE[0], TTLID, (md & 1) ? 1:0);
85 setpin(_MODE[1], TTLID, (md & 2) ? 1:0);
86 setpin(_MODE[2], TTLID, (md & 4) ? 1:0);
87 setpin(_MODE[3], TTLID, (md & 8) ? 1:0);
88 }
89
90 void power(int voltage)
91 {
92 int i;
93
94 _RST = mfr[mfrno].dev[devno].rst;
95 _RDY = mfr[mfrno].dev[devno].rdy;
96 _PROG= mfr[mfrno].dev[devno].prog;
97 _XTAL= mfr[mfrno].dev[devno].xtal;
98
99 _VCC = mfr[mfrno].dev[devno].vcc;

100 _GND = mfr[mfrno].dev[devno].gnd;
101
102 for(i = 0; i < 4; ++i)
103 _MODE[i] = mfr[mfrno].dev[devno].mode[i];
104
105 for(i = 0; i < 8; ++i)
106 _DATA[i] = mfr[mfrno].dev[devno].data[i];
107
108 // we dont need VHH
109 setdac(VHHID, 0); // VHH = 0V
110 for(i = 0; i <= 4; ++i) setport(VHHENID, i, 0); // no VHH
111 setport(VHHENCID,0, 0); // no VHHC
112 setport(VHHENCID,1, 0); // no VHHC
113
114 // Can't use Pins 2,3,4,6 and 8 for neither Vop nor Vhh
115 if(_RST == 2 || _RST == 3 || _RST == 4 || _RST == 6 || _RST == 8 ||
116 (_RST > 32 && _RST != 36))
117 {
118 errbeep();
119 textattr((RED << 4) | WHITE);
120 locate(41, 23); cprintf("Connect pin 1 to %d", _RST);
121 textattr((CYAN << 4) | WHITE);
122 _RST = 1; // force using Pin 1
123 }
124 setport(OTHERENID, 0, 0); // Pin 20 = GND
125
126 if(voltage)
127 {
128 // Set all pins HIGH
129 for(i = 1; i <= 40; ++i)
130 setpin(i, TTLID, 1);
131
132 // Set RST and XTAL pin LOW
133 setpin(_RST, TTLID, 0);
134 setpin(_XTAL, TTLID, 0);
135
136 // Set MODE
137 setmode(MODE_ERASE); // CHIP ERASE preset
138
139 setdac(VCCID, voltage); // Vcc = xV
140 setpin(_VCC, VCCENID, 1); // set Vcc pin

page 2 MPU5.C

141 setdac(VOPID, 120); // Vpp = 12V
142 delay(500); // wait to stabilize
143
144 setpin(_RST, TTLID, 1); // RST = H
145 }
146 else
147 {
148 setpin(_RST, VOPENID, 0); // remove Vpp
149 setpin(_RST, TTLID, 0); // pull reset low
150
151 setdac(VOPID, 0); // Vpp = 0V
152 setdac(VCCID, 0); // Vcc = 0V
153
154 setpin(_VCC, VCCENID, 0); // disable Vcc(s)
155
156 // Set all pins LOW
157 for(i = 1; i <= 40; ++i)
158 setpin(i, TTLID, 0);
159 }
160 }
161
162 void reset(void)
163 {
164 setpin(_RST, VOPENID, 0); dly1u(); // remove Vpp (if not already done)
165
166 setpin(_RST, TTLID, 0); dly1u(); // pulse RST H->L->H
167 setpin(_RST, TTLID, 1); dly10m();
168 }
169
170 int do_erase(void)
171 {
172 setmode(MODE_ERASE);
173
174 setpin(_RST, VOPENID, 1); dly10u(); // apply Vpp
175
176 setpin(_PROG, TTLID, 0); // pulse PROG low for 10ms
177 dly10m();
178 setpin(_PROG, TTLID, 1);
179
180 dly10u(); setpin(_RST, VOPENID, 0); // remove Vpp
181 return 1;
182 }
183
184 int do_read(void)
185 {
186 int i, val = 0;
187
188 for(i = 0; i < 8; ++i)
189 setpin(_DATA[i], TTLID, 1); // release pin drivers on data pins
190
191 setmode(MODE_READ);
192
193 for(i = 7; i >= 0; --i)
194 val = (val << 1) | getpin(_DATA[i]);
195
196 setmode(MODE_ERASE);
197 return val;
198 }
199
200 void do_load(int val)
201 {
202 int i;
203
204 for(i = 0; i < 8; ++i)
205 {
206 setpin(_DATA[i], TTLID, val & 1);
207 val >>= 1;
208 }
209 }
210
211 void do_increment(int num)
212 {

