
1 #include "all03.h"
2
3 #include <bios.h>
4
5 /* PARALLEL MODE */
6
7 #define _VERSION_ "1.00"
8
9 #define MODE_ERASE 0x05

10 #define MODE_WRITE 0x1E
11 #define MODE_READ 0x1C
12 #define MODE_WRITE_EE 0x1A
13 #define MODE_READ_EE 0x18
14 #define MODE_LOCK 0x0D
15 #define MODE_LOCK_RD 0x07
16 #define MODE_USERROW 0x1D
17 #define MODE_USER_RD 0x14
18 #define MODE_SIGNATURE 0x04
19 #define MODE_FUSE 0x16
20 #define MODE_FUSE_RD 0x17
21
22 unsigned char _RST, _RDY, _PGM;
23 unsigned char _VCC, _VPP, _GND, _MODE[5], _DATA[8], _ADDR[16], _SEPARATE;
24
25 long _CODESIZE, _DATASIZE;
26 int _PP[5];
27
28 struct DEV {
29 char *name;
30 long Size, DataSize; // ROM & EEPROM sizes in bytes
31 char separate; // 1:separated code and data space, 0:combined, data

follows code
32 int BlkSize, DataBlkSize; // ROM & EEPROM pagesizes in bytes
33 int progpulse[5]; // prog pulse length in us for 0:erase, 1:code,

2:data, 3:lock 4:fuses
34 char rst,rdy,pgm; // Pin numbers for RESET,RDY/BUSY and PROG
35 char vcc,vpp,gnd,mode[5]; // Pin numbers for VCC, GND and MODE0..4
36 char data[8]; // Pin numbers for d0..7
37 char addr[16]; // Pin numbers for a0..15
38 unsigned char UBmin, UBmax; // min. and max. Vcc value
39 unsigned char Upp; // Vpp value
40 };
41
42 struct DEV ATMEL_devs[] = { // C/D prog erase code data lock

fuse ale ea
43 // TYPE ROMSIZE EESIZE sep blksize *----- progpulse[0-4] ------* rst

rdy pgm vcc vpp gnd * mode[0-4] -* *----- data[0-7] -----+ +-----------------
addr[0-15] -----------------+ Umn Umx Upp

44 /* 0*/ { "AT89S8253", 0x3000, 0x0800, 1, 64, 32, 2, 2, 2, 2, 2, 9,
10, 30, 40, 31, 20, 13,14,15,16,17, 39,38,37,36,35,34,33,32, 1, 2, 3, 4, 5, 6, 7,
8, 21,22,23,24,25,26, 0, 0, 40, 55, 120 }

45 };
46
47 struct {
48 char name[20];
49 int numdevs;
50 struct DEV *dev;
51 } mfr[] = {
52 { "ATMEL", sizeof(ATMEL_devs)/sizeof(struct DEV), ATMEL_devs }
53 };
54
55 int mfrno = 0, devno = 0;
56 int signature;
57 int lock_bits = 7, fuse_bits = 0;
58
59 #define BUFSIZE 0x8000U
60
61 long addr;
62 long DevStart= 0x0000;
63 long Counter = 0x0000;
64
65 void ShowCounter(long val)

page 1 MPU6.C

66 {
67 struct text_info ti;
68
69 gettextinfo(&ti);
70
71 textattr((BLUE << 4) + WHITE);
72 locate(5, 73); cprintf("%04lX", val);
73
74 textattr(ti.attribute);
75 gotoxy(ti.curx, ti.cury);
76 }
77
78 void ShowConfig(void)
79 {
80 struct text_info ti;
81
82 gettextinfo(&ti);
83
84 textattr((BLUE << 4) + WHITE);
85 locate(8,54);
86 cprintf("%02X", signature);
87
88 locate(9,63);
89 cprintf("%02X %02X", lock_bits, fuse_bits);
90
91 locate(2, 69); cprintf("%04X", _DATASIZE);
92
93 textattr(ti.attribute);
94 gotoxy(ti.curx, ti.cury);
95 }
96
97 void ShowType(void)
98 {
99 int i;

100
101 if(mfrno < 0 || mfrno > sizeof(mfr) / sizeof(mfr[0]))
102 mfrno = 0;
103 if(devno < 0 || devno >= mfr[mfrno].numdevs)
104 devno = 0;
105
106 _RST = mfr[mfrno].dev[devno].rst;
107 _RDY = mfr[mfrno].dev[devno].rdy;
108 _PGM = mfr[mfrno].dev[devno].pgm;
109
110 _VCC = mfr[mfrno].dev[devno].vcc;
111 _VPP = mfr[mfrno].dev[devno].vpp;
112 _GND = mfr[mfrno].dev[devno].gnd;
113
114 _CODESIZE = mfr[mfrno].dev[devno].Size;
115 _DATASIZE = mfr[mfrno].dev[devno].DataSize;
116 _SEPARATE = mfr[mfrno].dev[devno].separate;
117
118 for(i = 0; i < sizeof(_MODE); ++i)
119 _MODE[i] = mfr[mfrno].dev[devno].mode[i];
120
121 for(i = 0; i < sizeof(_DATA); ++i)
122 _DATA[i] = mfr[mfrno].dev[devno].data[i];
123
124 for(i = 0; i < sizeof(_ADDR); ++i)
125 _ADDR[i] = mfr[mfrno].dev[devno].addr[i];
126
127 for(i = 0; i < sizeof(_PP)/2; ++i)
128 _PP[i] = mfr[mfrno].dev[devno].progpulse[i];
129
130 bufsize = _CODESIZE + _DATASIZE;
131 BufEnd = bufsize - 1;
132
133 textattr((BLUE << 4) | WHITE);
134
135 locate(0,40); cprintf("*Mfr.: %s", mfr[mfrno].name);
136 locate(0,60); cprintf("*TYPE: %s", mfr[mfrno].dev[devno].name);
137

