
1 #include "all03.h"
2
3 /*
4 * MPU Atmel AT89S51/52: parallel mode
5 * based on AT89S8253 tool
6 *
7 * Changelog
8 * - 2019.09.21: 1.00 initial release
9 *

10 * TODO:
11 * - add AT89S52
12 * - test lock bits functions
13 *
14 */
15
16 #include <bios.h>
17
18 /* PARALLEL MODE */
19
20 #define _VERSION_ "1.00"
21
22 #define MODE_ERASE 0x05
23 #define MODE_WRITE 0x1E
24 #define MODE_READ 0x18 // 1C for AT89S8253 , 18 for AT89S51
25 #define MODE_LOCK_1 0x1F
26 #define MODE_LOCK_2 0x07
27 #define MODE_LOCK_3 0x0D
28 #define MODE_LOCK_RD 0x0B
29 #define MODE_SIGNATURE 0x00 // 17 for AT89S8253 , 00 for AT89S51
30
31 unsigned char _RST, _RDY, _PGM;
32 unsigned char _VCC, _VPP, _GND, _MODE[5], _DATA[8], _ADDR[16], _SEPARATE;
33
34 long _CODESIZE, _DATASIZE;
35 int _PP[5];
36
37 struct DEV {
38 char *name;
39 long Size, DataSize; // ROM & EEPROM sizes in bytes
40 char separate; // 1:separated code and data space, 0:combined, data

follows code
41 int BlkSize, DataBlkSize; // ROM & EEPROM pagesizes in bytes
42 int progpulse[5]; // prog pulse length in us for 0:erase, 1:code,

2:data, 3:lock 4:fuses
43 char rst,rdy,pgm; // Pin numbers for RESET,RDY/BUSY and PROG
44 char vcc,vpp,gnd,mode[5]; // Pin numbers for VCC, GND and MODE0..4
45 char data[8]; // Pin numbers for d0..7
46 char addr[16]; // Pin numbers for a0..15
47 unsigned char UBmin, UBmax; // min. and max. Vcc value
48 unsigned char Upp; // Vpp value
49 };
50
51 struct DEV ATMEL_devs[] = { // C/D prog erase code data lock

fuse ale ea
52 // TYPE ROMSIZE EESIZE sep blksize *----- progpulse[0-4] ------* rst

rdy pgm vcc vpp gnd * mode[0-4] -* *----- data[0-7] -----+ +-----------------
addr[0-15] -----------------+ Umn Umx Upp

53 /* 0*/ { "AT89S51", 0x1000, 0x0000, 1, 1, 1, 1, 1, 1, 1, 1, 9,
10, 30, 40, 31, 20, 27,28,13,16,17, 39,38,37,36,35,34,33,32, 1, 2, 3, 4, 5, 6, 7,
8, 21,22,23,24, 0, 0, 0, 0, 40, 55, 120 }

54 // Note: EESIZE should be set to 0 in this version for AT89S51
55 };
56
57 struct {
58 char name[20];
59 int numdevs;
60 struct DEV *dev;
61 } mfr[] = {
62 { "ATMEL", sizeof(ATMEL_devs)/sizeof(struct DEV), ATMEL_devs }
63 };
64
65 int mfrno = 0, devno = 0;

page 1 MPU7.C

66 long signature;
67 int lock_bits = 0, fuse_bits = 0;
68
69 #define BUFSIZE 0x8000U
70
71 long addr;
72 long DevStart= 0x0000;
73 long Counter = 0x0000;
74
75 void ShowCounter(long val)
76 {
77 struct text_info ti;
78
79 gettextinfo(&ti);
80
81 textattr((BLUE << 4) + WHITE);
82 locate(5, 73); cprintf("%04lX", val);
83
84 textattr(ti.attribute);
85 gotoxy(ti.curx, ti.cury);
86 }
87
88 void ShowConfig(void)
89 {
90 struct text_info ti;
91 int idx;
92
93 gettextinfo(&ti);
94
95 textattr((BLUE << 4) + WHITE);
96 locate(8,61);
97 cprintf("%06.6lX", signature);
98
99 locate(9,61);

100 //cprintf("%01X", lock_bits);
101
102
103 for (idx = 128; idx > 0; idx = idx/2)
104 {
105 cprintf("%c", (lock_bits & (idx)) ? '1': '0');
106 }
107
108
109
110 //EEPROM not present
111 //locate(2, 69); cprintf("%04X", _DATASIZE);
112
113 textattr(ti.attribute);
114 gotoxy(ti.curx, ti.cury);
115 }
116
117 void ShowType(void)
118 {
119 int i;
120
121 if(mfrno < 0 || mfrno > sizeof(mfr) / sizeof(mfr[0]))
122 mfrno = 0;
123 if(devno < 0 || devno >= mfr[mfrno].numdevs)
124 devno = 0;
125
126 _RST = mfr[mfrno].dev[devno].rst;
127 _RDY = mfr[mfrno].dev[devno].rdy;
128 _PGM = mfr[mfrno].dev[devno].pgm;
129
130 _VCC = mfr[mfrno].dev[devno].vcc;
131 _VPP = mfr[mfrno].dev[devno].vpp;
132 _GND = mfr[mfrno].dev[devno].gnd;
133
134 _CODESIZE = mfr[mfrno].dev[devno].Size;
135 _DATASIZE = mfr[mfrno].dev[devno].DataSize;
136 _SEPARATE = mfr[mfrno].dev[devno].separate;
137

