
1 #include "all03.h"
2
3 char path[260], oldpath[260];
4
5 word Chks = 0x0000;
6 unsigned char huge *buffer = NULL;
7 char buffile[80] = "C:\\BUFF.TMP";
8
9 long BufStart= 0x00000000L;

10 long BufEnd = 0x00FFFFFFL;
11 long bufsize = 0x01000000L;
12
13 static struct fatr {
14 char fname[13];
15 long fsize;
16 char fattr;
17 struct {
18 unsigned day:5;
19 unsigned month:4;
20 unsigned year:7;
21 } fdate;
22 } f[1000];
23 static char filename[260];
24 static char fmatch[15] = "*.*";
25
26 int xgets(char *str)
27 {
28 struct text_info ti;
29 int i;
30
31 gettextinfo(&ti);
32
33 str[1] = str[2] = 0;
34
35 for(;;)
36 {
37 gotoxy(ti.curx, ti.cury);
38 cprintf(str+2); cprintf(" ");
39 gotoxy(ti.curx+str[1], ti.cury);
40
41 switch(i = getch())
42 {
43 case 0:
44 getch();
45 break;
46
47 case 0x09:
48 str[1] = str[2] = 0;
49 return 0;
50
51 case 0x1B:
52 str[1] = str[2] = 0;
53 return -1;
54
55 case 0x08:
56 if(str[1])
57 str[2 + --str[1]] = 0;
58 break;
59
60 case '\n':
61 case '\r':
62 return 1;
63
64 default:
65 str[2 + str[1]++] = i;
66 str[2 + str[1]] = 0;
67 break;
68 }
69 }
70 }
71
72 unsigned long read_bin(char *filename, unsigned long addr)

page 1 FILEFUNC.C

73 {
74 FILE *f, *o = NULL;
75 int i;
76
77 Chks = 0;
78
79 if((f = fopen(filename, "rb")) == NULL)
80 return -1;
81
82 if(!buffer && (o = fopen(buffile, "wb")) == NULL)
83 return -1;
84
85 while((i = getc(f)) != EOF && addr < bufsize)
86 {
87 if(!buffer) putc(i, o);
88 else buffer[addr] = i;
89
90 Chks += i;
91 ++addr;
92 }
93
94 if(o) fclose(o);
95 fclose(f);
96 return addr-1;
97 }
98
99 static char *pos;

100
101 static unsigned char getval(void)
102 {
103 unsigned char c1, c2;
104
105 c1 = toupper(*pos++);
106 c2 = toupper(*pos++);
107
108 c1 = ((c1 > '9') ? c1 - 'A'+10 : c1 - '0');
109 c2 = ((c2 > '9') ? c2 - 'A'+10 : c2 - '0');
110
111 return (c1 << 4) | c2;
112 }
113
114 unsigned long read_intel(char *filename, unsigned long addr)
115 {
116 FILE *f, *o = NULL;
117 char l[160];
118 unsigned a;
119 unsigned char d, chk, num;
120
121 addr = 0;
122 Chks = 0;
123
124 if((f = fopen(filename, "r")) == NULL)
125 return -1;
126
127 if(!buffer && (o = fopen(buffile, "wb")) == NULL)
128 return -1;
129
130 while((pos = fgets(l, 160, f)) != NULL)
131 {
132 if(*pos++ != ':')
133 continue;
134
135 chk = (num = getval()); // num bytes
136 chk += (d = getval()); a = 256 * d; // address high
137 chk += (d = getval()); a |= d; // address low
138 chk += getval(); // type
139
140 while(num--)
141 {
142 chk += (d = getval());
143 if(a < bufsize)
144 {

