CHAPTER 2
SOFTWARE DESCRIPTION

2.1 INTRODUCTION

During the early 1970’s, microprocessors (MPU) and microcomputers (MCU) helped ease
the shortage of hardware designers by providing the hardware with more intelligence.
However, because the power of any MPU or MCU is the result of the software programs, a
shortage of software engineers was created. Thus, as MPUs and MCUs reduced hard-
ware costs, software development costs rose. As a result, the system designer of today
must carefully weigh the software and support costs of his system. Processors such as
those of the M6805 HMOS/M146805 CMOS Family, which are designed to include the pro-
gramming features inherited from minicomputers, require less effort from the pro-
grammer and make system design much more efficient. The importance of *‘user-
friendly” software in mini and mainframe computers is a widely accepted fact. Easy-to-
use software is the key to writing and maintaining efficient programs.

The M6805 HMOS/M146805 CMOS Family architecture is based upon the Von Neumann
model which places all data, program, and I/O spaces into a single address map. Thus,
since only a single address map must be supported, very few special purpose instruc-
tions are necessary in the M6805 HMOS/M146805 CMOS Family instruction set. The
overall result of this is a small, very regular, and easy-to-remember instruction set.

A regular instruction set is symmetrical in that, for most instructions, there is a comple-
ment instruction. Some of these instructions (plus complements) are listed below.

LDA — STA Load and Store

INC — DEC Increment and Decrement

BEQ — BNE Branch If Equal and Branch If Not Equal

ADD — SUB Add and Subtract

AND — ORA Logic AND and Logic OR

BCLR — BSET Bit Clear and Bit Set

ROR — ROL Rotate Right and Rotate Left

JSR — RTS Jump-To-Subroutine and Return-From-Subroutine

The symmetry provided by the M6805 HMOS/M146805 CMOS Family instruction set
means that the programmer need only remember about 30 to 40 separate instructions to
know the entire instruction set. The M6805 HMOS Family has 59 instructions in its in-
struction set; whereas, the M146805 CMOS Family has 61. The two additional instruc-
tions for the M146805 CMOS Family are the STOP and WAIT instructions which enable
one of the CMOS low-power standby modes.

The instruction set is expanded by the use of a variety of versatile addressing modes. The
addressing modes, which are part of the minicomputer heritage of M6805 HMOS/
M146805 CMOS Family, expand the instruction set by allowing the programmer to
specify how the data for a particular instruction is to be fetched. As itlustrated in the Op-
code Map of Appendix I, The 59/61 Separate instructions, enhanced by the seven address-
ing modes, expand into 207/209 opcodes; however, the programmer need only remember
66/68 items (59/61 instructions plus seven addressing modes) instead of 207/209.

2.2 REGISTER SET

7 0

I A ' A Accumulator

7

0
I X j X index Register and

Additional Accumulator

10 0
2K 11'0 000 11 SpP
4K 12[0 000011 SP SP Stack Pointer
8K [o 0o0o0oo01] sp
Memory Map
Lengths Vary
Among
19 9 Family Members
2K 11| PC (See Note)
oK EL PC PC Program
Counter
8K [PC

l;l 1' H ‘ | l N l z la CC Condition Code Register

Carry/Borrow

N

Zero
Negative
Interrupt Mask

FIGURE 2-1
Half Carry

NOTE: The stack pointer and program counter size is determined by the memory size
that the family member device can access; e.g., an 8K memory map requires a
13-bit stack pointer and program counter

Figure 2-1. M6805 HMOS/M146805 CMOS Family Register Architecture

10

2.2.1 Accumulator (A)

The A register is a general purpose 8-bit register that is used by the program for
arithmetic calculations and data manipulations. The full set of read/modify/write instruc-
tions operates on the A register. The accumulator is used in the register/memory instruc-
tions for data manipulation and arithmetic calculation. Refer to the Instruction Set Sum-
mary discussion later in this chapter for information about the read/modify/write and
register/memory instruction. An example using the accumulator to add the contents of
two memory locations is shown below.

B6 50 LDA $50 Load accumulator with con-
tents of memory location $50.
BB 87 ADD 887 Add the contents of memory

location $87 to the
accumulator.

B7 3C STA $3C Store the accumulator con-
tents in memory location $3C.

2.2.2 Index Register (X)

The index register is used in the indexed modes of addressing or used as an auxiliary ac-
cumulator. It is an 8-bit register and can be loaded either directly or from memory, have
its contents stored in memory, or its contents can be compared to memory.

In indexed instructions, the X register provides an 8-bit value, that is added to an instruc-
tion-provided value, to create an effective address. The indexed addressing mode is
further described in the Addressing Modes paragraph of this chapter.

The X register is also used in the M6805 HMOS/M146805 CMOS Family for limited
calculations and data manipulation. The full set of read/modify/write instructions
operates on the X register as well as the accumulator. Instruction sequences which do
not use the X register for indexed addressing may use X as a temporary storage cell, or
accumulator.

The following example shows a typical use of the index register in one of the indexed
addressing modes. The example performs a block move that is BCNT in length.
LDX #BCNT GET LENGTH
REPEAT LDA SOURCEX GET DATA
STA DESTIN,X STOREIT
DECX NEXT
BNE REPEAT REPEAT IF MORE.

The X register is also useful in counting events since it can be incremented or decre-
mented. The INCX or DECX instructions can be used to control the count. By either
decrementing or incrementing the X register, starting at a known value, and then compar-
ing the X register contents to the contents of a memory location (or a specific number) a
joop can be ended or a branch taken after a certain number of events.