page 2 MPU7.C

138 for(i = 0; i < sizeof(_MODE); ++i)
139 _MODE[i] = mfr[mfrno].dev[devno].mode[i];
140
141 for(i = 0; i < sizeof(_DATA); ++i)
142 _DATA[i] = mfr[mfrno].dev[devno].data[i];
143
144 for(i = 0; i < sizeof(_ADDR); ++i)
145 _ADDR[i] = mfr[mfrno].dev[devno].addr[i];
146
147 for(i = 0; i < sizeof(_PP)/2; ++i)
148 _PP[i] = mfr[mfrno].dev[devno].progpulse[i];
149
150 bufsize = _CODESIZE + _DATASIZE;
151 BufEnd = bufsize - 1;
152
153 textattr((BLUE << 4) | WHITE);
154
155 locate(0,40); cprintf("*Mfr.: %s", mfr[mfrno].name);
156 locate(0,60); cprintf("*TYPE: %s", mfr[mfrno].dev[devno].name);
157
158 locate(3,41); cprintf(" end addr.: %04lX", BufEnd);
159
160 textattr((CYAN << 4) | WHITE);
161 }
162
163 int getdata(void)
164 {
165 int i, val = 0;
166
167 for(i = sizeof(_DATA)-1; i >= 0; --i)
168 val = (val << 1) | getpin(_DATA[i]);
169
170 return val;
171 }
172
173 void setdata(int val)
174 {
175 int i;
176
177 for(i = 0; i < sizeof(_DATA); ++i)
178 {
179 setpin(_DATA[i], TTLID, val & 1);
180 val >>= 1;
181 }
182 }
183
184 void setaddr(void)
185 {
186 long a = addr;
187 int i;
188
189 if(_SEPARATE)
190 a %= _CODESIZE;
191
192 for(i = 0; i < sizeof(_ADDR); ++i)
193 {
194 setpin(_ADDR[i], TTLID, (int)(a & 1));
195 a >>= 1;
196 }
197 }
198
199 void setmode(int md)
200 {
201 int i;
202
203 for(i = 0; i < sizeof(_MODE); ++i)
204 {
205 setpin(_MODE[i], TTLID, (int)(md & 1));
206 md >>= 1;
207 }
208 }
209

page 3 MPU7.C

210 void pulse(int pulselength)
211 {
212 us_delay(2);
213
214 setpin(_PGM, TTLID, 0);
215 us_delay(pulselength);
216 setpin(_PGM, TTLID, 1);
217
218 us_delay(2);
219 }
220
221 int wait_busy(int maxwait)
222 {
223 int t;
224
225 maxwait *= 10;
226
227 for(t = 0; t < maxwait; ++t)
228 {
229 if(getpin(_RDY))
230 break;
231 dly100u();
232 }
233 return getpin(_RDY) ? 1 : 0;
234 }
235
236 void power(int voltage)
237 {
238 int i;
239
240 // we dont need VHH
241 setdac(VHHID, 0); // VHH = 0V
242 for(i = 0; i <= 4; ++i) setport(VHHENID, i, 0); // no VHH
243 setport(VHHENCID,0, 0); // no VHHC
244 setport(VHHENCID,1, 0); // no VHHC
245
246 // Can't use Pins 2,3,4,6,8,32..35,37..40 for Vop
247 if(_VPP == 2 || _VPP == 3 || _VPP == 4 || _VPP == 6 || _VPP == 8 || (_VPP > 31

&& _VPP != 36))
248 {
249 errbeep();
250 textattr((RED << 4) | WHITE);
251 locate(41, 23); cprintf("Connect pin 1 to %d", _VPP);
252 textattr((CYAN << 4) | WHITE);
253 _VPP = 1; // force using Pin 1
254 }
255
256 setport(OTHERENID, 0, 0); // Pin 20 = GND
257
258 if(voltage)
259 {
260 // Set all pins LOW
261 for(i = 0; i < 5; ++i)
262 setport(TTLID, i, 0);
263
264 setdac(VCCID, voltage); // Vcc = xV
265 setdac(VOPID, mfr[mfrno].dev[devno].Upp); // Vpp = xV
266 delay(500); // wait to stabilize
267
268 setpin(_VCC, VCCENID, 1); // set Vcc pin (automatically sets

TTLID also)
269
270 dly20u();
271
272 setpin(_RST, TTLID, 1); // RST = H
273
274 dly20u();
275
276 setpin(18, TTLID, 1); // start oscillator on pins 18/19
277 setpin(19, TTLID, 1);
278 setport(OTHERENID, 0, 0x30); // with 4MHz
279

page 4 MPU7.C

280 dly50m();
281
282 setpin(_VPP, TTLID, 1); // set EA = H
283 setpin(_PGM, TTLID, 1); // set PGM = H
284
285 setdata(0xFF); // set D0..7 = H
286 setpin(_RDY, TTLID, 1); // set RDY = H (HiZ)
287
288 dly20u();
289
290 setpin(_VPP, VOPENID, 1); // set EA = Vpp
291
292 dly20u();
293 }
294 else
295 {
296 setpin(_VPP, VOPENID, 0); // remove Vpp
297 setpin(_VPP, TTLID, 0);
298
299 dly20u();
300
301 setport(OTHERENID, 0, 0); // osc off
302
303 dly20u();
304
305 setpin(_RST, TTLID, 0); // pull reset low
306
307 dly20u();
308
309 // Set all pins LOW except VCC
310 for(i = 1; i < 40; ++i)
311 if(i != _VCC)
312 setpin(i, TTLID, 0);
313
314 dly20u();
315
316 setpin(_VCC, VCCENID, 0); // remove Vcc
317 setpin(_VCC, TTLID, 0);
318
319 setdac(VOPID, 0); // Vpp = 0V
320 setdac(VCCID, 0); // Vcc = 0V
321 }
322 }
323
324 int program(void)
325 {
326 long end = _CODESIZE + _DATASIZE;
327 int i, blksize;
328
329 setmode(MODE_WRITE);
330 blksize = mfr[mfrno].dev[devno].BlkSize;
331 for(addr = BufStart; addr < end;)
332 {
333 /*
334 if(_SEPARATE && addr == _CODESIZE) // change area
335 {
336 setmode(MODE_WRITE_EE);
337 blksize = mfr[mfrno].dev[devno].DataBlkSize;
338 }
339 */
340
341 if((addr & 0xFF) == 0)
342 ShowCounter(addr);
343
344 disable();
345 for(i = 0; i < blksize; ++i)
346 {
347 setaddr();
348 setdata(buffer[addr]);
349 pulse(_PP[(addr > _CODESIZE) ? 2 : 1]);
350 ++addr;
351 }

