
1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <dos.h>
4 #include <string.h>
5 #include <conio.h>
6 #include <ctype.h>
7 #include "timer.h"
8
9 #define VERSION "1.0"

10 #define COPYRIGHT "Copyright (c)2004 A-Z-E www.a-z-e.de"
11
12 #define CODESIZE 1024
13 #define DATASIZE 128
14
15 #define DO_FILEREAD 1
16 #define DO_ERASE 2
17 #define DO_CHECK 4
18 #define DO_PROGRAM 8
19 #define DO_VERIFY 16
20 #define DO_READ 32
21 #define DO_PROTECT 64
22 #define DO_FILEWRITE 128
23
24 #define PROG_CODE 1
25 #define PROG_DATA 2
26 #define PROG_ID 4
27 #define PROG_CFG 8
28 #define PROG_MEM_MASK 15
29
30 #define PROG_VERIFY 16
31 #define PROG_CHECK 32
32 #define PROG_READ 64
33 #define PROG_PROTECT 128
34 #define PROG_MODE_MASK 240
35
36 //----------------------------
37 #define PIC_LOAD_CFG 0x00 // (16<-) switch to 0x2000 (0x4000)
38 #define PIC_INCREMENT 0x06 // next address
39
40 #define PIC_LOAD_CODE 0x02 // (16<-)
41 #define PIC_READ_CODE 0x04 // (->16)
42
43 #define PIC_START_PROG 0x08 // some devices ERASE & PROGRAM !
44
45 #define PIC_PROG_ONLY 0x18 //
46 #define PIC_END_PROG 0x0E //
47
48 // Devices with ERASE function
49 //----------------------------
50 #define PIC_CHIP_ERASE 0x1F // Chip Erase TYPE=1
51
52 #define PIC_CODE_ERASE 0x09 // Single mem Erase TYPE=1
53
54 #define PIC_BULK_SETUP1 0x01 // Erase Setup TYPE=0
55 #define PIC_BULK_SETUP2 0x07 // ChipErase if ADDR=2007
56
57 // Flash chips only
58 //----------------------------
59 #define PIC_LOAD_DATA 0x03 // (16<-)
60 #define PIC_READ_DATA 0x05 // (->16)
61
62 #define PIC_DATA_ERASE 0x0B // works only if not protected
63
64 /*
65 ** D0 = DATA out
66 ** D1 = CLOCK
67 ** D2 = LVP
68 ** D3 = MCLR
69 ** D4 = VCC on
70 **
71 ** ACK= DATA in (DATA out must be H)
72 */

page 1 PIC16.C

73
74 #define DATA 1
75 #define CLOCK 2
76 #define PGM 4
77 #define MCLR 8
78 #define VCC 16
79
80 int pinstate, addr, PORT = 0x378;
81 int buffer[0x2100+DATASIZE];
82 char l[81], *pos;
83 unsigned chks;
84 FILE *x;
85
86 void pin(int which, int state)
87 {
88 if(state)
89 pinstate |= which;
90 else
91 pinstate &= ~which;
92
93 outp(PORT, pinstate);
94 }
95
96 /**
97 ** progmode()
98 **
99 ** put PIC into LVP programming mode

100 **
101 ***/
102 void power(int state)
103 {
104 outp(PORT, pinstate = VCC); // VCC off, all pins L
105 delay(100);
106
107 if(state)
108 {
109 pin(VCC, 0); // Vcc on
110 us_delay(5);
111 pin(PGM, 1); // activate LVP mode
112 us_delay(5);
113 pin(MCLR, 1); // remove RESET
114 }
115 delay(100);
116 }
117
118 void command(int cmd)
119 {
120 int i;
121
122 for(i = 0; i < 6; ++i)
123 {
124 pin(CLOCK, 1); us_delay(150);
125 pin(DATA, cmd & 1); us_delay(150);
126 cmd >>= 1;
127 pin(CLOCK, 0); us_delay(150);
128 }
129 us_delay(250);
130 }
131
132 void writedata(int d)
133 {
134 int i;
135
136 d = (d & 0x3FFF) << 1;
137
138 for(i = 0; i < 16; ++i)
139 {
140 pin(CLOCK, 1); us_delay(150);
141 pin(DATA, d & 1); us_delay(150);
142 d >>= 1;
143 pin(CLOCK, 0); us_delay(150);
144 }

