1 #include "all03.h"
2
3 #include <bios.h>
4
5 /* PARALLEL MODE */
6
7 #define VERSION "1.00"
8
9 #define MODE ERASE 0x05
10 #define MODE WRITE O0x1E
11 #define MODE READ 0x1cC
12 #define MODE WRITE EE 0xlA
13 #define MODE_READ EE 0x18
14 #define MODE LOCK 0x0D
15 #define MODE_LOCK_RD 0x07
16 #define MODE USERROW 0x1D
17 #define MODE_USER_RD 0x14
18 #define MODE SIGNATURE 0x04
19 #define MODE FUSE 0x16
20 #define MODE_FUSE RD 0x17
21
22 unsigned char RST, RDY, PGM;
23 unsigned char VCC, VPP, GND, MODE[5], DATA[8], ADDR[16], SEPARATE;
24
25 long CODESIZE, DATASIZE;
26 int PP[5];
27
28 struct DEV {
29 char *name;
30 long Size, DataSize; // ROM & EEPROM sizes in bytes
31 char separate; // l:separated code and data space, O:combined, data
follows code
32 int BlkSize, DataBlkSize; // ROM & EEPROM pagesizes in bytes
33 int progpulse[5]; // prog pulse length in us for O:erase, 1l:code,
2:data, 3:lock 4:fuses
34 char rst,rdy,pgm; // Pin numbers for RESET,RDY/BUSY and PROG
35 char vcc,vpp,gnd,mode[5]; // Pin numbers for VCC, GND and MODEO..4
36 char datal[8]; // Pin numbers for d0..7
37 char addr[16]; // Pin numbers for a0..15
38 unsigned char UBmin, UBmax; // min. and max. Vcc value
39 unsigned char Upp; // Vpp value
40 };
41
42 struct DEV ATMEL devs[] = { // C/D prog erase code data lock
fuse ale ea
43 // TYPE ROMSIZE EESIZE sep blksize *----- progpulse[0-4] -—-———- * rst
rdy pgm vcc vpp gnd * mode[0-4] -* F-———-- data[0-7] —-—-——- B
addr[0-15] -———==-—————————~ + Umn Umx Upp
44 /* 0*/ { "AT89S8253", 0x3000, 0x0800, 1, 64, 32, 2, 2, 2, 2, 2, 9,
10, 30, 40, 31, 20, 13,14,15,16,17, 39,38,37,36,35,34,33,32, 1, 2, 3, 4, 5, 6, 17,
8, 21,22,23,24,25,26, 0, 0, 40, 55, 120 }
45 };
46
47 struct {
48 char name[20];
49 int numdevs;
50 struct DEV *dev;
51 } mfr[] = {
52 { "ATMEL", sizeof (ATMEL devs)/sizeof(struct DEV), ATMEL devs }
53 };
54
55 int mfrno = 0, devno = 0;
56 int signature;
57 int lock bits = 7, fuse bits = 0;
58
59 #define BUFSIZE 0x8000U
60
61 long addr;
62 long DevStart= 0x0000;
63 long Counter = 0x0000;
64
65 void ShowCounter(long val)
page 1 MPU6.C

66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137

struct text info ti;
gettextinfo(&ti);

textattr((BLUE << 4) + WHITE)
locate(5,); cprintf("S041X"

textattr(ti.attribute);
gotoxy(ti.curx, ti.cury);

}

void ShowConfig(void)
{

struct text info ti;
gettextinfo(&ti);
textattr((BLUE <<

locate(8,) s
cprintf("%02X", signature);

) + WHITE)

locate(9,)

r

, val);

r

cprintf("%02X %02X", lock bits, fuse bits);

locate(2,); cprintf("s04x",
textattr(ti.attribute);
gotoxy(ti.curx, ti.cury);

}

void ShowType(void)
{

int i;

if(mfrno
mfrno
if(devno
devno ;

r

Al A

_RST =
RDY =
PGM =

_vce =
VPP =
GND

mfr[mfrno]
mfr[mfrno]
mfr[mfrno]

mfr[mfrno]
mfr[mfrno]
mfr[mfrno]

.dev[devno]
.dev[devno]
.dev[devno]

.dev[devno]
.dev[devno]
.dev[devno]

.rst;
.rdy;
- pgm;

.VCCy,

.VpPpP;
.gnd;

_DATASIZE) ;

|| mfrno > sizeof(mfr) / sizeof(mfr[0]))

|| devno >= mfr[mfrno].numdevs)

_CODESIZE
_DATASIZE
_ SEPARATE

for(i = 0; 1 < sizeof(MODE); ++i)

mfr[mfrno] .dev[devno] .Size;
mfr[mfrno].dev[devno] .DataSize;
mfr[mfrno].dev[devno].separate;

~MODE[i] = mfr[mfrno].dev[devno].model[i];

for(i = 0; 1 < sizeof(DATA); ++i)