page 2 FILEFUNC.C

145 Chks += d;
146 if(!buffer) putc(d, o);
147 else buffer[a] = d;
148 ++a;
149 }
150 }
151 if(((chk + getval()) & 0xFF) != 0)
152 {
153 errbeep();
154 if(o) fclose(o);
155 fclose(f);
156 return 0L;
157 }
158 if(a > addr)
159 addr = a;
160 }
161
162 if(o) fclose(o);
163 fclose(f);
164 return addr-1;
165 }
166
167 unsigned long read_motorola(char *filename, unsigned long addr)
168 {
169 *filename = 0;
170 delay(2000);
171 return addr+100;
172 }
173
174 static int cmp(const void *fl1, const void *fl2)
175 {
176 struct fatr *f1 = (struct fatr *)fl1;
177 struct fatr *f2 = (struct fatr *)fl2;
178
179 if(f1->fattr != f2->fattr) return f1->fattr - f2->fattr;
180 else return strcmp(f1->fname, f2->fname);
181 }
182
183 int load_file(void)
184 {
185 int i, done, left, top, newpath, numfiles, pos;
186 unsigned long addr;
187 char tmp[33], *cptr;
188
189 textattr((LIGHTGRAY << 4) | YELLOW); clscrn(0,0, 24,39);
190
191 textattr((CYAN << 4) | WHITE);
192 _window(0,0, 22,39); // left
193 _window(2,1, 16,7); // drives
194 locate(13, 41); cprintf("File name: ");
195
196 textattr((BLUE << 4) + WHITE);
197 locate(11, 41); cprintf(" LOAD :");
198
199 More:
200 textattr((CYAN << 4) | WHITE);
201 _window(12,40, 22,79); // right
202 locate(13, 41); cprintf("File name: ");
203 filename[0] = 0;
204
205 newpath = 1;
206 left = 0;
207
208 for(done = 0; !done;)
209 {
210 textattr((LIGHTGRAY << 4) | YELLOW); clscrn(23,0, 23,79);
211 textattr((BLUE << 4) + WHITE);
212 locate(23, 0);
213 if(left)
214 cprintf("Command:Tab PgUp PgDn Up Home End Esc Enter Drive-letter

F1:files");
215 else

page 3 FILEFUNC.C

216 cprintf("Command:Tab Esc Enter");
217
218 textattr((CYAN << 4) | WHITE);
219 if(left) dbl = 1; frame(0,0, 22,39);
220 dbl ^= 1; frame(12,40, 22,79);
221 dbl = 0;
222
223 if(newpath)
224 {
225 struct ffblk ff;
226 char fname[260];
227
228 newpath = numfiles = 0;
229
230 for(i = 0; i < 13; ++i)
231 {
232 if(path[0] == 'A'+i)
233 textattr((BLUE << 4) + WHITE);
234 else
235 textattr((CYAN << 4) | WHITE);
236 locate(3+i, 2); cprintf("%c:", 'A'+i);
237
238 if(path[0] == 'N'+i)
239 textattr((BLUE << 4) + WHITE);
240 else
241 textattr((CYAN << 4) | WHITE);
242 locate(3+i, 5); cprintf("%c:", 'N'+i);
243 }
244 textattr((CYAN << 4) | WHITE);
245
246 strcpy(fname, path);
247 strcat(fname, "*.*");
248
249 done = findfirst(fname, &ff, 0xFFFF);
250 while(!done && numfiles < 1000)
251 {
252 if((ff.ff_attrib & FA_DIREC) != 0 &&
253 !(ff.ff_name[0] == '.' && ff.ff_name[1] == 0))
254 {
255 strcpy(f[numfiles].fname, ff.ff_name);
256 f[numfiles].fattr = FA_DIREC;
257 *(unsigned*)&f[numfiles].fdate = ff.ff_fdate;
258 f[numfiles++].fsize = 0;
259 }
260 done = findnext(&ff);
261 }
262
263 strcpy(fname, path);
264 strcat(fname, "\\");
265 strcat(fname, fmatch);
266
267 done = findfirst(fname, &ff, 0xFFFF);
268 while(!done && numfiles < 1000)
269 {
270 if((ff.ff_attrib & (FA_LABEL | FA_DIREC)) == 0)
271 {
272 strcpy(f[numfiles].fname, ff.ff_name);
273 f[numfiles].fattr = ff.ff_attrib;
274 *(unsigned*)&f[numfiles].fdate = ff.ff_fdate;
275 f[numfiles++].fsize = ff.ff_fsize;
276 }
277 done = findnext(&ff);
278 }
279
280 textattr((BLUE << 4) + WHITE);
281 locate(1, 1); cprintf("%-38.38s", fname);
282 textattr((CYAN << 4) | WHITE);
283
284 qsort(&f, numfiles, sizeof(f[0]), cmp);
285 done = pos = top = 0;
286 }
287