page 3 MPU5.C

213 do
214 {
215 setpin(_XTAL, TTLID, 1); dly1u();
216 setpin(_XTAL, TTLID, 0);
217 ++addr;
218 } while(--num);
219 }
220
221 int do_prog(void)
222 {
223 long t;
224
225 setpin(_RST, VOPENID, 1); dly20u();
226
227 setpin(_PROG, TTLID, 0); dly1u();
228 setpin(_PROG, TTLID, 1); dly1u();
229
230 t = biostime(0, 0);
231
232 while(biostime(0, 0) - t < 2) // max. 55..110ms
233 {
234 if(getpin(_RDY))
235 break;
236 dly100u();
237 }
238
239 dly20u(); setpin(_RST, VOPENID, 0);
240
241 return getpin(_RDY) ? 1 : 0;
242 }
243
244 int check(void) // BLANK check, return 1 on success
245 {
246 unsigned end = mfr[mfrno].dev[devno].Size;
247
248 reset();
249
250 for(addr = BufStart; addr < end;)
251 {
252 if((addr & 0xFF) == 0) ShowCounter(addr);
253
254 if(do_read() != 0xFF)
255 {
256 ShowCounter(addr);
257 return 0;
258 }
259
260 do_increment(1);
261 }
262 ShowCounter(addr);
263 return 1;
264 }
265
266 int program(void)
267 {
268 unsigned end = mfr[mfrno].dev[devno].Size;
269
270 reset();
271
272 setmode(MODE_WRITE);
273
274 for(addr = BufStart; addr < end;)
275 {
276 if((addr & 0xFF) == 0) ShowCounter(addr);
277
278 do_load(buffer[addr]);
279
280 if(!do_prog())
281 return 0;
282
283 do_increment(1);
284 }

page 4 MPU5.C

285 ShowCounter(addr);
286 return 1;
287 }
288
289 int protect(void)
290 {
291 setmode(MODE_LOCK1);
292 if(!do_prog())
293 return 0;
294
295 setmode(MODE_LOCK2);
296 return do_prog();
297 }
298
299
300 int read_verify(int verify)
301 {
302 unsigned end = mfr[mfrno].dev[devno].Size;
303
304 reset();
305
306 for(addr = BufStart; addr < end;)
307 {
308 if((addr & 0xFF) == 0) ShowCounter(addr);
309
310 if(verify)
311 {
312 if(buffer[addr] != do_read())
313 {
314 ShowCounter(addr);
315 return 0;
316 }
317 }
318 else
319 Chks += (buffer[addr] = do_read() & 0xFF);
320
321 do_increment(1);
322 }
323 ShowCounter(addr);
324 return 1;
325 }
326
327 int flash_check(void)
328 {
329 int done;
330
331 textattr((CYAN << 4) | WHITE);
332 _window(12,40, 23,79);
333
334 textattr((BLUE << 4) | WHITE);
335 locate(12, 45); cprintf(" BLANK CHECK device:");
336
337 for(;;)
338 {
339 textattr((CYAN << 4) | WHITE);
340 locate(13, 41); cprintf("Ready to check (Y/<CR>)? ");
341
342 for(done = 0; !done;)
343 {
344 switch(getch())
345 {
346 case 0:
347 getch();
348 break;
349
350 case '\n':
351 case '\r':
352 case 0x1B:
353 return;
354
355 case 'y':
356 case 'Y':