11

_

The following routine uses the index register as a counter for a keypad debounce routine
of CNT X 6, CMOS (or CNT X 8, HMOS).

AE FF DBNCE LDX #CNT CNT =255 in this example
5A AGAIN DECX
26 FD BNE AGAIN

2.2.3 Program Counter (PC)

The PC contains the memory address of the next instruction that is to be fetched and
executed. Normally, the PC points to the next sequential instruction; however, the PC
may be altered by interrupts or certain instructions. During a valid interrupt, the PC is
loaded with the appropriate interrupt vector. The jump and branch instructions modify
the PC so that the next instruction to be executed is not necessarily the next instruction
in physical memory. The actual size of the PC depends upon the size of the address
Space of the individual family members and currently ranges from 11 to 13 bits.

2.2.4 Stack Pointer (SP)

Interrupts and subroutines make use of the stack to temporarily save important data. The
SP is used to automatically store the return address (two bytes of the PC) on subroutine
calls and to automatically store all registers (five bytes; A, X, PC and CC) during inter-
rupts. The saved registers may be interleaved on the stack (nested), thus allowing for: (1)
nesting of subroutines and interrupts, (2) subroutines to be interrupted, and (3) interrupts
to call subroutines. The nesting of subroutines and interrupts can only occur to some
maximum amount, which is described below.

Since the -M6805 HMOS/M146805 CMOS is a family of devices, the actual size of the
stack pointer may vary with memory size of the particular family member (see appro-
priate data sheets). But from the programmer’s peggpective, the stack pointers all appear
similar on the different members. Both the hardware RESET pin and the reset stack
pointer (RSP) instruction reset the stack pointer to its maximum value ($7F on all ctrrrent
members). The stack pointer on the M6805 HMOS/M 146805 CMOS Family always points
to the next free location on the stack. Each “push” decrements the SP while each “pull”
increments it (“push” and “pull” are not available as user instructions in the M6805
HMOS/M 146805 CMOS Family).

Nested subroutine calls and interrupts must not underflow the SP. The usable stack
length will vary between devices as well as between the M6805 HMOS and M146805
CMOS Families. In the M6805 HMOS Family, the usable stack length is 2N~ 1 (where
n = the number of bits in the stack pointer); however, in the M146805 CMOS Family the

12

usable stack length is 2N (where n = number of bits in the stack pointer). When the allow-
able stack length is exceeded, the SP will wrap around to the top of stack. This condition
of stack underflow should be avoided since the previously stacked data will be lost. An
example of calculating the usable stack length for an M6805 HMOS Family device with a
5.bit stack pointer is: 25 -1 or 31 bytes maximum. However, for an M146805 CMOS
Family device, with a 6-bit stack pointer, the caiculation is: 26 or 64 bytes maximum.

A 5-bit M6805 HMOS Family device SP accommodates up to 15 nested subroutine calls
(30 bytes), six interrupts (30 bytes), or a mixture of both. The programmer must exercise
care when approaching the underflow threshold. When the SP underflows it will wrap
around, and the contents more than likely are lost. The stack limit in the 5-bit M6805
HMOS Family example above is thus stated to be 31, not 32, bytes. The stack limit is well
beyond the needs required by most programs. A maximum subroutine nesting of five
levels (10 bytes) coupled with one interrupt level (five bytes) occupies only 15 bytes of
stack space. The allowed stack length is typically traded off against the needed data
RAM space.

In the M6805 HMOS/M146805 CMOS Family, the stack builds in the direction of decreas-
ing address; therefore, the SP always points to the next empty location on the stack. The
SP is decremented each time a data byte is pushed onto the stack and it is incremented
each time a data type is pulled from the stack. The SP is only changed during certain
operations and, except for the RSP instruction, it is not under direct software control.
During external or power-on reset, and during a reset pointer (RSP} instruction, the SP is
set to its upper limit ($7F).

The order in which bytes are stored onto and retrieved from the stack is shown in Figure
2.2 Note that the PC has a number of fixed and variable bits. The number of variable bits
depends upon the size of the memory available in a particular family member (see Figure
2-1 for this relationship).

7 o Stack 7 0 Stack
> =) = - 1%
E w1 l] l 1 l Condition Code Register Yll @ <E> al] 1 I 5 l Condition Code Register IL 2
2 " Q
g & 3 Accumulator T P4 % %’ ol E Accumulator i z g
a7 t |25 S8 E 18 5
25l Y index Register R o @ g 5|V Index Regster R 2 ©
2 Of R R 182 BF|CR R |8 Z
s<| N[0] PCH o 128 2 n[o]o]o] PCH u o |® 3
3 5 3
g P 2 c P Q
< PCL T < - PCL T <

Unstack Unstack
(a) (b}
Stacking Order for M6805 HMOS Family Stacking Order for M146805 CMOS Family
Device with 8K memory map PC device with 8K memory map PC
NOTES:

1. Since, in all family devices, the stack pointer decrements during pushes, the PCL
is stacked first, followed by the PCH, etc. Pulling from the stack is in the reverse

order.
2. Fixed bits in the M6805 HMOS Family PC are always set, whereas, the M146805
CMOS Famity PC fixed bits are always clear.

Figure 2-2. Stacking Order

13

...

2.2.5 Condition Code Register (CC)

The M6805 HMOS/M 146805 CMOS Family uses five condition code flag bits, labeled H, I,
N, Z, and C, which reside in the CC register. The three MSBs of the CC register are all
ones which fill the register to eight bits.