~_DATA[i] = mfr[mfrno].dev[devno].datalil];

for(i = 0; 1 < sizeof(ADDR); ++i)

_ADDR[i] = mfr[mfrno].dev[devno].addr[i];

for(i = 0; i < sizeof(PP)/2; ++i)
_PP[i] =

bufsize = _CODESIZE + DATASIZE;
BufEnd = bufsize - 1;

textattr((BLUE << 4) | WHITE);

locate(O,); cprintf("*Mfr.: %s",
locate(O,); cprintf("*TYPE: %s',

mfr[mfrno].dev[devno] .progpulse[i];

mfr[mfrno] .name) ;
mfr[mfrno] .dev[devno]

.name) ;

page 2

MPU6.C

138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161l
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209

locate(3,41); cprintf(" end addr. :

textattr((CYAN << 4) | WHITE);

}
int getdata(void)
{
int i, val = 0;
for(i = sizeof(DATA)-1; i >= 0; --i)
val = (val << 1) | getpin(DATA[i]);
return val;
}
void setdata(int val)
{
int 1i;
for(i = 0; 1 < sizeof(DATA); ++i)
{
setpin(DATA[i], TTLID, val & 1);
val >>= 1;
}
}
void setaddr(void)
{
long a = addr;
int 1i;
if(SEPARATE)
a $= CODESIZE;
for(i = 0; 1 < sizeof(ADDR); ++i)
{
setpin(ADDR[i], TTLID, (int)(a & 1));
a >>= 1;
}
}
void setmode(int md)
{
int 1i;
for(i = 0; 1 < sizeof(MODE); ++i)
{
setpin(MODE[i], TTLID, (int)(md & 1));
md >>= 1;
}
}
void pulse(int pulselength)
{
us_delay(2);
setpin(PGM, TTLID, 0);
us_delay(pulselength);
setpin(PGM, TTLID, 1);
us_delay(2);
}
int wait busy(int maxwait)
{
int t;
maxwait *= 10;

for(t = 0; t < maxwait; ++t)

{
if (getpin(RDY))

3041X",

BufEnd) ;

page 3

MPU6.C

210

break;

211 dly100u() ;

212 }

213 return getpin(RDY) ? 1 : O;

214}

215

216 void power(int voltage)

217 |

218 int i;

219

220 // we dont need VHH

221 setdac(VHHID, 0); // VHH = 0V

222 for(i =0; 1 <= 4; ++i) setport(VHHENID, i, 0); // no VHH

223 setport(VHHENCID,O, 0); // no VHHC

224 setport(VHHENCID,1, 0); // no VHHC

225

226 // Can't use Pins 2,3,4,6,8,32..35,37..40 for Vop

227 if(VPP == 2 || VPP == 3 || VP || VPP == 6 || VPP ==28 || (VPP > 31

&& VPP != 36))

228 {

229 errbeep () ;

230 textattr((RED << 4) | WHITE);

231 locate(41, 23); cprintf("Connect pin 1 to %d", VPP);

232 textattr((CYAN << 4) | WHITE);

233 VPP = 1; // force using Pin 1

234 }

235

236 setport (OTHERENID, O, 0); // Pin 20 = GND

237

238 if(voltage)

239 {

240 // Set all pins LOW

241 for(i = 0; i < 5; ++1i)

242 setport(TTLID, i, 0);

243

244 setdac(VCCID, voltage); // Vcc = xV

245 setdac(VOPID, mfr[mfrno].dev[devno].Upp); // Vpp = xV

246 delay(500); // wait to stabilize

247

248 setpin(_VCC, VCCENID, 1); // set Vcc pin (automatically sets
TTLID also)

249

250 dly20u() ;

251

252 setpin(RST, TTLID, 1); // RST = H

253

254 dly20u() ;

255

256 setpin(18, TTLID, 1); // start oscillator on pins 18/19

257 setpin(19, TTLID, 1);

258 setport (OTHERENID, 0, 0x30 // with 4MHz

259

260 dly50m() ;

261

262 setpin(VPP, TTLID, 1); // set EA = H

263 setpin(_PGM, TTLID, 1); // set PGM = H

264

265 setdata(OxFF); // set DO..7 = H

266 setpin(RDY, TTLID, 1); // set RDY = H (HiZ)

267

268 dly20u() ;

269

270 setpin(VPP, VOPENID, 1); // set EA = Vpp

271

272 dly20u() ;

273 }

274 else

275 {

276 setpin(_VPP, VOPENID, 0); // remove Vpp

277 setpin(VPP, TTLID, 0);