page 4 FILEFUNC.C

288 for(i = 0; i < 18; ++i)
289 {
290 struct fatr *ff = &f[i+top];
291
292 if(i+top == pos)
293 textattr((BLUE << 4) + WHITE);
294 else
295 textattr((CYAN << 4) | WHITE);
296 locate(i+3, 8);
297 if(i+top < numfiles)
298 {
299 cprintf("%-12s ", ff->fname);
300 if(ff->fattr & FA_DIREC)
301 cprintf(" <DIR>");
302 else
303 cprintf("%7ld", ff->fsize);
304 cprintf(" %02d-%02d-%02d",
305 ff->fdate.month, ff->fdate.day, (ff->fdate.year+80)%100);
306 }
307 else
308 cprintf(" ");
309 }
310
311 textattr((CYAN << 4) | WHITE);
312 locate(13, 52); cprintf("%s ", filename);
313 locate(13, 52+strlen(filename));
314
315 switch(i = getch())
316 {
317 case 0:
318 if(!left)
319 {
320 getch();
321 break;
322 }
323
324 switch(i = getch())
325 {
326 case 59: // F1
327 textattr((BLUE << 4) + WHITE);
328 clscrn(21, 1, 21, 38);
329 locate(21, 1); cprintf("Files(%-12s):", fmatch);
330 tmp[0] = 0;
331
332 for(done = 0; !done;)
333 {
334 locate(21, 21); cprintf("%s ", tmp);
335 locate(21, 21+strlen(tmp));
336
337 switch(i = getch())
338 {
339 case 0:
340 getch();
341 break;
342
343 case 8:
344 if((i = strlen(tmp)) != 0)
345 tmp[i-1] = 0;
346 break;
347
348 case 0x1B:
349 done = 1;
350 break;
351
352 case '\n':
353 case '\r':
354 if((i = strlen(tmp)) > 0 && i < 13)
355 {
356 strcpy(fmatch, tmp);
357 newpath = 1;
358 }
359 done = 1;

page 5 FILEFUNC.C

360 break;
361
362 default:
363 if(strlen(tmp) < 12)
364 strcat(tmp, (char*)&i);
365 break;
366 }
367
368 }
369 textattr((CYAN << 4) | WHITE);
370 clscrn(21, 1, 21, 38);
371 done = 0;
372 break;
373
374 case 71: // HOME
375 pos = top = 0;
376 break;
377
378 case 79: // END
379 if((top = numfiles-18) < 0)
380 top = 0;
381 pos = numfiles - 1;
382 break;
383
384 case 72: // UP
385 if(pos)
386 --pos;
387 if(pos < top)
388 top = pos;
389 break;
390
391 case 80: // DOWN
392 if(pos+1 < numfiles)
393 {
394 ++pos;
395 if(pos >= top+18)
396 ++top;
397 }
398 break;
399
400 case 73: // PGUP
401 if((pos -= 9) < 0)
402 pos = 0;
403 if(pos < top && (top -= 9) < 0)
404 top = 0;
405 break;
406
407 case 81: // PGDN
408 if((pos += 9) >= numfiles)
409 pos = numfiles-1;
410
411 if(pos >= top+18)
412 {
413 top += 9;
414 if(top + 18 >= numfiles)
415 top = numfiles - 18;
416 if(top < 0)
417 top = 0;
418 }
419 break;
420 }
421 break;
422
423 case 8: // BS
424 if((i = strlen(filename)) > 0)
425 filename[i-1] = 0;
426 break;
427
428 case 9:
429 left ^= 1; break;
430
431 case 0x1B:

page 6 FILEFUNC.C

432 return 0;
433
434 case '\n':
435 case '\r':
436 if(!left)
437 {
438 strcpy(tmp, filename);
439 sprintf(filename, "%s\\%s", path, tmp);
440 done = 1;
441 }
442 else if(f[pos].fattr & FA_DIREC)
443 {
444 if(!strcmp(f[pos].fname, "."))
445 break;
446
447 newpath = 1;
448 if(!strcmp(f[pos].fname, ".."))
449 *strrchr(path, '\\') = 0;
450 else
451 {
452 strcat(path, "\\");
453 strcat(path, f[pos].fname);
454 }
455 }
456 else
457 {
458 sprintf(filename, "%s\\%s", path, f[pos].fname);
459 done = 1;
460 }
461 break;
462
463 default:
464 if(left)
465 {
466 if(isalpha(i))
467 {
468 struct ffblk ff;
469 char p[260];
470
471 sprintf(p, "%c:*.*", toupper(i));
472 if(!findfirst(p, &ff, 0xFFFF))
473 {
474 newpath = 1;
475 sprintf(path, "%c:", toupper(i));
476 }
477 }
478 }
479 else if(strlen(filename) < 12)
480 strcat(filename, (char*)&i);
481 break;
482 }
483 }
484
485 textattr((CYAN << 4) | WHITE);
486 if((cptr = strrchr(filename, '\\')) != NULL)
487 ++cptr;
488 else
489 cptr = filename;
490 locate(13, 52); cprintf("%s ", cptr);
491
492 locate(14, 41); cprintf("in,<I>ntel HEX,<M>otorola S HEX : ");
493
494 for(done = 0; !done;)
495 {
496 switch(toupper(getch()))
497 {
498 case 0: getch(); break;
499 case 'B': i = 'B'; done = 1; break;
500 case 'I': i = 'I'; done = 1; break;
501 case 'S': i = 'S'; done = 1; break;
502 case 0x1B: return 0;
503 }