The function of the condition codes is to retain information concerning the results of the
last executed data reference instruction. The effect of an instruction on each condition

Addressing Modes paragraph for more information.

2.2.5.1 CARRY (C). The C bit is set if a carry or borrow out of the 8-bit ALU occurred dur-
ing the last arithmetic operation. It is aiso set during shift, rotate, and bit test instruc-

tions.

The C bit is mainly set in one of six ways.

1.

2.

3.

4.
5.
6.

it is set during an add instruction if the result of the additions produces a carry
out of the 8-bit ALU (arithmetic logic unit).

For subtraction and comparison instructions, it is set when the absolute value of
the subtrahend is larger than the absolute value of the minuend. This generally
implies a borrow.

It is changed during shift and rotate instructions. For these instructions the bit
shifted out of the accumulator becomes the C bit.

It is set when an SEC instruction is executed.

It is set when a COM instruction is executed.

It is set if a bit test and branch bit is set.

Two instructions, add with carry (ADC) and subtract with carry (SBC), use the carry bit as
part of the instruction. This simplifies the addition or subtraction of numbers that are
longer than eight bits. The carry bit may be tested with various conditional branch
instructions.

2.2.5.2 ZERO (2). The Z bit is set if the result of the last data manipulation, arithmetic, or
logical operation was zero. The Z bit is set only if all eight bits of the result are zero;
otherwise, it is cleared.

The Z bit can be used to cause a branch with the BHI, BLS, BNE, or BEQ instructions.
When the BH| instruction is used, both the C bit and Z bit are used for the branch.

The Z bit can be used to initiate a branch after the A or X contents equal the contents of a
memory location. For example, the accumulator can be compared to the contents of a
memory location and when the eight resultant bits are all zeros (Z bit set), a branch would
result with the BEQ instruction. Conversely, if the same comparison were made and a
BNE instruction were used, a branch would resuit after each compare until the eight
resultant bits were all zeros (Z bit set).

14

2.2.5.3 NEGATIVE (N). The N bit is set when bit seven of the result of the last data
manipulation, arithmetic, or logical operation is set. This indicates that the result of the
operation was negative. The N bit is cleared by the CLR and LSR instructions. in all other
instructions affecting the N bit, its condition is determined by bit 7 of the result.

The N bit can be used to cause a branch if it is set by using the BMI instruction. Likewise,
the N bit can be used for a branch if it cleared by using the BPL instruction. In one case it
is tested for a negative result and in the other it is tested for a positive result.

The N bit can be used to initiate a branch after a comparison of two numbers. For
example, the contents of the X register could be compared to the contents of memory
location M and a branch taken if N=1. In using the CPX instruction, the N bit would re-
main clear and no branch is taken, as long as the X register contents were greater thanor
equal to the contents of M; however, if the X register contents become less than the con-
tents of M, the N bit becomes 1 and a branch could be initiated (using BMI instruction).

2.2.5.4 HALF CARRY (H). The H bit is set when a carry occurs between bits 3 and 4 during
an ADD or ADC instruction. The half-carry flag may be used in BCD addition subroutines
since each binary-coded-decimal digit is contained either in the 0-3 (least significant) or
4-7 bits. Thus, when the sum of the two least significant BCDs results in a carry out of bit
position 3 into bit position 4, the H bit is set. Chapter 3 describes a routine which uses
the H bit to emulate the MC6800 DAA (decimal adjust) instruction.

2255 INTERRUPT MASK (l). When the | bit is set, the external interrupt and timer inter-
rupt are masked (disabled). Clearing the | bit allows interrupts to be enabled. If an inter-
rupt occurs while the | bit is set, the interrupt is latched internally and held until the | bit
is cleared. The interrupt vector is then serviced normally.

Except for when an external interrupt (INT or IRQ) is applied, the | bit is controlled by pro-
gram instructions. Some program instructions change the | bit only as a result of the in-
struction, whereas, others cause it to change as a part of the instruction. For example,
CLI clears the | bit and SEI sets the | bit; however, SW1 automatically sets the | bit as part
of the interrupt instruction. The STOP and WAIT instructions in M146805 CMOS Family
parts also automatically set the | bit as part of instruction. See the Interrupts section of
Chapter 4 for more information.

NOTE

The SWI instruction and RESET are the only non-maskable interrupts in the
M6805 HMOS/M146805 CMOS Families.

2.3 ADDRESSING MODES

The power of any computer lies in its ability to access memory. The addressing modes of
the processor provide that capability. The M6805 HMOS/M146805 CMOS Family has a set
of addressing modes that meets these criteria extremely well.

The addressing modes define the manner in which an instruction is to obtain the data re-

quired for its execution. An instruction, because of different addressing modes, may ac-
cess its operand in one of up-to-five different addressing modes. In this manner, the

15

addressing modes éxpand the basic 59 M6805 HMOS Family instructions (61 for M146805
CMOs Family) into 207 Separate operations (209 for M146805 CMOs Family). Some
addressing modes require that the 8-bijt opcode be accompanied by one or two additional
bytes. These bytes either contain the data for the Operations, the address for the data, or
both.

In the addressing mode descriptions which follow, the term effective address (EA) is
used. The EA is the address in memory from which the argument for an instruction js
fetched or stored. In two-operand instructions, such as add to accumulator (ADD), one of
the effective operands (the accumulator) is inherent ang not considered an addressing
mode per se.