page 5 MPU7.C

352 enable();
353
354 dly1m(); // chip should have started

programming after 1ms
355 if(!wait_busy(10*blksize)) // wait for completion (max. 10ms

per byte)
356 return 0;
357 }
358
359 ShowCounter(addr);
360 return 1;
361 }
362
363 int read_verify_check(int md)
364 {
365 long end = _CODESIZE + _DATASIZE;
366 int val;
367
368 setdata(0xFF); // release pin drivers on data pins
369
370 setmode(MODE_READ);
371 for(addr = BufStart; addr < end; ++addr)
372 {
373 /*
374 if(_SEPARATE && addr == _CODESIZE) // change area
375 setmode(MODE_READ_EE);
376 */
377
378 setaddr();
379 if((addr & 0xFF) == 0) ShowCounter(addr);
380
381 val = getdata();
382
383 switch(md)
384 {
385 case 0: // read
386 Chks += (buffer[addr] = val);
387 break;
388
389 case 1: // verify
390 if(buffer[addr] != val)
391 {
392 ShowCounter(addr);
393 return 0;
394 }
395 break;
396
397 case 2: // blank check
398 if(val != 0xFF)
399 {
400 ShowCounter(addr);
401 return 0;
402 }
403 break;
404 }
405 }
406
407 ShowCounter(addr);
408 return 1;
409 }
410
411 int write_config(void)
412 {
413 if(lock_bits & 0x01) {
414 setmode(MODE_LOCK_1);
415 pulse(_PP[3]);
416 if(!wait_busy(50))
417 return 0;
418 }
419
420 if(lock_bits & 0x02) {
421 setmode(MODE_LOCK_2);

page 6 MPU7.C

422 pulse(_PP[3]);
423 if(!wait_busy(50))
424 return 0;
425 }
426
427
428 if(lock_bits & 0x04) {
429 setmode(MODE_LOCK_3);
430 pulse(_PP[3]);
431 if(!wait_busy(50))
432 return 0;
433 }
434
435
436 /*
437
438 setdata(fuse_bits & 0x0F);
439 setmode(MODE_FUSE);
440 pulse(_PP[4]);
441 return wait_busy(50);
442 */
443 return 1;
444
445 }
446
447 int read_config(void)
448 {
449 long signature_temp;
450
451 setdata(0xFF);
452
453
454 setmode(MODE_LOCK_RD);
455 lock_bits = (getdata() >> 2) & 7;
456 /*
457 setmode(MODE_FUSE_RD);
458 fuse_bits = getdata() & 0x0F;
459 */
460 setmode(MODE_SIGNATURE);
461 addr = 0x0200L;
462 setaddr();
463 signature = getdata()&(0xFF);
464 addr = 0x0100L;
465 setaddr();
466 signature += (getdata() << 8) & 0xFF00;
467 addr = 0x0000L;
468 setaddr();
469 signature_temp = getdata();
470 signature += (signature_temp << 16) & 0xFF0000L;
471
472
473
474 return 1;
475 }
476
477
478 int flash_check(void)
479 {
480 int done;
481
482 textattr((CYAN << 4) | WHITE);
483 _window(12,40, 23,79);
484
485 textattr((BLUE << 4) | WHITE);
486 locate(12, 45); cprintf(" BLANK CHECK device:");
487
488 for(;;)
489 {
490 textattr((CYAN << 4) | WHITE);
491 locate(13, 41); cprintf("Ready to check (Y/<CR>)? ");
492
493 for(done = 0; !done;)

page 7 MPU7.C

494 {
495 switch(getch())
496 {
497 case 0:
498 getch();
499 break;
500
501 case '\n':
502 case '\r':
503 case 0x1B:
504 return;
505
506 case 'y':
507 case 'Y':
508 done = 1;
509 }
510 }
511
512 clscrn(14,41, 22,78);
513
514 setport(USERBITS, 0, 0);
515
516 textattr(BLINK | (LIGHTGREEN << 4) | WHITE);
517 locate(14, 41); cprintf("Blank checking now... ");
518
519 power(50); done = read_verify_check(2); power(0);
520
521 textattr((CYAN << 4) | WHITE);
522 locate(14, 41); cprintf("Blank checking now... ");
523
524 locate(15, 41);
525 if(done)
526 {
527 ShowCounter(BufEnd);
528 putchar(7);
529 cprintf(" OK !");
530 setport(USERBITS, 0, 8);
531 }
532 else
533 {
534 errbeep();
535 textattr((RED << 4) | WHITE);
536 cprintf("Blank check error at %04lX", addr);
537 textattr((CYAN << 4) | WHITE);
538 }
539 }
540 }
541
542 void flash_program(void)
543 {
544 int done;
545
546 textattr((CYAN << 4) | WHITE);
547 _window(12,40, 23,79);
548
549 textattr((BLUE << 4) | WHITE);
550 locate(12, 45); cprintf(" PROGRAM :");
551
552 for(;;)
553 {
554 textattr((CYAN << 4) | WHITE);
555 locate(13, 41); cprintf("Ready to program (Y/<CR>)? ");
556
557 for(done = 0; !done;)
558 {
559 switch(getch())
560 {
561 case 0:
562 getch();
563 break;
564
565 case '\n':