page 7 FILEFUNC.C

504 }
505
506 locate(15, 41); cprintf("Load address(%05X) : ", addr = BufStart);
507
508 tmp[0] = 6; if(xgets(tmp) == -1) return 0;
509 if(tmp[1])
510 addr = atoi(tmp+2);
511
512 textattr(BLINK | (LIGHTGREEN << 4) | WHITE);
513 locate(16, 41); cprintf("Loading...");
514
515 switch(i)
516 {
517 case 'B': addr = read_bin(filename, addr); break;
518 case 'I': addr = read_intel(filename, addr); break;
519 case 'S': addr = read_motorola(filename, addr); break;
520 }
521
522 textattr((CYAN << 4) | WHITE);
523 locate(16, 41); cprintf("Loaded... ");
524
525 putchar(7);
526 locate(17, 41); cprintf("Ok ! END ADDR. : %05X", addr);
527
528 locate(20, 41); cprintf("Press any key to continue");
529 locate(21, 41); cprintf("Or press CR to back to menu");
530
531 switch(getch())
532 {
533 case 0: getch();
534 case '\n':
535 case '\r': return 1;
536 default : goto More;
537 }
538 }
539
540 void save_file(void)
541 {
542 char fname[40], tmp[20], done;
543 unsigned char v;
544 unsigned long i, start = BufStart, ende = BufEnd;
545 FILE *f, *o;
546
547 textattr((CYAN << 4) | WHITE);
548 _window(11,40, 23,79);
549
550 textattr((BLUE << 4) + WHITE);
551 locate(11, 41); cprintf(" SAVE :");
552
553 for(done = 0; !done;)
554 {
555 textattr((CYAN << 4) | WHITE); clscrn(12,41, 22,78);
556
557 locate(12, 41); cprintf("File name: ");
558 fname[0] = 30; if(xgets(fname) != 1 || fname[1] == 0) return;
559
560 locate(13, 41); cprintf("Start address[%05X]:", BufStart);
561 tmp[0] = 6; if(xgets(tmp) != 1) return;
562 if(tmp[1]) start = atoi(tmp+2);
563
564 locate(14, 41); cprintf("End address[%05X]:", BufEnd);
565 tmp[0] = 6; if(xgets(tmp) != 1) return;
566 if(tmp[1]) ende = atoi(tmp+2);
567
568 if((o = fopen(fname+2, "rb")) != NULL)
569 {
570 fclose(o);
571
572 textattr((RED << 4) | WHITE);
573 locate(15, 41); cprintf("FILE EXISTS! OVERWRITE(Y/N)? ");
574 textattr((CYAN << 4) | WHITE);
575

page 8 FILEFUNC.C

576 if((done = getch()) == 0)
577 getch();
578 else if(toupper(done) != 'Y')
579 {
580 done = 0;
581 continue;
582 }
583 else
584 {
585 done = 0;
586 clscrn(15,41, 15,78);
587 }
588 }
589
590 locate(15, 41); cprintf("Saving now...");
591
592 locate(16, 41);
593 if((o = fopen(fname+2, "wb")) == NULL)
594 {
595 errbeep();
596 textattr((RED << 4) | WHITE); cprintf("File open error !");
597 return;
598 }
599
600 if(!buffer && (f = fopen(buffile, "rb")) == NULL)
601 {
602 errbeep();
603 textattr((RED << 4) | WHITE); cprintf("File open error !");
604 return;
605 }
606
607 for(i = start; i <= ende; ++i)
608 {
609 v = (buffer ? buffer[i] : getc(f));
610 if(putc(v, o) == EOF)
611 {
612 errbeep();
613 textattr((RED << 4) | WHITE); cprintf("File write error !");
614 fclose(o);
615 return;
616 }
617 }
618
619 fclose(o);
620 if(!buffer) fclose(f);
621
622 putchar(7);
623 cprintf(" OK !");
624
625 locate(20, 41); cprintf("Press any key to continue");
626 locate(21, 41); cprintf("Or press CR to back to menu ");
627
628 if((done = getch()) == 0)
629 getch();
630 else if((done = getch()) == 0x1B || done == '\r')
631 return;
632 else
633 done = 0;
634 }
635 }
636
637
638

page 9 FILEFUNC.C