page 5 MPU5.C

357 done = 1;
358 }
359 }
360
361 clscrn(14,41, 22,78);
362
363 setport(USERBITS, 0, 0);
364
365 textattr(BLINK | (LIGHTGREEN << 4) | WHITE);
366 locate(14, 41); cprintf("Blank checking now... ");
367
368 power(50); done = check(); power(0);
369
370 textattr((CYAN << 4) | WHITE);
371 locate(14, 41); cprintf("Blank checking now... ");
372
373 locate(15, 41);
374 if(done)
375 {
376 ShowCounter(BufEnd);
377 putchar(7);
378 cprintf(" OK !");
379 setport(USERBITS, 0, 8);
380 }
381 else
382 {
383 errbeep();
384 textattr((RED << 4) | WHITE);
385 cprintf("Blank check error at %04lX", addr);
386 textattr((CYAN << 4) | WHITE);
387 }
388 }
389 }
390
391 void flash_program(void)
392 {
393 int done;
394
395 textattr((CYAN << 4) | WHITE);
396 _window(12,40, 23,79);
397
398 textattr((BLUE << 4) | WHITE);
399 locate(12, 45); cprintf(" PROGRAM :");
400
401 for(;;)
402 {
403 textattr((CYAN << 4) | WHITE);
404 locate(13, 41); cprintf("Ready to program (Y/<CR>)? ");
405
406 for(done = 0; !done;)
407 {
408 switch(getch())
409 {
410 case 0:
411 getch();
412 break;
413
414 case '\n':
415 case '\r':
416 case 0x1B:
417 return;
418
419 case 'y':
420 case 'Y':
421 done = 1;
422 }
423 }
424
425 clscrn(14,41, 22,78);
426
427 setport(USERBITS, 0, 0);
428

page 6 MPU5.C

429 textattr(BLINK | (LIGHTGREEN << 4) | WHITE);
430 locate(14, 41); cprintf("Programming now... ");
431
432 power(50); done = program(); power(0);
433
434 textattr((CYAN << 4) | WHITE);
435 locate(14, 41); cprintf("Programming now... ");
436
437 locate(15, 41);
438 if(done)
439 {
440 ShowCounter(BufEnd);
441 putchar(7);
442 setport(USERBITS, 0, 8);
443 cprintf(" OK !");
444 }
445 else
446 {
447 errbeep();
448 textattr((RED << 4) | WHITE);
449 cprintf("Program error ! at %04lX", addr);
450 textattr((CYAN << 4) | WHITE);
451 }
452 }
453 }
454
455 void flash_protect(void)
456 {
457 int done;
458
459 textattr((CYAN << 4) | WHITE);
460 _window(12,40, 23,79);
461
462 textattr((BLUE << 4) | WHITE);
463 locate(12, 42); cprintf(" Program ID & CFG & protect bits: ");
464
465 for(;;)
466 {
467 textattr((CYAN << 4) | WHITE);
468 locate(13, 41); cprintf("Ready to program (Y/<CR>)? ");
469
470 for(done = 0; !done;)
471 {
472 switch(getch())
473 {
474 case 0:
475 getch();
476 break;
477
478 case '\n':
479 case '\r':
480 case 0x1B:
481 return;
482
483 case 'y':
484 case 'Y':
485 done = 1;
486 }
487 }
488
489 clscrn(14,41, 22,78);
490
491 setport(USERBITS, 0, 0);
492
493 textattr(BLINK | (LIGHTGREEN << 4) | WHITE);
494 locate(14, 41); cprintf("Programming now... ");
495
496 power(50); done = protect(); power(0);
497
498 textattr((CYAN << 4) | WHITE);
499 locate(14, 41); cprintf("Programming now... ");
500

page 7 MPU5.C

501 locate(15, 41);
502 if(done)
503 {
504 ShowCounter(BufEnd);
505 putchar(7);
506 setport(USERBITS, 0, 8);
507 cprintf(" OK !");
508 }
509 else
510 {
511 errbeep();
512 textattr((RED << 4) | WHITE);
513 cprintf("Program error ! at %04lX", addr);
514 textattr((CYAN << 4) | WHITE);
515 }
516 }
517 }
518
519 void flash_read(void)
520 {
521 int done;
522
523 textattr((CYAN << 4) | WHITE);
524 _window(12,40, 23,79);
525
526 textattr((BLUE << 4) | WHITE);
527 locate(12, 45); cprintf(" READ to buffer :");
528
529 for(;;)
530 {
531 textattr((CYAN << 4) | WHITE);
532 locate(13, 41); cprintf("Ready to start (Y/Even/Odd/<CR>)? ");
533
534 for(done = 0; !done;)
535 {
536 switch(getch())
537 {
538 case 0:
539 getch();
540 break;
541
542 case '\n':
543 case '\r':
544 case 0x1B:
545 return;
546
547 case 'y':
548 case 'Y':
549 done = 1;
550
551 case 'e':
552 case 'E':
553 case 'o':
554 case 'O':
555 done = 1;
556 }
557 }
558
559 clscrn(14,41, 22,78);
560
561 setport(USERBITS, 0, 0);
562
563 textattr(BLINK | (LIGHTGREEN << 4) | WHITE);
564 locate(14, 41); cprintf("Reading now... ");
565
566 Chks = 0;
567 power(50); read_verify(0); power(0);
568
569 textattr((CYAN << 4) | WHITE);
570 locate(14, 41); cprintf("Reading now... ");
571
572 locate(15, 41);

