
1 #include "all03.h"
2
3 typedef struct {
4 char offs;
5 byte mask;
6 } PINDEF;
7
8 static PINDEF TTLPINS[40] = { /* all pins allowed */
9 { 0, 0x01 }, /* Pin 1 */

10 { 0, 0x02 }, /* Pin 2 */
11 { 0, 0x04 }, /* Pin 3 */
12 { 0, 0x08 }, /* Pin 4 */
13 { 0, 0x10 }, /* Pin 5 */
14 { 0, 0x20 }, /* Pin 6 */
15 { 0, 0x40 }, /* Pin 7 */
16 { 0, 0x80 }, /* Pin 8 */
17
18 { 1, 0x01 }, /* Pin 9 */
19 { 1, 0x02 }, /* Pin 10 */
20 { 1, 0x04 }, /* Pin 11 */
21 { 1, 0x08 }, /* Pin 12 */
22 { 1, 0x10 }, /* Pin 13 */
23 { 1, 0x20 }, /* Pin 14 */
24 { 1, 0x40 }, /* Pin 15 */
25 { 1, 0x80 }, /* Pin 16 */
26
27 { 2, 0x01 }, /* Pin 17 */
28 { 2, 0x02 }, /* Pin 18 */
29 { 2, 0x04 }, /* Pin 19 */
30 { 2, 0x08 }, /* Pin 20 */
31 { 2, 0x10 }, /* Pin 21 */
32 { 2, 0x20 }, /* Pin 22 */
33 { 2, 0x40 }, /* Pin 23 */
34 { 2, 0x80 }, /* Pin 24 */
35
36 { 3, 0x01 }, /* Pin 25 */
37 { 3, 0x02 }, /* Pin 26 */
38 { 3, 0x04 }, /* Pin 27 */
39 { 3, 0x08 }, /* Pin 28 */
40 { 3, 0x10 }, /* Pin 29 */
41 { 3, 0x20 }, /* Pin 30 */
42 { 3, 0x40 }, /* Pin 31 */
43 { 3, 0x80 }, /* Pin 32 */
44
45 { 4, 0x01 }, /* Pin 33 */
46 { 4, 0x02 }, /* Pin 34 */
47 { 4, 0x04 }, /* Pin 35 */
48 { 4, 0x08 }, /* Pin 36 */
49 { 4, 0x10 }, /* Pin 37 */
50 { 4, 0x20 }, /* Pin 38 */
51 { 4, 0x40 }, /* Pin 39 */
52 { 4, 0x80 } /* Pin 40 */
53 };
54
55 static PINDEF VOPPINS[40] = { /* 1, 5, 7, 9-32, 36 */
56 { 0, 0x01 }, /* Pin 1 */
57 {-1, 0x02 }, /* Pin 2 */
58 {-1, 0x04 }, /* Pin 3 */
59 {-1, 0x08 }, /* Pin 4 */
60 { 0, 0x10 }, /* Pin 5 */
61 {-1, 0x20 }, /* Pin 6 */
62 { 0, 0x40 }, /* Pin 7 */
63 {-1, 0x80 }, /* Pin 8 */
64
65 { 1, 0x01 }, /* Pin 9 */
66 { 1, 0x02 }, /* Pin 10 */
67 { 1, 0x04 }, /* Pin 11 */
68 { 1, 0x08 }, /* Pin 12 */
69 { 1, 0x10 }, /* Pin 13 */
70 { 1, 0x20 }, /* Pin 14 */
71 { 1, 0x40 }, /* Pin 15 */
72 { 1, 0x80 }, /* Pin 16 */

page 1 SETPINS.C

73
74 { 2, 0x01 }, /* Pin 17 */
75 { 2, 0x02 }, /* Pin 18 */
76 { 2, 0x04 }, /* Pin 19 */
77 { 2, 0x08 }, /* Pin 20 */
78 { 2, 0x10 }, /* Pin 21 */
79 { 2, 0x20 }, /* Pin 22 */
80 { 2, 0x40 }, /* Pin 23 */
81 { 2, 0x80 }, /* Pin 24 */
82
83 { 3, 0x01 }, /* Pin 25 */
84 { 3, 0x02 }, /* Pin 26 */
85 { 3, 0x04 }, /* Pin 27 */
86 { 3, 0x08 }, /* Pin 28 */
87 { 3, 0x10 }, /* Pin 29 */
88 { 3, 0x20 }, /* Pin 30 */
89 { 3, 0x40 }, /* Pin 31 */
90 { 3, 0x80 }, /* Pin 32 */
91
92 {-1, 0x01 }, /* Pin 33 */
93 {-1, 0x02 }, /* Pin 34 */
94 {-1, 0x04 }, /* Pin 35 */
95 { 4, 0x08 }, /* Pin 36 PROMA-3 only ? */
96 {-1, 0x10 }, /* Pin 37 */
97 {-1, 0x20 }, /* Pin 38 */
98 {-1, 0x40 }, /* Pin 39 */
99 {-1, 0x80 } /* Pin 40 */