page 2 MPU6.C

138 locate(3,41); cprintf(" end addr.: %04lX", BufEnd);
139
140 textattr((CYAN << 4) | WHITE);
141 }
142
143 int getdata(void)
144 {
145 int i, val = 0;
146
147 for(i = sizeof(_DATA)-1; i >= 0; --i)
148 val = (val << 1) | getpin(_DATA[i]);
149
150 return val;
151 }
152
153 void setdata(int val)
154 {
155 int i;
156
157 for(i = 0; i < sizeof(_DATA); ++i)
158 {
159 setpin(_DATA[i], TTLID, val & 1);
160 val >>= 1;
161 }
162 }
163
164 void setaddr(void)
165 {
166 long a = addr;
167 int i;
168
169 if(_SEPARATE)
170 a %= _CODESIZE;
171
172 for(i = 0; i < sizeof(_ADDR); ++i)
173 {
174 setpin(_ADDR[i], TTLID, (int)(a & 1));
175 a >>= 1;
176 }
177 }
178
179 void setmode(int md)
180 {
181 int i;
182
183 for(i = 0; i < sizeof(_MODE); ++i)
184 {
185 setpin(_MODE[i], TTLID, (int)(md & 1));
186 md >>= 1;
187 }
188 }
189
190 void pulse(int pulselength)
191 {
192 us_delay(2);
193
194 setpin(_PGM, TTLID, 0);
195 us_delay(pulselength);
196 setpin(_PGM, TTLID, 1);
197
198 us_delay(2);
199 }
200
201 int wait_busy(int maxwait)
202 {
203 int t;
204
205 maxwait *= 10;
206
207 for(t = 0; t < maxwait; ++t)
208 {
209 if(getpin(_RDY))

page 3 MPU6.C

210 break;
211 dly100u();
212 }
213 return getpin(_RDY) ? 1 : 0;
214 }
215
216 void power(int voltage)
217 {
218 int i;
219
220 // we dont need VHH
221 setdac(VHHID, 0); // VHH = 0V
222 for(i = 0; i <= 4; ++i) setport(VHHENID, i, 0); // no VHH
223 setport(VHHENCID,0, 0); // no VHHC
224 setport(VHHENCID,1, 0); // no VHHC
225
226 // Can't use Pins 2,3,4,6,8,32..35,37..40 for Vop
227 if(_VPP == 2 || _VPP == 3 || _VPP == 4 || _VPP == 6 || _VPP == 8 || (_VPP > 31

&& _VPP != 36))
228 {
229 errbeep();
230 textattr((RED << 4) | WHITE);
231 locate(41, 23); cprintf("Connect pin 1 to %d", _VPP);
232 textattr((CYAN << 4) | WHITE);
233 _VPP = 1; // force using Pin 1
234 }
235
236 setport(OTHERENID, 0, 0); // Pin 20 = GND
237
238 if(voltage)
239 {
240 // Set all pins LOW
241 for(i = 0; i < 5; ++i)
242 setport(TTLID, i, 0);
243
244 setdac(VCCID, voltage); // Vcc = xV
245 setdac(VOPID, mfr[mfrno].dev[devno].Upp); // Vpp = xV
246 delay(500); // wait to stabilize
247
248 setpin(_VCC, VCCENID, 1); // set Vcc pin (automatically sets

TTLID also)
249
250 dly20u();
251
252 setpin(_RST, TTLID, 1); // RST = H
253
254 dly20u();
255
256 setpin(18, TTLID, 1); // start oscillator on pins 18/19
257 setpin(19, TTLID, 1);
258 setport(OTHERENID, 0, 0x30); // with 4MHz
259
260 dly50m();
261
262 setpin(_VPP, TTLID, 1); // set EA = H
263 setpin(_PGM, TTLID, 1); // set PGM = H
264
265 setdata(0xFF); // set D0..7 = H
266 setpin(_RDY, TTLID, 1); // set RDY = H (HiZ)
267
268 dly20u();
269
270 setpin(_VPP, VOPENID, 1); // set EA = Vpp
271
272 dly20u();
273 }
274 else
275 {
276 setpin(_VPP, VOPENID, 0); // remove Vpp
277 setpin(_VPP, TTLID, 0);
278
279 dly20u();