page 8 MPU5.C

573 putchar(7);
574 cprintf(" OK !");
575
576 textattr((BLUE << 4) | WHITE);
577 locate(4, 41); cprintf(" Check Sum : %04X", Chks);
578 }
579 }
580
581 void flash_verify(void)
582 {
583 int done;
584
585 textattr((CYAN << 4) | WHITE);
586 _window(12,40, 23,79);
587
588 textattr((BLUE << 4) | WHITE);
589 locate(12, 45); cprintf(" VERIFY with buffer :");
590
591 for(;;)
592 {
593 textattr((CYAN << 4) | WHITE);
594 locate(13, 41); cprintf("Ready to verify (Y/Even/Odd/<CR>)? ");
595
596 for(done = 0; !done;)
597 {
598 switch(getch())
599 {
600 case 0:
601 getch();
602 break;
603
604 case '\n':
605 case '\r':
606 case 0x1B:
607 return;
608
609 case 'y':
610 case 'Y':
611 done = 1;
612
613 case 'e':
614 case 'E':
615 case 'o':
616 case 'O':
617 done = 1;
618 }
619 }
620
621 clscrn(14,41, 22,78);
622
623 setport(USERBITS, 0, 0);
624
625 textattr(BLINK | (LIGHTGREEN << 4) | WHITE);
626 locate(14, 41); cprintf("Verifying now @ VDDmin... ");
627
628 power(mfr[mfrno].dev[devno].UBmin);
629 done = read_verify(1);
630 power(0);
631
632 textattr((CYAN << 4) | WHITE);
633 locate(14, 41); cprintf("Verifying now @ VDDmin... ");
634
635 locate(15, 41);
636 if(done)
637 {
638 ShowCounter(BufEnd);
639 putchar(7);
640 cprintf(" OK !");
641 setport(USERBITS, 0, 8);
642 }
643 else
644 {

page 9 MPU5.C

645 errbeep();
646 textattr((RED << 4) | WHITE);
647 cprintf(" VERIFY ERROR ! at %04lX", addr);
648 textattr((CYAN << 4) | WHITE);
649 continue;
650 }
651
652 textattr(BLINK | (LIGHTGREEN << 4) | WHITE);
653 locate(16, 41); cprintf("Verifying now @ VDDmax... ");
654
655 power(mfr[mfrno].dev[devno].UBmax);
656 done = read_verify(1);
657 power(0);
658
659 textattr((CYAN << 4) | WHITE);
660 locate(16, 41); cprintf("Verifying now @ VDDmax... ");
661
662 locate(17, 41);
663 if(done)
664 {
665 ShowCounter(BufEnd);
666 putchar(7);
667 cprintf(" OK !");
668 setport(USERBITS, 0, 8);
669 }
670 else
671 {
672 errbeep();
673 textattr((RED << 4) | WHITE);
674 cprintf(" VERIFY ERROR ! at %04lX", addr);
675 textattr((CYAN << 4) | WHITE);
676 }
677 }
678 }
679
680 void flash_erase(void)
681 {
682 int done;
683
684 textattr((CYAN << 4) | WHITE);
685 _window(12,40, 23,79);
686
687 textattr((BLUE << 4) | WHITE);
688 locate(12, 45); cprintf(" EEPROM Erase:");
689
690 for(;;)
691 {
692 textattr((CYAN << 4) | WHITE);
693 locate(13, 41); cprintf("Ready to erase (Y/<CR>)? ");
694
695 for(done = 0; !done;)
696 {
697 switch(getch())
698 {
699 case 0:
700 getch();
701 break;
702
703 case '\n':
704 case '\r':
705 case 0x1B:
706 return;
707
708 case 'y':
709 case 'Y':
710 done = 1;
711 }
712 }
713
714 clscrn(14,41, 22,78);
715
716 setport(USERBITS, 0, 0);