page 2 PIC16.C

145 us_delay(250);
146 }
147
148 int readdata(void)
149 {
150 int i;
151 unsigned d = 0;
152
153 pin(DATA, 1); us_delay(150); // make DATA readable
154
155 for(i = 0; i < 16; ++i)
156 {
157 pin(CLOCK, 1); us_delay(150);
158 if((inp(PORT+1) & 0x40) != 0) // ACK
159 d |= 0x8000;
160 us_delay(150);
161 d >>= 1;
162 pin(CLOCK, 0); us_delay(150);
163 }
164 pin(DATA, 0); us_delay(250);
165 return d & 0x3FFF;
166 }
167
168 void do_load(int cmd, int d)
169 {
170 us_delay(250);
171 command(cmd);
172 writedata(d);
173 }
174
175 void increment(int steps)
176 {
177 while(steps--)
178 {
179 command(PIC_INCREMENT);
180 ++addr;
181 us_delay(500);
182 }
183 if((addr & 0xFF) == 0)
184 us_delay(500);
185 }
186
187 void progdelay(void)
188 {
189 us_delay(20000); // should take max. 8ms + 5ms
190 }
191
192 int program(int mode)
193 {
194 int retry;
195
196 power(1);
197
198 if(mode & PROG_CODE) // PROGRAM memory space
199 {
200 printf("\n");
201 for(addr = 0; addr < CODESIZE;)
202 {
203 retry = 5;
204 RETRY1:
205 do_load(PIC_LOAD_CODE, buffer[addr]);
206 command(PIC_START_PROG);
207 progdelay();
208 printf("\r%04X PROGRAM memory", addr);
209
210 if(mode & PROG_VERIFY)
211 {
212 command(PIC_READ_CODE);
213 if(readdata() != buffer[addr])
214 {
215 if(--retry)
216 {

page 3 PIC16.C

217 progdelay();
218 goto RETRY1;
219 }
220 break;
221 }
222 }
223
224 increment(1);
225 }
226 if(addr != CODESIZE)
227 goto ENDPROG;
228 mode &= ~PROG_CODE;
229 }
230
231 if(mode & PROG_DATA) // DATA memory space
232 {
233 do_load(PIC_LOAD_DATA, buffer[0x2100] & 0xFF);
234 progdelay();
235
236 printf("\n");
237 for(addr = 0x2100; addr < 0x2100+DATASIZE;)
238 {
239 retry = 5;
240 RETRY2:
241 do_load(PIC_LOAD_DATA, buffer[addr] & 0xFF);
242 command(PIC_START_PROG);
243 progdelay();
244 printf("\r%04X EEPROM memory", addr);
245
246 if(mode & PROG_VERIFY)
247 {
248 command(PIC_READ_DATA);
249 if((readdata() & 0xFF) != (buffer[addr] & 0xFF))
250 {
251 if(--retry)
252 {
253 progdelay();
254 goto RETRY2;
255 }
256 break;
257 }
258 }
259
260 increment(1);
261 }
262 if(addr != 0x2100+DATASIZE)
263 goto ENDPROG;
264 mode &= ~PROG_DATA;
265 }
266 if(mode & PROG_ID) // USER ID memory space
267 {
268 do_load(PIC_LOAD_CFG, 0);
269 progdelay();
270 printf("\n");
271
272 for(addr = 0x2000; addr < 0x2004;)
273 {
274 retry = 5;
275 RETRY3:
276 do_load(PIC_LOAD_CODE, buffer[addr]);
277 command(PIC_START_PROG);
278 progdelay();
279 printf("\r%04X USER ID", addr);
280
281 if(mode & PROG_VERIFY)
282 {
283 command(PIC_READ_CODE);
284 if(readdata() != buffer[addr])
285 {
286 if(--retry)
287 {
288 progdelay();