page 8 MPU7.C

566 case '\r':
567 case 0x1B:
568 return;
569
570 case 'y':
571 case 'Y':
572 done = 1;
573 }
574 }
575
576 clscrn(14,41, 22,78);
577
578 setport(USERBITS, 0, 0);
579
580 textattr(BLINK | (LIGHTGREEN << 4) | WHITE);
581 locate(14, 41); cprintf("Programming now... ");
582
583 power(50); done = program(); power(0);
584
585 textattr((CYAN << 4) | WHITE);
586 locate(14, 41); cprintf("Programming now... ");
587
588 locate(15, 41);
589 if(done)
590 {
591 ShowCounter(BufEnd);
592 putchar(7);
593 setport(USERBITS, 0, 8);
594 cprintf(" OK !");
595 }
596 else
597 {
598 errbeep();
599 textattr((RED << 4) | WHITE);
600 cprintf("Program error ! at %04lX", addr);
601 textattr((CYAN << 4) | WHITE);
602 }
603 }
604 }
605
606 void flash_protect(void)
607 {
608 int done;
609
610 textattr((CYAN << 4) | WHITE);
611 _window(12,40, 23,79);
612
613 textattr((BLUE << 4) | WHITE);
614 locate(12, 42); cprintf(" Program protect bits: ");
615
616 for(;;)
617 {
618 textattr((CYAN << 4) | WHITE);
619 locate(13, 41); cprintf("Ready to program (Y/<CR>)? ");
620
621 for(done = 0; !done;)
622 {
623 switch(getch())
624 {
625 case 0:
626 getch();
627 break;
628
629 case '\n':
630 case '\r':
631 case 0x1B:
632 return;
633
634 case 'y':
635 case 'Y':
636 done = 1;
637 }

page 9 MPU7.C

638 }
639
640 clscrn(14,41, 22,78);
641
642 setport(USERBITS, 0, 0);
643
644 textattr(BLINK | (LIGHTGREEN << 4) | WHITE);
645 locate(14, 41); cprintf("Programming now... ");
646
647 power(50); done = write_config(); power(0);
648
649 textattr((CYAN << 4) | WHITE);
650 locate(14, 41); cprintf("Programming now... ");
651
652 locate(15, 41);
653 if(done)
654 {
655 ShowCounter(BufEnd);
656 putchar(7);
657 setport(USERBITS, 0, 8);
658 cprintf(" OK !");
659 }
660 else
661 {
662 errbeep();
663 textattr((RED << 4) | WHITE);
664 cprintf("Program error ! at %04lX", addr);
665 textattr((CYAN << 4) | WHITE);
666 }
667 }
668 }
669
670 void flash_read(void)
671 {
672 int done;
673
674 textattr((CYAN << 4) | WHITE);
675 _window(12,40, 23,79);
676
677 textattr((BLUE << 4) | WHITE);
678 locate(12, 45); cprintf(" READ to buffer :");
679
680 for(;;)
681 {
682 textattr((CYAN << 4) | WHITE);
683 locate(13, 41); cprintf("Ready to start (Y/Even/Odd/<CR>)? ");
684
685 for(done = 0; !done;)
686 {
687 switch(getch())
688 {
689 case 0:
690 getch();
691 break;
692
693 case '\n':
694 case '\r':
695 case 0x1B:
696 return;
697
698 case 'y':
699 case 'Y':
700 done = 1;
701
702 case 'e':
703 case 'E':
704 case 'o':
705 case 'O':
706 done = 1;
707 }
708 }
709

page 10 MPU7.C

710 clscrn(14,41, 22,78);
711
712 setport(USERBITS, 0, 0);
713
714 textattr(BLINK | (LIGHTGREEN << 4) | WHITE);
715 locate(14, 41); cprintf("Reading now... ");
716
717 Chks = 0;
718 power(50);
719 read_verify_check(0);
720 read_config();
721 power(0);
722
723 textattr((CYAN << 4) | WHITE);
724 locate(14, 41); cprintf("Reading now... ");
725
726 locate(15, 41);
727 putchar(7);
728 cprintf(" OK !");
729
730 textattr((BLUE << 4) | WHITE);
731 locate(4, 41); cprintf(" Check Sum : %04X", Chks);
732
733 ShowConfig();
734 }
735 }
736
737 void flash_verify(void)
738 {
739 int done;
740
741 textattr((CYAN << 4) | WHITE);
742 _window(12,40, 23,79);
743
744 textattr((BLUE << 4) | WHITE);
745 locate(12, 45); cprintf(" VERIFY with buffer :");
746
747 for(;;)
748 {
749 textattr((CYAN << 4) | WHITE);
750 locate(13, 41); cprintf("Ready to verify (Y/Even/Odd/<CR>)? ");
751
752 for(done = 0; !done;)
753 {
754 switch(getch())
755 {
756 case 0:
757 getch();
758 break;
759
760 case '\n':
761 case '\r':
762 case 0x1B:
763 return;
764
765 case 'y':
766 case 'Y':
767 done = 1;
768
769 case 'e':
770 case 'E':
771 case 'o':
772 case 'O':
773 done = 1;
774 }
775 }
776
777 clscrn(14,41, 22,78);
778
779 setport(USERBITS, 0, 0);
780
781 textattr(BLINK | (LIGHTGREEN << 4) | WHITE);