Descriptions ang examples of the various modes of addressing the M6805 HMOS/
M146805 CMOS Family are provided in the Paragraphs which follow. Several program
assembly examples are shown for each mode, and one of the examples is described in
detail (ORG, EQU, and FCB are assembler directives and not part of the instruction set).
Parentheses are used in these descriptions/examples of the various addressing modes
to indicate “the contents of”’ the location or register referred to; e.g., (PC) indicates the
contents of the location pointed to by the PC. The colon symbol () indicates a concatena-
tion of bytes. In the following examples, the pProgram counter (PC) is initially assumed to
be pointing to the location of the first opcode byte. The first PC + 1is the first incremen-
tal result ang shows that the PC is pointing to the location immediately following the first
opcode byte.

There are seven different addressing modes used in the M6805 HMOS/M 146805 CMOs

Family, namely: inherent immedia i i i

lation. The indexed and bit manipulation addressing modes contain additiona| subdivi-
their flexib

2.3.1 Inherent Addressing Mode

In this addressing mode there is no EA (effective address). Inherent address instructions
are used when aj| information required for the instruction is already within the CPU, and
no external Operands, from memory or the program, are needed. Since all the information
necessary to carry out the instruction s contained in the opcode, and no external

16

operands are needed, inherent instructions only require one byte. These one-byte instruc-
tions are shown in Appendix E as part of control and read/modify/write instruction tables.

The following is an example of a subroutine that clears all registers (accumulator and
index) plus the C bit and then returns. Figure 2-3 shows an example of the steps required
to perform the TAX instruction in the subroutine.

05B9 4F CLEAR CLRA Clear Accumulator

05BA 97 TAX Transfer Accumulator
Contents to Index Register

05BB 98 CLC Clear the Carry Bit

05BC 81 RTS Return from Subroutine

Before Completion

Steps to
Perform TAX

PC=$05BA

TAX 05BA 97
05BB 98 05BA New PC=PC+1=3$05BB

Previous Value

IX Ig H>

After Completion

instruction Complete

|
]

TAX 0SBA 97
New PC X)=(A)

0588 98 - 058B New PC = $05BB

1
i

Figure 2-3. Inherent Addressing Mode Example

2.3.2 Immediate Addressing Mode

The EA of an immediate mode instruction is the location following the opcode. This mode
is used to hold a value or constant which is known at the time the program is written, and
which is not changed during program execution. These are two-byte instructions, one for
the opcode and one for the immediate data byte. Immediate addressing may be used by
any register/memory instructions as shown in Appendix E.

PC +1—PC

EA = PC

PC +1—PC

17

The following is an example which subtracts 5 from the contents of the accumulator and
compares the results to 10. Figure 2-4 shows an example of the steps required to perform
the SUB instruction.

05BC Bs 4B LDA $4B Load Accumulator from RAM
05BE A0 05 SUB #5 Subtract 5 from Accumulator
05C0 A1 0A CMP #10 Compare Accumulator to 10

Before Completion

Steps to Determine
Effective Address
0048 20
PC = $06BE
PC=PC+1=4058F
EA=PC
New PC=PC + 1
A =306C0
058C B6 I 20
05BD 4B PC
SUB #3505 0BBE AQ B OSBE
0bBF 05
0sCo Al
05C1 OA
After Completion
Instruction Complete
004B 20
A=I{EAI=3$20- $05=31B
New PC = $05C0
e
05BC B6& A
0580 48 l 18 ’
ObBE AQ
0SBF 05 New PC
056C1 0A

Figure 2-4. Immediate Addressing Mode Example

2.3.3 Extended Addressing Mode

The EA of an extended mode instruction is contained in the two bytes following the op-
code. Extended addressing references any location in the M6805 HMOS/M146805 CMOS
Family memory space, 110, RAM, and ROM. The extended addressing mode allows an in-
struction to access all of memory. Also, since the two bytes following the opcode contain
16 bits, the addressing range of the M6805 HMOS/M146805 CMOS Family may be

extended in the future without affecting the instruction set or addressing modes.
Extended addressing mode instructions are three bytes long, the one-byte opcode plus a
two-byte address. All register/memory instructions, as shown in Appendix E, can use
extended addressing.

PC + 1 - PC

EA = (PC): (PC + 1)

PC + 2 - PC

The following example loads the contents of a memory location (labeled COUNT) into the
index register and then jumps to a subroutine to provide a delay. Figure 2-5 shows an
example of the steps required to determine the EA from which to load the index register.
0800 COUNT EQU $800
1200 DELAY EQU $1200

0409 CE 0800 LDX COUNT Load Index Register with
Contents of Location
$800

040C CD 1200 JSR DELAY Jump to Subroutine

Located at $1200

Before Completion

Steps to Determine
X Etfective Address
PC PC = 50409
PC=PC+ 1=3$040A
t DX COUNT 0409 CE - 0409 EA=(PC):(PC+ 1)
= $0800

040A 08 W 0800 New PC= PC+2=1$040C
040B 00 I
040C CD

! ! Y

COUNT FCB $40 0800 40 EA 0800
After Completion
LDX COUNT 0409 CE instruction Complete
040A 08 X = (EA] = $40
New PC = $040C

0408 00 New PC
040C cD -— 040C

1 [}

| t

'] X

counrrcs so oo [o

Figure 2-5. Extended Addressing Mode Example

19

2.3.4 Direct Addressing Mode

address bits are set to $00. Direct addressing may be used with any read-modify-write, or

y

The foilowing example adds two 16-bit numbers. The result is then placed in the location
of the first number; however, if the result exceeds 16-bits the C bit will be set. Figure 2-6
illustrates the steps required to determine the EA from which to load the accumulator
with the contents of NUM1 (first number).