278

279 dly20u() ;

page 4 MPU6.C

280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332

333

334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349

}

int

{

int

setport (OTHERENID, 0O, 0); // osc off
dly20u() ;
setpin(RST, TTLID, 0); // pull reset low
dly20u() ;
// Set all pins LOW except VCC
for(i = 1; 1 < 40; ++1)

if(i '= vece)

setpin(i, TTLID, O);
dly20u() ;

setpin(_VCC, VCCENID, 0); // remove Vcc
setpin(VCC, TTLID, 0);

setdac(VOPID, 0); // Vpp ov
setdac(VCCID, 0); // Vec = 0V

program(void)

long end = CODESIZE + DATASIZE;
int i, blksize;

setmode (MODE WRITE) ;
blksize = mfr[mfrno].dev[devno].BlkSize;
for(addr = BufStart; addr < end;)
{
if(SEPARATE && addr == CODESIZE) // change area
{
setmode (MODE WRITE EE);
blksize = mfr[mfrno].dev[devno].DataBlkSize;

}

if((addr & OxiF) == 0)
ShowCounter (addr);

disable() ;
for(i = 0; i < blksize; ++1i)
{
setaddr () ;
setdata(buffer[addr])
pulse(PP[(addr > CODESIZE) ? 2 : 11);
++addr;

}
enable () ;

dlylm() ; // chip should have started
programming after 1ms
if('wait busy(10*blksize))
per byte)

return 0O;

}

ShowCounter (addr);
return |;

read verify check(int md)

long end = CODESIZE + DATASIZE;
int wval;
setdata(OxFE); // release pin drivers on data pins

setmode (MODE READ) ;
for(addr = BufStart; addr < end; ++addr)

// wait for completion (max.

10ms

page 5

MPU6.C

350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421

int

int

int

if (SEPARATE && addr == CODESIZE)

setmode (MODE READ EE);

setaddr () ;

// change

if((addr & OxFF) == 0) ShowCounter(addr);

val = getdata()

switch(md)
{

case 0: //

I

read

Chks += (buffer[addr] =

break;

case 1: // verify
if(buffer[addr] '= val)

{

ShowCounter (addr);

return

}

break;

0 -
YVor

case 2: // blank check

if(val !'=

{

OxXFF)

ShowCounter (addr);

return

}

break;

}

ShowCounter (addr)
return |;

write config(void

setdata(lock bits
setmode (MODE LOCK
pulse(PP[3])~
if ('wait busy(50)
return 0;

setdata(fuse bits
setmode (MODE FUSE
pulse(PP[4])

return wait busy (50

read config(void)

setdata(OxFF);

0 -
YVor

r

& 0x0F);
);

)

setmode (MODE LOCK RD) ;
lock bits = getdata() & 7;

setmode (MODE FUSE RD);
fuse bits = getdata() & 0x0F;

setmode (MODE SIGNATURE) ;
signature = getdata();

return |;

flash check(void)

int done;

val);

area

page 6

MPU6.C

422 textattr((CYAN << 4) | WHITE);

423 _window(12,40, 23,79);

424

425 textattr((BLUE << 4) | WHITE);

426 locate(12, 45); cprintf(" BLANK CHECK device:");
427

428 for(;;)

429 {

430 textattr((CYAN << 4) | WHITE);

431 locate(13, 41); cprintf("Ready to check (Y/<CR>)? ");
432

433 for(done = 0; 'done;)

434 {

435 switch(getch())

436 {

437 case 0:

438 getch();

439 break;

440

441 case '\n':

442 case '\r':

443 case (x1B:

444 return;

445

446 case 'y':

447 case 'Y':

448 done = 1;

449 }

450 }

451

452 clscrn(14,41, 22,78);

453

454 setport(USERBITS, 0, 0);

455

456 textattr(BLINK | (LIGHTGREEN << 4) | WHITE);
457 locate(14, 41); cprintf("Blank checking now... ");
458

459 power (50); done = read verify check(2); power(0);
460

461 textattr((CYAN << 4) | WHITE);

462 locate(14, 41); cprintf("Blank checking now... ");
463

464 locate(15, 41);

465 if(done)

466 {

467 ShowCounter (BufEnd) ;

468 putchar(7);

469 cprintf(" OK ");

470 setport(USERBITS, 0, 8);

471 }

472 else

473 {

474 errbeep () ;

475 textattr((RED << 4) | WHITE);
476 cprintf("Blank check error at %041X", addr);
477 textattr((CYAN << 4) | WHITE);
478 }

479 }

480 }

481

482 void flash program(void)

483 {

484 int done;

485

486 textattr((CYAN << 4) | WHITE);

487 ~window(12,40, 23,79);

488

489 textattr((BLUE << 4) | WHITE);

490 locate(12, 45); cprintf(" PROGRAM :");
491

492 for(;;)

493 {

page 7 MPU6.C

494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565

textattr((CYAN << 4) | WHITE);

locate(13, 41);

for(done = 0;

{

cprintf("Ready to program

'done;)

switch(getch())

{

case 0:
getch();
break;

case '\n':

case '\r':

case 0Ux1B:
return;

case 'y':
case 'Y':
done = 1;
}
clscrn(14,41, 22,

setport (USERBITS,

textattr(BLINK |
locate(14, 41);

78°);

0, 0

(Y/<CR>) ?

