1 #include "all03.h"
2
3 /*
4 * MPU Atmel AT89S51/52: parallel mode
5 * based on AT89S8253 tool
6 *
7 * Changelog
8 * - 2019.09.21: 1.00 initial release
9 *
10 * TODO:
11 * — add AT89S552
12 * - test lock bits functions
13 *
14 */
15
16 #include <bios.h>
17
18 /* PARALLEL MODE */
19
20 #define VERSION "1.00"
21
22 #define MODE ERASE 0x05
23 #define MODE WRITE 0x1E
24 #define MODE READ 0x18 // 1C for AT89S8253 , 18 for AT89S51
25 #define MODE LOCK 1 0x1F
26 #define MODEiLOCK72 0x07
27 #define MODE LOCK 3 0x0D
28 #define MODE LOCK RD 0x0B

29 #define MODE SIGNATURE 0x00 // 17 for AT89S8253 , 00 for AT89S51

30

31 unsigned char RST, RDY, PGM;

32 unsigned char VCC, VPP, GND, MODE[5], DATA[S8], ADDR[16], SEPARATE;
33

34 long CODESIZE, DATASIZE;

35 int PP[5];

36

37 struct DEV {

38 char *name;

39 long Size, DataSize; // ROM & EEPROM sizes in bytes

40 char separate; // l:separated code and data space, O:combined, data

follows code
41 int BlkSize, DataBlkSize; // ROM & EEPROM pagesizes in bytes
42 int progpulse[5]; // prog pulse length in us for O:erase, 1l:code,
2:data, 3:lock 4:fuses

43 char rst,rdy,pgm; // Pin numbers for RESET,RDY/BUSY and PROG

44 char vcc,vpp,gnd,mode[5]; // Pin numbers for VCC, GND and MODEO..4

45 char datal[8]; // Pin numbers for d0..7

46 char addr[16]; // Pin numbers for a0..15

47 unsigned char UBmin, UBmax; // min. and max. Vcc value

48 unsigned char Upp; // Vpp value

49 };

50

51 struct DEV ATMEL devs[] = { // C/D prog erase code data lock
fuse ale ea

52 // TYPE ROMSIZE EESIZE sep blksize *----- progpulse[0-4] -—-———- * rst
rdy pgm vcc vpp gnd * mode[0-4] -* F*—-———- data[0-7] —-—---- I
addr[0-15] -————==—————————- + Umn Umx Upp

53 /* 0*/ { "AT89S51", 0x1000, Ox0000, 1, 1, 1, 1, 1, 1, 1, 1, 9,

10, 30, 40, 31, 20, 27,28,13,16,17, 39,38,37,36,35,34,33,32, 1, 2, 3, 4, 5, 6, 1,
8, 21,22,23,24, 0, 0, 0, 0, 40, 55, 120 }
54 // Note: EESIZE should be set to 0 in this version for AT89S51

55 };

56

57 struct {

58 char name[20];

59 int numdevs;

60 struct DEV *dev;

61 } mfr[] = {

62 { "ATMEL", sizeof (ATMEL devs)/sizeof(struct DEV), ATMEL devs }
63 };

64

65 int mfrno = 0, devno = 0;

page 1 MPU7.C

66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137

long signature;

int lock bits = 0, fuse bits = 0;

#define BUFSIZE

long addr;

long DevStart=
long Counter =

N

000
U

Y [

C

C

(
U

X
X

(@)
O C

C

U
N
U

A
)

0x8000U

r

r

void ShowCounter(long val)

= idx/?2)

(lock bits & (idx)) 2 '1':

lOl

)

69); cprintf("%04X", DATASIZE);

{
struct text info ti;
gettextinfo(&ti);
textattr((BLUE << 4) + WHITE);
locate(5, 732); cprintf("2041X", val);
textattr(ti.attribute);
gotoxy(ti.curx, ti.cury);
}
void ShowConfig(void)
{
struct text info ti;
int idx;
gettextinfo(&ti);
textattr((BLUE << 4) + WHITE);
locate(8,61);
cprintf("%06.61X", signature);
locate(9,61);
//cprintf("%01X", lock bits);
for (idx = 128; idx > 0; idx
{
cprintf("%c",
}
//EEPROM not present
//locate(2,
textattr(ti.attribute);
gotoxy(ti.curx, ti.cury);
}
void ShowType(void)
{
int 1i;
if(mfrno < 0 || mfrno > sizeof (mfr)
mfrno = 0;
if(devno < 0 || devno >= mfr[mfrno]
devno = 0;
_RST = mfr[mfrno].dev[devno].rst;
_RDY = mfr[mfrno].dev[devno].rdy;
_PGM = mfr[mfrno].dev[devno] .pgm;
_VCC = mfr[mfrno].dev[devno].vcc;
VPP = mfr[mfrno].dev[devno].vpp;
_GND = mfr[mfrno].dev[devno].gnd;
_CODESIZE = mfr[mfrno].dev[devno]

_DATASIZE = mfr[mfrno].dev[devno]

__SEPARATE

mfr[mfrno] .dev[devno]

.Size;
.DataSize;
.Separate;

.numdevs)