Before Completion
- T peron

Steps to Determine
Effective Address

NUM1 FCB $20 0010 20 Previous
Value

;

PC=50520

L}
f Fe PC=PC+1=S$052E
LDA NUM1 052D 86 -~ m EA=(PC) = $10+ $0000
= 50010
0528 10 F—— New PC=PC+ 1
= $052F
052F 89

After Completion
— T VRTen

'>

NUMT FCB 520 0010 20 20 Instruction Complete

' ' A=(EA) =320
New PC = $052F

LDA NUMY 052D B6
052€ 10 New PC

Figure 2-6. Direct Addressing Mode Example

ORG $10
NUM1 RMB 2
NUM2 RMB 2

0527 B6 11 LDA NUM1+1 Load Accumulator with Con-
tents of Location $0011

0529 BB 13 ADD NUM2+1 Add Contents of Location
$0013 to Accumulator

0528 B7 11 STA NUM1+1 Save Result in Location $0011

052D B6 10 LDA NUM1 Load Accumulator with Con-
tents of Location $0010

052F B9 12 ADC NUM2 Add Contents of Location

$0012 and C Bit to
Accumulator
0531 B7 10 STA NUM1 Save Result in Location $0010

2.3.5 Indexed Addressing Mode

In the indexed addressing mode, the EA is variable and depends upon two factors: (1) the
current contents of the index (X) register and (2) the offset contained in the byte(s) follow-
ing the opcode. Three types of indexed addressing exist in the M6805 HMOS/M146805
CMOS Family: no offset, 8-bit offset, and 16-bit offset. A good assembler should use the
indexed addressing mode which requires the least offset. Either the no-offset or 8-bit off-
set indexed addressing mode may be used with any read-modify-write or register/memory
instruction. The 16-bit offset indexed addressing is used only with register/memory
instructions.

2.3.5.1 INDEXED — NO OFFSET. In this mode the contents of the X register is the EA,
therefore, it is a one-byte instruction. This mode is used to create an EA which is pointing
to data in the lowest 256 bytes of the address space, including: /0, RAM, and part of
ROM. It may be used to move a pointer through a table, point to a frequently referenced
location (e.g., an /O location), or hold the address of a piece of data that is calculated by
a program. Indexed, no-offset instructions use only one byte: the opcode.

EA = X + $0000

PC+1—-PC

In the following example, locations $45 to $50 are to be initialized with blanks (ASCil $20).
Figure 2-7 illustrates the steps necessary to determine the EA from which to store the
accumulator contents into a memory location pointed to by the index register.

05F0 AE 45 LDX #%45 initialize Index Register with
$45

05F2 A6 20 LDA #$20 Load Accumulator with $20

05F4 F7 REPEAT STA X Store Accumulator Contents in
Location Pointed to by Index
Register

05F5 5C INCX Next Location

05F6 A3 51 CPX #$51 Finished

05F8 26 FC BNE REPEAT Repeat if More

21

Before Completion

Steps to Determine

rﬁ\‘w Effective Address

]
Hx I)>

0045] Previous Value PC = $05F4

. EA =X+ $0000

. —_ = $0045

* New PC=PC + 1}
0050] Previous Value = $05F5

PC
05F5 5C EA
s I

After Completion

Instruction Complete

A
0045 20 2 X=EA~ 945
New PC = $05F5
X
! |
L = 1

0050 Previous Value

LDA X 05F4 F7 New PC

05F5 5C - O05F5

S

Figure 2-7. Indexed Addressing Mode, No Offset Example

2.3.5.2 INDEXED — 8-BIT OFFSET. To determine the EA in this addressing mode, the
contents of the X register is added to the contents of the byte following the opcode. This
addressing mode is useful in selecting the kth element of an n element table. To use this
mode the table must begin in the lowest 256 memory locations, and may extend through
the first 511 memory locations (1FE is the last location at which the instruction may
begin) of the M6805 HMOS/M 146805 CMOS Family. All indexed 8-bit offset addressing
can be used for ROM, RAM, or I/0. This is a two-byte instruction with the offset contained
in the byte following the opcode. Efficient use of ROM encourages the inclusion of as
many tables as possible in page zero and page one.

PC +1-PC

EA = (PC) + X + $0000

PC +1 - PC

22

The following subroutine searches a list, which contains 256 separate items, for the first
occurrence of a value contained in the accumulator. The search starts at $80 and con-
tinues through $180 unless the accumulator contents matches one of the list items.
Figure 2-8 shows the steps required to determine the EA of the next item to be compared.

LIST EQU $80
ORG $075A

075A 5F FIND CLRX Clear Index Register

075B E1 80 REPEAT CMP LIST,X Compare Accumulator to
Contents of Location $80 + X

075D 27 03 BEQ RETURN Return if Match Found

075F 5C INCX Eise Next ltem

0760 26 F9 BNE REPEAT If 256 Items Checked then
Finish Eise Repeat

0672 81 RETURN RTS

Before Completion

A
LIST FCB$00O 0080 00 Steps to Determine
[[i Effective Address
' | 1 [1 X
) 1 1 1 : : PC=5075B
f o ' EA = (PC) + X + $0000
LIST FCB$FF 0180 FF = $80 + $00 + $0000
= $0080
' H pC New PC = PC+ 1=35075D
CMP LIST, X 075B £l - 0758
075C 80
076D 27 \