(LIGHTGREEN << 4) | WHITE);

cprintf("Programming now. ..

power (50); done = program(); power (0);

textattr((CYAN << 4) | WHITE);

locate(14, 41);
locate(15, 41);
if(done)

{

cprintf("Programming now. ..

ShowCounter (BufEnd) ;

putchar(7);

setport(USERBITS, 0, 8);

cprintf(" OK

!H),.

}
else
{
errbeep () ;
textattr((RED << 4) | WHITE);
cprintf("Program error !
textattr((CYAN << 4) | WHITE);
}

}

void flash protect(void)
{

int done;

textattr((CYAN << 4
_window(12,40, 23,79

textattr((BLUE << 4
locate(12,

for(;;)
{

) | WHITE);

) | WHITE);

textattr((CYAN << 4) | WHITE);

locate(13, 41);

for(done = 0;

{

cprintf("Ready to program

'done;)

switch(getch())

{

case 0:

n" .
r

at %041X", addr);

(Y/<CR>) ?

"

42); cprintf(" Program ID & CFG & protect bits:

"

)

"

)

)

page 8

MPU6.C

566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637

}

}

clsc

getch();
break;

case '\n':

case '\r':

case 0Ux1B:
return;

case 'y':
case 'Y':

done = 1;

rn(14,41, 2

r

Z

setport (USERBITS,

text
loca

powe

attr(BLINK
te(14, 41)

r(50); done

r

78°);

0, 0

(LIGHTGREEN << 4) | WHITE);
cprintf("Programming now... ");

write config(); power(0);

textattr((CYAN << 4)

loca
loca
if(
{

else

te(14, 41)
te(15, 41);
done)

ShowCounter (BufEnd) ;
putchar(7);

r

r

r

cprintf("Programming now... "

setport (USERBITS,
cprintf(" OK

errbeep () ;

!H),.

Oy

textattr((RED << 4

cprintf("Program error
textattr((CYAN << 4

void flash read(void)

{

int done;

textattr((CYAN << 4

~window (

12,40,

textattr((BLUE << 4
locate (

for(;;)

{

text
loca

for (
{

)

1 15
12, 45

attr((
te(13, 41)

done = 0;

switch (

{

case 0:
getch();
break;

case '\n':

case '\r':

case 0Ux1B:
return;

r

) |

23,79);

) |

CYAN << 4)
cprintf("Ready to start

'done;)

getch())

cprintf("

)

WHITE) ;

8

)

) .

!

r

WHITE) ;
at %041x",
WHITE) ;

WHITE) ;

WHITE);
READ to buffer

WHITE) ;

addr) ;

(Y/Even/0dd/<CR>) ?

"

)

page 9

MPU6.C

638 case 'y':

639 case 'Y':

640 done = 1;

641

642 case 'e':

643 case 'E':

644 case 'o':

645 case 'O':

646 done = 1;

647 }

648 }

649

650 clscrn(14,41, 22,78);

651

652 setport(USERBITS, 0, 0);

653

654 textattr(BLINK | (LIGHTGREEN << 4) | WHITE);
655 locate(14, 41); cprintf("Reading now... ");
656

657 Chks = 0;

658 power (50) ;

659 read verify check(0);

660 read config();

661 power (0) ;

662

663 textattr((CYAN << 4) | WHITE);
664 locate(14, 41); cprintf("Reading now... ");
665

666 locate(15, 41);

667 putchar(7);

668 cprintf(" OK ");

669

670 textattr((BLUE << 4) | WHITE);
671 locate(4, 41); cprintf(" Check Sum : %04X", Chks);
672

673 ShowConfig() ;

674 }

675 }

676

677 void flash verify(void)

678 {

679 int done;

680

681 textattr((CYAN << 4) | WHITE);

682 ~window(12,40, 23,79);

683

684 textattr((BLUE << 4) | WHITE);

685 locate(12, 45); cprintf(" VERIFY with buffer :");
686

687 for(;;)

688 {

689 textattr((CYAN << 4) | WHITE);
690 locate(13, 41); cprintf("Ready to verify (Y/Even/Odd/<CR>)? ");
691

692 for(done = 0; 'done;)

693 {

694 switch(getch())

695 {

696 case 0:

697 getch();

698 break;

699

700 case '\n':

701 case '\r':

702 case (x1B:

703 return;

704

705 case 'y':

706 case 'Y':

707 done = 1;

708

709 case 'e':

page 10 MPU6.C

710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
7777
778
779
780
781

case 'E':
case 'o':
case '0O':

done = 1;
}

}

clscrn(14,41, 22,7

setport (USERBITS,

textattr(BLINK | (LIGHTGREEN << 4
locate(14, 41); cprintf("Verifying now @ VDDmin...

power (mfr [mfrno] .dev[devno] .UBmin) ;

N
U

4

N .
Y 4

done = read verify check(l);

power (0) ;

textattr((CYAN << 4
locate(14, 41); cprintf("Verifying now @ VDDmin...

locate(15, 41);
if(done)
{

) | WHITE);

ShowCounter (BufEnd) ;

putchar(7);

cprintf(" OK !"