/ sizeof(mfr[0]))

page 2

MPU7.C

138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209

int

}

for(i = 0; i < sizeof(MODE); ++i)

~MODE[i] = mfr[mfrno].dev[devno].model[i];
for(i = 0; 1 < sizeof(DATA); ++i)

_DATA[i] = mfr[mfrno].dev[devno].datali];
for(i = 0; 1 < sizeof(ADDR); ++i)

_ADDR[i] = mfr[mfrno].dev[devno].addr[i];
for(i = 0; 1 < sizeof(PP)/2; ++i)

_PP[i] = mfr[mfrno].dev[devno].progpulseli];
bufsize = CODESIZE + DATASIZE;
BufEnd = bufsize - 1;

textattr((BLUE << 4) | WHITE);

locate(0,40); cprintf("*Mfr.: %s",
); cprintf("*TYPE: %s',

locate(0,60
locate(3,41); cprintf(" end

textattr((CYAN << 4) | WHITE);

getdata(void)

int i, val = 0;

mfr [mfrno] .name) ;

mfr[mfrno] .dev[devno] .name) ;

addr. :

for(i = sizeof(DATA)-1; i >= 0; --i)
val = (val << 1) | getpin(DATA[i]);

return val;

void setdata(int val)

{

}

int i;
for(i = 0; 1 < sizeof(DATA); ++i)
{

setpin(DATA[i], TTLID, val & 1);

val >>= 1;

void setaddr(void)

{

}

long a = addr;
int i;

if (SEPARATE)
a %= CODESIZE;

for(i = 0; i < sizeof(ADDR); ++i)
{

setpin(ADDR[i], TTLID, (int)(a & 1));

a >>= 1;

void setmode(int md)

{

int 1i;
for(i = 0; 1 < sizeof(MODE); ++i)
{

setpin(MODE[i], TTLID, (int)(md & 1));

md >>= 1;

2041X",

BufEnd) ;

page 3

MPU7.C

210 void pulse(int pulselength)

211 |

212 us_delay(2);

213

214 setpin(PGM, TTLID, 0);

215 us_delay(pulselength);

216 setpin(PGM, TTLID, 1);

217

218 us_delay(2);

219 '}

220

221 int wait busy(int maxwait)

200 |

223 int t;

224

225 maxwait *= 10;

226

227 for(t = 0; t < maxwait; ++t)

228 {

229 if (getpin(RDY))

230 break;

231 dly100u() ;

232 }

233 return getpin(RDY) ? 1 : 0O;

234}

235

236 void power(int voltage)

237 |

238 int i;

239

240 // we dont need VHH

241 setdac(VHHID, 0); // VHH = 0V

242 for(i =0; 1 <= 4; ++i) setport(VHHENID, i, 0); // no VHH

243 setport(VHHENCID,O, 0); // no VHHC

244 setport(VHHENCID,1, 0); // no VHHC

245

246 // Can't use Pins 2,3,4,6,8,32..35,37..40 for Vop

247 if(VPP == 2 || VPP == 3 || VPP ==4 || VPP ==¢6 || VPP ==238 || (VPP > 31

&& VPP !'= 36))

248 {

249 errbeep () ;

250 textattr((RED << 4) | WHITE);

251 locate(41, 23); cprintf("Connect pin 1 to %d", VPP);

252 textattr((CYAN << 4) | WHITE);

253 VPP = 1; // force using Pin 1

254 }

255

256 setport (OTHERENID, O, 0); // Pin 20 = GND

257

258 if(voltage)

259 {

260 // Set all pins LOW

261 for(i = 0; i < 5; ++1i)

262 setport(TTLID, i, 0);

263

264 setdac(VCCID, voltage); // Vcc = xV

265 setdac(VOPID, mfr[mfrno].dev[devno].Upp); // Vpp = xV

266 delay(500); // wait to stabilize

267

268 setpin(_VCC, VCCENID, 1); // set Vcc pin (automatically sets
TTLID also)

269

270 dly20u() ;

271

272 setpin(RST, TTLID, 1); // RST = H

273

274 dly20u() ;

275

276 setpin(18, TTLID, 1); // start oscillator on pins 18/19

277 setpin(19, TTLID, 1);

278 setport (OTHERENID, 0, 0x30); // with 4MHz

279

page 4 MPU7.C

280 dly50m() ;

281

282 setpin(VPP, TTLID, 1); // set EA = H
283 setpin(_PGM, TTLID, 1); // set PGM = H
284

285 setdata(OxFF); // set DO..7 = H
286 setpin(RDY, TTLID, 1); // set RDY = H (HiZ)
287

288 dly20u() ;

289

290 setpin(VPP, VOPENID, 1); // set EA = Vpp
291

292 dly20u() ;

293 }

294 else

295 {

296 setpin(_VPP, VOPENID, 0); // remove Vpp
297 setpin(VPP, TTLID, 0);

298

299 dly20u() ;

300

301 setport (OTHERENID, 0O, 0); // osc off
302

303 dly20u() ;

304

305 setpin(RST, TTLID, 0); // pull reset low
306

307 dly20u() ;

308

309 // Set all pins LOW except VCC

310 for(i = 1; i < 40; ++1)