LIST FCB $00 0080| 00
1 ']

| '
1 ' 1 [} instruction Complete
1) ' ' :] EA = $0080
1
t :)
'

A
1 ' ' New PC=307bD
LIST FCB $FF 0180 FF X
i
CMP LIST,X (75B El
075C 80 New PC
Q750 27 - Q750

Figure 2-8. Indexed Addressing Mode, 8-Bit Offset Example

23

2.3.5.3 INDEXED — 16-BIT OFFSET. The EA for this two-byte offset addressing mode is
calculated by adding the concatenated contents of the next two bytes following the op-

PC + 1~ PC
EA = (PC): (PC + 1) + X
PC + 2 — PC
Before Completion
SOURCE FCRB spF 0200 BF
N . Steps De]
FCB sDB 0202 DB
. PC = $0692
FCB sor 003 CF PC=PC+1=250693
EA=(PC)APC+ 1} +(X)
FCB s98 0204 98 = 50200 + 504
=$0204
New PC=PC+2
LDA SOURCE X 0692 D6 = 50695
0693 02
0694 00
0695 E7
After Completion
—— o rEron
SOURCE FCB sBF 0200 BF
FCB $86 0201 86
FCB sDB 0202 DB
FCB sCH 0203 CF Instruction Complete
FCB 898 0204 93 A= (EA) =598
New PC = 50695
LOA SOURCE. X 0692 D6 04
0693 02
0594 00 New PC

Figure 2-9. Indexed Addressing Mode, 16-Bit Offset Example

24

In the following example, a block of data is moved from a source table to a destination
table. The index register contains the block length. Figure 2-9 illustrates the steps re-
quired to determine the EA from which to store the memory address contents into the
accumulator.
SOURCE EQU $200
DESTIN EQU 840
0690 AE 04 LDX #8304
0692 D6 0200 BLKMOV LDA SOURCE,X lLoad the Accumulator with
Contents of Location

SOURCE + X
0695 E7 40 STA DESTIN,X Store the Contents of the
Accumulator in Location
DESTIN + X
0698 5A DECX Next Location
0699 2A 0692 BPL BLKMOV Repeat if More

2.3.5.4 INDEXING COMPATIBILITY Since the index register in the M6805 HMOS/
M146805 CMOS Family is only eight bits long, and the offset values are zero, eight, or 16
bits, the MC68800 user may thus find that the X register on the M6805 HMOS/M146805
CMOS Family is best utilized “backwards” from the MC6800. That is, the offset will con-
tain the address of the table and the index register contains the displacement into the
table.

2.3.6 Relative Addressing Modes

Relative addressing is used only for branch instructions and specifies a location relative
to the current value of PC. The EA is formed by adding the contents of the byte following
the opcode to the value of the PC. Since the PC will always point to the next statement in
line while the addition is being performed, a zero relative offset byte results in no branch.
The resultant EA is used if, and only if, a relative branch is taken. Note that by the time
the byte following the opcode is added to the contents of the PG, it is already pointing to
the next instruction while the addition is being performed. Branch instructions always
contain two bytes of machine code: one for the opcode and one for the relative offset
byte. Because it is desirable to branch in either direction, the offset byte is sign extended
with a range of —128 to + 127 bytes. The effective range however, must be computed
with respect to the address of the next instruction in line. Relative branch instructions
consist of two bytes; therefore, the effective range of a branch instruction from the
beginning of the branch instruction is defined as (where R is defined as the address of
the branch instruction):
(PC+2)—1285R5(PC+2) + 127

or
PC — 126<R=<PGC + 129 (for conditional branch only)

A jump (JMP) or jump-to-subroutine (JSR) should be used if the branchrange is exceeded.

PC + 1 — PC
(PC) — TEMP
PC + 1 —~ PC

EA = PC + TEMP ift branch is taken

25

BNE REPEAT

BNE REPEAT

BNE REPEAT

EQU $4A3
REPEAT

Before Completion

cc
Steps to Determine
Effective Address
04A7 26
l Pe PC=$04A7
04A8 FA 04A7 PC=PC+ 1=304A8
SFA TEMP =(PC}=$17
04A9 5001 PC=PC+ 1=3%04A0
Temp Stop here if there
Adder 1s no Branch; e.i, Z=1
EA=PC+TEMP
=S04A3+ $FA
=$04A3
New PC = EA iff Branch is taken
EA

After Completion

(No Branch Taken}

cC
B
PC Instruction Complete
SFA
04A8 FA _ﬁ OR r $00
04A9 | e ﬁj<
¢soo [s04n9
Adder
[ome o o]
New PC EA
After Completion
(Branch Taken)
cC
——
Z=0
PC
04A7 26 04A9 Instruction Complete
SFA EA = S04A3
04A8 FA ————y OR Mg New PC=EA=$04A3
04A9 L TSel }<
' SFA ¢ S04A9
' i 4
' 1 \/
t ! Adder

Figure 2-10. Relative Addressing Mode Example

26

In the following example, the routine uses the index register as a counter for executing
the subroutine WORK 50 times. The conditional branch, BNE, tests the Z bit which is set
if the result of the DECX instruction clears the index register. The line of code shown in
Figure 2-10, contains an instruction to branch to REPEAT, if the condition code register Z
bit has not been set by the previous program step (DECX). Note in Figure 2-10 that theZ
bit controls which number is added to the PC contents. If the branch is taken, the relative
offset byte ($FA) is added; however, if the branch is not taken, nothing is added which
leaves the EA at PC + 2. Note in this case the relative offset byte $FA indicates a back-
ward branch since the most significant bit is a 1.

