1 #include "all03.h"
2
3 #include <bios.h>
4
5 #define VERSION "1.00"
6
7 #define MODE WRITE 0x0E // Bit 0 - 3 : P3.3 - P3.7
8 #define MODE READ 0x0C
9 #define MODE LOCK1 0x0F
10 #define MODE LOCK2 0x03
11 #define MODE ERASE 0x01
12 #define MODE SIGNAT 0x00
13
14 unsigned char RST, RDY, PROG, XTAL;
15 unsigned char VCC, GND, MODE[4], DATA[S];
16
17 struct DEV {
18 char name[20];
19 unsigned Size, DataSize; // ROM & EEPROM sizes in bytes
20 char rst,rdy,prog,xtal; // Pin numbers for RESET,RDY/BUSY,PROG and XTAL
21 char vcc, gnd, mode[4]; // Pin numbers for VCC, GND and MODEO..3
22 char datal[8]; // Pin numbers for datal..7
23 unsigned char UBmin, UBmax; // min. and max. Vcc value
24 };
25
26 struct DEV ATMEL devs[] = {
27 // TYPE ROMSIZE EESIZE rst rdy prg xtl vcc gnd md0 mdl md2 md3 do
dl d2 d3 d4 d5 d6 d7 Umin Umax
28 /* 0*/ { "AT89C1051", O0x0400, Ox00OO, 11, 13, 16, 15, 30, 20, 17, 18, 19, 21,
22,23,24,25,26,27,28,29, 30, 60 1},
29 /* 1%/ { "AT89C2051", 0x0800, Ox0O0OO, 11, 13, 16, 15, 30, 20, 17, 18, 19, 21,
22,23,24,25,26,27,28,29, 30, 60 },
30 /* 2*/ { "AT89C4051", O0x1000, Ox0OOO, 11, 13, 16, 15, 30, 20, 17, 18, 19, 21,
22,23,24,25,26,27,28,29, 30, 60 }
31 };
32
33 struct {
34 char name[20];
35 int numdevs;
36 struct DEV *dev;
37 } mfr[] = {
38 { "ATMEL", sizeof (ATMEL devs)/sizeof(struct DEV), ATMEL devs }
39 };
40
41 int mfrno = 0, devno = 0;
42
43 #define BUFSIZE 0x8000U
44
45 long addr;
46 long DevStart= 0x0000;
47 long Counter = 0x0000;
48
49 void ShowCounter(long val)
50 {
51 struct text info ti;
52
53 gettextinfo(&ti);
54
55 textattr((BLUE << 4) + WHITE);
56 locate(5, 732); cprintf("2041X", val);
57
58 textattr(ti.attribute);
59 gotoxy(ti.curx, ti.cury);
60 }
61
62 void ShowType(void)
63 {
64 if(mfrno < 0 || mfrno > sizeof (mfr) / sizeof (mfr[0]))
65 mfrno = 07
66 if(devno < 0 || devno >= mfr[mfrno].numdevs)
67 devno = 0;
68
page 1 MPUS.C

69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140

bufsize = mfr[mfrno].dev[devno].Size;

BufEnd = bufsize - 1;
textattr((BLUE << 4) |

locate
locate

(0
(0,60
locate(3,41); cprintf("

textattr((CYAN << 4) |
}

void setmode(int md)

{
setpin(MODE[0], TTLID, (md
setpin(MODE[1], TTLID, (md
setpin(MODE[2], TTLID, (md
setpin(MODE[2], TTLID, (md

}

void power(int voltage)

{

int i;

~RST = mfr[mfrno]
_RDY = mfr[mfrno]
_PROG= mfr[mfrno]
_XTAL= mfr[mfrno]

_VCC = mfr[mfrno]
__GND mfr[mfrno]

for(i =0; i< 4;

.dev[devno]
.dev[devno]
.dev[devno]
.dev[devno]

.dev[devno]
.dev[devno]

++i)

WHITE) ;

,40)7 cprintf("FMfr.: %s",
); cprintf("*TYPE: %s',

WHITE) ;

8
%)

R
LIVIREEV IR IV
;

.rst;
.rdy;
.prog;
.xtal;

.vee;
.gnd;

~MODE[i] = mfr[mfrno].dev[devno]

for(i =0; i < 8;

++i)

~_DATA[i] = mfr[mfrno].dev[devno]

// we dont need VH

setdac(VHHID, 0);

for(i = 0; i <=
setport (VHHENCID,
setport (VHHENCID,

H

r

LJ\/O);
0);

4

mfr [mfrno] .name) ;
mfr[mfrno] .dev[devno] .name) ;
addr. :

2041%", BufEnd);

o N

O O O O
~e.