page 4 PIC16.C

289 goto RETRY3;
290 }
291 break;
292 }
293 }
294
295 increment(1);
296 }
297 if(addr != 0x2004)
298 goto ENDPROG;
299 mode &= ~PROG_ID;
300 }
301
302 if(mode & PROG_CFG) // CONFIG memory space
303 {
304 int val, val2;
305
306 printf("\n");
307 if(addr < 0x2000 || addr > 0x2007)
308 {
309 do_load(PIC_LOAD_CFG, 0); addr = 0x2000;
310 progdelay();
311 }
312 while(addr != 0x2007)
313 increment(1);
314
315 retry = 5;
316 RETRY4:
317 val = buffer[addr];
318 if(mode & PROG_PROTECT)
319 val &= ~0x3D00; // complete CODE & DATA protection
320
321 do_load(PIC_LOAD_CODE, val);
322 command(PIC_START_PROG);
323 progdelay();
324 printf("\r%04X CONFIG WORD", addr);
325
326 if(mode & PROG_VERIFY)
327 {
328 power(1);
329 do_load(PIC_LOAD_CFG, 0); addr = 0x2000;
330 increment(7);
331
332 command(PIC_READ_CODE);
333 val2 = readdata();
334
335 if(val2 != val)
336 {
337 if(--retry)
338 {
339 progdelay();
340 goto RETRY4;
341 }
342 goto ENDPROG;
343 }
344 }
345 mode &= ~PROG_CFG;
346 }
347
348 ENDPROG:
349 power(0);
350 return mode;
351 }
352
353 int read_verify(int mode)
354 {
355 int val;
356
357 power(1);
358
359 if(mode & PROG_CODE) // PROGRAM memory space
360 {

page 5 PIC16.C

361 printf("\n");
362 for(addr = 0; addr < CODESIZE;)
363 {
364 command(PIC_READ_CODE);
365 printf("\r%04X PROGRAM memory", addr);
366
367 val = readdata();
368 if(mode & PROG_READ)
369 buffer[addr] = val;
370 else if(((mode & PROG_VERIFY) && val != buffer[addr]) ||
371 ((mode & PROG_CHECK) && val != 0x3FFF))
372 {
373 power(0);
374 return 0;
375 }
376
377 increment(1);
378 }
379 }
380
381 if(mode & PROG_DATA) // DATA memory space
382 {
383 printf("\n");
384 for(addr = 0x2100; addr < 0x2100+DATASIZE;)
385 {
386 command(PIC_READ_DATA);
387 printf("\r%04X EEPROM memory", addr);
388
389 val = readdata() & 0xFF;
390 if(mode & PROG_READ)
391 buffer[addr] = val;
392 else if(((mode & PROG_VERIFY) && val != buffer[addr]) ||
393 ((mode & PROG_CHECK) && val != 0xFF))
394 {
395 power(0);
396 return 0;
397 }
398
399 increment(1);
400 }
401 }
402
403 if(mode & PROG_ID) // USER ID memory space
404 {
405 printf("\n");
406 do_load(PIC_LOAD_CFG, 0);
407 for(addr = 0x2000; addr < 0x2004;)
408 {
409 command(PIC_READ_CODE);
410 printf("\r%04X USER ID", addr);
411
412 val = readdata();
413 if(mode & PROG_READ)
414 buffer[addr] = val;
415 else if(((mode & PROG_VERIFY) && val != buffer[addr]) ||
416 ((mode & PROG_CHECK) && val != 0x3FFF))
417 {
418 power(0);
419 return 0;
420 }
421
422 increment(1);
423 }
424 }
425
426 if(mode & PROG_CFG) // CONFIG memory space
427 {
428 printf("\n");
429 if(addr < 0x2000 || addr > 0x2007)
430 {
431 do_load(PIC_LOAD_CFG, 0);
432 addr = 0x2000;

page 6 PIC16.C

433 }
434 while(addr != 0x2007)
435 increment(1);
436
437 command(PIC_READ_CODE);
438 printf("\r%04X CONFIG WORD", addr);
439
440 val = readdata();
441 if(mode & PROG_READ)
442 buffer[addr] = val;
443 else if(((mode & PROG_VERIFY) && val != buffer[addr]) ||
444 ((mode & PROG_CHECK) && val != 0x3FFF))
445 {
446 power(0);
447 return 0;
448 }
449 }
450
451 power(0);
452 return 1;
453 }
454
455 void erase(void)
456 {
457 power(1);
458
459 do_load(PIC_LOAD_CFG, 0x3FFF);
460 increment(7); // advance to 0x2007 = CFG WORD
461 command(PIC_BULK_SETUP1);
462 command(PIC_BULK_SETUP2);
463 command(PIC_START_PROG);
464 progdelay();
465 command(PIC_BULK_SETUP1);
466 command(PIC_BULK_SETUP2);
467 us_delay(100);
468
469 power(0);
470 us_delay(10000);
471 }
472
473 int getbyte(void)
474 {
475 int d1, d2;
476
477 d1 = *pos++ - '0';
478 if(d1 > 9)
479 d1 -= 7;
480 d2 = *pos++ - '0';
481 if(d2 > 9)
482 d2 -= 7;
483
484 d1 = (d1 << 4) | d2;
485 chks += d1;
486 return d1;
487 }
488
489 int readhex(char *name)
490 {
491 int len, mode, val;
492
493 if((x = fopen(name, "r")) == NULL)
494 return 0;
495
496 while(fgets(l, 80, x) != NULL)
497 {
498 if(l[0] != ':')
499 continue;
500
501 pos = l+1;
502
503 chks = 0;
504