Assembly Examples:

04A1 AE 50 LDX #50

04A3 CD 04C0 REPEAT JSR WORK

04A6 5A DECX

04A7 26 FA 04A3 BNE REPEAT (See Example Description)

2.3.7 Bit Manipulation

Bit manipulation consists of two different addressing modes: bit set/clear and bit test
and branch. The bit set/clear mode aliows individual memory and I/O bits to be set or
cleared under program control. The bit test and branch mode allows any bit in memory to
be tested and a branch to be executed as a result. Each of these addressing modes is
described below.

2.3.7.1 BIT SET/CLEAR ADDRESSING MODE. Direct byte addressing and bit addressing
are combined in instructions which set and clear individual memory and I/O bits. In the
bit set and bit clear instructions, the memory address location (containing the bit to be
modified) is specified as direct address in the location following the opcode. As in direct
addressing, the first 256 memory locations can be addressed. The actual bit to be
modified, within the byte, is specified within the low nibble of the opcode. The bit set and
clear instructions are two-byte instructions: one for the opcode (including the bit number)
and the other to address the byte which contains the bit of interest.

CAUTION
On some M6805 Family HMOS devices, the data direction registers are write-
only registers and will read as $FF. Therefore, the bit set/clear instructions (or
read/modify/write instructions) shall not be used to manipulate the data direc-
tion register.

PC +1— PC
EA = (PC) + $0000
PC + 1 - PC

27

The following example compares the true bit manipulation of the M6805 HMQS/ M146805
CMOS Family to the conventional method of bit manipulation. This example uses the bit
manipulation instruction to turn off a LED using bit 2 of port B and three conventional in-
structions to turn the LED on. The example polls the timer control register interrupt re-
quest bit (TCR, bit 7) to determine when the LED should turn on.

Assembly Example:

0001 PORTB EQU $01 Define Port B
Address

0009 TIMER EQU $09 Define TCR
Address

BIT MANIPULATION INSTRUCTIONS

058F 15 01 BCLR 2,PORTB Turn Off LED

0591 OF 09 FC REPT BRCLR 7,TIMER,REPT Check Timer
Status Repeat if
Not Timed Out

0594 14 o1 BSET 2,PORTB Turn on LED if
Timer Times Out

CONVENTIONAL INSTRUCTIONS

AGAIN LDA TIMER Get Timer Status

BIT #3$80 Mask Out Proper
Bit

BNE AGAIN Test-Turn On if
Timer Times Out

LDA PORTB Get Port B Data

AND #$FB Clear Proper Bit

STA PORTB Save Modified
Data to Turn Off
LED

BRA REPT

Figure 2-11 shows an example of the bit set/clear addressing mode. In this example, the
assembly example above contains an instruction to clear bit 2 PORTB. (PORTB in this
case is equal to the contents of memory location $001, which is the result of adding the
byte following the opcode to $0000.)

28

Steps to Determine
ttfective Address
PORTB EQU $001 0001 FF
') PC=$058F
: : PC=PC+1= %0590
! ! PC EA = (PC) + $0000
=$01+ 0000
BCLR 2,PORTB 0B8F 15 - 058F - 50001
New PC=PC+1
0590 o1 = $0591
0591 OF Y
0001
EA
After Completion
PORTB EQU $001 0001 FB Clear Bit 2
instruction Complete
£4 = %0001
£A New PC = $0531
BCLR 2,PORTB 058F 15 B1T2 PORTB=0
0590 0 PC
o .

Figure 2-11. Bit Set/Clear Addressing Mode Example

2.3.7.2 BIT TEST AND BRANCH ADDRESSING MODE. This mode is a combination of
direct, relative, and bit set/clear addressing. The data byte to be tested is located via a
direct address in the location following the opcode. The actual bit to be tested, within the
byte, is specified within the low order nibble of the opcode. The relative address for
branching is in the byte following the direct address (second byte following the opcode).
Thus, the bit test and branch instructions are three-byte instructions (opcode byte, direct
byte, and relative byte). A bit test and branch has a relative addressing range of
PC — 125 <R< PC + 130 from the beginning of the instruction.

The bit manipulation routine shown in the previous paragraph uses a bit test and branch
instruction to poll the timer; i.e., REPT BRCL 7,TIMER, REPT. This instruction causes
timer bit 7 to be tested until it is cleared, at which time it falls through to turn on a LED.
Figure 2-12 illustrates this loop by showing both the branch and no branch status. Note
that if timer bit 7 is clear (timer not timed out), a backward branch is taken as fong as the
C bit is cleared ($FD is added to $0594 and its sign bit is negative). When the timer times
out, timer bit 7 is set (C bit is also set) and the program falls through to $0594. Notice in
the same routine example, that conventional bit test and branch instructions require
three separate instructions to perform the same function.