0, 8

setport (USERBITS,

}

else

{
errbeep () ;
textattr((RED << 4
cprintf(" VERIFY ERROR !
textattr((CYAN << 4) |
continue;

}

textattr(BLINK | (LIGHTGREEN << 4
locate(16, 41); cprintf("Verifying now @ VDDmax...

power (mfr [mfrno] .dev[devno] .UBmax) ;

done = read verify check(l);

power (0) ;

textattr((CYAN << 4
locate(16, 41); cprintf("Verifying now @ VDDmax...

locate(17, 41);
if(done)
{

) | WHITE);

ShowCounter (BufEnd) ;

putchar(7);

cprintf(" OK !"

0, 8

setport (USERBITS,
}
else
{
errbeep () ;
textattr((RED << 4
cprintf(" VERIFY ERROR !
textattr((CYAN << 4) |
}

}

void flash erase(void)

{

int done;

textattr((CYAN << 4
_window(12,40, 23,79)

r

WHITE) ;

) | WHITE);

) | WHITE);

page 11

MPU6.C

782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853

textattr((BLUE << 4) | WHITE);

locate(12, 45); cprintf("

for(;;)
{
textattr((CYAN << 4) |

EEPROM Erase:"

WHITE) ;

)

locate(13, 41); cprintf("Ready to erase

for(done = 0; !done;)
{
switch(getch())
{
case 0:
getch();
break;

case '\n':

case '\r':

case 0Ux1B:
return;

case 'y':
case 'Y':
done = 1;

}

clscrn(14,41, 22,78);

setport(USERBITS, 0, 0);

textattr(BLINK |

r

(LIGHTGREEN << 4) |

locate(14, 41); cprintf("Erase now...

power (50) ;

setmode (MODE ERASE) ;
pulse(PP[O])~

done = wait busy(50);
power (0) ;

textattr((CYAN << 4) |

WHITE) ;

locate(14, 41); cprintf("Erase now...

locate(15, 41);

if(done)

{
putchar(7);
cprintf(" OK ");

locate(21, 41); cprintf("press any key to continue");

) | WHITE);

) | WHITE);

setport(USERBITS, 0, 8);
}
else
{
errbeep () ;
textattr((RED << 4
cprintf(" ERROR ! ");
textattr((CYAN << 4
if(getch() == 0) getch();
}

clscrn(13,41, 22,78);
}
void flash auto(void)

{

int done, 1;

textattr((CYAN << 4) | WHITE);

~window(12,40, 23,79);

(Y/<CR>) ?

WHITE) ;

"

)

"

)

page 12

MPU6.C

854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925

textattr((BLUE << 4) | WHITE);
locate(12, 45); cprintf(" AUTO :");

for(;;)

{

textattr((CYAN << 4) | WHITE);
locate(13, 41); cprintf("Ready to start

for(done = 0; !done;)
{
switch(getch())
{
case 0:
getch();
break;

case '\n':

case '\r':

case 0Ux1B:
return;

case 'y':
case 'Y':
done 1;

case 'e':
case 'E':
case 'o':
case '0O':
done 1;

}

clscrn(14,41, 22,78);
setport (USERBITS, 0, 0);
1 = 14;

// BLANK CHECK

(Y/Even/0dd/<CR>) ?

textattr(BLINK | (LIGHTGREEN << 4) | WHITE);
locate(1, 41); cprintf("RBlank checking now. ..

power (50); done = read verify check(2); power(0);

textattr((CYAN << 4) | WHITE);

locate(14+, 41); cprintf("Rlank checking now. ..

locate(1++, 41);

if(done)
{
ShowCounter (BufEnd) ;
cprintf(" OK ");
}
else
{
errbeep () ;
textattr((RED << 4) | WHITE);
cprintf("Blank check error at %041X",
textattr((CYAN << 4) | WHITE);
// ERASE

clscrn(1, 41, 1+1, 78);

textattr(BLINK | (LIGHTGREEN << 4)

locate(1, 41); cprintf("Erase now...