page 10 MPU5.C

717
718 textattr(BLINK | (LIGHTGREEN << 4) | WHITE);
719 locate(14, 41); cprintf("Erase now... ");
720
721 power(50); done = do_erase(); power(0);
722
723 textattr((CYAN << 4) | WHITE);
724 locate(14, 41); cprintf("Erase now... ");
725
726 locate(15, 41);
727 if(done)
728 {
729 putchar(7);
730 cprintf(" OK !");
731 setport(USERBITS, 0, 8);
732 }
733 else
734 {
735 errbeep();
736 textattr((RED << 4) | WHITE);
737 cprintf(" ERROR ! ");
738 textattr((CYAN << 4) | WHITE);
739
740 locate(21, 41); cprintf("press any key to continue");
741 if(getch() == 0) getch();
742 }
743
744 clscrn(13,41, 22,78);
745 }
746 }
747
748 void flash_auto(void)
749 {
750 int done, l;
751
752 textattr((CYAN << 4) | WHITE);
753 _window(12,40, 23,79);
754
755 textattr((BLUE << 4) | WHITE);
756 locate(12, 45); cprintf(" AUTO :");
757
758 for(;;)
759 {
760 textattr((CYAN << 4) | WHITE);
761 locate(13, 41); cprintf("Ready to start (Y/Even/Odd/<CR>)? ");
762
763 for(done = 0; !done;)
764 {
765 switch(getch())
766 {
767 case 0:
768 getch();
769 break;
770
771 case '\n':
772 case '\r':
773 case 0x1B:
774 return;
775
776 case 'y':
777 case 'Y':
778 done = 1;
779
780 case 'e':
781 case 'E':
782 case 'o':
783 case 'O':
784 done = 1;
785 }
786 }
787
788 clscrn(14,41, 22,78);

page 11 MPU5.C

789
790 setport(USERBITS, 0, 0);
791
792 l = 14;
793
794 // BLANK CHECK
795
796 textattr(BLINK | (LIGHTGREEN << 4) | WHITE);
797 locate(l, 41); cprintf("Blank checking now... ");
798
799 power(50); done = check(); power(0);
800
801 textattr((CYAN << 4) | WHITE);
802 locate(l++, 41); cprintf("Blank checking now... ");
803
804 locate(l++, 41);
805
806 if(done)
807 {
808 ShowCounter(BufEnd);
809 cprintf(" OK !");
810 }
811 else
812 {
813 errbeep();
814 textattr((RED << 4) | WHITE);
815 cprintf("Blank check error at %04lX", addr);
816 textattr((CYAN << 4) | WHITE);
817
818 // ERASE
819
820 l -= 2;
821
822 clscrn(l, 41, l+1, 78);
823
824 textattr(BLINK | (LIGHTGREEN << 4) | WHITE);
825 locate(l, 41); cprintf("Erase now... ");
826
827 power(50); done = do_erase(); power(0);
828
829 textattr((CYAN << 4) | WHITE);
830 locate(l++, 41); cprintf("Erase now... ");
831
832 locate(l++, 41);
833
834 if(done)
835 cprintf(" OK !");
836 else
837 {
838 errbeep();
839 textattr((RED << 4) | WHITE);
840 cprintf(" ERROR");
841 textattr((CYAN << 4) | WHITE);
842
843 continue;
844 }
845 }
846
847 // PROGRAM
848
849 textattr(BLINK | (LIGHTGREEN << 4) | WHITE);
850 locate(l, 41); cprintf("Programming now... ");
851
852 power(50); done = program(); power(0);
853
854 textattr((CYAN << 4) | WHITE);
855 locate(l++, 41); cprintf("Programming now... ");
856
857 locate(l++, 41);
858 if(done)
859 {
860 ShowCounter(BufEnd);