311 if(i '= vcc)

312 setpin(i, TTLID, O);

313

314 dly20u() ;

315

316 setpin(_VCC, VCCENID, 0); // remove Vcc
317 setpin(VCC, TTLID, 0);

318

319 setdac(VOPID, 0); // Vpp = 0V
320 setdac(VCCID, 0); // Vec = 0V
321 }

322 }

323

324 int program(void)

325 {

326 long end = ~_CODESIZE + DATASIZE;

327 int i, blksize;

328

329 setmode (MODE WRITE) ;

330 blksize = mfr[mfrno].dev[devno].BlkSize;

331 for(addr = BufStart; addr < end;)

332 {

333 /*

334 if(SEPARATE && addr == CODESIZE) // change area
335 {

336 setmode (MODE WRITE EE);

337 blksize = mfr[mfrno].dev[devno].DataBlkSize;

338 }

339 */

340

341 if((addr & OxFE) == 0)

342 ShowCounter (addr);

343

344 disable() ;

345 for(i = 0; i < blksize; ++i)

346 {

347 setaddr () ;

348 setdata(buffer[addr])

349 pulse(PP[(addr > CODESIZE) ? 2 : 11);

350 ++addr;

351 }

page 5 MPU7.C

352 enable () ;

353

354 dlylm() ; // chip should have started
programming after 1ms

355 if('wait busy(10*blksize)) // wait for completion (max. 10ms
per byte)

356 return 0O;

357 }

358

359 ShowCounter (addr);

360 return |;

361}

362

363 int read verify check(int md)

364 |

365 long end = ~_CODESIZE + DATASIZE;

366 int val;

367

368 setdata(OxFFE); // release pin drivers on data pins

369

370 setmode (MODE READ) ;

371 for(addr = BufStart; addr < end; ++addr)

372 {

373 /*

374 if(SEPARATE && addr == CODESIZE) // change area

375 setmode (MODE READ EE);

376 */

377

378 setaddr () ;

379 if((addr & OxFF) == 0) ShowCounter(addr);

380

381 val = getdatal();

382

383 switch(md)

384 {

385 case 0: // read

386 Chks += (buffer[addr] = val);

387 break;

388

389 case 1: // verify

390 if(buffer[addr] '= val)

391 {

392 ShowCounter (addr);

393 return 0O;

394 }

395 break;

396

397 case : // blank check

398 if(val !'= OxFF)

399 {

400 ShowCounter (addr);

401 return 0O;

402 }

403 break;

404 }

405 }

406

407 ShowCounter (addr);

408 return |;

409 '}

410

411 int write config(void)

412 {

413 if(lock bits & 0x01) {

414 setmode (MODE LOCK 1);

415 pulse(PP[3])

416 if('wait busy(50))

417 return 0O;

418 }

419

420 if(lock bits & 0x02) {

421 setmode (MODE LOCK 2);

page 6 MPU7.C

422 pulse(PP[3]);

423 if('wait busy(50))

424 return 0O;

425 }

426

427

428 if(lock bits & 0x04) {

429 setmode (MODE_LOCK 3);

430 pulse(PP[3]),

431 if('wait busy(50))

432 return 0O;

433 }

434

435

436 /*

437

438 setdata(fuse bits & 0x0F);

439 setmode (MODE FUSE) ;

440 pulse(PP[4])

441 return wait busy (50);

442 */

443 return |;

444

445 '}

446

447 int read config(void)

448 {

449 long signature temp;

450

451 setdata(OxFF);

452

453

454 setmode (MODE LOCK RD) ;

455 lock bits = (getdata() >> 2) & 7/;
456 /*

457 setmode (MODE FUSE RD);

458 fuse bits = getdata() & 0x0F;

459 */

460 setmode (MODE SIGNATURE) ;

461 addr = 0x0200L;

462 setaddr () ;

463 signature = getdata ()& (0xFF);

464 addr = 0x0100L;

465 setaddr () ;

466 signature += (getdata() << 8) & OxFF00;
467 addr = 0x0000L;

468 setaddr () ;

469 signature temp = getdata():;

470 signature += (signature temp << 16) & OxFF0000L;
471

472

473

474 return |;

475 '}

476

477

478 int flash check(void)

479 {

480 int done;

481

482 textattr((CYAN << 4) | WHITE);
483 ~window(12,40, 23,79);

484

485 textattr((BLUE << 4) | WHITE);
486 locate(12, 45); cprintf(" BLANK CHECK device:");
487

488 for(;;)

489 {

490 textattr((CYAN << 4) | WHITE);
491 locate(13, 41); cprintf("Ready to check (Y/<CR>)? ");
492

493 for(done = 0; 'done;)

page 7 MPU7.C

494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565

switch(getch())

{

case 0:
getch();
break;

case '\n':

case '\r':

case 0Ux1B:
return;

case 'y':
case 'Y':

done = 1;

}

clscrn(14,41, 22,78);

setport (USERBITS,

textattr(BLINK |
locate(14, 41);

power (50) ; done =

0, 0

(LIGHTGREEN << 4) | WHITE);
cprintf("Blank checking now... ");

read verify check(2); power (0);

textattr((CYAN << 4) | WHITE);
cprintf("Blank checking now... ");

locate(14, 41);

locate(15, 41);
if(done)
{

ShowCounter (BufEnd) ;

putchar(7);
cprintf(" OK

!H),.