~
~

~e.

.mode[i];

.datal[i]l;

// VHH = 0V

4; ++i) setport(VHHENID, i, 0); // no VHH

// no VHHC
// no VHHC

// Can't use Pins 2,3,4,6 and 8 for neither Vop nor Vhh

if(RS

==

{
errbeep () ;
textattr((RE
locate(41, 23

I
(RST > 32 && RST !=

RST == 3

D << 4) |

Il RS
36))

WHITE) ;

Il RST == ¢ || RST == 3 ||

); cprintf("Connect pin 1 to %d", RST);

textattr((CYAN << 4)

_RST = 1;
}

setport(OTHERENID, O, 0O);

if(voltage)
{

// Set all pins HIGH

for(i = 1;
setpin(i,

i <= 40;

TTLID,

WHITE)

r

// force using Pin 1

// Pin 20 = GND

++i)
) .

r

// Set RST and XTAL pin LOW

setpin(RST,
setpin(XTAL,

// Set MODE

setmode (MODE

TTLID, 0)
TTLID, 0

ERASE) ;

)

setdac(VCCID, voltage);

setpin(VCC,

VCCENID, 1

r

)

// CHIP ERASE preset

// Vcc = xV
// set Vcc pin

page 2

MPUS5.C

141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161l
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212

}

setdac(VOPID, 120);

delay(500);
setpin(RST, TTLID, 1);
}
else
{
setpin(RST, VOPENID, 0);
setpin(RST, TTLID, 0);
setdac(VOPID, 0);
setdac(VCCID, 0);
setpin(VCC, VCCENID, 0);
// Set all pins LOW
for(i = 1; i <= 40; ++i)
setpin(i, TTLID, O);
}

void reset(void)

{

int

int

{

}

//
//

//

Vpp = 12V
wait to stabilize

RST = H

remove Vpp
pull reset low

Vpp = 0V
Vce = 0V
disable Vcc(s)

setpin(RST, VOPENID, O); dlylu(); // remove Vpp (if not already done)

setpin(RST, TTLID, O); dlylu(); // pulse RST H->L->H

setpin(RST, TTLID, 1); dlylOm();

do_erase(void)

setmode (MODE ERASE) ;

setpin(RST, VOPENID, 1); dlylOu(); // apply Vpp

setpin(PROG, TTLID, O); // pulse PROG low for 10ms

dlyl0m() ;
setpin(PROG, TTLID, 1);

dlylOu(); setpin(RST, VOPENID, 0); // remove Vpp

return |;

do read(void)
int i, val = 0;

for(i = 0; i < 8; ++i)

setpin(DATA[i], TTLID, 1); // release pin drivers on data pins

setmode (MODE READ) ;

for(i =7; i >= 0; =--1i)
val = (val << 1) | getpin(DATA[i]);

setmode (MODE ERASE) ;
return val;

void do load(int wval)

{

}

int i;

for(i = 0; i < 8; ++i)

{
setpin(DATA[i], TTLID, val & 1);
val >>= 1;

void do_ increment(int num)

{

page 3

MPUS.C

213 do

214 {

215 setpin(XTAL, TTLID, 1); dlylu();
216 setpin(XTAL, TTLID, O);

217 ++addr;

218 } while(--num);

219 }

220

221 int do _prog(void)

222 {

223 long t;

224

225 setpin(RST, VOPENID, 1); dly20u();
226

227 setpin(PROG, TTLID, O); dlylu();
228 setpin(PROG, TTLID, 1); dlylu();
229

230 t = biostime(0, 0);

231

232 while(biostime(0, 0) - t < 2) // max. 55..110ms
233 {

234 if (getpin(RDY))

235 break;

236 dlyl00u() ;

237 }

238

239 dly20u(); setpin(RST, VOPENID, 0);
240

241 return getpin(RDY) ? 1 : 0O;

242 }

243

244 int check(void) // BLANK check, return 1 on success
245 {

246 unsigned end = mfr[mfrno].dev[devno].Size;
247

248 reset () ;

249

250 for(addr = BufStart; addr < end;)
251 {

252 if((addr & OxFF) == 0) ShowCounter(addr);
253

254 if (do _read() '= OxFE)

255 {

256 ShowCounter (addr);

257 return 0;

258 }

259

260 do_increment(1);

261 }

262 ShowCounter (addr);

263 return |;

264 }

265

266 int program(void)