100 };
101
102 static PINDEF VHHPINS[40] = { /* 9-32 */
103 {-1, 0x01 }, /* Pin 1 */
104 {-1, 0x02 }, /* Pin 2 */
105 {-1, 0x04 }, /* Pin 3 */
106 {-1, 0x08 }, /* Pin 4 */
107 {-1, 0x10 }, /* Pin 5 */
108 {-1, 0x20 }, /* Pin 6 */
109 {-1, 0x40 }, /* Pin 7 */
110 {-1, 0x80 }, /* Pin 8 */
111
112 { 1, 0x01 }, /* Pin 9 */
113 { 1, 0x02 }, /* Pin 10 */
114 { 1, 0x04 }, /* Pin 11 */
115 { 1, 0x08 }, /* Pin 12 */
116 { 1, 0x10 }, /* Pin 13 */
117 { 1, 0x20 }, /* Pin 14 */
118 { 1, 0x40 }, /* Pin 15 */
119 { 1, 0x80 }, /* Pin 16 */
120
121 { 2, 0x01 }, /* Pin 17 */
122 { 2, 0x02 }, /* Pin 18 */
123 { 2, 0x04 }, /* Pin 19 */
124 { 2, 0x08 }, /* Pin 20 */
125 { 2, 0x10 }, /* Pin 21 */
126 { 2, 0x20 }, /* Pin 22 */
127 { 2, 0x40 }, /* Pin 23 */
128 { 2, 0x80 }, /* Pin 24 */
129
130 { 3, 0x01 }, /* Pin 25 */
131 { 3, 0x02 }, /* Pin 26 */
132 { 3, 0x04 }, /* Pin 27 */
133 { 3, 0x08 }, /* Pin 28 */
134 { 3, 0x10 }, /* Pin 29 */
135 { 3, 0x20 }, /* Pin 30 */
136 { 3, 0x40 }, /* Pin 31 */
137 { 3, 0x80 }, /* Pin 32 */
138
139 {-1, 0x01 }, /* Pin 33 */
140 {-1, 0x02 }, /* Pin 34 */
141 {-1, 0x04 }, /* Pin 35 */
142 {-1, 0x08 }, /* Pin 36 */
143 {-1, 0x10 }, /* Pin 37 */
144 {-1, 0x20 }, /* Pin 38 */

page 2 SETPINS.C

145 {-1, 0x40 }, /* Pin 39 */
146 {-1, 0x80 } /* Pin 40 */
147 };
148
149 static PINDEF VHHCPINS[40] = { /* 28-32 */
150 {-1, 0x00 }, /* Pin 1 */
151 {-1, 0x00 }, /* Pin 2 */
152 {-1, 0x00 }, /* Pin 3 */
153 {-1, 0x00 }, /* Pin 4 */
154 {-1, 0x00 }, /* Pin 5 */
155 {-1, 0x00 }, /* Pin 6 */
156 {-1, 0x00 }, /* Pin 7 */
157 {-1, 0x00 }, /* Pin 8 */
158
159 {-1, 0x00 }, /* Pin 9 */
160 {-1, 0x00 }, /* Pin 10 */
161 {-1, 0x00 }, /* Pin 11 */
162 {-1, 0x00 }, /* Pin 12 */
163 {-1, 0x00 }, /* Pin 13 */
164 {-1, 0x00 }, /* Pin 14 */
165 {-1, 0x00 }, /* Pin 15 */
166 {-1, 0x00 }, /* Pin 16 */
167
168 {-1, 0x00 }, /* Pin 17 */
169 {-1, 0x00 }, /* Pin 18 */
170 {-1, 0x00 }, /* Pin 19 */
171 {-1, 0x00 }, /* Pin 20 */
172 {-1, 0x00 }, /* Pin 21 */
173 {-1, 0x00 }, /* Pin 22 */
174 {-1, 0x00 }, /* Pin 23 */
175 {-1, 0x00 }, /* Pin 24 */
176
177 {-1, 0x00 }, /* Pin 25 */
178 {-1, 0x00 }, /* Pin 26 */
179 {-1, 0x00 }, /* Pin 27 */
180 { 0, 0x80 }, /* Pin 28 */
181 { 0, 0x40 }, /* Pin 29 */
182 { 0, 0x20 }, /* Pin 30 */
183 { 0, 0x10 }, /* Pin 31 */
184 { 0, 0x08 }, /* Pin 32 */
185
186 {-1, 0x00 }, /* Pin 33 */
187 {-1, 0x00 }, /* Pin 34 */
188 {-1, 0x00 }, /* Pin 35 */
189 {-1, 0x00 }, /* Pin 36 */
190 {-1, 0x00 }, /* Pin 37 */
191 {-1, 0x00 }, /* Pin 38 */
192 {-1, 0x00 }, /* Pin 39 */
193 {-1, 0x00 } /* Pin 40 */
194 };
195
196 static PINDEF VCCPINS[40] = { /* 1, 5, 7, 9, 26-32, 34, 36, 40 */
197 { 1, 0x20 }, /* Pin 1 */
198 {-1, 0x00 }, /* Pin 2 */
199 {-1, 0x00 }, /* Pin 3 */
200 {-1, 0x00 }, /* Pin 4 */
201 { 1, 0x10 }, /* Pin 5 */
202 {-1, 0x00 }, /* Pin 6 */
203 { 1, 0x08 }, /* Pin 7 */
204 {-1, 0x80 }, /* Pin 8 */
205
206 { 1, 0x04 }, /* Pin 9 */
207 {-1, 0x00 }, /* Pin 10 */
208 {-1, 0x00 }, /* Pin 11 */
209 {-1, 0x00 }, /* Pin 12 */
210 {-1, 0x00 }, /* Pin 13 */
211 {-1, 0x00 }, /* Pin 14 */
212 {-1, 0x00 }, /* Pin 15 */
213 {-1, 0x00 }, /* Pin 16 */
214
215 {-1, 0x00 }, /* Pin 17 */
216 {-1, 0x00 }, /* Pin 18 */