setport(USERBITS, 0, 8);

}
else
{
errbeep () ;
textattr((RED << 4) | WHITE);
cprintf("Blank check error at %041X", addr);
textattr((CYAN << 4) | WHITE);
}
}
}
void flash program(void)
{
int done;
textattr((CYAN << 4) | WHITE);
~window(12,40, 23,79);
textattr((BLUE << 4) | WHITE);
locate(12, 45); cprintf(" PROGRAM :");
for(;;)
{
textattr((CYAN << 4) | WHITE);
locate(13, 41); cprintf("Ready to program (Y/<CR>)?

for(done = 0; 'done;)
{
switch(getch())
{
case 0:
getch() ;
break;
case '\n':

"

)

page 8

MPU7.C

566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637

}

case
case

case
case

}
clscrn(
setport (

textattr
locate (

"\r':
0x1B:
return;

T 1.

Y
IYV:
done = 1;

14,41, 22,78
USERBITS, 0,

(BLINK |
14, 41);

) .

r

0

)

(LIGHTGREEN << 4) |
cprintf("Programming now... ");

power (50); done = program(); power (0);

textattr
locate (

locate (
if(done
{

ShowCounter (BufEnd) ;

((CYAN << 4
14, 41);

15, 41);

)

)

putchar(7);

setport (USERBITS,

cprintf(" OK

!H),.

else

errb

eep () ;

0y

textattr((RED << 4

cprintf("Program error
textattr((CYAN << 4

void flash protect(void)

{

~window (

int done;

textattr((
12,

textattr((
locate(12,

for (;;)
{
textattr

locate (

for(don
{
swit
{

case

CYAN << 4) |
40, 23,79);

BLUE << 4) |
425

CYAN << 4
41) 5

 (
13,
e = 0; 'done;
ch(getch())

0:
getch();

break;

case
case
case

case
case

'"\n"':

"\r':

0x1B:
return;

T 1.

Y
IYV:
done = 1;

)

WHITE) ;

8

)

) .

!

r

WHITE) ;
at %041x",
WHITE) ;

WHITE) ;

WHITE) ;

)

)

WHITE) ;

cprintf("Ready to program

WHITE) ;

cprintf("Programming now... ");

addr) ;

cprintf(" Program protect bits: ");

(Y/<CR>) ?

"

)

page 9

MPU7.C

638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709

}

}

clscrn(14,41, 22,78);

setport(USERBITS, 0, 0);

textattr(BLINK | (LIGHTGREEN << 4) | WHITE);
locate(14, 41); cprintf("Programming now... ");

power (50); done = write config(); power(0);

textattr((CYAN << 4) |
locate(14, 41);

locate(15, 41);

if(done)

{
ShowCounter (BufEnd) ;
putchar(7);
setport(USERBITS, 0, 8

cprintf(" OK !);
}
else
{
errbeep () ;
textattr((RED << 4)
cprintf("Program error
textattr((CYAN << 4)
}

void flash read(void)

{

int done;

textattr((CYAN << 4) | WHITE
~window(12,40, 23,79);
textattr((BLUE << 4) | WHITE
locate(12, 45); cprintf("
for(;;)

{

textattr((
locate(13,

CYAN << 4) | W
41) 5

for(done = 0;

{

'done;)

switch (

{

case 0:
getch();
break;

getch())

case '\n':

case '\r':

case 0Ux1B:
return;

case 'y':
case 'Y':
done 1;

case 'e':
case 'E':
case 'o':
case '0O':
done 1;

WHITE) ;
cprintf("Programming now... ");

)

| WHITE);
| at %041X",
| WHITE);

)

)
READ to buffer

HITE) ;

cprintf("Ready to start

addr) ;

(Y/Even/0dd/<CR>) ?

"

)

page 10

MPU7.C

710 clscrn(14,41, 22,78);

711

712 setport(USERBITS, 0, 0);

713

714 textattr(BLINK | (LIGHTGREEN << 4) | WHITE);
715 locate(14, 41); cprintf("Reading now... ");
716

717 Chks = 0;

718 power (50) ;

719 read verify check(0);

720 read config();

721 power (0) ;

722

723 textattr((CYAN << 4) | WHITE);
724 locate(14, 41); cprintf("Reading now... ");
725

726 locate(15, 41);

727 putchar(7);

728 cprintf(" OK ");

729

730 textattr((BLUE << 4) | WHITE);
731 locate(4, 41); cprintf(" Check Sum : %04X", Chks);
732

733 ShowConfig() ;

734 }

735 }

736

737 void flash verify(void)

738 {

739 int done;

740

741 textattr((CYAN << 4) | WHITE);

742 ~window(12,40, 23,79);

743

744 textattr((BLUE << 4) | WHITE);

745 locate(12, 45); cprintf(" VERIFY with buffer :");
746

747 for(;;)