267 {

268 unsigned end = mfr[mfrno].dev[devno].Size;
269

270 reset () ;

271

272 setmode (MODE WRITE) ;

273

274 for(addr = BufStart; addr < end;)
275 {

276 if((addr & OxFF) == 0) ShowCounter(addr);
277

278 do load(buffer[addr]);

279

280 if('do prog())

281 return O;

282

283 do_increment(1);

284 }

page 4 MPUS.C

285 ShowCounter (addr);

286 return |;

287 }

288

289 int protect(void)

290 {

291 setmode (MODE LOCK1) ;

292 if('do prog())

293 return O;

294

295 setmode (MODE LOCK2) ;

296 return do prog();

297 }

298

299

300 int read verify(int verify)

301 {

302 unsigned end = mfr[mfrno].dev[devno].Size;
303

304 reset () ;

305

306 for(addr = BufStart; addr < end;)
307 {

308 if((addr & OxFF) == 0) ShowCounter(addr);
309

310 if(verify)

311 {

312 if (buffer[addr] !'= do read())
313 {

314 ShowCounter (addr);
315 return O;

316 }

317 }

318 else

319 Chks += (buffer[addr] = do read() & OxFF);
320

321 do_increment(1);

322 }

323 ShowCounter (addr);

324 return |;

325 }

326

327 int flash check(void)

328 {

329 int done;

330

331 textattr((CYAN << 4) | WHITE);
332 ~window(12,40, 23,79);

333

334 textattr((BLUE << 4) | WHITE);
335 locate(12, 45); cprintf(" BLANK CHECK device:");
336

337 for(;;)

338 {

339 textattr((CYAN << 4) | WHITE);
340 locate(13, 41); cprintf("Ready to check (Y/<CR>)? ");
341

342 for(done = 0; 'done;)

343 {

344 switch(getch())

345 {

346 case 0:

347 getch();

348 break;

349

350 case '\n':

351 case '\r':

352 case (Ux1B:

353 return;

354

355 case 'y':

356 case 'Y':

page 5 MPUS.C

357 done = 1;

358 }

359 }

360

361 clscrn(14,41, 22,78);

362

363 setport(USERBITS, 0, 0);

364

365 textattr(BLINK | (LIGHTGREEN << 4) | WHITE);
366 locate(14, 41); cprintf("Blank checking now... ");
367

368 power (50); done = check(); power(0);
369

370 textattr((CYAN << 4) | WHITE);
371 locate(14, 41); cprintf("Blank checking now... ");
372

373 locate(15, 41);

374 if(done)

375 {

376 ShowCounter (BufEnd) ;

377 putchar(7);

378 cprintf(" OK ");

379 setport(USERBITS, 0, 8);

380 }

381 else

382 {

383 errbeep () ;

384 textattr((RED << 4) | WHITE);
385 cprintf("Blank check error at %041X", addr);
386 textattr((CYAN << 4) | WHITE);
387 }

388 }

389 }

390

391 void flash program(void)

392 {

393 int done;

394

395 textattr((CYAN << 4) | WHITE);

396 ~window(12,40, 23,79);

397

398 textattr((BLUE << 4) | WHITE);

399 locate(12, 45); cprintf(" PROGRAM :");
400

401 for(;;)

402 {

403 textattr((CYAN << 4) | WHITE);
404 locate(13, 41); cprintf("Ready to program (Y/<CR>)? ");
405

406 for(done = 0; 'done;)

407 {

408 switch(getch())

409 {

410 case 0:

411 getch();

412 break;

413

414 case '\n':

415 case '\r':

416 case (0x1B:

417 return;

418

419 case 'y':

420 case 'Y':

421 done = 1;

422 }

423 }

424

425 clscrn(14,41, 22,78);

426

427 setport(USERBITS, 0, 0);

428

page 6 MPUS.C

429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500

textattr(BLINK |
locate(14, 41);

(LIGHTGREEN << 4) | WHITE);

cprintf("Programming now. ..

"

power (50); done = program(); power (0);

textattr((CYAN << 4) | WHITE);

locate(14,

locate(15, 41);

if(done)

{
ShowCounter (BufEnd) ;
putchar(7);

) .