WHITE) ;

")

addr) ;

r

"

)

page 13

MPU6.C

926

927 power (50) ;

928 setmode (MODE ERASE) ;

929 pulse(PP[O])~

930 done = wait busy(50);

931 power (0) ;

932

933 textattr((CYAN << 4) | WHITE);

934 locate(14+, 41); cprintf("Erase now... ");
935

936 locate(1++, 41);

937

938 if(done)

939 cprintf(" OK ");

940 else

941 {

942 errbeep () ;

943 textattr((RED << 4) | WHITE);

944 cprintf(" ERROR");

945 textattr((CYAN << 4) | WHITE);

946

947 continue;

948 }

949 }

950

951 // PROGRAM

952

953 textattr(BLINK | (LIGHTGREEN << 4) | WHITE);
954 locate(1, 41); cprintf("Programming now... ");
955

956 power (50); done = program(); power (0);

957

958 textattr((CYAN << 4) | WHITE);

959 locate(14+, 41); cprintf("Programming now... ");
960

961 locate(1++, 41);

962 if(done)

963 {

964 ShowCounter (BufEnd) ;

965 cprintf(" OK ");

966 }

967 else

968 {

969 errbeep () ;

970 textattr((RED << 4) | WHITE);

971 cprintf("Program error ! at %$041X", addr);
972 textattr((CYAN << 4) | WHITE);

973

974 continue;

975 }

976

977 // VERIFY

978

979 textattr(BLINK | (LIGHTGREEN << 4) | WHITE);
980 locate(1, 41); cprintf("VDD max verifying now...");
981

982 power (mfr [mfrno] .dev[devno] .UBmax) ;

983 done = read verify check(l);

984 power (0) ;

985

986 textattr((CYAN << 4) | WHITE);

987 locate(14+, 41); cprintf("VDD max verifying now...");
988

989 locate(1++, 41);

990 if(done)

991 {

992 ShowCounter (BufEnd) ;

993 putchar(7);

994 cprintf(" OK ");

995 setport(USERBITS, 0, 8);

996 }

997 else

page 14 MPU6.C

998

999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059

1060
1061
1062
1063
1064
1065
1066
1067
1068

}

errbeep () ;
textattr((RED << 4) | WHITE);
cprintf(" VERIFY ERROR ! at %041X", addr);
textattr((CYAN << 4) | WHITE);
continue;

}

textattr(BLINK | (LIGHTGREEN << 4) | WHITE);
); cprintf("VDD min verifying now...");

locate(1,

41

power (mfr [mfrno] .dev[devno] .UBmin) ;
done = read verify check(1l);

power (0)

r

textattr((CYAN << 4) | WHITE);

locate(1++,

locate(1,
if(done)
{

41

41); cprintf("VDD min verifying now...");

)

ShowCounter (BufEnd) ;
cprintf(" OK I"

setport (USERBITS,

putchar(7);

else

)

0, 8

textattr((RED << 4) | WHITE);
cprintf(" VERIFY ERROR ! at %041X", addr);
textattr((CYAN << 4) | WHITE);
errbeep () ;

void edit config(void)

{

int i, done;

textattr((CYAN << 4) |

~window(1,0,

10

;39)7

~window(11,1, 24,78);

locate(3,
locate(5,
locate(6,
locate(7,
locate(8,

locate(14,

1

e

locate(14,43

locate(15,

locate(15,43

locate(17,
locate(18,
locate(19,
locate(20,

locate(23,
menu 2");

)

~
Ne Ne Ne N

o N

~
~e. o N Ne Ne N

~
~

~e.

)

textattr((BLUE

locate(1,

5

)

locate(11,28);

for (;;)
{

cprintf (

cprintf (
cprintf (
cprintf (
cprintf (

cprintf (
cprintf (
cprintf (
cprintf (

cprintf (
cprintf (
cprintf (
cprintf (

cprintf (
<< 4)

cprintf (
cprintf (

WHITE) ;

"Protection: ");

"Serial Pgm: ");
"x2 clock : ");
"UsrRow Pgm: ");
"CrystalClk: ");
"A : no protection");

"B : MOVC protection");
"C : VERIFY protection");
"D : EXT EXEC protection");

"E : Serial Pgm Enable toggle");

"F : x2 Clock Enable toggle");

"G : UsrRow Pgm Enable toggle");

"H : Crystal Clock Enable toggle");

"Select options or <CR><ESC> to go back to the main
WHITE) ;

" Configuration Bit Setting :");
" Configuration Options :");

textattr((BLUE << 4) | WHITE);

page 15

MPU6.C

1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140

}

{

locate(3, 13),
switch(lock bits)

break;

"enable"

{
default cprintf("none"); lock bits = 7;
case © cprintf ("MOVC"); break;
case 4 cprintf("MOVC & VERIFY"); break;
case 0 cprintf("MOVC & VERIFY & EXT EXEC"); break;
}
for(i = 0; i < 4; ++i)
{
locate(5 + i, 13);
cprintf((fuse bits & (1 << i)) ? "disable"
}
for(done = 0; 'done;)
{
done = 1;
switch(toupper(getch()))
{
case 0: getch(); done = 0; break;
case '\n':
case '\r':
case Ux1B: return;
case 'A' : lock bits = 7; break;
case 'B' : lock bits = 6; break;
case 'C' : lock bits = 4; break;
case 'D' : lock bits = 0; break;
case 'E' : fuse bits “= 1; break;
case 'I'' : fuse bits “= 2; break;
case 'G' : fuse bits “= 4; break;
case 'H' : fuse bits “= 8; break;
default done = 0y
}
}

int done
char nol

if((nu
{
left
for (

}

14 il
1017

m =

i =
if(

void type select(void)

num,

7

len = 0;
(done =
len = done;

textattr((CYAN << 4

~window (

12,

left,

oo
23,

textattr((BLUE << 4

locate (

12,

left+5),

textattr((CYAN << 4

for(i =
{

loca

0 -
Yo

te(

i < num; ++i)