page 3 SETPINS.C

217 {-1, 0x00 }, /* Pin 19 */
218 {-1, 0x00 }, /* Pin 20 */
219 {-1, 0x00 }, /* Pin 21 */
220 {-1, 0x00 }, /* Pin 22 */
221 {-1, 0x00 }, /* Pin 23 */
222 {-1, 0x00 }, /* Pin 24 */
223
224 {-1, 0x00 }, /* Pin 25 */
225 { 1, 0x02 }, /* Pin 26 */
226 { 1, 0x01 }, /* Pin 27 */
227 { 0, 0x80 }, /* Pin 28 */
228 { 0, 0x40 }, /* Pin 29 */
229 { 0, 0x20 }, /* Pin 30 */
230 { 0, 0x10 }, /* Pin 31 */
231 { 0, 0x08 }, /* Pin 32 */
232
233 {-1, 0x00 }, /* Pin 33 */
234 { 0, 0x04 }, /* Pin 34 */
235 {-1, 0x00 }, /* Pin 35 */
236 { 0, 0x02 }, /* Pin 36 */
237 {-1, 0x00 }, /* Pin 37 */
238 {-1, 0x00 }, /* Pin 38 */
239 {-1, 0x00 }, /* Pin 39 */
240 { 0, 0x01 } /* Pin 40 */
241 };
242
243 int VCC,VHH,VOP;
244
245 /* remember last states */
246
247 static byte ttlen[5], vopen[5], vhhen[5];
248 static byte vccen[2], vhhenc[2];
249 static byte otheren;
250
251 /*---*/
252 void setport(int id, int off, int data)
253 {
254 outp(idport, id+off);
255
256 switch(id)
257 {
258 case TTLID: ttlen[off] = data; break;
259 case VOPENID: vopen[off] = data; break;
260 case VHHENID: vhhen[off] = data; break;
261 case VHHENCID: vhhenc[off] = data; break;
262 case VCCENID: vccen[off] = data; break;
263 case OTHERENID: otheren = data; break;
264 }
265
266 outp(idport+2, data);
267 }
268
269 /*---*/
270 int getport(int id, int off)
271 {
272 switch(id)
273 {
274 case VOPENID: return vopen[off];
275 case VHHENID: return vhhen[off];
276 case VHHENCID: return vhhenc[off];
277 case VCCENID: return vccen[off];
278 case OTHERENID: return otheren;
279 default: outp(idport, id+off); return inp(idport+2);
280 }
281 }
282
283 int getpin(int pin)
284 {
285 if(--pin < 0 || pin > 39)
286 return 0;
287 return (getport(TTLID, pin / 8) >> (pin % 8)) & 1;
288 }

