O J oy Ul WDN -

LJdJdJ OGO RO GOTOOTdE DS BRDDEDNDDEDNWWWWWWWWWWNRNNNRNONNNNNNNNNR PR R PR R R
NFRPOW®O-JOUBRWNRFROWOW®®-JIANNTDEWNRPROWOWOM-JONNERWNROW®O-JOURWNROWOW®-JAOAUDWNRLOWOWWJO O S WNR O

#include
#include
#include
#include
#include
#include
#include

#define
#define

#define
#define

#define
#define
#define
#define
#define
#define
#define
#define

#define
#define
#define
#define
#define

#define
#define
#define
#define
#define

#define

#define

#define
#define

#define

#define
#define

<stdio.h>
<stdlib.h>
<dos.h>
<string.h>
<conio.h>
<ctype.h>
"timer.h"

VERSION
COPYRIGHT

CODESIZE
DATASIZE

DO_FILEREAD
DO_ERASE
DO_CHECK
DO_PROGRAM
DO_VERIFY
DO_READ
DO_PROTECT
DO_FILEWRITE

PROG_CODE
PROG_DATA
PROG_ID
PROG_CFG
PROG_MEM MASK

PROG_VERIFY
PROG_CHECK
PROG_READ
PROG_PROTECT
PROG_MODE_MASK

PIC LOAD CFG
PIC INCREMENT

PIC_LOAD CODE
PIC_READ CODE

PIC_START PROG

PIC_PROG_ONLY
PIC_END PROG

"1.0"

"Copyright

1024

128

1

2

4

8

16

32

64

128

1

2

4

8

15

16

32

64

128

240
0x00
0x06
0x02
0x04
0x08
0x18
0x0E

// Devices with ERASE function

#define
#define

#define
#define

// Flash

#define
#define

#define

/*
**% DO =
*% D1
**x D2 =
** D3
** D4 =
* %
*% ACK=
*/

PIC CHIP ERASE
PIC_CODE_ERASE

PIC_BULK SETUP1
PIC_BULK SETUP2

chips only

PIC_LOAD DATA
PIC_READ DATA

PIC_DATA ERASE

DATA out
CLOCK
LVP
MCLR
VCC on

DATA in (DATA out must be H)

0x09

0x01
0x07

//
//

//
//

//

//
//

//
//

//
//

//

//

(c)2004 A-Z-E www.a-z-e.de"

(16<-) switch to 0x2000 (0x4000)
next address

(16<-)
(->106)

some devices ERASE & PROGRAM !

Chip Erase TYPE=1
Single mem Erase TYPE=1

Erase Setup TYPE=0
ChipErase if ADDR=2007

(1lo<-)
(->16)

works only if not protected

page 1

PIC16.C

73

74 #define DATA 1
75 #define CLOCK 2
76 #define PGM 4
77 #define MCLR 8
78 #define VCC 16

79

80 int pinstate, addr, PORT = 0x37/8;
81 int buffer[0x2100+DATASIZE];

82 char 1[81], *pos;

83 unsigned chks;

84 FILE *x;

85

86 void pin(int which, int state)
87 {

88 if(state)

89 pinstate |= which;

90 else

91 pinstate &= ~which;

92

93 outp(PORT, pinstate);

94 }

95

96 /**

97 ** progmode ()

98 * %
99 ** put PIC into LVP programming mode
100 *x
101 ***/

102 void power(int state)

103 {

104 outp(PORT, pinstate = VCC); // VCC off, all pins L
105 delay(100);

106

107 if(state)

108 {

109 pin(vCcC, 0); // Vcc on
110 us _delay(5);

111 pin(PGM, 1); // activate LVP mode
112 us _delay(5);

113 pin(MCLR, 1); // remove RESET
114 }

115 delay(100);

116 }

117

118 void command(int cmd)

119 {

120 int i;

121

122 for(1 =0; 1 < 6; ++1)

123 {

124 pin(CLOCK, 1); us delay(150);

125 pin(DATA, cmd & 1); us delay(150);
126 cmd >>= 1;

127 pin(CLOCK, 0O); us delay(150);

128 }

129 us delay(250);

130 }

131

132 void writedata(int d)

133 {

134 int i;

135

136 d=(d & Ox3FFF) << 15

137

138 for(i =0; 1 < 16; ++1)