13+(1%7),

cprintf("%d.%s",

}

locate (
locate (

for(;;)
{

21,
22,

left+l);
left+l);

)

)

-0
/

I
)

len=15,

left

= 40 -

= 40,

mfr[mfrno] .numdevs) > 14)

i < num; ++i)
strlen(mfr[mfrno].dev[i].name)) > len)

WHITE) ;

WHITE) ;

cprintf("

)

WHITE) ;

TYPE SELECT:"

)

left + 1 + (i/7)*(len+4));
i, mfr[mfrno].dev[i] .name);

cprintf("<CR> back to main menu.");

cprintf("SELECT NUMBER 2");

)

page 16

MPU6.C

1141 for(no[0] = done = 0; 'done;)

1142 {

1143 locate(22, left+16); cprintf("%s ", no);

1144 locate(22, left+lo+strlen(no));

1145

1146 switch(1 = getch())

1147 {

1148 case 0:

1149 getch();

1150 break;

1151

1152 case S:

1153 if((i = strlen(no)) !'= 0)

1154 no[i-1] = 0;

1155 break;

1156

1157 case '\n':

1158 case '\r':

1159 if(strlen(no) &&

1160 (1= atoi(no)) > 0 && i < mfr[mfrno].numdevs)
1161 {

1162 devno = 1i;

1163 ShowType () ;

1164 return;

1165 }

1166 break;

1167

1168 case (Ux1B:

1169 return;

1170

1171 default:

1172 if(isdigit(1))

1173 strcat(no, (char*)e&i);

1174 break;

1175 }

1176 }

1177 }

1178 '}

1179

1180 void mfr select(void)

1181 {

1182 int done, 1i;

1183 char no[l10];

1184

1185 textattr((CYAN << 4 | WHITE);

1186 ~window(12,40, 23,79);

1187

1188 textattr((BLUE << 4) | WHITE);

1189 locate(12, 45); cprintf(" MFR SELECT:");

1190

1191 textattr((CYAN << 4) | WHITE);

1192

1193 for(i = 0; 1 < sizeof(mfr) / sizeof(mfr[0]); ++1i)

1194 {

1195 locate(13+4i, 41); cprintf("%d.%s", i, mfr[i].name);
1196 }

1197

1198 locate(21,
1199 locate(22,
1200

1201 for(;;)
1202 {

1203 for(no[0] = done = 0; 'done;)
1204 {

1205 locate(22,
1206 locate(22,
1207

1208 switch(1 = getch())
1209 {

1210 case 0:

1211 getch();

1212 break;

; cprintf("<CR> back to main menu.");

41)
41); cprintf("SELECT NUMBER 2");

6); cprintf("%s ", no);
6+strlen(no));

5
5

page 17 MPU6.C

1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284

case §:
if((i = strlen(no)) !'= 0)
no[i-1] = 0;
break;
case '\n':
case '\r':

if(strlen(no) &&

(i =atoi(no)) > 0 && i < sizeof(mfr) / sizeof(mfr[0]))

{
mfrno = 1i;
if(devno >= mfr[mfrno].numdevs)
devno = 0;
ShowType () ;
return;
}
break;

case 0Ux1B:
return;

default:
if (isdigit(i))
strcat(no, (char*)é&i);

break;
}
}
}
}
2 T ————.
int main(void)
{
int redraw, first = 1;
long tmpval;
2 ————— * /
/* main program starts here */
2 .. * /

getcwd(oldpath, 260);
strcpy(path, oldpath);

if((buffer = farmalloc(BUFSIZE)) == NULL)
return -1;

memset ((void far *)buffer, 0, BUFSIZE);

ReadConfig() ;

delay(0);
for(;;)
{
if(first)
{
first = 0;
init hw();
initdacs();
setport(USERBITS, 0, 0);
}

textattr((LIGHTGRAY << 4) | YELLOW); clscrn(0,0, 24,79);

locate(0,0); cprintf("Universal Programmer") ;
locate(1,0); cprintf("MODEL: PC Based");
locate(2,0); cprintf("MPU 89Sxxxx section " VERSION);

textattr((BLUE << 4) + WHITE); clscrn(0,40, 6,79);

ShowType () ;

page 18

MPU6.C

1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331

1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355

textattr((BLUE << 4) + WHITE);
1,53)

locate (
locate(2,41
locate(3,41
locate(4,41
locate(5,41

window(3,609,

cprintf (
; cprintf(
; cprintf (
; cprintf(
; cprintf(

~

6,79)