page 4 MPU6.C

280
281 setport(OTHERENID, 0, 0); // osc off
282
283 dly20u();
284
285 setpin(_RST, TTLID, 0); // pull reset low
286
287 dly20u();
288
289 // Set all pins LOW except VCC
290 for(i = 1; i < 40; ++i)
291 if(i != _VCC)
292 setpin(i, TTLID, 0);
293
294 dly20u();
295
296 setpin(_VCC, VCCENID, 0); // remove Vcc
297 setpin(_VCC, TTLID, 0);
298
299 setdac(VOPID, 0); // Vpp = 0V
300 setdac(VCCID, 0); // Vcc = 0V
301 }
302 }
303
304 int program(void)
305 {
306 long end = _CODESIZE + _DATASIZE;
307 int i, blksize;
308
309 setmode(MODE_WRITE);
310 blksize = mfr[mfrno].dev[devno].BlkSize;
311 for(addr = BufStart; addr < end;)
312 {
313 if(_SEPARATE && addr == _CODESIZE) // change area
314 {
315 setmode(MODE_WRITE_EE);
316 blksize = mfr[mfrno].dev[devno].DataBlkSize;
317 }
318
319 if((addr & 0xFF) == 0)
320 ShowCounter(addr);
321
322 disable();
323 for(i = 0; i < blksize; ++i)
324 {
325 setaddr();
326 setdata(buffer[addr]);
327 pulse(_PP[(addr > _CODESIZE) ? 2 : 1]);
328 ++addr;
329 }
330 enable();
331
332 dly1m(); // chip should have started

programming after 1ms
333 if(!wait_busy(10*blksize)) // wait for completion (max. 10ms

per byte)
334 return 0;
335 }
336
337 ShowCounter(addr);
338 return 1;
339 }
340
341 int read_verify_check(int md)
342 {
343 long end = _CODESIZE + _DATASIZE;
344 int val;
345
346 setdata(0xFF); // release pin drivers on data pins
347
348 setmode(MODE_READ);
349 for(addr = BufStart; addr < end; ++addr)

page 5 MPU6.C

350 {
351 if(_SEPARATE && addr == _CODESIZE) // change area
352 setmode(MODE_READ_EE);
353
354 setaddr();
355 if((addr & 0xFF) == 0) ShowCounter(addr);
356
357 val = getdata();
358
359 switch(md)
360 {
361 case 0: // read
362 Chks += (buffer[addr] = val);
363 break;
364
365 case 1: // verify
366 if(buffer[addr] != val)
367 {
368 ShowCounter(addr);
369 return 0;
370 }
371 break;
372
373 case 2: // blank check
374 if(val != 0xFF)
375 {
376 ShowCounter(addr);
377 return 0;
378 }
379 break;
380 }
381 }
382
383 ShowCounter(addr);
384 return 1;
385 }
386
387 int write_config(void)
388 {
389 setdata(lock_bits & 7);
390 setmode(MODE_LOCK);
391 pulse(_PP[3]);
392 if(!wait_busy(50))
393 return 0;
394
395 setdata(fuse_bits & 0x0F);
396 setmode(MODE_FUSE);
397 pulse(_PP[4]);
398 return wait_busy(50);
399 }
400
401 int read_config(void)
402 {
403 setdata(0xFF);
404
405 setmode(MODE_LOCK_RD);
406 lock_bits = getdata() & 7;
407
408 setmode(MODE_FUSE_RD);
409 fuse_bits = getdata() & 0x0F;
410
411 setmode(MODE_SIGNATURE);
412 signature = getdata();
413
414 return 1;
415 }
416
417
418 int flash_check(void)
419 {
420 int done;
421

page 6 MPU6.C

422 textattr((CYAN << 4) | WHITE);
423 _window(12,40, 23,79);
424
425 textattr((BLUE << 4) | WHITE);
426 locate(12, 45); cprintf(" BLANK CHECK device:");
427
428 for(;;)
429 {
430 textattr((CYAN << 4) | WHITE);
431 locate(13, 41); cprintf("Ready to check (Y/<CR>)? ");
432
433 for(done = 0; !done;)
434 {
435 switch(getch())
436 {
437 case 0:
438 getch();
439 break;
440
441 case '\n':
442 case '\r':
443 case 0x1B:
444 return;
445
446 case 'y':
447 case 'Y':
448 done = 1;
449 }
450 }
451
452 clscrn(14,41, 22,78);
453
454 setport(USERBITS, 0, 0);
455
456 textattr(BLINK | (LIGHTGREEN << 4) | WHITE);
457 locate(14, 41); cprintf("Blank checking now... ");
458
459 power(50); done = read_verify_check(2); power(0);
460
461 textattr((CYAN << 4) | WHITE);
462 locate(14, 41); cprintf("Blank checking now... ");
463
464 locate(15, 41);
465 if(done)
466 {
467 ShowCounter(BufEnd);
468 putchar(7);
469 cprintf(" OK !");
470 setport(USERBITS, 0, 8);
471 }
472 else
473 {
474 errbeep();
475 textattr((RED << 4) | WHITE);
476 cprintf("Blank check error at %04lX", addr);
477 textattr((CYAN << 4) | WHITE);
478 }
479 }
480 }
481
482 void flash_program(void)
483 {
484 int done;
485
486 textattr((CYAN << 4) | WHITE);
487 _window(12,40, 23,79);
488
489 textattr((BLUE << 4) | WHITE);
490 locate(12, 45); cprintf(" PROGRAM :");
491
492 for(;;)
493 {