page 12 MPU5.C

861 cprintf(" OK !");
862 }
863 else
864 {
865 errbeep();
866 textattr((RED << 4) | WHITE);
867 cprintf("Program error ! at %04lX", addr);
868 textattr((CYAN << 4) | WHITE);
869
870 continue;
871 }
872
873 // VERIFY
874
875 textattr(BLINK | (LIGHTGREEN << 4) | WHITE);
876 locate(l, 41); cprintf("VDD max verifying now...");
877
878 power(mfr[mfrno].dev[devno].UBmax);
879 done = read_verify(1);
880 power(0);
881
882 textattr((CYAN << 4) | WHITE);
883 locate(l++, 41); cprintf("VDD max verifying now...");
884
885 locate(l++, 41);
886 if(done)
887 {
888 ShowCounter(BufEnd);
889 putchar(7);
890 cprintf(" OK !");
891 setport(USERBITS, 0, 8);
892 }
893 else
894 {
895 errbeep();
896 textattr((RED << 4) | WHITE);
897 cprintf(" VERIFY ERROR ! at %04lX", addr);
898 textattr((CYAN << 4) | WHITE);
899 continue;
900 }
901
902 textattr(BLINK | (LIGHTGREEN << 4) | WHITE);
903 locate(l, 41); cprintf("VDD min verifying now...");
904
905 power(mfr[mfrno].dev[devno].UBmin);
906 done = read_verify(1);
907 power(0);
908
909 textattr((CYAN << 4) | WHITE);
910 locate(l++, 41); cprintf("VDD min verifying now...");
911
912 locate(l, 41);
913 if(done)
914 {
915 ShowCounter(BufEnd);
916 cprintf(" OK !");
917 setport(USERBITS, 0, 8);
918 putchar(7);
919 }
920 else
921 {
922 textattr((RED << 4) | WHITE);
923 cprintf(" VERIFY ERROR ! at %04lX", addr);
924 textattr((CYAN << 4) | WHITE);
925 errbeep();
926 }
927 }
928 }
929
930 #if(0)
931 void edit_config(void)
932 {

page 13 MPU5.C

933 static char *osctype[4] = { "LP","XT","HS","RC" };
934 int i, done;
935
936 textattr((CYAN << 4) | WHITE);
937 _window(1,0, 10,39);
938 _window(11,1, 24,78);
939
940 locate(2, 1); cprintf("CODE Protection:");
941 locate(3, 1); cprintf("DATA Protection:");
942
943 locate(16, 4); cprintf("K : CODE protection toggle");
944 locate(16,43); cprintf("L : DATA protection toggle");
945
946 locate(23, 4); cprintf("Select options or <CR><ESC> to go back to the main

menu ?");
947
948 textattr((BLUE << 4) | WHITE);
949 locate(1, 5); cprintf(" Configuration Bit Setting :");
950 locate(11,28); cprintf(" Configuration Options :");
951
952 for(;;)
953 {
954 textattr((BLUE << 4) | WHITE);
955
956 for(done = 0; !done;)
957 {
958 done = 1;
959
960 switch(toupper(getch()))
961 {
962 case 0: getch(); done = 0; break;
963
964 case '\n':
965 case '\r':
966 case 0x1B: return;
967
968 case 'K' : // CODE protection toggle
969 cfg = (cfg & ~0x3030) | (((cfg&0x3030) + 0x1010) & 0x3030);

break;
970
971 case 'L' : // DATA protection toggle
972 cfg ^= 0x100; break;
973
974 default: done = 0;
975 }
976 }
977 }
978 }
979 #endif
980
981 void type_select(void)
982 {
983 int done, i, num, len=15, left = 40;
984 char no[10];
985
986 if((num = mfr[mfrno].numdevs) > 14)
987 {
988 left = 0;
989 for(i = len = 0; i < num; ++i)
990 if((done = strlen(mfr[mfrno].dev[i].name)) > len)
991 len = done;
992 }
993
994 textattr((CYAN << 4) | WHITE);
995 _window(12,left, 23,79);
996
997 textattr((BLUE << 4) | WHITE);
998 locate(12, left+5); cprintf(" TYPE SELECT:");
999

1000 textattr((CYAN << 4) | WHITE);
1001
1002 for(i = 0; i < num; ++i)