Iocate(4,71); cprintf(
ShowCounter (0);

window(7,40,

10,79);

Iocate(7,43); cprintf(

locate(8,42);
locate(9,42);
ShowConfig() ;

cprintf (
cprintf (

textattr((CYAN << 4)

locate(3,0
locate(4,0
locate(5,0
locate(6,0
locate(7,0
locate(8,0
locate(9,0
locate (10,0
locate (11,0
locate (12,0
if(
locate (13,0
locate (14,0
locate (15,0
} else {
locate (13,0
locate (14,0
locate (15,0
}

locate (16,0
locate (17,0
locate (18,0
locate (19,0
locate (20,0
locate (21,0
locate (22,0
if(

S N N N N N N N N

) .
DATASIZE

)
)
)

)
)
)

N N N

)

DATASIZE

cprintf (
cprintf (
cprintf (
cprintf (
cprintf (
cprintf (
; cprintf(
; cprintf(
; cprintf(
; cprintf(
'=0) {

; cprintf(
; cprintf(
; cprintf(

Ne Ne N Ne N

~e.

; cprintf(
; cprintf(
; cprintf(

; cprintf(
; cprintf(
; cprintf(
; cprintf(
; cprintf(
; cprintf(
; cprintf(
'=0) {

locaEe(23,0); cprintf(
_CODESIZE + DATASIZE - 1)

}

for(redraw

{

int c;

textattr((BLUE << 4) + WHITE);

_window(1,40, 6,79);
" TARGET ZONE ");
"Buffer start addr.: %$041X", BufStart);
" end addr.: %041X", BufEnd);
" Check Sum $04X"™, Chks);
"Device start addr.: %$041X", DevStart);
"COUNTER") ;
" Device ID & Configuration bits ");
"Device ID :");
"Configuration bits : ");
| WHITE); clscrn(3,0, 23,38);

Mo Main Menu —---—————————-— "
"1l. DOS SHELL "
"2. Load BIN or HEX file to buffer "
"3. Save buffer to disk "
"4, Edit buffer 7. Display buffer "
"5. Change I/0O base address "
"6. Display loaded file history "
"W. Swap hi-low bytes in buffer "

~
Ne Ne Ne N

o N

~e.

~e.

S N N N N N N N S
~

"T. Type select Z. Target zone ")
"B. Blank check D. Display ")
"P. Program (Program Mem & Data Mem) R
"A. Auto (B&S&P&VEL) ")
"S. Erase Program & Data memory ")
" ") ,.
"P. Program A. Auto (B&S&P&VEL) R
"S. Erase Program memory ")
"R. Read V. Verify ")

"C. Compare and display error "
"E. Configuration & ID code function "
"L. Program ID & config. & protect bits "
"Q. Quit ")
VY o e e e e e e e e e s —— —— —— —— —— — — —— — — — — — — — —— — ") ,.

"Allocation Buffer size

o N

r

r

S~ N N N

"Data memory buffer at %041X ~ %041X", CODESIZE,

0; Yredraw;)

clscrn(24,0, 24,38);

cprintf("Select function 2 ");

)) =10

/* neglect extended code */

locate(24,0);
for (;;)
{
if((¢ = getch(
break;
getch();
}
switch(¢ = toupper(c))
{
case '1': dos_shell(
case '2':

tmpval = bufsize; bufsize
memset ((void far *)buffer, O,

addr = 0;
load file(

"""), redraw = 1; break;
= 0x8000;
BUFSIZE);

)

UK bytes", BUFSIZE/1024);

// clear buffer

page 19

MPU6.C

1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399

//
//

case
case

case
case

case
case
case

case
case
case
case
case
case
case

case
case

}

setp

if (
{

}

textattr((LIGHTGRAY << 4) | YELLOW); clscrn(11,40

|3|.
T4,

T
V.

'M':
'T':
'E':

'R':
'B':
'St
'P':
'V':
'L':
'A':

!\n
!\r

ort (

c ==

bufsize= tmpval;

redraw = 1; break;

save file(); break;

tmpval = bufsize; bufsize = 0x8000;
addr = 0;

edit buffer();

bufsize= tmpval;

redraw = 1; break;

set io adr(); first = redraw = 1; break;
disp buffer(); redraw = 1; break;

mfr select(); redraw = first = 1; break;
type select(); redraw = first = 1; break;
edit config(); redraw = 1; break;

flash read(); break;
flash check(); break;
flash erase(); break;
flash program(); break;
flash verify(); break;
flash protect(); break;
flash auto(); break;

LI

L

redraw = 1; break; // refresh

USERBITS, 0, 0);

IQV)

WriteConfig() ;

textattr(LIGHTGRAY); clrscr();

chdir(oldpath);

if(buffer) farfree((void far *)buffer);
return(0);

page 20

MPU6.C