page 7 MPU6.C

494 textattr((CYAN << 4) | WHITE);
495 locate(13, 41); cprintf("Ready to program (Y/<CR>)? ");
496
497 for(done = 0; !done;)
498 {
499 switch(getch())
500 {
501 case 0:
502 getch();
503 break;
504
505 case '\n':
506 case '\r':
507 case 0x1B:
508 return;
509
510 case 'y':
511 case 'Y':
512 done = 1;
513 }
514 }
515
516 clscrn(14,41, 22,78);
517
518 setport(USERBITS, 0, 0);
519
520 textattr(BLINK | (LIGHTGREEN << 4) | WHITE);
521 locate(14, 41); cprintf("Programming now... ");
522
523 power(50); done = program(); power(0);
524
525 textattr((CYAN << 4) | WHITE);
526 locate(14, 41); cprintf("Programming now... ");
527
528 locate(15, 41);
529 if(done)
530 {
531 ShowCounter(BufEnd);
532 putchar(7);
533 setport(USERBITS, 0, 8);
534 cprintf(" OK !");
535 }
536 else
537 {
538 errbeep();
539 textattr((RED << 4) | WHITE);
540 cprintf("Program error ! at %04lX", addr);
541 textattr((CYAN << 4) | WHITE);
542 }
543 }
544 }
545
546 void flash_protect(void)
547 {
548 int done;
549
550 textattr((CYAN << 4) | WHITE);
551 _window(12,40, 23,79);
552
553 textattr((BLUE << 4) | WHITE);
554 locate(12, 42); cprintf(" Program ID & CFG & protect bits: ");
555
556 for(;;)
557 {
558 textattr((CYAN << 4) | WHITE);
559 locate(13, 41); cprintf("Ready to program (Y/<CR>)? ");
560
561 for(done = 0; !done;)
562 {
563 switch(getch())
564 {
565 case 0:

page 8 MPU6.C

566 getch();
567 break;
568
569 case '\n':
570 case '\r':
571 case 0x1B:
572 return;
573
574 case 'y':
575 case 'Y':
576 done = 1;
577 }
578 }
579
580 clscrn(14,41, 22,78);
581
582 setport(USERBITS, 0, 0);
583
584 textattr(BLINK | (LIGHTGREEN << 4) | WHITE);
585 locate(14, 41); cprintf("Programming now... ");
586
587 power(50); done = write_config(); power(0);
588
589 textattr((CYAN << 4) | WHITE);
590 locate(14, 41); cprintf("Programming now... ");
591
592 locate(15, 41);
593 if(done)
594 {
595 ShowCounter(BufEnd);
596 putchar(7);
597 setport(USERBITS, 0, 8);
598 cprintf(" OK !");
599 }
600 else
601 {
602 errbeep();
603 textattr((RED << 4) | WHITE);
604 cprintf("Program error ! at %04lX", addr);
605 textattr((CYAN << 4) | WHITE);
606 }
607 }
608 }
609
610 void flash_read(void)
611 {
612 int done;
613
614 textattr((CYAN << 4) | WHITE);
615 _window(12,40, 23,79);
616
617 textattr((BLUE << 4) | WHITE);
618 locate(12, 45); cprintf(" READ to buffer :");
619
620 for(;;)
621 {
622 textattr((CYAN << 4) | WHITE);
623 locate(13, 41); cprintf("Ready to start (Y/Even/Odd/<CR>)? ");
624
625 for(done = 0; !done;)
626 {
627 switch(getch())
628 {
629 case 0:
630 getch();
631 break;
632
633 case '\n':
634 case '\r':
635 case 0x1B:
636 return;
637

page 9 MPU6.C

638 case 'y':
639 case 'Y':
640 done = 1;
641
642 case 'e':
643 case 'E':
644 case 'o':
645 case 'O':
646 done = 1;
647 }
648 }
649
650 clscrn(14,41, 22,78);
651
652 setport(USERBITS, 0, 0);
653
654 textattr(BLINK | (LIGHTGREEN << 4) | WHITE);
655 locate(14, 41); cprintf("Reading now... ");
656
657 Chks = 0;
658 power(50);
659 read_verify_check(0);
660 read_config();
661 power(0);
662
663 textattr((CYAN << 4) | WHITE);
664 locate(14, 41); cprintf("Reading now... ");
665
666 locate(15, 41);
667 putchar(7);
668 cprintf(" OK !");
669
670 textattr((BLUE << 4) | WHITE);
671 locate(4, 41); cprintf(" Check Sum : %04X", Chks);
672
673 ShowConfig();
674 }
675 }
676
677 void flash_verify(void)
678 {
679 int done;
680
681 textattr((CYAN << 4) | WHITE);
682 _window(12,40, 23,79);
683
684 textattr((BLUE << 4) | WHITE);
685 locate(12, 45); cprintf(" VERIFY with buffer :");
686
687 for(;;)
688 {
689 textattr((CYAN << 4) | WHITE);
690 locate(13, 41); cprintf("Ready to verify (Y/Even/Odd/<CR>)? ");
691
692 for(done = 0; !done;)
693 {
694 switch(getch())
695 {
696 case 0:
697 getch();
698 break;
699
700 case '\n':
701 case '\r':
702 case 0x1B:
703 return;
704
705 case 'y':
706 case 'Y':
707 done = 1;
708
709 case 'e':