139 {

140 pin(CLOCK, 1); us delay(150);

141 pin(DATA, d & 1); us delay(150);
142 d >>= 1;

143 pin(CLOCK, 0O); us delay(150);

144 }

page 2 PIC16.C

145 us_delay(250);

146 }

147

148 int readdata(void)

149 {

150 int i;

151 unsigned d = 0;

152

153 pin(DATA, 1); us _delay(150); // make DATA readable
154

155 for(i = 0; i < 16; ++i)

156 {

157 pin(CLOCK, 1); us delay(150);
158 if((inp(PORT+1) & 0x40) '= 0) // ACK
159 d |= 0x8000;

160 us_delay(150);

161 d >>= 1;

162 pin(CLOCK, 0); us _delay(150);
163 }

164 pin(DATA, O); us delay(250);

165 return d & Ox3FFLE;

166 }

167

168 void do load(int cmd, int d)

169 {

170 us_delay(250);

171 command (cmd) ;

172 writedata(d);

173 }

174

175 void increment(int steps)

176 {

177 while(steps--)

178 {

179 command (PIC INCREMENT) ;

180 ++addr;

181 us_delay(500);

182 }

183 if((addr & OxFE) == 0)

184 us_delay(500);

185 }

186

187 void progdelay(void)

188 {

189 us_delay(20000); // should take max. 8ms + 5ms
190 }

191

192 int program(int mode)

193 {

194 int retry;

195

196 power(1);

197

198 if (mode & PROG_CODE) // PROGRAM memory space
199 {

200 printf("\n");

201 for(addr = 0; addr < CODESIZE;)
202 {

203 retry = 5;

204 RETRY1:

205 do load(PIC LOAD CODE, buffer[addr]);
206 command (PIC_ START PROG);
207 progdelay() ;

208 printf("\r%04X PROGRAM memory", addr);
209

210 if(mode & PROG VERIFY)

211 {

212 command (PIC READ CODE) ;
213 if(readdata() !'= buffer[addr])
214 {

215 if(--retry)

216 {

page 3 PIC16.C

217 progdelay() ;

218 goto RETRYL1;

219 }

220 break;

221 }

222 }

223

224 increment (1);

225 }

226 if(addr '= CODESIZE)

227 goto ENDPROG;

228 mode &= ~PROG CODE;

229 }

230

231 if (mode & PROG DATA) // DATA memory space

232 {

233 do load(PIC LOAD DATA, buffer[0x2100] & OxFE);

234 progdelay() ;

235

236 printf("\n");

237 for(addr = 0x2100; addr < 0x2100+DATASIZE;)

238 {

239 retry = 5;

240 RETRYZ2:

241 do load(PIC LOAD DATA, buffer[addr] & OxFF);
242 command (PIC_ START PROG);

243 progdelay() ;

244 printf("\r%04X EEPROM memory", addr);

245

246 if(mode & PROG VERIFY)

247 {

248 command (PIC READ DATA);

249 if((readdata() & OxFF) !'= (buffer[addr] & OxEE))
250 {

251 if(--retry)

252 {

253 progdelay() ;

254 goto RETRYZ;

255 }

256 break;

257 }

258 }

259

260 increment (1);

261 }

262 if(addr !'= 0x2100+DATASIZE)

263 goto ENDPROG;

264 mode &= ~PROG DATA;

265 }

266 if(mode & PROG_ID) // USER ID memory space
267 {

268 do load(PIC LOAD CFG, 0);

269 progdelay() ;

270 printf("\n");

271

272 for(addr
273 {
274 retry
275 RETRY3:
276 do load(PIC LOAD CODE, buffer[addr]);
277 command (PIC_ START PROG);
278 progdelay() ;

279 printf("\r%04X USER ID", addr);
280

281 if(mode & PROG VERIFY)

282 {

283 command (PIC READ CODE) ;
284 if(readdata() !'= buffer[addr])
285 {

286 if(--retry)

287 {

288 progdelay() ;

I
o
X
NS
-
o
o
V)
Q.
Q.
[
A
o
X
NS
-
o

N

page 4 PIC16.C

289 goto RETRY3;
290 }

291 break;

292 }

293 }

294

295 increment (1);

296 }

297 if(addr '= 0x2004)

298 goto ENDPROG;