page 14 MPU5.C

1003 {
1004 locate(13+(i%7), left + 1 + (i/7)*(len+4));
1005 cprintf("%d.%s", i, mfr[mfrno].dev[i].name);
1006 }
1007
1008 locate(21, left+1); cprintf("<CR> back to main menu.");
1009 locate(22, left+1); cprintf("SELECT NUMBER ?");
1010
1011 for(;;)
1012 {
1013 for(no[0] = done = 0; !done;)
1014 {
1015 locate(22, left+16); cprintf("%s ", no);
1016 locate(22, left+16+strlen(no));
1017
1018 switch(i = getch())
1019 {
1020 case 0:
1021 getch();
1022 break;
1023
1024 case 8:
1025 if((i = strlen(no)) != 0)
1026 no[i-1] = 0;
1027 break;
1028
1029 case '\n':
1030 case '\r':
1031 if(strlen(no) &&
1032 (i = atoi(no)) >= 0 && i < mfr[mfrno].numdevs)
1033 {
1034 devno = i;
1035 ShowType();
1036 return;
1037 }
1038 break;
1039
1040 case 0x1B:
1041 return;
1042
1043 default:
1044 if(isdigit(i))
1045 strcat(no, (char*)&i);
1046 break;
1047 }
1048 }
1049 }
1050 }
1051
1052 void mfr_select(void)
1053 {
1054 int done, i;
1055 char no[10];
1056
1057 textattr((CYAN << 4) | WHITE);
1058 _window(12,40, 23,79);
1059
1060 textattr((BLUE << 4) | WHITE);
1061 locate(12, 45); cprintf(" MFR SELECT:");
1062
1063 textattr((CYAN << 4) | WHITE);
1064
1065 for(i = 0; i < sizeof(mfr) / sizeof(mfr[0]); ++i)
1066 {
1067 locate(13+i, 41); cprintf("%d.%s", i, mfr[i].name);
1068 }
1069
1070 locate(21, 41); cprintf("<CR> back to main menu.");
1071 locate(22, 41); cprintf("SELECT NUMBER ?");
1072
1073 for(;;)
1074 {

page 15 MPU5.C

1075 for(no[0] = done = 0; !done;)
1076 {
1077 locate(22, 56); cprintf("%s ", no);
1078 locate(22, 56+strlen(no));
1079
1080 switch(i = getch())
1081 {
1082 case 0:
1083 getch();
1084 break;
1085
1086 case 8:
1087 if((i = strlen(no)) != 0)
1088 no[i-1] = 0;
1089 break;
1090
1091 case '\n':
1092 case '\r':
1093 if(strlen(no) &&
1094 (i = atoi(no)) >= 0 && i < sizeof(mfr) / sizeof(mfr[0]))
1095 {
1096 mfrno = i;
1097 if(devno >= mfr[mfrno].numdevs)
1098 devno = 0;
1099 ShowType();
1100 return;
1101 }
1102 break;
1103
1104 case 0x1B:
1105 return;
1106
1107 default:
1108 if(isdigit(i))
1109 strcat(no, (char*)&i);
1110 break;
1111 }
1112 }
1113 }
1114 }
1115
1116 /*===*/
1117 int main(void)
1118 {
1119 int ch = 0, redraw, first = 1;
1120 long tmpval;
1121
1122 /*---*/
1123 /* main program starts here */
1124 /*---*/
1125
1126 getcwd(oldpath, 260);
1127 strcpy(path, oldpath);
1128
1129 if((buffer = farmalloc(BUFSIZE)) == NULL)
1130 return -1;
1131
1132 memset((void far *)buffer, 0, BUFSIZE);
1133
1134 ReadConfig();
1135 delay(0);
1136
1137 for(;;)
1138 {
1139 if(first)
1140 {
1141 first = 0;
1142
1143 init_hw();
1144 initdacs();
1145 setport(USERBITS, 0, 0);
1146 }