page 10 MPU6.C

710 case 'E':
711 case 'o':
712 case 'O':
713 done = 1;
714 }
715 }
716
717 clscrn(14,41, 22,78);
718
719 setport(USERBITS, 0, 0);
720
721 textattr(BLINK | (LIGHTGREEN << 4) | WHITE);
722 locate(14, 41); cprintf("Verifying now @ VDDmin... ");
723
724 power(mfr[mfrno].dev[devno].UBmin);
725 done = read_verify_check(1);
726 power(0);
727
728 textattr((CYAN << 4) | WHITE);
729 locate(14, 41); cprintf("Verifying now @ VDDmin... ");
730
731 locate(15, 41);
732 if(done)
733 {
734 ShowCounter(BufEnd);
735 putchar(7);
736 cprintf(" OK !");
737 setport(USERBITS, 0, 8);
738 }
739 else
740 {
741 errbeep();
742 textattr((RED << 4) | WHITE);
743 cprintf(" VERIFY ERROR ! at %04lX", addr);
744 textattr((CYAN << 4) | WHITE);
745 continue;
746 }
747
748 textattr(BLINK | (LIGHTGREEN << 4) | WHITE);
749 locate(16, 41); cprintf("Verifying now @ VDDmax... ");
750
751 power(mfr[mfrno].dev[devno].UBmax);
752 done = read_verify_check(1);
753 power(0);
754
755 textattr((CYAN << 4) | WHITE);
756 locate(16, 41); cprintf("Verifying now @ VDDmax... ");
757
758 locate(17, 41);
759 if(done)
760 {
761 ShowCounter(BufEnd);
762 putchar(7);
763 cprintf(" OK !");
764 setport(USERBITS, 0, 8);
765 }
766 else
767 {
768 errbeep();
769 textattr((RED << 4) | WHITE);
770 cprintf(" VERIFY ERROR ! at %04lX", addr);
771 textattr((CYAN << 4) | WHITE);
772 }
773 }
774 }
775
776 void flash_erase(void)
777 {
778 int done;
779
780 textattr((CYAN << 4) | WHITE);
781 _window(12,40, 23,79);

page 11 MPU6.C

782
783 textattr((BLUE << 4) | WHITE);
784 locate(12, 45); cprintf(" EEPROM Erase:");
785
786 for(;;)
787 {
788 textattr((CYAN << 4) | WHITE);
789 locate(13, 41); cprintf("Ready to erase (Y/<CR>)? ");
790
791 for(done = 0; !done;)
792 {
793 switch(getch())
794 {
795 case 0:
796 getch();
797 break;
798
799 case '\n':
800 case '\r':
801 case 0x1B:
802 return;
803
804 case 'y':
805 case 'Y':
806 done = 1;
807 }
808 }
809
810 clscrn(14,41, 22,78);
811
812 setport(USERBITS, 0, 0);
813
814 textattr(BLINK | (LIGHTGREEN << 4) | WHITE);
815 locate(14, 41); cprintf("Erase now... ");
816
817 power(50);
818 setmode(MODE_ERASE);
819 pulse(_PP[0]);
820 done = wait_busy(50);
821 power(0);
822
823 textattr((CYAN << 4) | WHITE);
824 locate(14, 41); cprintf("Erase now... ");
825
826 locate(15, 41);
827 if(done)
828 {
829 putchar(7);
830 cprintf(" OK !");
831 setport(USERBITS, 0, 8);
832 }
833 else
834 {
835 errbeep();
836 textattr((RED << 4) | WHITE);
837 cprintf(" ERROR ! ");
838 textattr((CYAN << 4) | WHITE);
839
840 locate(21, 41); cprintf("press any key to continue");
841 if(getch() == 0) getch();
842 }
843
844 clscrn(13,41, 22,78);
845 }
846 }
847
848 void flash_auto(void)
849 {
850 int done, l;
851
852 textattr((CYAN << 4) | WHITE);
853 _window(12,40, 23,79);

page 12 MPU6.C

854
855 textattr((BLUE << 4) | WHITE);
856 locate(12, 45); cprintf(" AUTO :");
857
858 for(;;)
859 {
860 textattr((CYAN << 4) | WHITE);
861 locate(13, 41); cprintf("Ready to start (Y/Even/Odd/<CR>)? ");
862
863 for(done = 0; !done;)
864 {
865 switch(getch())
866 {
867 case 0:
868 getch();
869 break;
870
871 case '\n':
872 case '\r':
873 case 0x1B:
874 return;
875
876 case 'y':
877 case 'Y':
878 done = 1;
879
880 case 'e':
881 case 'E':
882 case 'o':
883 case 'O':
884 done = 1;
885 }
886 }
887
888 clscrn(14,41, 22,78);
889
890 setport(USERBITS, 0, 0);
891
892 l = 14;
893
894 // BLANK CHECK
895
896 textattr(BLINK | (LIGHTGREEN << 4) | WHITE);
897 locate(l, 41); cprintf("Blank checking now... ");
898
899 power(50); done = read_verify_check(2); power(0);
900
901 textattr((CYAN << 4) | WHITE);
902 locate(l++, 41); cprintf("Blank checking now... ");
903
904 locate(l++, 41);
905
906 if(done)
907 {
908 ShowCounter(BufEnd);
909 cprintf(" OK !");
910 }
911 else
912 {
913 errbeep();
914 textattr((RED << 4) | WHITE);
915 cprintf("Blank check error at %04lX", addr);
916 textattr((CYAN << 4) | WHITE);
917
918 // ERASE
919
920 l -= 2;
921
922 clscrn(l, 41, l+1, 78);
923
924 textattr(BLINK | (LIGHTGREEN << 4) | WHITE);
925 locate(l, 41); cprintf("Erase now... ");