!

r

WHITE) ;
at %041x",
WHITE) ;

41); cprintf("Programming now... "

addr) ;

setport(USERBITS, 0, 8
cprintf(" OK ");
}
else
{
errbeep () ;
textattr((RED << 4)
cprintf("Program error
textattr((CYAN << 4)
}

}

void flash protect(void)
{

int done;

textattr((CYAN << 4
_window(12,40, 23,79

textattr((BLUE << 4
locate(12,

for(;;)
{

) | WHITE);
)

) | WHITE);

textattr((CYAN << 4) | WHITE);

locate(13, 41);

for(done = 0;

{

cprintf("Ready to program

'done;)

switch(getch())

{

case 0:
getch();
break;

case '\n':

case '\r':

case 0Ux1B:
return;

case 'y':
case 'Y':
done = 1;
}
clscrn(14,41, 22,

setport (USERBITS,

textattr(BLINK |
locate(14, 41);

78°);

0, 0

(Y/<CR>) ?

(LIGHTGREEN << 4) | WHITE);

cprintf("Programming now. ..

power (50); done = protect(); power(0);

textattr((CYAN << 4) | WHITE);

locate(14, 41);

cprintf("Programming now. ..

"

)

)

42); cprintf(" Program ID & CFG & protect bits:

"

"

)

)

page 7

MPUS.C

501 locate(15, 41);

502 if(done)

503 {

504 ShowCounter (BufEnd) ;

505 putchar(7);

506 setport(USERBITS, 0, 8);

507 cprintf(" OK ");

508 }

509 else

510 {

511 errbeep () ;

512 textattr((RED << 4) | WHITE);
513 cprintf("Program error ! at %$041X", addr);
514 textattr((CYAN << 4) | WHITE);
515 }

516 }

517 '}

518

519 void flash read(void)

520 {

521 int done;

522

523 textattr((CYAN << 4) | WHITE);

524 ~window(12,40, 23,79);

525

526 textattr((BLUE << 4) | WHITE);

527 locate(12, 45); cprintf(" READ to buffer :");
528

529 for(;;)

530 {

531 textattr((CYAN << 4) | WHITE);
532 locate(13, 41); cprintf("Ready to start (Y/Even/Odd/<CR>)? ");
533

534 for(done = 0; 'done;)

535 {

536 switch(getch())

537 {

538 case 0:

539 getch();

540 break;

541

542 case '\n':

543 case '\r':

544 case 0x1B:

545 return;

546

547 case 'y':

548 case 'Y':

549 done = 1;

550

551 case 'e':

552 case 'E':

553 case 'o':

554 case 'O':

555 done = 1;

556 }

557 }

558

559 clscrn(14,41, 22,78);

560

561 setport(USERBITS, 0, 0);

562

563 textattr(BLINK | (LIGHTGREEN << 4) | WHITE);
564 locate(14, 41); cprintf("Reading now... ");
565

566 Chks = 0;

567 power (50); read verify(0); power(0);
568

569 textattr((CYAN << 4) | WHITE);
570 locate(14, 41); cprintf("Reading now... ");
571

572 locate(15, 41);

page 8 MPU5.C

573 putchar(7);

574 cprintf(" OK ");

575

576 textattr((BLUE << 4) | WHITE);
577 locate(4, 41); cprintf(" Check Sum : %04X", Chks);
578 }

579 }

580

581 void flash verify(void)

582 {

583 int done;

584

585 textattr((CYAN << 4) | WHITE);

586 ~window(12,40, 23,79);

587

588 textattr((BLUE << 4) | WHITE);

589 locate(12, 45); cprintf(" VERIFY with buffer :");
590

591 for(;;)

592 {

593 textattr((CYAN << 4) | WHITE);
594 locate(13, 41); cprintf("Ready to verify (Y/Even/Odd/<CR>)? ");
595

596 for(done = 0; 'done;)

597 {

598 switch(getch())

599 {

600 case 0:

601 getch();

602 break;

603

604 case '\n':

605 case '\r':

606 case (x1B:

607 return;

608

609 case 'y':

610 case 'Y':

611 done = 1;

612

613 case 'e':

614 case 'E':

615 case 'o':

616 case 'O':

617 done = 1;

618 }

619 }

620

621 clscrn(14,41, 22,78);

622

623 setport(USERBITS, 0, 0);

624

625 textattr(BLINK | (LIGHTGREEN << 4) | WHITE);
626 locate(14, 41); cprintf("Verifying now @ VDDmin... ");
627

628 power (mfr [mfrno] .dev[devno] .UBmin) ;
629 done = read verify(l);

630 power (0) ;

631

632 textattr((CYAN << 4) | WHITE);
633 locate(14, 41); cprintf("Verifying now @ VDDmin... ");
634

635 locate(15, 41);

636 if(done)

637 {

638 ShowCounter (BufEnd) ;

639 putchar(7);