748 {

749 textattr((CYAN << 4) | WHITE);
750 locate(13, 41); cprintf("Ready to verify (Y/Even/Odd/<CR>)? ");
751

752 for(done = 0; 'done;)

753 {

754 switch(getch())

755 {

756 case 0:

757 getch();

758 break;

759

760 case '\n':

761 case '\r':

762 case (x1B:

763 return;

764

765 case 'y':

766 case 'Y':

767 done = 1;

768

769 case 'e':

770 case 'E':

771 case 'o':

772 case 'O':

773 done = 1;

774 }

775 }

776

777 clscrn(14,41, 22,78);

778

779 setport(USERBITS, 0, 0);

780

781 textattr(BLINK | (LIGHTGREEN << 4) | WHITE);

page 11 MPU7.C

782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853

}

locate(14, 41); cprintf("Verifying now @ VDDmin...

power (mfr [mfrno] .dev[devno] .UBmin) ;
done = read verify check(l);
power (0) ;

textattr((CYAN << 4) | WHITE);

locate(14, 41); cprintf("Verifying now @ VDDmin...

locate(15, 41);

if(done)

{
ShowCounter (BufEnd) ;
putchar(7);
cprintf(" OK ");
setport(USERBITS, 0, 8);

}
else
{
errbeep () ;
textattr((RED << 4) | WHITE);
cprintf(" VERIFY ERROR ! at %041X", addr);
textattr((CYAN << 4) | WHITE);
continue;
}

textattr(BLINK | (LIGHTGREEN << 4) | WHITE);

locate(16, 41); cprintf("Verifying now @ VDDmax...

power (mfr [mfrno] .dev[devno] .UBmax) ;
done = read verify check(l);
power (0) ;

textattr((CYAN << 4) | WHITE);

locate(16, 41); cprintf("Verifying now @ VDDmax...

locate(17, 41);

if(done)

{
ShowCounter (BufEnd) ;
putchar(7);
cprintf(" OK ");
setport(USERBITS, 0, 8);

}
else
{
errbeep () ;
textattr((RED << 4) | WHITE);
cprintf(" VERIFY ERROR ! at %041X", addr);
textattr((CYAN << 4) | WHITE);
}

void flash erase(void)

{

int done;

textattr((CYAN << 4) | WHITE);
~window(12,40, 23,79);

textattr((BLUE << 4) | WHITE);
locate(12, 45); cprintf(" EEPROM Erase:");

for(;;)

{

textattr((CYAN << 4) | WHITE);

locate(13, 41); cprintf("Ready to erase (Y/<CR>)?

for(done = 0; 'done;)

{
switch(getch())

"

)

page 12

MPU7.C

854 {

855 case 0:

856 getch();

857 break;

858

859 case '\n':

860 case '\r':

861 case (x1B:

862 return;

863

864 case 'y':

865 case 'Y':

866 done = 1;

867 }

868 }

869

870 clscrn(14,41, 22,78);

871

872 setport(USERBITS, 0, 0);

873

874 textattr(BLINK | (LIGHTGREEN << 4) | WHITE);
875 locate(14, 41); cprintf("Erase now... ");
876

877 power (50) ;

878 setmode (MODE ERASE) ;

879 pulse(PP[O])~

880 done = wait busy(500);

881 power (0) ;

882

883 textattr((CYAN << 4) | WHITE);
884 locate(14, 41); cprintf("Erase now... ");
885

886 locate(15, 41);

887 if(done)

888 {

889 putchar(7);

890 cprintf(" OK ");

891 setport(USERBITS, 0, 8);

892 }

893 else

894 {

895 errbeep () ;

896 textattr((RED << 4) | WHITE);
897 cprintf(" ERROR ! ");

898 textattr((CYAN << 4) | WHITE);
899

900 locate(21, 41); cprintf("press any key to continue");
901 if(getch() == 0) getch();

902 }

903

904 clscrn(13,41, 22,78);

905 }

906 }

907

908 void flash auto(void)

909 {

910 int done, 1;

911

912 textattr((CYAN << 4) | WHITE);

913 ~window(12,40, 23,79);

914

915 textattr((BLUE << 4) | WHITE);

916 locate(12, 45); cprintf(" AUTO :");
917

918 for(;;)

919 {

920 textattr((CYAN << 4) | WHITE);
921 locate(13, 41); cprintf("Ready to start (Y/Even/0Odd/<CR>)? ");
922

923 for(done = 0; 'done;)

924 {

925 switch(getch())

page 13 MPU7.C

926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997

}

clsc

setp

// B

text
loca

powe

text
loca

loca
if(
{

}

else

{

// E

{

case 0:
getch();
break;

case '\n':

case '\r':

case 0Ux1B:
return;

case 'y':
case 'Y':
done 1;

case 'e':
case 'E':
case 'o':
case '0O':
done 1;

rn(14,41, 22,78);
ort(USERBITS, 0, 0);
14;

LANK CHECK

attr(BLINK |

(LIGHTGREEN << 4)

WHITE) ;

te(1, 41); cprintf("Blank checking now. ..