page 13 MPU6.C

926
927 power(50);
928 setmode(MODE_ERASE);
929 pulse(_PP[0]);
930 done = wait_busy(50);
931 power(0);
932
933 textattr((CYAN << 4) | WHITE);
934 locate(l++, 41); cprintf("Erase now... ");
935
936 locate(l++, 41);
937
938 if(done)
939 cprintf(" OK !");
940 else
941 {
942 errbeep();
943 textattr((RED << 4) | WHITE);
944 cprintf(" ERROR");
945 textattr((CYAN << 4) | WHITE);
946
947 continue;
948 }
949 }
950
951 // PROGRAM
952
953 textattr(BLINK | (LIGHTGREEN << 4) | WHITE);
954 locate(l, 41); cprintf("Programming now... ");
955
956 power(50); done = program(); power(0);
957
958 textattr((CYAN << 4) | WHITE);
959 locate(l++, 41); cprintf("Programming now... ");
960
961 locate(l++, 41);
962 if(done)
963 {
964 ShowCounter(BufEnd);
965 cprintf(" OK !");
966 }
967 else
968 {
969 errbeep();
970 textattr((RED << 4) | WHITE);
971 cprintf("Program error ! at %04lX", addr);
972 textattr((CYAN << 4) | WHITE);
973
974 continue;
975 }
976
977 // VERIFY
978
979 textattr(BLINK | (LIGHTGREEN << 4) | WHITE);
980 locate(l, 41); cprintf("VDD max verifying now...");
981
982 power(mfr[mfrno].dev[devno].UBmax);
983 done = read_verify_check(1);
984 power(0);
985
986 textattr((CYAN << 4) | WHITE);
987 locate(l++, 41); cprintf("VDD max verifying now...");
988
989 locate(l++, 41);
990 if(done)
991 {
992 ShowCounter(BufEnd);
993 putchar(7);
994 cprintf(" OK !");
995 setport(USERBITS, 0, 8);
996 }
997 else

page 14 MPU6.C

998 {
999 errbeep();

1000 textattr((RED << 4) | WHITE);
1001 cprintf(" VERIFY ERROR ! at %04lX", addr);
1002 textattr((CYAN << 4) | WHITE);
1003 continue;
1004 }
1005
1006 textattr(BLINK | (LIGHTGREEN << 4) | WHITE);
1007 locate(l, 41); cprintf("VDD min verifying now...");
1008
1009 power(mfr[mfrno].dev[devno].UBmin);
1010 done = read_verify_check(1);
1011 power(0);
1012
1013 textattr((CYAN << 4) | WHITE);
1014 locate(l++, 41); cprintf("VDD min verifying now...");
1015
1016 locate(l, 41);
1017 if(done)
1018 {
1019 ShowCounter(BufEnd);
1020 cprintf(" OK !");
1021 setport(USERBITS, 0, 8);
1022 putchar(7);
1023 }
1024 else
1025 {
1026 textattr((RED << 4) | WHITE);
1027 cprintf(" VERIFY ERROR ! at %04lX", addr);
1028 textattr((CYAN << 4) | WHITE);
1029 errbeep();
1030 }
1031 }
1032 }
1033
1034 void edit_config(void)
1035 {
1036 int i, done;
1037
1038 textattr((CYAN << 4) | WHITE);
1039 _window(1,0, 10,39);
1040 _window(11,1, 24,78);
1041
1042 locate(3, 1); cprintf("Protection: ");
1043
1044 locate(5, 1); cprintf("Serial Pgm: ");
1045 locate(6, 1); cprintf("x2 clock : ");
1046 locate(7, 1); cprintf("UsrRow Pgm: ");
1047 locate(8, 1); cprintf("CrystalClk: ");
1048
1049 locate(14, 4); cprintf("A : no protection");
1050 locate(14,43); cprintf("B : MOVC protection");
1051 locate(15, 4); cprintf("C : VERIFY protection");
1052 locate(15,43); cprintf("D : EXT_EXEC protection");
1053
1054 locate(17, 4); cprintf("E : Serial Pgm Enable toggle");
1055 locate(18, 4); cprintf("F : x2 Clock Enable toggle");
1056 locate(19, 4); cprintf("G : UsrRow Pgm Enable toggle");
1057 locate(20, 4); cprintf("H : Crystal Clock Enable toggle");
1058
1059 locate(23, 4); cprintf("Select options or <CR><ESC> to go back to the main

menu ?");
1060
1061 textattr((BLUE << 4) | WHITE);
1062 locate(1, 5); cprintf(" Configuration Bit Setting :");
1063 locate(11,28); cprintf(" Configuration Options :");
1064
1065 for(;;)
1066 {
1067 textattr((BLUE << 4) | WHITE);
1068