640 cprintf(" OK ");

641 setport(USERBITS, 0, 8);

642 }

643 else

644 {

page 9 MPUS.C

645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716

errbeep () ;
textattr((RED << 4) | WHITE);

cprintf(" VERIFY ERROR ! at %041X", addr);

textattr((CYAN << 4) | WHITE);
continue;

}

textattr(BLINK | (LIGHTGREEN << 4) | WHITE);

locate(16, 41); cprintf("Verifying now @ VDDmax...

power (mfr [mfrno] .dev[devno] .UBmax) ;
done = read verify(l);
power (0) ;

textattr((CYAN << 4) | WHITE);

locate(16, 41); cprintf("Verifying now @ VDDmax...

locate(17, 41);

if(done)

{
ShowCounter (BufEnd) ;
putchar(7);
cprintf(" OK ");
setport(USERBITS, 0, 8);

}
else
{
errbeep () ;
textattr((RED << 4) | WHITE);
cprintf(" VERIFY ERROR ! at %041X", addr);
textattr((CYAN << 4) | WHITE);
}

}

void flash erase(void)

{

int done;

textattr((CYAN << 4) | WHITE);
~window(12,40, 23,79);

textattr((BLUE << 4) | WHITE);
locate(12, 45); cprintf("

for(;;)
{
textattr((CYAN << 4) | WHITE);
locate(13, 41); cprintf("Ready to erase

for(done = 0; !done;)
{
switch(getch())
{
case 0:
getch();
break;

case '\n':

case '\r':

case 0Ux1B:
return;

case 'y':
case 'Y':
done = 1;
}

clscrn(14,41, 22,78);

setport(USERBITS, 0, 0);

EEPROM Erase:");

(Y/<CR>) ?

"

"

"

)

page 10

MPUS.C

717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
7777
778
779
780
781
782
783
784
785
786
787
788

textattr(BLINK |
locate(14, 41);

power (50) ; done =

textattr((CYAN << 4) |
cprintf("Erase now...

locate(14, 41);
locate(15, 41);
if(done)
{
putchar(7);
cprintf(" OK

(LIGHTGREEN << 4) |

cprintf("Erase now...

do_erase(); power (0);

WHITE) ;

!H),.

setport(USERBITS, 0, 8);

}

else

{
errbeep () ;
textattr((RED << 4) | WHITE);
cprintf(" ERROR ! ");
textattr((CYAN << 4) | WHITE);
locate(21, 41);
if(getch() == 0) getch();

}

clscrn(13,41, 22,78);

}
void flash auto(void)
{

int done, 1;

textattr((CYAN << 4

) | WHITE);

_window(12,40, 23,79);
textattr((BLUE << 4) | WHITE);
locate(12, 45); cprintf(" AUTO :"),
for(;;)
{

textattr((CYAN << 4) | WHITE);

locate(13, 41);
for(done = 0;
{
switch (
{
case 0:
getch();
break;

case '\n':

case '\r':

case 0Ux1B:
return;

case 'y':
case 'Y':
done 1;

case 'e':
case 'E':
case 'o':
case '0O':
done 1;

WHITE) ;

"

cprintf("Ready to start

'done;)

getch())

)

cprintf("press any key to continue");

(Y/Even/0dd/<CR>) ?

"

)

page 11

MPUS.C

789

790 setport(USERBITS, 0, 0);

791

792 1 = 14;

793

794 // BLANK CHECK

795

796 textattr(BLINK | (LIGHTGREEN << 4) | WHITE);
797 locate(1, 41); cprintf("Blank checking now... ");
798

799 power (50); done = check(); power(0);

800

801 textattr((CYAN << 4) | WHITE);

802 locate(14+, 41); cprintf("Blank checking now... ");
803

804 locate(1++, 41);

805

806 if(done)

807 {

808 ShowCounter (BufEnd) ;

809 cprintf(" OK !);

810 }

811 else

812 {

813 errbeep () ;

814 textattr((RED << 4) | WHITE);

815 cprintf("Blank check error at %041X", addr);
816 textattr((CYAN << 4) | WHITE);

817

818 // ERASE

819

820 1 -=2;

821

822 clscrn(1, 41, 1+1, 78);

823

824 textattr(BLINK | (LIGHTGREEN << 4) | WHITE);
825 locate(1, 41); cprintf("Erase now... ");
826

827 power (50); done = do_erase(); power (0);

828

829 textattr((CYAN << 4) | WHITE);

830 locate(14+, 41); cprintf("Erase now... ");
831

832 locate(1++, 41);