299 mode &= ~PROG _ID;

300 }

301

302 if(mode & PROG _CFG) // CONFIG memory space
303 {

304 int val, val2;

305

306 printf("\n");

307 if(addr < 0x2000 || addr > 0x2007)
308 {

309 do load(PIC LOAD CFG, 0O); addr = 0x2000;
310 progdelay() ;

311 }

312 while(addr '= 0x2007)

313 increment (1);

314

315 retry = 5;

316 RETRY4 :

317 val = buffer[addr];

318 if(mode & PROG_PROTECT)

319 val &= ~0x3D00; // complete CODE & DATA protection
320

321 do load(PIC LOAD CODE, val);
322 command (PIC_ START PROG);

323 progdelay () ;

324 printf("\r%04X CONFIG WORD", addr);
325

326 if(mode & PROG VERIFY)

327 {

328 power(1);

329 do load(PIC LOAD CFG, 0O); addr = 0x2000;
330 increment (7);

331

332 command (PIC READ CODE) ;
333 val2 = readdata();

334

335 if(val2 '= val)

336 {

337 if(--retry)

338 {

339 progdelay() ;

340 goto RETRY4;

341 }

342 goto ENDPROG;

343 }

344 }

345 mode &= ~PROG CFG;

346 }

347

348 ENDPROG:

349 power(0);

350 return mode;

351 }

352

353 int read verify(int mode)

354 {

355 int val;

356

357 power(1);

358

359 if (mode & PROG_CODE) // PROGRAM memory space
360 {

page 5 PIC16.C

361 printf("\n");

362 for(addr = 0; addr < CODESIZE;)

363 {

364 command (PIC READ CODE) ;

365 printf("\r%04X PROGRAM memory", addr);

366

367 val = readdata():;

368 if (mode & PROG READ)

369 buffer[addr] = val;

370 else if(((mode & PROG VERIFY) && val !'= buffer[addr]) ||
371 ((mode & PROG CHECK) && val != 0x3FFF))
372 {

373 power (0) ;

374 return O;

375 }

376

377 increment (1);

378 }

379 }

380

381 if (mode & PROG DATA) // DATA memory space
382 {

383 printf("\n");

384 for(addr = 0x2100; addr < 0x2100+DATASIZE;)

385 {

386 command (PIC READ DATA);

387 printf("\r%04X EEPROM memory", addr);

388

389 val = readdata() & OxFF;

390 if (mode & PROG READ)

391 buffer[addr] = val;

392 else if(((mode & PROG VERIFY) && val !'= buffer[addr]) ||
393 ((mode & PROG CHECK) && val !'= 0xFE))
394 {

395 power (0) ;

396 return O;

397 }

398

399 increment (1);

400 }

401 }

402

403 if(mode & PROG_ID) // USER ID memory space
404 {

405 printf("\n");

406 do load(PIC LOAD CFG, 0);

407 for(addr = 0x2000; addr < 0x2004;)

408 {

409 command (PIC READ CODE) ;

410 printf("\r%04X USER ID", addr);

411

412 val = readdata():;

413 if (mode & PROG READ)

414 buffer[addr] = val;

415 else if(((mode & PROG VERIFY) && val !'= buffer[addr]) ||
416 ((mode & PROG CHECK) && val != 0x3FFF))
417 {

418 power (0) ;

419 return O;

420 }

421

422 increment (1);

423 }

424 }

425

426 if(mode & PROG _CFG) // CONFIG memory space
4277 {

428 printf("\n");

429 if(addr < 022000 || addr > 0x2007)

430 {

431 do load(PIC LOAD CFG, 0);

432 addr = 0x2000;

page 6 PIC16.C

433 }

434 while(addr '= 0x2007)
435 increment (1);

436

437 command (PIC READ CODE) ;
438 printf("\r%04X CONFIG WORD", addr);
439

440 val = readdata():;

441 if (mode & PROG READ)
442 buffer[addr] = val;
443 else if(((mode & PROG VERIFY) && val !'= buffer[addr]) ||
444 ((mode & PROG CHECK) && val !'= 0x3FFE))
445 {

446 power (0) ;

447 return O;

448 }

449 }

450

451 power(0);

452 return |;

453 }

454

455 void erase(void)

456 {

457 power(1);