page 11 MPU7.C

782 locate(14, 41); cprintf("Verifying now @ VDDmin... ");
783
784 power(mfr[mfrno].dev[devno].UBmin);
785 done = read_verify_check(1);
786 power(0);
787
788 textattr((CYAN << 4) | WHITE);
789 locate(14, 41); cprintf("Verifying now @ VDDmin... ");
790
791 locate(15, 41);
792 if(done)
793 {
794 ShowCounter(BufEnd);
795 putchar(7);
796 cprintf(" OK !");
797 setport(USERBITS, 0, 8);
798 }
799 else
800 {
801 errbeep();
802 textattr((RED << 4) | WHITE);
803 cprintf(" VERIFY ERROR ! at %04lX", addr);
804 textattr((CYAN << 4) | WHITE);
805 continue;
806 }
807
808 textattr(BLINK | (LIGHTGREEN << 4) | WHITE);
809 locate(16, 41); cprintf("Verifying now @ VDDmax... ");
810
811 power(mfr[mfrno].dev[devno].UBmax);
812 done = read_verify_check(1);
813 power(0);
814
815 textattr((CYAN << 4) | WHITE);
816 locate(16, 41); cprintf("Verifying now @ VDDmax... ");
817
818 locate(17, 41);
819 if(done)
820 {
821 ShowCounter(BufEnd);
822 putchar(7);
823 cprintf(" OK !");
824 setport(USERBITS, 0, 8);
825 }
826 else
827 {
828 errbeep();
829 textattr((RED << 4) | WHITE);
830 cprintf(" VERIFY ERROR ! at %04lX", addr);
831 textattr((CYAN << 4) | WHITE);
832 }
833 }
834 }
835
836 void flash_erase(void)
837 {
838 int done;
839
840 textattr((CYAN << 4) | WHITE);
841 _window(12,40, 23,79);
842
843 textattr((BLUE << 4) | WHITE);
844 locate(12, 45); cprintf(" EEPROM Erase:");
845
846 for(;;)
847 {
848 textattr((CYAN << 4) | WHITE);
849 locate(13, 41); cprintf("Ready to erase (Y/<CR>)? ");
850
851 for(done = 0; !done;)
852 {
853 switch(getch())

page 12 MPU7.C

854 {
855 case 0:
856 getch();
857 break;
858
859 case '\n':
860 case '\r':
861 case 0x1B:
862 return;
863
864 case 'y':
865 case 'Y':
866 done = 1;
867 }
868 }
869
870 clscrn(14,41, 22,78);
871
872 setport(USERBITS, 0, 0);
873
874 textattr(BLINK | (LIGHTGREEN << 4) | WHITE);
875 locate(14, 41); cprintf("Erase now... ");
876
877 power(50);
878 setmode(MODE_ERASE);
879 pulse(_PP[0]);
880 done = wait_busy(500);
881 power(0);
882
883 textattr((CYAN << 4) | WHITE);
884 locate(14, 41); cprintf("Erase now... ");
885
886 locate(15, 41);
887 if(done)
888 {
889 putchar(7);
890 cprintf(" OK !");
891 setport(USERBITS, 0, 8);
892 }
893 else
894 {
895 errbeep();
896 textattr((RED << 4) | WHITE);
897 cprintf(" ERROR ! ");
898 textattr((CYAN << 4) | WHITE);
899
900 locate(21, 41); cprintf("press any key to continue");
901 if(getch() == 0) getch();
902 }
903
904 clscrn(13,41, 22,78);
905 }
906 }
907
908 void flash_auto(void)
909 {
910 int done, l;
911
912 textattr((CYAN << 4) | WHITE);
913 _window(12,40, 23,79);
914
915 textattr((BLUE << 4) | WHITE);
916 locate(12, 45); cprintf(" AUTO :");
917
918 for(;;)
919 {
920 textattr((CYAN << 4) | WHITE);
921 locate(13, 41); cprintf("Ready to start (Y/Even/Odd/<CR>)? ");
922
923 for(done = 0; !done;)
924 {
925 switch(getch())

page 13 MPU7.C

926 {
927 case 0:
928 getch();
929 break;
930
931 case '\n':
932 case '\r':
933 case 0x1B:
934 return;
935
936 case 'y':
937 case 'Y':
938 done = 1;
939
940 case 'e':
941 case 'E':
942 case 'o':
943 case 'O':
944 done = 1;
945 }
946 }
947
948 clscrn(14,41, 22,78);
949
950 setport(USERBITS, 0, 0);
951
952 l = 14;
953
954 // BLANK CHECK
955
956 textattr(BLINK | (LIGHTGREEN << 4) | WHITE);
957 locate(l, 41); cprintf("Blank checking now... ");
958
959 power(50); done = read_verify_check(2); power(0);
960
961 textattr((CYAN << 4) | WHITE);
962 locate(l++, 41); cprintf("Blank checking now... ");
963
964 locate(l++, 41);
965
966 if(done)
967 {
968 ShowCounter(BufEnd);
969 cprintf(" OK !");
970 }
971 else
972 {
973 errbeep();
974 textattr((RED << 4) | WHITE);
975 cprintf("Blank check error at %04lX", addr);
976 textattr((CYAN << 4) | WHITE);
977
978 // ERASE
979
980 l -= 2;
981
982 clscrn(l, 41, l+1, 78);
983
984 textattr(BLINK | (LIGHTGREEN << 4) | WHITE);
985 locate(l, 41); cprintf("Erase now... ");
986
987 power(50);
988 setmode(MODE_ERASE);
989 pulse(_PP[0]);
990 done = wait_busy(500);
991 power(0);
992
993 textattr((CYAN << 4) | WHITE);
994 locate(l++, 41); cprintf("Erase now... ");
995
996 locate(l++, 41);
997

page 14 MPU7.C

998 if(done)
999 cprintf(" OK !");