"

r(50); done = read verify check(2); power(0);

attr((CYAN << 4) |

WHITE) ;

te(1++, 41); cprintf("Blank checking now...

te(l++, 41);
done)

ShowCounter (BufEnd) ;
cprintf(" OK !");

errbeep() ;
textattr((RED << 4)

textattr((CYAN << 4

RASE

clscrn(1, 41, 1+1, 78

textattr(BLINK |

)

)

WHITE) ;
cprintf("Blank check error at %041X",

WHITE) ;

(LIGHTGREEN << 4

)

locate(1, 41); cprintf("Erase now...

power (50) ;

setmode (MODE ERASE) ;
pulse(PP[0O])

done = wait busy(500);
power (0) ;

textattr((CYAN << 4

)

WHITE) ;

WHITE) ;

1]

locate(14+, 41); cprintf("Erase now...

locate(1++, 41);

)

r

addr) ;

page 14

MPU7.C

998 if(done)

999 cprintf(" OK !);
1000 else
1001 {
1002 errbeep () ;
1003 textattr((RED << 4) | WHITE);
1004 cprintf(" ERROR");
1005 textattr((CYAN << 4) | WHITE);
1006
1007 continue;
1008 }
1009 }
1010
1011 // PROGRAM
1012
1013 textattr(BLINK | (LIGHTGREEN << 4) | WHITE);
1014 locate(1, 41); cprintf("Programming now... ");
1015
1016 power (50); done = program(); power (0);
1017
1018 textattr((CYAN << 4) | WHITE);
1019 locate(14+, 41); cprintf("Programming now... ");
1020
1021 locate(1++, 41);
1022 if(done)
1023 {
1024 ShowCounter (BufEnd) ;
1025 cprintf(" OK ");
1026 }
1027 else
1028 {
1029 errbeep () ;
1030 textattr((RED << 4) | WHITE);
1031 cprintf("Program error ! at %$041X", addr);
1032 textattr((CYAN << 4) | WHITE);
1033
1034 continue;
1035 }
1036
1037 // VERIFY
1038
1039 textattr(BLINK | (LIGHTGREEN << 4) | WHITE);
1040 locate(1, 41); cprintf("VDD max verifying now...");
1041
1042 power (mfr [mfrno] .dev[devno] .UBmax) ;
1043 done = read verify check(1l);
1044 power (0) ;
1045
1046 textattr((CYAN << 4) | WHITE);
1047 locate(14+, 41); cprintf("VDD max verifying now...");
1048
1049 locate(1++, 41);
1050 if(done)
1051 {
1052 ShowCounter (BufEnd) ;
1053 putchar(7);
1054 cprintf(" OK ");
1055 setport(USERBITS, 0, 8);
1056 }
1057 else
1058 {
1059 errbeep () ;
1060 textattr((RED << 4) | WHITE);
1061 cprintf(" VERIFY ERROR ! at %041X", addr);
1062 textattr((CYAN << 4) | WHITE);
1063 continue;
1064 }
1065
1066 textattr(BLINK | (LIGHTGREEN << 4) | WHITE);
1067 locate(1, 41); cprintf("VDD min verifying now...");
1068
1069 power (mfr [mfrno] .dev[devno] .UBmin) ;

page 15 MPU7.C

1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122

1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140

}

done

read verify check(l);
power (0) ;

textattr((CYAN << 4) | WHITE);

locate(1++,

locate(1,
if(done)
{

else

41

41); cprintf("VDD min verifying now...");

)

ShowCounter (BufEnd) ;
cprintf(" OK I"

setport (USERBITS,

putchar(7);

)

018);

textattr((RED << 4) | WHITE);
cprintf(" VERIFY ERROR ! at %041X", addr);
textattr((CYAN << 4) | WHITE);
errbeep () ;

void edit config(void)

{

int i, done;

textattr((CYAN << 4) |

~window (

1

IOI

10

;39)7

~window(11,1, 24,78);

locate (

/*

locate
locate
locate
locate
*/

locate (
locate (
locate (
locate (

(
(
(
(

/*

locate
locate
locate
locate

*/

(
(
(
(

locate (
menu 2"

5y

~ ~

O ~J oy U
~

~

14,
14,
15,
15,

17,
18,
19,
20,

23,
)

1

e

43
4
43

B DD

)

—_ — — — ~ —_ — — —
Ne Ne No Ne Ne Ne N Ne Ne Ne N

~e

)

textattr((BLUE

locate (

Ly

5

)

locate(11,28);

cprintf (

cprintf (
cprintf (
cprintf (
cprintf (
cprintf (
cprintf (
cprintf (
cprintf (

cprintf (
cprintf (
cprintf (
cprintf (

cprintf (

<< 4) |
cprintf (
cprintf (

WHITE) ;

"Protection: ");

"Serial Pgm: "
"x2 clock "
"UsrRow Pgm: "
"CrystalClk: "

.~

’

’

— o~ o

’

"A : no protection");

"B : MOVC protection");

"C : VERIFY protection");
"D : EXT EXEC protection");

"E : Serial Pgm Enable toggle");

"F : x2 Clock Enable toggle");

"G : UsrRow Pgm Enable toggle");

"H : Crystal Clock Enable toggle");