833

834 if(done)

835 cprintf(" OK ");

836 else

837 {

838 errbeep () ;

839 textattr((RED << 4) | WHITE);

840 cprintf(" ERROR");

841 textattr((CYAN << 4) | WHITE);

842

843 continue;

844 }

845 }

846

847 // PROGRAM

848

849 textattr(BLINK | (LIGHTGREEN << 4) | WHITE);
850 locate(1, 41); cprintf("Programming now... ");
851

852 power (50); done = program(); power (0);

853

854 textattr((CYAN << 4) | WHITE);

855 locate(1++, 41); cprintf("Programming now... ");
856

857 locate(1++, 41);

858 if(done)

859 {

860 ShowCounter (BufEnd) ;

page 12 MPU5.C

861 cprintf(" OK ");

862 }

863 else

864 {

865 errbeep () ;

866 textattr((RED << 4) | WHITE);

867 cprintf("Program error ! at %041X", addr);
868 textattr((CYAN << 4) | WHITE);

869

870 continue;

871 }

872

873 // VERIFY

874

875 textattr(BLINK | (LIGHTGREEN << 4) | WHITE);
876 locate(1, 41); cprintf("VDD max verifying now...");
877

878 power (mfr [mfrno] .dev[devno] .UBmax) ;

879 done = read verify(l);

880 power (0) ;

881

882 textattr((CYAN << 4) | WHITE);

883 locate(14+, 41); cprintf("VDD max verifying now...");
884

885 locate(1++, 41);

886 if(done)

887 {

888 ShowCounter (BufEnd) ;

889 putchar(7);

890 cprintf(" OK ");

891 setport(USERBITS, 0, 8);

892 }

893 else

894 {

895 errbeep () ;

896 textattr((RED << 4) | WHITE);

897 cprintf(" VERIFY ERROR ! at %041X", addr);
898 textattr((CYAN << 4) | WHITE);

899 continue;

900 }

901

902 textattr(BLINK | (LIGHTGREEN << 4) | WHITE);
903 locate(1, 41); cprintf("VDD min verifying now...");
904

905 power (mfr [mfrno] .dev[devno] .UBmin) ;

906 done = read verify(l);

907 power (0) ;

908

909 textattr((CYAN << 4) | WHITE);

910 locate(14+, 41); cprintf("VDD min verifying now...");
911

912 locate(1, 41);

913 if(done)

914 {

915 ShowCounter (BufEnd) ;

916 cprintf(" OK ");

917 setport(USERBITS, 0, 8);

918 putchar(7);

919 }

920 else

921 {

922 textattr((RED << 4) | WHITE);

923 cprintf(" VERIFY ERROR ! at %041X", addr);
924 textattr((CYAN << 4) | WHITE);

925 errbeep () ;

926 }

927 }

928 }

929

930 #1£(0)

931 void edit config(void)

932 {

page 13 MPU5.C

933 static char *osctype[4] = { "LP","XT","HS","RC" };

934 int i, done;
935
936 textattr((CYAN << 4) | WHITE);
937 ~window(1,0, 10,39);
938 ~window(11,1, 24,78);
939
940 locate(2, 1); cprintf("CODE Protection:");
941 locate(23, 1); cprintf("DATA Protection:");
942
943 locate(16, 4); cprintf("K : CODE protection toggle");
944 locate(16,43); cprintf("L : DATA protection toggle");
945
946 locate(23, 4); cprintf("Select options or <CR><ESC> to go back to the main
menu 2");
947
948 textattr((BLUE << 4) | WHITE);
949 locate(1, 5); cprintf(" Configuration Bit Setting :");
950 locate(11,28); cprintf(" Configuration Options :");
951
952 for(;;)
953 {
954 textattr((BLUE << 4) | WHITE);
955
956 for(done = 0; 'done;)
957 {
958 done = 1;
959
960 switch(toupper(getch()))
961 {
962 case 0: getch(); done = 0; break;
963
964 case '\n':
965 case '\r':
966 case 0Ux1B: return;
967
968 case 'K' : // CODE protection toggle
969 cfg = (cfg & ~0x3030) | (((cfg&0x3030) 4+ 0x1010) & 0x3030);
break;
970
971 case 'lL' : // DATA protection toggle
972 cfg #= 0x100; break;
973
974 default: done = 0O;
975 }
976 }
977 }
978 }
979 #endif
980
981 void type select(void)
982 {
983 int done, i, num, len=15, left = 40;
984 char no[10];
985
986 if((num = mfr[mfrno].numdevs) > 14)
987 {
988 left = 0;
989 for(i = len = 0; i < num; ++i)
990 if((done = strlen(mfr[mfrno].dev[i].name)) > len)
991 len = done;
992 }
993
994 textattr((CYAN << 4) | WHITE);
995 ~window(12,left, 23,79);
996
997 textattr((BLUE << 4) | WHITE);
998 locate(12, left+5); cprintf(" TYPE SELECT:");
999
1000 textattr((CYAN << 4) | WHITE);
1001
1002 for(i = 0; i < num; ++i)