1000 else
1001 {
1002 errbeep();
1003 textattr((RED << 4) | WHITE);
1004 cprintf(" ERROR");
1005 textattr((CYAN << 4) | WHITE);
1006
1007 continue;
1008 }
1009 }
1010
1011 // PROGRAM
1012
1013 textattr(BLINK | (LIGHTGREEN << 4) | WHITE);
1014 locate(l, 41); cprintf("Programming now... ");
1015
1016 power(50); done = program(); power(0);
1017
1018 textattr((CYAN << 4) | WHITE);
1019 locate(l++, 41); cprintf("Programming now... ");
1020
1021 locate(l++, 41);
1022 if(done)
1023 {
1024 ShowCounter(BufEnd);
1025 cprintf(" OK !");
1026 }
1027 else
1028 {
1029 errbeep();
1030 textattr((RED << 4) | WHITE);
1031 cprintf("Program error ! at %04lX", addr);
1032 textattr((CYAN << 4) | WHITE);
1033
1034 continue;
1035 }
1036
1037 // VERIFY
1038
1039 textattr(BLINK | (LIGHTGREEN << 4) | WHITE);
1040 locate(l, 41); cprintf("VDD max verifying now...");
1041
1042 power(mfr[mfrno].dev[devno].UBmax);
1043 done = read_verify_check(1);
1044 power(0);
1045
1046 textattr((CYAN << 4) | WHITE);
1047 locate(l++, 41); cprintf("VDD max verifying now...");
1048
1049 locate(l++, 41);
1050 if(done)
1051 {
1052 ShowCounter(BufEnd);
1053 putchar(7);
1054 cprintf(" OK !");
1055 setport(USERBITS, 0, 8);
1056 }
1057 else
1058 {
1059 errbeep();
1060 textattr((RED << 4) | WHITE);
1061 cprintf(" VERIFY ERROR ! at %04lX", addr);
1062 textattr((CYAN << 4) | WHITE);
1063 continue;
1064 }
1065
1066 textattr(BLINK | (LIGHTGREEN << 4) | WHITE);
1067 locate(l, 41); cprintf("VDD min verifying now...");
1068
1069 power(mfr[mfrno].dev[devno].UBmin);

page 15 MPU7.C

1070 done = read_verify_check(1);
1071 power(0);
1072
1073 textattr((CYAN << 4) | WHITE);
1074 locate(l++, 41); cprintf("VDD min verifying now...");
1075
1076 locate(l, 41);
1077 if(done)
1078 {
1079 ShowCounter(BufEnd);
1080 cprintf(" OK !");
1081 setport(USERBITS, 0, 8);
1082 putchar(7);
1083 }
1084 else
1085 {
1086 textattr((RED << 4) | WHITE);
1087 cprintf(" VERIFY ERROR ! at %04lX", addr);
1088 textattr((CYAN << 4) | WHITE);
1089 errbeep();
1090 }
1091 }
1092 }
1093
1094 void edit_config(void)
1095 {
1096 int i, done;
1097
1098 textattr((CYAN << 4) | WHITE);
1099 _window(1,0, 10,39);
1100 _window(11,1, 24,78);
1101
1102 locate(3, 1); cprintf("Protection: ");
1103
1104 /*
1105 locate(5, 1); cprintf("Serial Pgm: ");
1106 locate(6, 1); cprintf("x2 clock : ");
1107 locate(7, 1); cprintf("UsrRow Pgm: ");
1108 locate(8, 1); cprintf("CrystalClk: ");
1109 */
1110 locate(14, 4); cprintf("A : no protection");
1111 locate(14,43); cprintf("B : MOVC protection");
1112 locate(15, 4); cprintf("C : VERIFY protection");
1113 locate(15,43); cprintf("D : EXT_EXEC protection");
1114
1115 /*
1116 locate(17, 4); cprintf("E : Serial Pgm Enable toggle");
1117 locate(18, 4); cprintf("F : x2 Clock Enable toggle");
1118 locate(19, 4); cprintf("G : UsrRow Pgm Enable toggle");
1119 locate(20, 4); cprintf("H : Crystal Clock Enable toggle");
1120 */
1121
1122 locate(23, 4); cprintf("Select options or <CR><ESC> to go back to the main

menu ?");
1123
1124 textattr((BLUE << 4) | WHITE);
1125 locate(1, 5); cprintf(" Configuration Bit Setting :");
1126 locate(11,28); cprintf(" Configuration Options :");
1127
1128 for(;;)
1129 {
1130 textattr((BLUE << 4) | WHITE);
1131
1132 locate(3, 13);
1133 switch(lock_bits)
1134 {
1135 default : cprintf("none"); lock_bits = 0; break;
1136 case 1 : cprintf("MOVC"); break;
1137 case 3 : cprintf("MOVC & VERIFY"); break;
1138 case 7 : cprintf("MOVC & VERIFY & EXT_EXEC"); break;
1139 }
1140 /*