458

459 do load(PIC LOAD CFG, Ox3FEFEF);
460 increment(7); // advance to 0x2007 = CFG WORD
461 command (PIC BULK SETUPL);
462 command (PIC BULK SETUP2Z);
463 command (PIC_ START PROG);
464 progdelay() ;

465 command (PIC BULK SETUPL);
466 command (PIC BULK SETUP2Z);
467 us_delay(100);

468

469 power(O);

470 us_delay(10000);

471}

472

473 int getbyte(void)

474 |

475 int dl, d2;

476

477 dl = *pos++ - '0';

478 if(dl > 9)

479 dl -= 7/;

480 d2 = *pos++ - '0';

481 if(d2 > 9)

482 dz2 -= 7;

483

484 dl = (dl << 4) | d2;

485 chks += dl;

486 return dl;

487 }

488

489 int readhex(char *name)

490 {

491 int len, mode, val;

492

493 if((x = fopen(name, "r")) == NULL)
494 return O;

495

496 while(fgets(1, 80, x) !'= NULL)
497 {

498 if(1[0] '= ":")

499 continue;

500

501 pos = 1+1;

502

503 chks = 0;

504

page 7 PIC16.C

505 len = getbyte();

506

507 addr = getbyte() * 256;

508 addr |= getbyte();

509

510 mode = getbyte();

511 if(mode !'= 0)

512 continue;

513

514 while(len--)

515 {

516 val = getbyte();

517

518 if(addr < 0x4200)

519 {

520 if(addr & 1) // ODD (high) byte
521 {

522 buffer[addr
523 buffer[addr
524 }

525 else

526 {

527 buffer[addr / 2] &= OxFF00;

528 buffer[addr / 2] |= val;

529 }

530 }

531 else

532 buffer[addr - 0x2100] = val;

533

534 ++addr;

535 }

536

537 getbyte() ;

538 if((chks & OxFE) =0)

539 {

540 fclose(x);

541 return 0;

542 }

543 }

544

545 buffer[0x2007] |= 0x0280; // CONFIG WORD reserved bit & LVP bit
546

547 fclose(x);

548 return |;

549 }

550

551 int writehex(char *name)

552 {

553 int i;

554

555 if((x = fopen(name, "w")) == NULL)

556 return O;

557

558 // PROGRAM memory

559 for(addr = 0; addr < CODESIZE; addr += 8)

560 {

561 fprintf(x, ":10%04X00"™, addr*2);

562

563 chks = 0x10 +
564 for(i =0; 1
565 {

566 fprintf(x, "%02X", buffer[addr+i] & OxFEF);

567 fprintf(x, "202X", (buffer[addr+i] >> 8) & OxFF);
568 chks += buffer[addr+i] & OxFL;

569 chks += (buffer[addr+i] >> 8) & OxFt;

570 }

571 fprintf(x, "%02X\n", (0x100 - (chks & OxFF)) & OxFF);
572 }

573

574 // DATA memory

575 for(addr = 0x2100; addr < 0x2100+4DATASIZE; addr += 16)

576 {

2] &= OxFF;
21 |= (val & Ox3F) * 2565

NN

(addr*2) >> 8) + ((addr*2) & OxFF);
8

(
< 8; 441)

page 8 PIC16.C

577 fprintf(x, ":10%04X00"™, addr*2);

578

579 chks = 0x10 + ((addr*2) >> 8) + ((addr*2) & OxFF);

580 for(i = 0; 1 < 16; ++1i)

581 {

582 fprintf(x, "%02X", buffer[addr+i] & OxFEF);

583 chks += buffer[addr+i] & OxFL;

584 }

585 fprintf(x, "%02xX\n", (0x100 - (chks & OxFF)) & OxFF);

586 }

587

588 // USER ID

589 addr = 0x2000;

590 fprintf(x, ":08400000™);

591

592 chks = 0x48;

593 for(i = 0; 1 < 4; ++41i)

594 {

595 fprintf(x, "%02X", buffer[addr+i] & OxFEF);

596 fprintf(x, "202X", (buffer[addr+i] >> 8) & OxFF);

597 chks += buffer[addr+i] & OxFL;

598 chks += (buffer[addr+i] >> 8) & OxFE;

599 }

600 fprintf(x, "%02X\n", (0x100 - (chks & OxFF)) & OxFF);