page 7 PIC16.C

505 len = getbyte();
506
507 addr = getbyte() * 256;
508 addr |= getbyte();
509
510 mode = getbyte();
511 if(mode != 0)
512 continue;
513
514 while(len--)
515 {
516 val = getbyte();
517
518 if(addr < 0x4200)
519 {
520 if(addr & 1) // ODD (high) byte
521 {
522 buffer[addr / 2] &= 0xFF;
523 buffer[addr / 2] |= (val & 0x3F) * 256;
524 }
525 else
526 {
527 buffer[addr / 2] &= 0xFF00;
528 buffer[addr / 2] |= val;
529 }
530 }
531 else
532 buffer[addr - 0x2100] = val;
533
534 ++addr;
535 }
536
537 getbyte();
538 if((chks & 0xFF) != 0)
539 {
540 fclose(x);
541 return 0;
542 }
543 }
544
545 buffer[0x2007] |= 0x0280; // CONFIG WORD reserved bit & LVP bit
546
547 fclose(x);
548 return 1;
549 }
550
551 int writehex(char *name)
552 {
553 int i;
554
555 if((x = fopen(name, "w")) == NULL)
556 return 0;
557
558 // PROGRAM memory
559 for(addr = 0; addr < CODESIZE; addr += 8)
560 {
561 fprintf(x, ":10%04X00", addr*2);
562
563 chks = 0x10 + ((addr*2) >> 8) + ((addr*2) & 0xFF);
564 for(i = 0; i < 8; ++i)
565 {
566 fprintf(x, "%02X", buffer[addr+i] & 0xFF);
567 fprintf(x, "%02X", (buffer[addr+i] >> 8) & 0xFF);
568 chks += buffer[addr+i] & 0xFF;
569 chks += (buffer[addr+i] >> 8) & 0xFF;
570 }
571 fprintf(x, "%02X\n", (0x100 - (chks & 0xFF)) & 0xFF);
572 }
573
574 // DATA memory
575 for(addr = 0x2100; addr < 0x2100+DATASIZE; addr += 16)
576 {

page 8 PIC16.C

577 fprintf(x, ":10%04X00", addr*2);
578
579 chks = 0x10 + ((addr*2) >> 8) + ((addr*2) & 0xFF);
580 for(i = 0; i < 16; ++i)
581 {
582 fprintf(x, "%02X", buffer[addr+i] & 0xFF);
583 chks += buffer[addr+i] & 0xFF;
584 }
585 fprintf(x, "%02X\n", (0x100 - (chks & 0xFF)) & 0xFF);
586 }
587
588 // USER ID
589 addr = 0x2000;
590 fprintf(x, ":08400000");
591
592 chks = 0x48;
593 for(i = 0; i < 4; ++i)
594 {
595 fprintf(x, "%02X", buffer[addr+i] & 0xFF);
596 fprintf(x, "%02X", (buffer[addr+i] >> 8) & 0xFF);
597 chks += buffer[addr+i] & 0xFF;
598 chks += (buffer[addr+i] >> 8) & 0xFF;
599 }
600 fprintf(x, "%02X\n", (0x100 - (chks & 0xFF)) & 0xFF);
601
602 // CHIP ID & CONFIGURATION WORD
603 addr = 0x2006;
604 fprintf(x, ":02400C00");
605
606 chks = 0x4E;
607 for(i = 0; i < 2; ++i)
608 {
609 fprintf(x, "%02X", buffer[addr+i] & 0xFF);
610 fprintf(x, "%02X", (buffer[addr+i] >> 8) & 0xFF);
611 chks += buffer[addr+i] & 0xFF;
612 chks += (buffer[addr+i] >> 8) & 0xFF;
613 }
614 fprintf(x, "%02X\n", (0x100 - (chks & 0xFF)) & 0xFF);
615
616 fprintf(x, ":00000001FF\n");
617
618 fclose(x);
619 return 1;
620 }
621
622 void Header(void)
623 {
624 puts("\nPIC16 Version " VERSION " " COPYRIGHT "\n");
625 }
626
627 volatile void Usage(void)
628 {
629 puts("Usage: PIC16 {cmds} [-arg]* <hexfile> [<hexfile2>]\n"
630 " where cmds are:\n"
631 " E ERASE B BLANKCHECK\n"
632 " P PROGRAM V VERIFY pic against buffer\n"
633 " L LOCK (PROTECT) R READ pic into <hexfile> or <hexfile2>\n"
634 " A ERASE + BLANKCHECK + PROGRAM + VERIFY + LOCK\n"
635 " and args are:\n"
636 " -Px select printerport x=0:PRN 1=LPT1 2=LPT2 (default=LPT1)\n"
637 " -C exclude CODE memory from reading/programming\n"
638 " -D exclude DATA memory from reading/programming\n"
639 " -I exclude USER ID memory from reading/programming\n"
640 " -X exclude CONFIG word from reading/programming\n"
641 " -V don't verify each word after writing\n"
642 "\n"
643 " Example:\n"
644 " PIC16 A file.hex Erase, program file1.hex, verify, protect\n"
645 " PIC16 V -D file.hex Verify PIC against file.hex, ignoring DATA