page 16 MPU7.C

1141 for(i = 0; i < 4; ++i)
1142 {
1143 locate(5 + i, 13);
1144 cprintf((fuse_bits & (1 << i)) ? "disable" : "enable");
1145 }
1146 */
1147 for(done = 0; !done;)
1148 {
1149 done = 1;
1150
1151 switch(toupper(getch()))
1152 {
1153 case 0: getch(); done = 0; break;
1154
1155 case '\n':
1156 case '\r':
1157 case 0x1B: return;
1158 case 'A' : lock_bits = 7; break;
1159 case 'B' : lock_bits = 6; break;
1160 case 'C' : lock_bits = 4; break;
1161 case 'D' : lock_bits = 0; break;
1162 /*
1163 case 'E' : fuse_bits ^= 1; break;
1164 case 'F' : fuse_bits ^= 2; break;
1165 case 'G' : fuse_bits ^= 4; break;
1166 case 'H' : fuse_bits ^= 8; break;
1167 */
1168 default : done = 0;
1169 }
1170 }
1171 }
1172 }
1173
1174 void type_select(void)
1175 {
1176 int done, i, num, len=15, left = 40;
1177 char no[10];
1178
1179 if((num = mfr[mfrno].numdevs) > 14)
1180 {
1181 left = 0;
1182 for(i = len = 0; i < num; ++i)
1183 if((done = strlen(mfr[mfrno].dev[i].name)) > len)
1184 len = done;
1185 }
1186
1187 textattr((CYAN << 4) | WHITE);
1188 _window(12,left, 23,79);
1189
1190 textattr((BLUE << 4) | WHITE);
1191 locate(12, left+5); cprintf(" TYPE SELECT:");
1192
1193 textattr((CYAN << 4) | WHITE);
1194
1195 for(i = 0; i < num; ++i)
1196 {
1197 locate(13+(i%7), left + 1 + (i/7)*(len+4));
1198 cprintf("%d.%s", i, mfr[mfrno].dev[i].name);
1199 }
1200
1201 locate(21, left+1); cprintf("<CR> back to main menu.");
1202 locate(22, left+1); cprintf("SELECT NUMBER ?");
1203
1204 for(;;)
1205 {
1206 for(no[0] = done = 0; !done;)
1207 {
1208 locate(22, left+16); cprintf("%s ", no);
1209 locate(22, left+16+strlen(no));
1210
1211 switch(i = getch())
1212 {

page 17 MPU7.C

1213 case 0:
1214 getch();
1215 break;
1216
1217 case 8:
1218 if((i = strlen(no)) != 0)
1219 no[i-1] = 0;
1220 break;
1221
1222 case '\n':
1223 case '\r':
1224 if(strlen(no) &&
1225 (i = atoi(no)) >= 0 && i < mfr[mfrno].numdevs)
1226 {
1227 devno = i;
1228 ShowType();
1229 return;
1230 }
1231 break;
1232
1233 case 0x1B:
1234 return;
1235
1236 default:
1237 if(isdigit(i))
1238 strcat(no, (char*)&i);
1239 break;
1240 }
1241 }
1242 }
1243 }
1244
1245 void mfr_select(void)
1246 {
1247 int done, i;
1248 char no[10];
1249
1250 textattr((CYAN << 4) | WHITE);
1251 _window(12,40, 23,79);
1252
1253 textattr((BLUE << 4) | WHITE);
1254 locate(12, 45); cprintf(" MFR SELECT:");
1255
1256 textattr((CYAN << 4) | WHITE);
1257
1258 for(i = 0; i < sizeof(mfr) / sizeof(mfr[0]); ++i)
1259 {
1260 locate(13+i, 41); cprintf("%d.%s", i, mfr[i].name);
1261 }
1262
1263 locate(21, 41); cprintf("<CR> back to main menu.");
1264 locate(22, 41); cprintf("SELECT NUMBER ?");
1265
1266 for(;;)
1267 {
1268 for(no[0] = done = 0; !done;)
1269 {
1270 locate(22, 56); cprintf("%s ", no);
1271 locate(22, 56+strlen(no));
1272
1273 switch(i = getch())
1274 {
1275 case 0:
1276 getch();
1277 break;
1278
1279 case 8:
1280 if((i = strlen(no)) != 0)
1281 no[i-1] = 0;
1282 break;
1283
1284 case '\n':

page 18 MPU7.C

1285 case '\r':
1286 if(strlen(no) &&
1287 (i = atoi(no)) >= 0 && i < sizeof(mfr) / sizeof(mfr[0]))
1288 {
1289 mfrno = i;
1290 if(devno >= mfr[mfrno].numdevs)
1291 devno = 0;
1292 ShowType();
1293 return;
1294 }
1295 break;
1296
1297 case 0x1B:
1298 return;
1299
1300 default:
1301 if(isdigit(i))
1302 strcat(no, (char*)&i);
1303 break;
1304 }
1305 }
1306 }
1307 }
1308
1309 /*===*/
1310 int main(void)
1311 {
1312 int redraw, first = 1;
1313 long tmpval;
1314
1315 /*---*/
1316 /* main program starts here */
1317 /*---*/
1318
1319 getcwd(oldpath, 260);
1320 strcpy(path, oldpath);
1321
1322 if((buffer = farmalloc(BUFSIZE)) == NULL)
1323 return -1;
1324 memset((void far *)buffer, 0, BUFSIZE);
1325
1326 ReadConfig();
1327 delay(0);
1328
1329 for(;;)
1330 {
1331 if(first)
1332 {
1333 first = 0;
1334
1335 init_hw();
1336 initdacs();
1337 setport(USERBITS, 0, 0);
1338 }
1339
1340 textattr((LIGHTGRAY << 4) | YELLOW); clscrn(0,0, 24,79);
1341
1342 locate(0,0); cprintf("Universal Programmer");
1343 locate(1,0); cprintf("MODEL: PC Based");
1344 locate(2,0); cprintf("MPU AT89S51/52 section " _VERSION_);
1345
1346 textattr((BLUE << 4) + WHITE); clscrn(0,40, 6,79);
1347
1348 ShowType();
1349
1350 textattr((BLUE << 4) + WHITE); _window(1,40, 6,79);
1351 locate(1,53); cprintf(" TARGET ZONE ");
1352 locate(2,41); cprintf("Buffer start addr.: %04lX", BufStart);
1353 locate(3,41); cprintf(" end addr.: %04lX", BufEnd);
1354 locate(4,41); cprintf(" Check Sum : %04X", Chks);
1355 locate(5,41); cprintf("Device start addr.: %04lX", DevStart);
1356