601

602 // CHIP ID & CONFIGURATION WORD

603 addr = 0x2006;

604 fprintf(x, ":02400C00™);

605

606 chks = 0x4E;

607 for(i =0; 1 < 2; ++1i)

608 {

609 fprintf(x, "%02X", buffer[addr+i] & OxFEF);

610 fprintf(x, "202X", (buffer[addr+i] >> 8) & OxFF);

611 chks += buffer[addr+i] & OxFL;

612 chks += (buffer[addr+i] >> 8) & OxFt;

613 }

614 fprintf(x, "%02X\n", (0x100 - (chks & OxFF)) & OxFF);

615

616 fprintf(x, ":00000001FF\n");

617

618 fclose(x)

619 return 1;

620 }

621

622 void Header(void)

623 {

624 puts("\nPICl6 Version " VERSION " " COPYRIGHT "\n");

625 }

626

627 volatile void Usage(void)

628 {

629 puts ("Usage: PICl6 {cmds} [-argl* <hexfile> [<hexfile2>]\n"

630 " where cmds are:\n"

631 " E ERASE B BLANKCHECK\n"

632 " P PROGRAM V VERIFY pic against buffer\n"

633 " L LOCK (PROTECT) R READ pic into <hexfile> or <hexfile2>\n"

634 " A ERASE + BLANKCHECK + PROGRAM + VERIFY + LOCK\n"

635 " and args are:\n"

636 " -Px select printerport x=0:PRN 1=LPT1 2=LPT2 (default=LPT1)\n"

637 " -C exclude CODE memory from reading/programming\n"

638 " -D exclude DATA memory from reading/programming\n"

639 " -I exclude USER ID memory from reading/programming\n"

640 " -X exclude CONFIG word from reading/programming\n"

641 " -V don't verify each word after writing\n"

642 "\n"

643 " Example:\n"

644 " PICl16 A file.hex Erase, program filel.hex, verify, protect\n"

645 " PICl16 V -D file.hex Verify PIC against file.hex, ignoring DATA
memory\n"

646 " PICl16 R -X file.hex Read PIC into file.hex, leave CONFIG WORD out\n"

647 " PICl6 EB ERASE and BLANKCHECK pic\n"

page 9 PIC16.C

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719

}

volatile void leave(void)

{

int

)

exit(-1);

puts("Press any key");

if(getch()
getch();
exit(-1);

main(int ac

char *fname
int wval;

, char *av[])

= NULL, *fname2 = NULL,

int pmode, mode = 0;

int progmode
delay(0) ;

for(addr =
buffer[a
for(addr =
buffer[a
for(addr =
buffer[a
for(addr =
buffer[a
buffer[0x200
buffer[0x200

power (0) ;

while(--ac

{

= PROG_CODE

0; addr < 0x2000;

| PROG_DATA

ddr] = 0x300F;

0x2100; addr < 0x2200; ++addr)

ddr] = 0x005F;

0x2000; addr < 0x2004;

ddr] = 0x300F;

0x2004; addr < 0x2006; ++addr)
ddr] = 0;

6] = 0x07C
7] = Ox3FFE;

)

pos = *++av;

if(posl
{

O] = l/l

pos[0] == '-

switch(toupper(pos[1]))

{

case

case

case

case

case

case

'P':

switch(pos[2])

{

case '0':
case '1':
case '2':
default

}

break;

IDV:
progmode
break;

IIV:
progmode
break;

ICV:
progmode
break;

IXV:
progmode
break;

lvl:
progmode
break;

PORT = 0x3BC; break;
PORT = 0x378; break;
PORT = 0x278; break;
puts("Unknown port number"); Usage();

// exclude DATA from programming

~PROG_DATA;

// exclude ID from programming

~PROG_1ID;

// exclude CODE from programming

~PROG_CODE;

// exclude CONFIGWORD from programming

~PROG_CFG;

// no inline verify

~PROG_VERIFY;

*cmd

PROG_VERIFY;

++addr)

++addr)

page 10

PIC16.C

720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746

747
748
749
750
751
752
753
754
755
756
757

758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
7777
778
779
780
781
782
783
784
785
786
787
788
789

default : puts("Unknown switch") ;Usage()