page 14 MPUS.C

1003 {

1004 locate(13+(1i%7), left + 1 + (i/7)*(len+4));
1005 cprintf("%d.%s", i, mfr[mfrno].dev[i].name);
1006 }

1007

1008 locate(21, left+l); cprintf("<CR> back to main menu.");
1009 locate(22, left+l); cprintf("SELECT NUMBER 2");
1010

1011 for(;;)

1012 {

1013 for(no[0] = done = 0; !done;)

1014 {

1015 locate(22, left+16); cprintf("%s ", no);
1016 locate(22, left+lo+strlen(no));

1017

1018 switch(1 = getch())

1019 {

1020 case 0:

1021 getch();

1022 break;

1023

1024 case S:

1025 if((i = strlen(no)) !'= 0)

1026 no[i-1] = 0;

1027 break;

1028

1029 case '\n':

1030 case '\r':

1031 if(strlen(no) &&

1032 (1 =atoi(no)) > 0 && i < mfr[mfrno].numdevs)
1033 {

1034 devno = 1i;

1035 ShowType () ;

1036 return;

1037 }

1038 break;

1039

1040 case (x1B:

1041 return;

1042

1043 default:

1044 if(isdigit(1))

1045 strcat(no, (char*)e&i);

1046 break;

1047 }

1048 }

1049 }

1050 }

1051

1052 void mfr select(void)

1053 {

1054 int done, 1i;

1055 char no[l10];

1056

1057 textattr((CYAN << 4) | WHITE);

1058 ~window(12,40, 23,79);

1059

1060 textattr((BLUE << 4) | WHITE);

1061 locate(12, 45); cprintf(" MFR SELECT:");

1062

1063 textattr((CYAN << 4) | WHITE);

1064

1065 for(i = 0; i < sizeof(mfr) / sizeof(mfr[0]); ++i)
1066 {

1067 locate(13+4i, 41); cprintf("%d.%s", i, mfr[i].name);
1068 }

1069

1070 locate(21, 41); cprintf("<CR> back to main menu.");
1071 locate(22, 41); cprintf("SELECT NUMBER 2");
1072

1073 for(;;)

1074 {

page 15 MPU5.C

1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146

for(no[0] = done = 0; 'done;)

{
locate(22, 56); cprintf("%s ", no);
locate(22, S6+strlen(no));
switch(1 = getch())
{
case 0:
getch();
break;
case S:
if((i = strlen(no)) !'= 0)
no[i-1] = 0;
break;
case '\n':
case '\r':
if(strlen(no) &&
(i =atoi(no)) > 0 && i < sizeof(mfr) / sizeof(mfr[0]))
{
mfrno = i;
if(devno >= mfr[mfrno].numdevs)
devno = 0;
ShowType () ;
return;
}
break;
case (x1B:
return;
default:
if(isdigit(1))
strcat(no, (char*)é&i);
break;
}
}

}

2 T ———.

int main(void)

{
int ch = 0, redraw, first = 1;
long tmpval;
2 ————— * /
/* main program starts here */
2 —————— */

getcwd(oldpath, 260);
strcpy(path, oldpath);

if((buffer = farmalloc(BUFSIZE)) == NULL)
return -1;

memset ((void far *)buffer, 0, BUFSIZE);

ReadConfig() ;

delay(0);
for(;;)
{
if(first)
{
first = 0;
init hw();
initdacs();
setport(USERBITS, 0, 0);
}

page 16

MPUS.C

1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198

1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217

textattr((LIGHTGRAY << 4)

locate(0,0
locate(1,0
locate(2,0

textattr((BLUE << 4) + WHITE);

ShowType () ;

textattr((BLUE << 4) + WHITE);
locate(1,53);

locate(2,41
locate(3,41
locate(4,41
locate(5,41

)
)
)

r
r

r

~

window(3,609,

cprintf (
cprintf (
cprintf (

cprintf (
; cprintf(
; cprintf (
; cprintf(
; cprintf(

6,79)