page 19 MPU7.C

1357 _window(3,69, 6,79);
1358 locate(4,71); cprintf("COUNTER");
1359 ShowCounter(0);
1360
1361 _window(7,40, 10,79);
1362 locate(7,43); cprintf(" Device ID & Configuration bits ");
1363 locate(8,42); cprintf("Manuf./Device ID : ");
1364 locate(9,42); cprintf("Lock bits : ");
1365 ShowConfig();
1366
1367 textattr((CYAN << 4) | WHITE); clscrn(3,0, 23,38);
1368
1369 locate(3,0); cprintf("------------- Main Menu -------------");
1370 locate(4,0); cprintf("1. DOS SHELL ");
1371 locate(5,0); cprintf("2. Load BIN or HEX file to buffer ");
1372 locate(6,0); cprintf("3. Save buffer to disk ");
1373 locate(7,0); cprintf("4. Edit buffer 7. Display buffer ");
1374 locate(8,0); cprintf("5. Change I/O base address ");
1375 locate(9,0); cprintf("6. Display loaded file history ");
1376 locate(10,0); cprintf("W. Swap hi-low bytes in buffer ");
1377 locate(11,0); cprintf("T. Type select Z. Target zone ");
1378 locate(12,0); cprintf("B. Blank check D. Display ");
1379 if(_DATASIZE != 0) {
1380 locate(13,0); cprintf("P. Program (Program Mem & Data Mem) ");
1381 locate(14,0); cprintf("A. Auto(B&S&P&V&L) ");
1382 locate(15,0); cprintf("S. Erase Program & Data memory ");
1383 } else {
1384 locate(13,0); cprintf(" ");
1385 locate(14,0); cprintf("P. Program A. Auto(B&S&P&V&L) ");
1386 locate(15,0); cprintf("S. Erase Program memory ");
1387 }
1388 locate(16,0); cprintf("R. Read V. Verify ");
1389 locate(17,0); cprintf(" ");
1390 locate(18,0); cprintf("E. Configure protect bits ");
1391 locate(19,0); cprintf("L. Program protect bits ");
1392 locate(20,0); cprintf("Q. Quit ");
1393 locate(21,0); cprintf("---------------------------------------");
1394 locate(22,0); cprintf("Allocation Buffer size : %uK bytes", BUFSIZE/1024);
1395 if(_DATASIZE != 0) {
1396 locate(23,0); cprintf("Data memory buffer at %04lX ~ %04lX", _CODESIZE,

_CODESIZE + _DATASIZE - 1);
1397 }
1398
1399 for(redraw = 0; !redraw;)
1400 {
1401 int c;
1402
1403 textattr((BLUE << 4) + WHITE); clscrn(24,0, 24,38);
1404
1405 locate(24,0); cprintf("Select function ? ");
1406
1407 for(;;)
1408 {
1409 if((c = getch()) != 0)
1410 break;
1411 getch(); /* neglect extended code */
1412 }
1413
1414 switch(c = toupper(c))
1415 {
1416 case '1': dos_shell(""); redraw = 1; break;
1417 case '2': tmpval = bufsize; bufsize = 0x8000;
1418 memset((void far *)buffer, 0, BUFSIZE); // clear buffer
1419 addr = 0;
1420 load_file();
1421 bufsize= tmpval;
1422 redraw = 1; break;
1423 case '3': save_file(); break;
1424 case '4': tmpval = bufsize; bufsize = 0x8000;
1425 addr = 0;
1426 edit_buffer();
1427 bufsize= tmpval;

page 20 MPU7.C

1428 redraw = 1; break;
1429 case '5': set_io_adr(); first = redraw = 1; break;
1430 case '7': disp_buffer(); redraw = 1; break;
1431
1432 case 'M': mfr_select(); redraw = first = 1; break;
1433 case 'T': type_select(); redraw = first = 1; break;
1434 case 'E': edit_config(); redraw = 1; break;
1435
1436 case 'R': flash_read(); break;
1437 case 'B': flash_check(); break;
1438 case 'S': flash_erase(); break;
1439 case 'P': flash_program(); break;
1440 case 'V': flash_verify(); break;
1441 case 'L': flash_protect(); break;
1442 case 'A': flash_auto(); break;
1443
1444 // case '\n':
1445 // case '\r': redraw = 1; break; // refresh
1446 }
1447
1448 setport(USERBITS, 0, 0);
1449
1450 if(c == 'Q')
1451 {
1452 WriteConfig();
1453 textattr(LIGHTGRAY); clrscr();
1454 chdir(oldpath);
1455 if(buffer) farfree((void far *)buffer);
1456 return(0);
1457 }
1458
1459 textattr((LIGHTGRAY << 4) | YELLOW); clscrn(11,40, 23,79);
1460 }
1461 }
1462 }
1463
1464

page 21 MPU7.C