page 15 MPU6.C

1069 locate(3, 13);
1070 switch(lock_bits)
1071 {
1072 default : cprintf("none"); lock_bits = 7; break;
1073 case 6 : cprintf("MOVC"); break;
1074 case 4 : cprintf("MOVC & VERIFY"); break;
1075 case 0 : cprintf("MOVC & VERIFY & EXT_EXEC"); break;
1076 }
1077
1078 for(i = 0; i < 4; ++i)
1079 {
1080 locate(5 + i, 13);
1081 cprintf((fuse_bits & (1 << i)) ? "disable" : "enable");
1082 }
1083
1084 for(done = 0; !done;)
1085 {
1086 done = 1;
1087
1088 switch(toupper(getch()))
1089 {
1090 case 0: getch(); done = 0; break;
1091
1092 case '\n':
1093 case '\r':
1094 case 0x1B: return;
1095 case 'A' : lock_bits = 7; break;
1096 case 'B' : lock_bits = 6; break;
1097 case 'C' : lock_bits = 4; break;
1098 case 'D' : lock_bits = 0; break;
1099 case 'E' : fuse_bits ^= 1; break;
1100 case 'F' : fuse_bits ^= 2; break;
1101 case 'G' : fuse_bits ^= 4; break;
1102 case 'H' : fuse_bits ^= 8; break;
1103 default : done = 0;
1104 }
1105 }
1106 }
1107 }
1108
1109 void type_select(void)
1110 {
1111 int done, i, num, len=15, left = 40;
1112 char no[10];
1113
1114 if((num = mfr[mfrno].numdevs) > 14)
1115 {
1116 left = 0;
1117 for(i = len = 0; i < num; ++i)
1118 if((done = strlen(mfr[mfrno].dev[i].name)) > len)
1119 len = done;
1120 }
1121
1122 textattr((CYAN << 4) | WHITE);
1123 _window(12,left, 23,79);
1124
1125 textattr((BLUE << 4) | WHITE);
1126 locate(12, left+5); cprintf(" TYPE SELECT:");
1127
1128 textattr((CYAN << 4) | WHITE);
1129
1130 for(i = 0; i < num; ++i)
1131 {
1132 locate(13+(i%7), left + 1 + (i/7)*(len+4));
1133 cprintf("%d.%s", i, mfr[mfrno].dev[i].name);
1134 }
1135
1136 locate(21, left+1); cprintf("<CR> back to main menu.");
1137 locate(22, left+1); cprintf("SELECT NUMBER ?");
1138
1139 for(;;)
1140 {

page 16 MPU6.C

1141 for(no[0] = done = 0; !done;)
1142 {
1143 locate(22, left+16); cprintf("%s ", no);
1144 locate(22, left+16+strlen(no));
1145
1146 switch(i = getch())
1147 {
1148 case 0:
1149 getch();
1150 break;
1151
1152 case 8:
1153 if((i = strlen(no)) != 0)
1154 no[i-1] = 0;
1155 break;
1156
1157 case '\n':
1158 case '\r':
1159 if(strlen(no) &&
1160 (i = atoi(no)) >= 0 && i < mfr[mfrno].numdevs)
1161 {
1162 devno = i;
1163 ShowType();
1164 return;
1165 }
1166 break;
1167
1168 case 0x1B:
1169 return;
1170
1171 default:
1172 if(isdigit(i))
1173 strcat(no, (char*)&i);
1174 break;
1175 }
1176 }
1177 }
1178 }
1179
1180 void mfr_select(void)
1181 {
1182 int done, i;
1183 char no[10];
1184
1185 textattr((CYAN << 4) | WHITE);
1186 _window(12,40, 23,79);
1187
1188 textattr((BLUE << 4) | WHITE);
1189 locate(12, 45); cprintf(" MFR SELECT:");
1190
1191 textattr((CYAN << 4) | WHITE);
1192
1193 for(i = 0; i < sizeof(mfr) / sizeof(mfr[0]); ++i)
1194 {
1195 locate(13+i, 41); cprintf("%d.%s", i, mfr[i].name);
1196 }
1197
1198 locate(21, 41); cprintf("<CR> back to main menu.");
1199 locate(22, 41); cprintf("SELECT NUMBER ?");
1200
1201 for(;;)
1202 {
1203 for(no[0] = done = 0; !done;)
1204 {
1205 locate(22, 56); cprintf("%s ", no);
1206 locate(22, 56+strlen(no));
1207
1208 switch(i = getch())
1209 {
1210 case 0:
1211 getch();
1212 break;

page 17 MPU6.C

1213
1214 case 8:
1215 if((i = strlen(no)) != 0)
1216 no[i-1] = 0;
1217 break;
1218
1219 case '\n':
1220 case '\r':
1221 if(strlen(no) &&
1222 (i = atoi(no)) >= 0 && i < sizeof(mfr) / sizeof(mfr[0]))
1223 {
1224 mfrno = i;
1225 if(devno >= mfr[mfrno].numdevs)
1226 devno = 0;
1227 ShowType();
1228 return;
1229 }
1230 break;
1231
1232 case 0x1B:
1233 return;
1234
1235 default:
1236 if(isdigit(i))
1237 strcat(no, (char*)&i);
1238 break;
1239 }
1240 }
1241 }
1242 }
1243
1244 /*===*/
1245 int main(void)
1246 {
1247 int redraw, first = 1;
1248 long tmpval;
1249
1250 /*---*/
1251 /* main program starts here */
1252 /*---*/
1253
1254 getcwd(oldpath, 260);
1255 strcpy(path, oldpath);
1256
1257 if((buffer = farmalloc(BUFSIZE)) == NULL)
1258 return -1;
1259 memset((void far *)buffer, 0, BUFSIZE);
1260
1261 ReadConfig();
1262 delay(0);
1263
1264 for(;;)
1265 {
1266 if(first)
1267 {
1268 first = 0;
1269
1270 init_hw();
1271 initdacs();
1272 setport(USERBITS, 0, 0);
1273 }
1274
1275 textattr((LIGHTGRAY << 4) | YELLOW); clscrn(0,0, 24,79);
1276
1277 locate(0,0); cprintf("Universal Programmer");
1278 locate(1,0); cprintf("MODEL: PC Based");
1279 locate(2,0); cprintf("MPU 89Sxxxx section " _VERSION_);
1280
1281 textattr((BLUE << 4) + WHITE); clscrn(0,40, 6,79);
1282
1283 ShowType();
1284