page 4 SETPINS.C

289
290 void setdac(int which, int data)
291 {
292 outp(idport, which);
293
294 switch(which)
295 {
296 case VOPID: outp(idport+2, (VOP = data) + VOPDROP); break;
297 case VHHID: outp(idport+2, 10 * (VHH = data) / 6 + VHHDROP); break;
298 case VCCID: outp(idport+2, 10 * (VCC = data) / 4 + VCCDROP); break;
299 }
300 }
301
302 void setdac_raw(int which, int data) // for direct measurement
303 {
304 outp(idport, which);
305
306 switch(which)
307 {
308 case VOPID: outp(idport+2, (VOP = data)); break;
309 case VHHID: outp(idport+2, 10 * (VHH = data) / 6); break;
310 case VCCID: outp(idport+2, 10 * (VCC = data) / 4); break;
311 }
312 }
313
314 void setother(int bit, int state)
315 {
316 if(state)
317 setport(OTHERENID, 0, otheren | (1<<bit));
318 else
319 setport(OTHERENID, 0, otheren & ~(1<<bit));
320 }
321
322 int setpin(int pin, int voltage, int state)
323 {
324 int off;
325
326 if(--pin < 0 || pin > 39)
327 return 0;
328
329 /* if we try to set a pin to a current source, first make sure to set TTL to H,
330 * and that all other sources for this pin are switched off before ! */
331 if(voltage != TTLID && state != 0)
332 {
333 off = TTLPINS[pin].offs;
334 setport(TTLID, off, ttlen[off] | TTLPINS[pin].mask);
335
336 if(voltage != VOPENID && (off = VOPPINS[pin].offs) != -1)
337 setport(VOPENID, off, vopen[off] & ~VOPPINS[pin].mask);
338 if(voltage != VHHENID && (off = VHHPINS[pin].offs) != -1)
339 setport(VHHENID, off, vhhen[off] & ~VHHPINS[pin].mask);
340 if(voltage != VHHENCID && (off = VHHCPINS[pin].offs) != -1)
341 setport(VHHENCID, off, vhhenc[off] & ~VHHCPINS[pin].mask);
342 if(voltage != VCCENID && (off = VCCPINS[pin].offs) != -1)
343 setport(VCCENID, off, vccen[off] & ~VCCPINS[pin].mask);
344 }
345
346 /* if we set TTL to L, make sure all current sources are switched off before */
347 if(voltage == TTLID && state == 0)
348 {
349 if((off = VOPPINS[pin].offs) != -1)
350 setport(VOPENID, off, vopen[off] & ~VOPPINS[pin].mask);
351 if((off = VHHPINS[pin].offs) != -1)
352 setport(VHHENID, off, vhhen[off] & ~VHHPINS[pin].mask);
353 if((off = VHHCPINS[pin].offs) != -1)
354 setport(VHHENCID, off, vhhenc[off] & ~VHHCPINS[pin].mask);
355 if((off = VCCPINS[pin].offs) != -1)
356 setport(VCCENID, off, vccen[off] & ~VCCPINS[pin].mask);
357 }
358
359 switch(voltage)
360 {

page 5 SETPINS.C

361 case TTLID:
362 off = TTLPINS[pin].offs; /* no need to check, all pins allowed... */
363
364 if(state)
365 setport(TTLID, off, ttlen[off] | TTLPINS[pin].mask);
366 else
367 setport(TTLID, off, ttlen[off] & ~TTLPINS[pin].mask);
368 break;
369
370 case VOPENID:
371 if((off = VOPPINS[pin].offs) == -1)
372 return 0;
373
374 if(state)
375 setport(VOPENID, off, vopen[off] | VOPPINS[pin].mask);
376 else
377 setport(VOPENID, off, vopen[off] & ~VOPPINS[pin].mask);
378 break;
379
380 case VHHENID:
381 if((off = VHHPINS[pin].offs) == -1)
382 return 0;
383
384 if(state)
385 setport(VHHENID, off, vhhen[off] | VHHPINS[pin].mask);
386 else
387 setport(VHHENID, off, vhhen[off] & ~VHHPINS[pin].mask);
388 break;
389
390 case VHHENCID:
391 if((off = VHHCPINS[pin].offs) == -1)
392 return 0;
393
394 if(state)
395 setport(VHHENCID, off, vhhenc[off] | VHHCPINS[pin].mask);
396 else
397 setport(VHHENCID, off, vhhenc[off] & ~VHHCPINS[pin].mask);
398 break;
399
400 case VCCENID:
401 if((off = VCCPINS[pin].offs) == -1)
402 return 0;
403
404 if(state)
405 setport(VCCENID, off, vccen[off] | VCCPINS[pin].mask);
406 else
407 setport(VCCENID, off, vccen[off] & ~VCCPINS[pin].mask);
408 break;
409 }
410 return 1;
411 }
412

page 6 SETPINS.C