page 16 MPU5.C

1147
1148 textattr((LIGHTGRAY << 4) | YELLOW); clscrn(0,0, 24,79);
1149
1150 locate(0,0); cprintf("Universal Programmer");
1151 locate(1,0); cprintf("MODEL: PC Based");
1152 locate(2,0); cprintf("MPU 89Cx051 section " _VERSION_);
1153
1154 textattr((BLUE << 4) + WHITE); clscrn(0,40, 6,79);
1155
1156 ShowType();
1157
1158 textattr((BLUE << 4) + WHITE); _window(1,40, 6,79);
1159 locate(1,53); cprintf(" TARGET ZONE ");
1160 locate(2,41); cprintf("Buffer start addr.: %04lX", BufStart);
1161 locate(3,41); cprintf(" end addr.: %04lX", BufEnd);
1162 locate(4,41); cprintf(" Check Sum : %04X", Chks);
1163 locate(5,41); cprintf("Device start addr.: %04lX", DevStart);
1164
1165 _window(3,69, 6,79);
1166 locate(4,71); cprintf("COUNTER");
1167 ShowCounter(0);
1168
1169 textattr((CYAN << 4) | WHITE); clscrn(3,0, 23,38);
1170
1171 locate(3,0); cprintf("------------- Main Menu -------------");
1172 locate(4,0); cprintf("1. DOS SHELL ");
1173 locate(5,0); cprintf("2. Load BIN or HEX file to buffer ");
1174 locate(6,0); cprintf("3. Save buffer to disk ");
1175 locate(7,0); cprintf("4. Edit buffer 7. Display buffer ");
1176 locate(8,0); cprintf("5. Change I/O base address ");
1177 locate(9,0); cprintf("6. Display loaded file history ");
1178 locate(10,0); cprintf("W. Swap hi-low bytes in buffer ");
1179 locate(11,0); cprintf("T. Type select Z. Target zone ");
1180 locate(12,0); cprintf("B. Blank check D. Display ");
1181 if((ch = mfr[mfrno].dev[devno].DataSize) != 0) {
1182 locate(13,0); cprintf("P. Program (Program Mem & Data Mem) ");
1183 locate(14,0); cprintf("A. Auto(B&S&P&V&L) ");
1184 locate(15,0); cprintf("S. Erase Program & Data memory ");
1185 } else {
1186 locate(13,0); cprintf(" ");
1187 locate(14,0); cprintf("P. Program A. Auto(B&S&P&V&L) ");
1188 locate(15,0); cprintf("S. Erase Program memory ");
1189 }
1190 locate(16,0); cprintf("R. Read V. Verify ");
1191 locate(17,0); cprintf("C. Compare and display error ");
1192 locate(18,0); cprintf("E. Configuration & ID code function ");
1193 locate(19,0); cprintf("L. Program ID & config. & protect bits ");
1194 locate(20,0); cprintf("Q. Quit ");
1195 locate(21,0); cprintf("---------------------------------------");
1196 locate(22,0); cprintf("Allocation Buffer size : %uK bytes", BUFSIZE/1024);
1197 if((ch = mfr[mfrno].dev[devno].DataSize) != 0) {
1198 locate(23,0); cprintf("Data memory buffer at 4200 ~ %04X", 0x4200 + ch - 1

);
1199 }
1200
1201 for(redraw = 0; !redraw;)
1202 {
1203 textattr((BLUE << 4) + WHITE); clscrn(24,0, 24,38);
1204
1205 locate(24,0); cprintf("Select function ? ");
1206
1207 for(;;)
1208 {
1209 if((ch = getch()) != 0)
1210 break;
1211 getch(); /* neglect extended code */
1212 }
1213
1214 switch(ch = toupper(ch))
1215 {
1216 case '1': dos_shell(""); redraw = 1; break;
1217 case '2': tmpval = bufsize; bufsize = 0x8000;

page 17 MPU5.C

1218 memset((void far *)buffer, 0, BUFSIZE);
1219 load_file();
1220 bufsize= tmpval;
1221 redraw = 1; break;
1222 case '3': save_file(); break;
1223 case '4': tmpval = bufsize; bufsize = 0x8000;
1224 edit_buffer();
1225 bufsize= tmpval;
1226 redraw = 1; break;
1227 case '5': set_io_adr(); first = redraw = 1; break;
1228 case '7': disp_buffer(); redraw = 1; break;
1229
1230 case 'M': mfr_select(); redraw = first = 1; break;
1231 case 'T': type_select(); redraw = first = 1; break;
1232 // case 'E': edit_config(); redraw = 1; break;
1233
1234 case 'R': flash_read(); break;
1235 case 'B': flash_check(); break;
1236 case 'S': flash_erase(); break;
1237 case 'P': flash_program(); break;
1238 case 'V': flash_verify(); break;
1239 case 'L': flash_protect(); break;
1240 case 'A': flash_auto(); break;
1241
1242 // case '\n':
1243 // case '\r': redraw = 1; break; // refresh
1244 }
1245
1246 setport(USERBITS, 0, 0);
1247
1248 if(ch == 'Q')
1249 {
1250 WriteConfig();
1251 textattr(LIGHTGRAY); clrscr();
1252 chdir(oldpath);
1253 if(buffer) farfree((void far *)buffer);
1254 return(0);
1255 }
1256
1257 textattr((LIGHTGRAY << 4) | YELLOW); clscrn(11,40, 23,79);
1258 }
1259 }
1260 }
1261

page 18 MPU5.C