page 18 MPU6.C

1285 textattr((BLUE << 4) + WHITE); _window(1,40, 6,79);
1286 locate(1,53); cprintf(" TARGET ZONE ");
1287 locate(2,41); cprintf("Buffer start addr.: %04lX", BufStart);
1288 locate(3,41); cprintf(" end addr.: %04lX", BufEnd);
1289 locate(4,41); cprintf(" Check Sum : %04X", Chks);
1290 locate(5,41); cprintf("Device start addr.: %04lX", DevStart);
1291
1292 _window(3,69, 6,79);
1293 locate(4,71); cprintf("COUNTER");
1294 ShowCounter(0);
1295
1296 _window(7,40, 10,79);
1297 locate(7,43); cprintf(" Device ID & Configuration bits ");
1298 locate(8,42); cprintf("Device ID :");
1299 locate(9,42); cprintf("Configuration bits : ");
1300 ShowConfig();
1301
1302 textattr((CYAN << 4) | WHITE); clscrn(3,0, 23,38);
1303
1304 locate(3,0); cprintf("------------- Main Menu -------------");
1305 locate(4,0); cprintf("1. DOS SHELL ");
1306 locate(5,0); cprintf("2. Load BIN or HEX file to buffer ");
1307 locate(6,0); cprintf("3. Save buffer to disk ");
1308 locate(7,0); cprintf("4. Edit buffer 7. Display buffer ");
1309 locate(8,0); cprintf("5. Change I/O base address ");
1310 locate(9,0); cprintf("6. Display loaded file history ");
1311 locate(10,0); cprintf("W. Swap hi-low bytes in buffer ");
1312 locate(11,0); cprintf("T. Type select Z. Target zone ");
1313 locate(12,0); cprintf("B. Blank check D. Display ");
1314 if(_DATASIZE != 0) {
1315 locate(13,0); cprintf("P. Program (Program Mem & Data Mem) ");
1316 locate(14,0); cprintf("A. Auto(B&S&P&V&L) ");
1317 locate(15,0); cprintf("S. Erase Program & Data memory ");
1318 } else {
1319 locate(13,0); cprintf(" ");
1320 locate(14,0); cprintf("P. Program A. Auto(B&S&P&V&L) ");
1321 locate(15,0); cprintf("S. Erase Program memory ");
1322 }
1323 locate(16,0); cprintf("R. Read V. Verify ");
1324 locate(17,0); cprintf("C. Compare and display error ");
1325 locate(18,0); cprintf("E. Configuration & ID code function ");
1326 locate(19,0); cprintf("L. Program ID & config. & protect bits ");
1327 locate(20,0); cprintf("Q. Quit ");
1328 locate(21,0); cprintf("---------------------------------------");
1329 locate(22,0); cprintf("Allocation Buffer size : %uK bytes", BUFSIZE/1024);
1330 if(_DATASIZE != 0) {
1331 locate(23,0); cprintf("Data memory buffer at %04lX ~ %04lX", _CODESIZE,

_CODESIZE + _DATASIZE - 1);
1332 }
1333
1334 for(redraw = 0; !redraw;)
1335 {
1336 int c;
1337
1338 textattr((BLUE << 4) + WHITE); clscrn(24,0, 24,38);
1339
1340 locate(24,0); cprintf("Select function ? ");
1341
1342 for(;;)
1343 {
1344 if((c = getch()) != 0)
1345 break;
1346 getch(); /* neglect extended code */
1347 }
1348
1349 switch(c = toupper(c))
1350 {
1351 case '1': dos_shell(""); redraw = 1; break;
1352 case '2': tmpval = bufsize; bufsize = 0x8000;
1353 memset((void far *)buffer, 0, BUFSIZE); // clear buffer
1354 addr = 0;
1355 load_file();

page 19 MPU6.C

1356 bufsize= tmpval;
1357 redraw = 1; break;
1358 case '3': save_file(); break;
1359 case '4': tmpval = bufsize; bufsize = 0x8000;
1360 addr = 0;
1361 edit_buffer();
1362 bufsize= tmpval;
1363 redraw = 1; break;
1364 case '5': set_io_adr(); first = redraw = 1; break;
1365 case '7': disp_buffer(); redraw = 1; break;
1366
1367 case 'M': mfr_select(); redraw = first = 1; break;
1368 case 'T': type_select(); redraw = first = 1; break;
1369 case 'E': edit_config(); redraw = 1; break;
1370
1371 case 'R': flash_read(); break;
1372 case 'B': flash_check(); break;
1373 case 'S': flash_erase(); break;
1374 case 'P': flash_program(); break;
1375 case 'V': flash_verify(); break;
1376 case 'L': flash_protect(); break;
1377 case 'A': flash_auto(); break;
1378
1379 // case '\n':
1380 // case '\r': redraw = 1; break; // refresh
1381 }
1382
1383 setport(USERBITS, 0, 0);
1384
1385 if(c == 'Q')
1386 {
1387 WriteConfig();
1388 textattr(LIGHTGRAY); clrscr();
1389 chdir(oldpath);
1390 if(buffer) farfree((void far *)buffer);
1391 return(0);
1392 }
1393
1394 textattr((LIGHTGRAY << 4) | YELLOW); clscrn(11,40, 23,79);
1395 }
1396 }
1397 }
1398
1399

page 20 MPU6.C