"Select options or <CR><ESC> to go back to the main

WHITE) ;
" Configuration Bit Setting :");
" Configuration Options :");

textattr((BLUE << 4) | WHITE);

locate(3,
switch(lock bits)

for(;;)
{

{

}

default
case |
case 3
case /

/*

13

)

cprintf("none"); lock bits = 0; break;
cprintf ("MOVC"); break;

cprintf("MOVC & VERIFY"); break;

cprintf ("MOVC & VERIFY & EXT EXEC"); break;

page 16

MPU7.C

1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212

for(1 = 0; 1 < 4; ++1)

{

locate(5 + i, 13);
cprintf((fuse bits & (1 << 1))
}
*/
for(done = 0; !done;)
{
done = 1;
switch(toupper(getch()))
{
case 0: getch(); done = 0; break;
case '\n':
case '\r':
case (Ux1B: return;
case 'A' lock bits = 7/; break;
case 'B' lock bits = 6; break;
case 'C' lock bits = 4; break;
case 'D' lock bits = 0; break;
/*
case 'E' fuse bits 7= 1; break;
case 'F' fuse bits 7= 2; break;
case 'G' fuse bits 7= 4; break;
case 'H' fuse bits 7= 8; break;
* / -
default done = 0y
}
}
}
}
void type select(void)
{
int done, i, num, len=15, left = 40;

char no[l10];

if((num = mfr[mfrno].numdevs) > 14)

{

textattr((CYAN << 4) | WHITE);

for(i = 0; i < num; ++i)

?

"disable"

left = 07
for(i = len = 0; i < num; ++i)
if((done =
len = done;

}
textattr((CYAN << 4) | WHITE);
~window(12,left, 23,79);
textattr((BLUE << 4) | WHITE);
locate(12, left+5); cprintf(" TYPE SELECT:");

"enable"

strlen(mfr[mfrno].dev[i].name)) > len)

{

locate(13+(i%7), left + 1 + (i/7)*(len+4));

cprintf("%d.%s", i, mfr[mfrno].dev[i].name);
}
locate(21, left+l); cprintf("<CR> back to main menu.");
locate(22, left+l); cprintf("SELECT NUMBER 2");
for(;;)
{

for(no[0] = done = 0; 'done;)

{

locate(22, left+16); cprintf("%s ",

locate(22, left+lo+strlen(no));

switch(i = getch())
{

no);

page 17

MPU7.C

1213 case 0:

1214 getch () ;

1215 break;

1216

1217 case S:

1218 if((1 = strlen(no)) '= 0)

1219 no[i-1] = 0;

1220 break;

1221

1222 case '\n':

1223 case '\r':

1224 if(strlen(no) &&

1225 (1 =atoi(no)) > 0 && i < mfr[mfrno].numdevs)
1226 {

1227 devno = 1i;

1228 ShowType () ;

1229 return;

1230 }

1231 break;

1232

1233 case (x1B:

1234 return;

1235

1236 default:

1237 if(isdigit(1))

1238 strcat(no, (char*)e&i);

1239 break;

1240 }

1241 }

1242 }

1243 }

1244

1245 void mfr select(void)

1246 {

1247 int done, 1i;

1248 char no[l10];

1249

1250 textattr((CYAN << 4) | WHITE);

1251 ~window(12,40, 23,79);

1252

1253 textattr((BLUE << 4) | WHITE);

1254 locate(12, 45); cprintf(" MFR SELECT:");

1255

1256 textattr((CYAN << 4) | WHITE);

1257

1258 for(i = 0; 1 < sizeof(mfr) / sizeof(mfr[0]); ++1i)

1259 {

1260 locate(13+4i, 41); cprintf("%d.%s", i, mfr[i].name);
1261 }

1262

1263 locate(21,
1264 locate(22,
1265

1266 for(;;)
1267 {

1268 for(no[0] = done = 0; 'done;)
1269 {

1270 locate(22,
1271 locate(22,
1272

1273 switch(1 = getch())

1274 {

1275 case 0:

1276 getch();

1277 break;

1278

1279 case S:

1280 if((1 = strlen(no)) '= 0)
1281 no[i-1] = 0;

1282 break;

1283

1284 case '\n':

cprintf("<CR> back to main menu.");

41);
41); cprintf("SELECT NUMBER 2");

6); cprintf("%s ", no);
6+strlen(no));

5
5

page 18 MPU7.C

1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356

case '\r':
if(strlen(no) &&

(i =atoi(no)) > 0 && i < sizeof(mfr) / sizeof(mfr[0]))

{
mfrno = 1i;
if(devno >= mfr[mfrno].numdevs)
devno = 0;
ShowType () ;
return;
}
break;

case 0Ux1B:
return;

default:
if (isdigit(i))
strcat(no, (char*)é&i);

break;
}
}
}
}
2 T
int main(void)
{
int redraw, first = 1;
long tmpval;
2 ————— * /
/* main program starts here */
2 .. * /

getcwd(oldpath, 260);
strcpy(path, oldpath);

if (

mems

(buffer = farmalloc(BUFSIZE)) == NULL)
return -1;
et((void far *)buffer, 0, BUFSIZE);

ReadConfig() ;
delay(0);

for (
{

;i)

if(first)