memory\n"
646 " PIC16 R -X file.hex Read PIC into file.hex, leave CONFIG WORD out\n"
647 " PIC16 EB ERASE and BLANKCHECK pic\n"

page 9 PIC16.C

648);
649 exit(-1);
650 }
651
652 volatile void leave(void)
653 {
654 puts("Press any key");
655 if(getch() == 0)
656 getch();
657 exit(-1);
658 }
659
660 int main(int ac, char *av[])
661 {
662 char *fname = NULL, *fname2 = NULL, *cmd = NULL;
663 int val;
664 int pmode, mode = 0;
665 int progmode = PROG_CODE | PROG_DATA | PROG_ID | PROG_CFG | PROG_VERIFY;
666
667 delay(0);
668
669 for(addr = 0; addr < 0x2000; ++addr)
670 buffer[addr] = 0x3FFF;
671 for(addr = 0x2100; addr < 0x2200; ++addr)
672 buffer[addr] = 0x00FF;
673 for(addr = 0x2000; addr < 0x2004; ++addr)
674 buffer[addr] = 0x3FFF;
675 for(addr = 0x2004; addr < 0x2006; ++addr)
676 buffer[addr] = 0;
677 buffer[0x2006] = 0x07C0;
678 buffer[0x2007] = 0x3FFF;
679
680 power(0);
681
682 while(--ac)
683 {
684 pos = *++av;
685
686 if(pos[0] == '/' || pos[0] == '-')
687 {
688 switch(toupper(pos[1]))
689 {
690 case 'P':
691 switch(pos[2])
692 {
693 case '0': PORT = 0x3BC; break;
694 case '1': PORT = 0x378; break;
695 case '2': PORT = 0x278; break;
696 default : puts("Unknown port number"); Usage();
697 }
698 break;
699
700 case 'D': // exclude DATA from programming
701 progmode &= ~PROG_DATA;
702 break;
703
704 case 'I': // exclude ID from programming
705 progmode &= ~PROG_ID;
706 break;
707
708 case 'C': // exclude CODE from programming
709 progmode &= ~PROG_CODE;
710 break;
711
712 case 'X': // exclude CONFIGWORD from programming
713 progmode &= ~PROG_CFG;
714 break;
715
716 case 'V': // no inline verify
717 progmode &= ~PROG_VERIFY;
718 break;
719

page 10 PIC16.C

720 default : puts("Unknown switch");Usage();
721 }
722 }
723 else if(cmd == NULL)
724 cmd = pos;
725 else if(fname == NULL)
726 fname = pos;
727 else if(fname2 == NULL)
728 fname2 = pos;
729 else
730 {
731 puts("Too many arguments");
732 Usage();
733 }
734 }
735
736 while(*cmd)
737 {
738 switch(toupper(*cmd))
739 {
740 case 'E': mode |= DO_ERASE; break;
741 case 'B': mode |= DO_CHECK; break;
742 case 'P': mode |= DO_PROGRAM|DO_FILEREAD; break;
743 case 'V': mode |= DO_VERIFY|DO_FILEREAD; break;
744 case 'R': mode |= DO_READ|DO_FILEWRITE; break;
745 case 'L': mode |= DO_PROTECT; break;
746 case 'A': mode |=