Iocate(4,71); cprintf(

ShowCounter (0);

textattr((CYAN << 4)

locate(3,0
locate(4,0
locate(5,0
locate(6,0
locate(7,0
locate(8,0
locate(9,0
locate (10,0
locate (11,0
locate (12,0
if((ch =m
locate (13,0
locate (14,0
locate (15,0
} else {
locate (13,0
locate (14,0
locate (15,0
}

locate (16,0
locate (17,0
locate (18,0
locate (19,0
locate (20,0
locate (21,0
locate (22,0

S~ H N N N S S S S S S

~

N N N N

) .

if((ch = mfr[mfrno].dev[devno].DataSize)

Ne Ne Ne Ne Ne Ne Ne o Ne N

~e.

r

~e.

~e.

Ne N

~e.

Ne N

o N

r
r
r

r

locate (23,0);

)
}

for(redraw

{

0;

"Universal
"MODEL:
"MPU 89Cx051 section

| YELLOW); clscrn(0,0, 24,79);
Programmer") ;

PC Based");

" VERSION);

clscrn(0,40, 6,79);

_window(1,40, 6,79);
" TARGET ZONE ");
"Buffer start addr.: %$041X", BufStart);
" end addr.: %041X", BufEnd);
" Check Sum $04X"™, Chks);
"Device start addr.: %$041X", DevStart);

"COUNTER") ;

| WHITE); clscrn(3,0, 23,38);

cprintf("----————————~ Main Menu -—--—-————————- "
cprintf("1. DOS SHELL "
cprintf("2. Load BIN or HEX file to buffer "
cprintf("3. Save buffer to disk "
cprintf("4. Edit buffer 7. Display buffer "
cprintf("5. Change I/0 base address "
cprintf("6. Display loaded file history "
cprintf("W. Swap hi-low bytes in buffer "
cprintf("T. Type select Z. Target zone "
cprintf("B. Blank check D. Display "
[mfrno] .dev[devno] .DataSize) '= 0) {

cprintf("P. Program (Program Mem & Data Mem) "
cprintf("A. Auto (B&S&P&V&L) "
cprintf("S. Erase Program & Data memory "
cprintf(" "
cprintf("P. Program A. Auto (B&S&P&VEL) "
cprintf("S. Erase Program memory "
cprintf("R. Read V. Verify "
cprintf("C. Compare and display error "
cprintf("E. Configuration & ID code function "
cprintf("L. Program ID & config. & protect bits "
cprintf("O. Quit "
cprintf(" "
cprintf("Allocation Buffer size

cprintf("Data memory buffer at 4200 ~ %04X",

'redraw;)

'=0) {

textattr((BLUE << 4) + WHITE); clscrn(24,0, 24,38);
locate(24,0); cprintf("Select function 2 ");
for(;;)
{

if((ch = getch()) '= 0)

break;

getch(); /* neglect extended code */
}
switch(ch = toupper(ch))
{
case 'l': dos shell(""); redraw = 1; break;
case '2': tmpval = bufsize; bufsize = 0x8000;

~

S N N N N N N N S

S~ N N

) .

Ne Ne Ne Ne Ne Ne Ne N

~e.

o N

r
r
r

r

UK bytes", BUFSIZE/1024);

024200 4+ ch = 1

page 17

MPUS.C

1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261

//

//
//

memset ((void far *)buffer, 0, BUFSIZE

load file();
bufsize= tmpval;

redraw = 1; break;
case '3': save file(); break;
case '4': tmpval = bufsize; bufsize = 0x8000;

edit buffer();
bufsize= tmpval;

redraw = 1; break;
case '5': set io adr(); first = redraw = 1; break;
case '7': disp buffer(); redraw = 1; break;
case 'M': mfr select(); redraw = first = 1; break;
case 'T': type select(); redraw = first = 1; break;
case 'E': edit config(); redraw = 1l; break;

case 'R': flash read(); break;
case 'B': flash check(); break;
case 'S': flash erase(); break;
case 'P': flash program(); break;
case 'V': flash verify(); break;
case 'L': flash protect(); break;
case 'A': flash auto(); break;

case '\n':
case '\r': redraw = 1; break; // refresh
}

setport(USERBITS, 0, 0);

if(ch = '0")
{
WriteConfig() ;
textattr(LIGHTGRAY); clrscr();
chdir(oldpath);
if(buffer) farfree((void far *)buffer);
return(0);

}

textattr((LIGHTGRAY << 4) | YELLOW); clscrn(

page 18

MPUS5.C