{

first = 0;

init hw();

initdacs();

setport(USERBITS, 0, 0);
}

textattr((LIGHTGRAY << 4) | YELLOW); clscrn(0,0, 24,79);

locate(0,0); cprintf("Universal Programmer") ;
locate(1,0); cprintf("MODEL: PC Based");
locate(2,0); cprintf("MPU AT89551/52 section " VERSION);

textattr((BLUE << 4) + WHITE); clscrn(0,40, 6,79);
ShowType () ;

textattr((BLUE << 4) + WHITE); window(1,40, 6,79);
locate(1,53); cprintf(" TARGET ZONE ");

locate(2,41); cprintf("Buffer start addr.: %041X", BufStart);
locate(3,41); cprintf(" end addr.: %041X", BufEnd);
locate(4,41); cprintf(" Check Sum : %04X", Chks);
locate(5,41); cprintf("Device start addr.: %041X", DevStart);

page 19

MPU7.C

1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396

1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427

_window(3,69,
locate(4,71)

6,79)

; cprintf(

ShowCounter(0);

window(7,40,

Iocate(7,43); cprintf(
; cprintf(
; cprintf(

locate(8,42)
locate(9,42)
ShowConfig() ;

10,79);

textattr((CYAN << 4)

locate(3,0
locate(4,0
locate(5,0
locate(6,0
7,0
8,0
9,0

Ne Ne N,

o N

locate (
locate (
locate (
locate (10,0
locate (11,0);
locate (12,0);
if(_ DATASTIZE
locate (13,0);
locate (14,0);
locate (15,0);
} else {
locate (13,0);
locate (14,0);
locate (15,0);
}

locate (16,0);
locate (17,0);

o N

r

r

S N N N N N N N S
~

cprintf (
cprintf (
cprintf (
cprintf (
cprintf (
cprintf (
cprintf (
cprintf (
cprintf (
cprintf (
'=0) {

cprintf (
cprintf (
cprintf (

cprintf (
cprintf (
cprintf (

cprintf (
cprintf (

locate (18,0);
locate (19,0);

locate (20,0);
locate (21,0);
locate (22,0);
if(_ DATASTIZE
locate (23,0);

_CODESIZE + DATASIZE - 1);

}

for(redraw =

{

int c;

cprintf (
cprintf (
cprintf (
'=0) {

cprintf (

"COUNTER") ;

" Device ID & Configuration bits ");
"Manuf./Device ID : ");
"Lock bits S

"R.

"

"Allocation Buffer size

WHITE); clscrn(3,0, 23,38);

——————————— Main Menu —-—-——-—-——————--—-—-—

DOS SHELL

Load BIN or HEX file to buffer
Save buffer to disk

Edit buffer 7. Display buffer
Change I/0 base address

Display loaded file history

Swap hi-low bytes in buffer

Type select Zz. Target zone
Blank check D. Display

Program (Program Mem & Data Mem)

Auto (B&S&P&V&L)
Erase Program & Data memory

Program A. Auto (B&S&P&V&L)
Erase Program memory

Read V. Verify

cprintf("E. Configure protect bits
cprintf("L. Program protect bits
"Q.

Quit

~
Ne Ne Ne N

o N

Ne Ne N

S N N N N N N N S
~

~e.

)

"Data memory buffer at %041X ~ %041X", CODESIZE,

0; 'redraw;

textattr((BLUE << 4) + WHITE); clscrn(24,0, 24,38);

locate(24,0);

for(;;)
{
if((

c = getch())

break;
getch();

}

switch(c
{

case '1':
case '2':

case '3':
case '4':

= toupper(c))

cprintf("Select function 2 ");

=0)

/* neglect extended code */

dos shell(""); redraw = 1; break;

tmpval = bufsize; bufsize
memset ((void far *)buffer, 0, BUFSIZE);

addr = 0;

load file();
bufsize= tmpval;

redraw =

1;

0x8000;

break;

save file(); break;
tmpval = bufsize; bufsize = 0x8000;

addr = 0;

edit buffer();

bufsize= tmpval;

UK bytes", BUFSIZE/1024);

// clear buffer

page 20

MPU7.C

1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464

//

case
case

case
case
case

case
case
case
case
case
case
case

case
case

}

setp

if (
{

}

T
V.

'M':
'T':
'E':

'R':
'B':
'S':
'P':
'V':
'L':
'A':

!\n
!\r

ort (

c ==

redraw = 1; break;

set io adr(); first = redraw = 1; break;
disp buffer(); redraw = 1; break;

mfr select(); redraw = first = 1; break;
type select(); redraw = first = 1; break
edit config(); redraw = 1; break;

flash read(); break;
flash check(); break;
flash erase(); break;
flash program(); break;
flash verify(); break;
flash protect(); break;
flash auto(); break;

L

LI

redraw = 1; break; // refresh

USERBITS, 0, 0);

IQV)

WriteConfig() ;

textattr(LIGHTGRAY); clrscr();

chdir(oldpath);

if(buffer) farfree((void far *)buffer);
return(0);

textattr((LIGHTGRAY << 4) | YELLOW); clscrn(

r

page 21

MPU7.C