}

}

else if(cmd == NULL)
cmd = pos;

else if(fname == NULL)
fname = pos;

else if(fname2 == NULL)
fname2 = pos;

else

{

puts("Too many arguments");
Usage() ;

}

while(*cmd)

{
switch(toupper(*cmd))
{
case 'E': mode |= DO ERASE; break;
case 'B': mode |= DO CHECK; break;
case 'P': mode |= DO PROGRAM|DO FILEREAD; break;
case 'V': mode |= DO VERIFY|DO FILEREAD; break;
case 'R': mode |= DO READ|DO FILEWRITE; break;
case 'L': mode |= DO PROTECT; break;
case 'A': mode |=
DO ERASE|DO CHECK|DO FILEREAD|DO PROGRAM|DO VERIFY|DO PROTECT; break;
default : printf("Unknown command '%c'\n", *cmd); Usage();
}
++cmd;
}
if('fname && (mode & (DO _FILEREAD|DO FILEWRITE)) !'= 0)
{

puts("Must specify a filename");
Usage() ;

if('fname2 && (mode & (DO FILEREAD|DO FILEWRITE)) ==
(DO_FILEREAD|DO FILEWRITE))

{
puts("Must specify 2 filenames");
Usage() ;

}

Header () ;

printf("Insert PIC and press any key (ESC to abort)\n");
switch(getch())
{
case 0: getch(); break;
case 0x1B:
return 1;

}

if (mode & DO _FILEREAD)

{
printf("\rReading '%s'...\n", fname);
if('readhex(fname))
{
printf(" - ERROR! Aborting...\n");
leave();

}

power (1) ;

do load(PIC LOAD CFG, 0);
increment (7);

command (PIC_READ CODE) ;
val = readdata();

power (0) ;

page 11

PIC16.C

790 if((val & 0x3D00) '= 0x3D00 && // some protection active ?

791 (mode & DO PROGRAM) != 0 && // we want to write ?
792 (mode & DO ERASE) == 0) // and erase not activated ?
793 {

794 printf("\rChip is protected! Erasing...\n");

795 erase () ;

796 }

797 else if(mode & DO _ERASE)

798 {

799 printf("\rErasing...\n");

800 erase () ;

801 }

802

803 if (mode & DO _CHECK)

804 {

805 printf("\rBlank Checking...");

806

807 if('read verify((progmode & PROG MEM MASK) | PROG CHECK))
808 {

809 printf(" - Not empty!\n", addr);

810 leave() ;

811 }

812 }

813

814 if (mode & DO PROGRAM)

815 {

816 int retries = 5;

817

818 printf("\rProgramming...");

819 pmode = (progmode & ~PROG PROTECT) | ((mode & DO _VERIFY) ? 0 : PROG VERIFY);
820 while(((pmode = program(pmode)) & PROG MEM MASK) != 0)
821 {

822 if(!'--retries)

823 {

824 printf(" - ERROR! Aborting...\n", addr);

825 leave() ;

826 }

827 }

828 }

829

830 if (mode & DO VERIFY)

831 {

832 printf("\rVerifying...");

833 if('read verify((progmode & PROG MEM MASK) | PROG VERIFY))
834 {

835 printf(" - ERROR! Aborting...\n", addr);

836 leave() ;

837 }

838 }

839

840 if (mode & DO _READ)

841 {

842 printf("\rReading...");

843 read verify((progmode & PROG MEM MASK) | PROG _READ);
844 }

845

846 if (mode & DO_PROTECT)

847 {

848 int retries = 3;

849

850 printf("\rProtecting...");

851 pmode = PROG CFG | PROG_PROTECT | PROG VERIFY;

852 while(((pmode = program(pmode)) & PROG MEM MASK) !'= 0)
853 {

854 if(!'--retries)

855 {

856 printf(" - ERROR! Aborting...\n", addr);

857 leave() ;

858 }

859 }

860 }

861

page 12 PIC16.C

862 if (mode & DO FILEWRITE)

863 {

864 if((mode & DO FILEREAD) != 0 && fname2)
865 fname = fname2;

866

867 printf("\rWriting to file '%s'...\n", fname);
868 if('writehex(fname))

869 {

870 printf(" - ERROR! Aborting...\n");
871 leave() ;

872 }

873 }

874

875 printf("\nDONE - BYE!\n");

876 return O;

877 }

878

page 13 PIC16.C