DO_ERASE|DO_CHECK|DO_FILEREAD|DO_PROGRAM|DO_VERIFY|DO_PROTECT; break;
747 default : printf("Unknown command '%c'\n", *cmd); Usage();
748 }
749 ++cmd;
750 }
751
752 if(!fname && (mode & (DO_FILEREAD|DO_FILEWRITE)) != 0)
753 {
754 puts("Must specify a filename");
755 Usage();
756 }
757 if(!fname2 && (mode & (DO_FILEREAD|DO_FILEWRITE)) ==

(DO_FILEREAD|DO_FILEWRITE))
758 {
759 puts("Must specify 2 filenames");
760 Usage();
761 }
762
763 Header();
764
765 printf("Insert PIC and press any key (ESC to abort)\n");
766 switch(getch())
767 {
768 case 0: getch(); break;
769 case 0x1B:
770 return 1;
771 }
772
773 if(mode & DO_FILEREAD)
774 {
775 printf("\rReading '%s'...\n", fname);
776 if(!readhex(fname))
777 {
778 printf(" - ERROR! Aborting...\n");
779 leave();
780 }
781 }
782
783 power(1);
784 do_load(PIC_LOAD_CFG, 0);
785 increment(7);
786 command(PIC_READ_CODE);
787 val = readdata();
788 power(0);
789

page 11 PIC16.C

790 if((val & 0x3D00) != 0x3D00 && // some protection active ?
791 (mode & DO_PROGRAM) != 0 && // we want to write ?
792 (mode & DO_ERASE) == 0) // and erase not activated ?
793 {
794 printf("\rChip is protected! Erasing...\n");
795 erase();
796 }
797 else if(mode & DO_ERASE)
798 {
799 printf("\rErasing...\n");
800 erase();
801 }
802
803 if(mode & DO_CHECK)
804 {
805 printf("\rBlank Checking...");
806
807 if(!read_verify((progmode & PROG_MEM_MASK) | PROG_CHECK))
808 {
809 printf(" - Not empty!\n", addr);
810 leave();
811 }
812 }
813
814 if(mode & DO_PROGRAM)
815 {
816 int retries = 5;
817
818 printf("\rProgramming...");
819 pmode = (progmode & ~PROG_PROTECT) | ((mode & DO_VERIFY) ? 0 : PROG_VERIFY);
820 while(((pmode = program(pmode)) & PROG_MEM_MASK) != 0)
821 {
822 if(!--retries)
823 {
824 printf(" - ERROR! Aborting...\n", addr);
825 leave();
826 }
827 }
828 }
829
830 if(mode & DO_VERIFY)
831 {
832 printf("\rVerifying...");
833 if(!read_verify((progmode & PROG_MEM_MASK) | PROG_VERIFY))
834 {
835 printf(" - ERROR! Aborting...\n", addr);
836 leave();
837 }
838 }
839
840 if(mode & DO_READ)
841 {
842 printf("\rReading...");
843 read_verify((progmode & PROG_MEM_MASK) | PROG_READ);
844 }
845
846 if(mode & DO_PROTECT)
847 {
848 int retries = 3;
849
850 printf("\rProtecting...");
851 pmode = PROG_CFG | PROG_PROTECT | PROG_VERIFY;
852 while(((pmode = program(pmode)) & PROG_MEM_MASK) != 0)
853 {
854 if(!--retries)
855 {
856 printf(" - ERROR! Aborting...\n", addr);
857 leave();
858 }
859 }
860 }
861

page 12 PIC16.C

862 if(mode & DO_FILEWRITE)
863 {
864 if((mode & DO_FILEREAD) != 0 && fname2)
865 fname = fname2;
866
867 printf("\rWriting to file '%s'...\n", fname);
868 if(!writehex(fname))
869 {
870 printf(" - ERROR! Aborting...\n");
871 leave();
872 }
873 }
874
875 printf("\nDONE - BYE!\n");
876 return 0;
877 }
878

page 13 PIC16.C