TIMER EQU 3009 0009

BRCLR 7, TIMER,REPT 0591
0592

0693

0694

0009

0591
0592
0593

0594

TIMER EQU $009 0009

BRCLR 7, TIMER,REPT 0591
0692
0593

0594

Before Completion

EAT
10 0009
] 1
1 PC
- - ~
OF cC
03 C=0
o A y
14
w
After Completion
(No Branch, Bit 7 Not Clear)
90
]]
' I
] }
] t
OF ce
-
FD New PC
z

After Completion
{Branch Bit 7 Clear)

e NS e
CC
10 C=0
1 1
1 |
]]
New PC
N, pa—
09
FD
14

Steps to Determine
Effective Address

PC=$0591
PC+1=$0592=PC
EA1=(PC) = %0009
PC=PC+ 1=$0593
Temp={PC)=$FD
New PC=PC+ 1=305%
itf Branch is taken, a
new EA is derived as follows
EA2=PC+TEMP=
$0594 + $FD = $0591
New PC=EA2 = 30591

instruction Complete

C=1
EAT=$0009
New PC = $0694

Instruction Complete

C=0
New PC=EA2 = $0591

Figure 2-12. Bit Test and Branch Addressing Mode Example

30

2.4 INSTRUCTION SET OVERVIEW

2.4.1 Introduction

It is convenient to view the M8805 HMOS/M 146805 CMOS Family as having five different
instruction types rather than one set of instructions. These include: register/memory,
read/modify/write, branch, control, and bit manipulation. Appendix C contains a detailed
definition of the instruction set used with the M6805 HMOS/M146805 CMOS Family;
Appendix D contains an alphabetical listing of the instruction set; Appendix E provides a
tabular functional listing of the instruction set; Appendix F contains a numerical listing
which shows the mnemonic, addressing mode, cycles, and byte of the instruction set;
Appendix G provides a cycle-by-cycle summary of the instruction set; and Appendix 1
contains an instruction set opcode map.

2.4.2 Register/Memory Instructions

Most of these instructions contain two operands. One operand is inherently defined as
either the accumulator or the index register; whereas, the other operand is fetched from
memory via one of the addressing modes. The addressing modes which are applicable to
the register/memory instructions are given below.

Immediate

Direct

Extended

Indexed — No Offset

Indexed — 8-Bit (One Byte) Offset

Indexed — 16-Bit (Two Byte) Offset

Immediate addressing is not usable with store and jump instructions (STA, STX, JMP,
and JSR). An alphabetical listing of the register/memory instruction is provided below.

ADC Add Memory and Carry to Accumulator

ADD Add Memory to Accumulator

AND AND Memory with Accumulator

BIT Bit Test Memory with Accumulator (Logical Compare)
CMP Compare Accumulator with Memory (Arithmetic Compare)
CPX Compare Index Register with Memory (Arithmetic Compare)
EOR Exclusive OR Memory with Accumulator

JMP Jump

JSR Jump to Subroutine

LDA Load Accumulator from Memory

LDX Load Index Register from Memory

ORA OR Memory with Accumulator

SBC Subtract Memory and Borrow from Accumulator

STA Store Accumulator in Memory

STX Store Index Register in Memory

SUB Subtract Memory for Accumulator

31

2.4.3 Read/Modify/Write Instructions

These instructions read a memory location or register, modify or test the contents, and
then write the modified value back into the memory or the register. The availabie
addressing modes for these instructions are given below. Note that all read/modify/write
instruction memory accesses are limited to the first 511 locations.

Direct

Inherent
Indexed — No Offset
indexed — 1 Byte Offset

The read/modify/write instructions are listed below.

ASL
ASR
CLR
COM
DEC
INC
LSL
LSR
NEG
ROL
ROR
TST

Arithmetic Shift Left (Same as LSL)
Arithmetic Shift Right

Clear

Complement

Decrement

Increment

Logical Shift Left (Same as ASL)
Logical Shift Right

Negate (Twos Complement)
Rotate Left thru Carry

Rotate Right thru Carry

Test for Negative or Zero

2.4.4 Control Instructions

Instructions in this group have inherent addressing, thus, only contain one byte. These in-
structions manipulate condition code bits, control stack and interrupt operations,
transfer data between the accumulator and index register, and do nothing (NOP). The
control instructions are listed below.

CLC
cL
NOP
RSP
RTI
RTS
SEC
SEl
Swi
TAX
TXA

Clear Carry Bit

Clear Interrupt Mask Bit

No Operation

Reset Stack Pointer

Return from Interrupt

Return from Subroutine

Set Carry Bit

Set Interrupt Mask Bit

Software Interrupt

Transfer Accumulator to Index Register
Transfer index Register to Accumulator

32

2.4.5 Bit Manipulation Instructions

There are two basic types of bit manipulation instructions. One group either sets or
clears any single bit in a memory byte. This instruction group uses the bit set/clear
addressing mode which is similar to direct addressing. The bit number (0-7) is part of the
opcode. The other group tests the state of any single bit in a memory location and
branches if the bit is set or ciear. These instructions have “test and branch” addressing.
The bit manipulation instructions are shown below (the term iff is an abbreviation for “if-
and-only-if”).

BCLR n Clear Bit n in Memory

BRCLR n Branch iff Bit n in Memory is Clear

BRSET n Branch iff Bit n in Memory is Set

BSET n Set Bit n in Memory (n=0...7)

2.4.6 Branch Instruction

In this set of instructions the program branches to a different routine when a particular
condition is met. When the specified condition is not met, execution continues with the
next instruction. Most of the branch instructions test the state of one or more of the con-
dition code bits. Relative is the only legal addressing mode applicable to the branch in-
structions. A list of the branch instructions is provided below (the term iff is an abbrevia-
tion for “if-and-only-iff").

BCC Branch iff Carry is Clear (Same as BHS)

BCS Branch iff Carry is Set (Same as BLO)

BEQ Branch iff Equal to Zero

BHCC Branch iff Half Carry is Clear

BHCS Branch iff Half Carry is Set

BHI Branch iff Higher than Zero

BHS Branch iff Higher or Same as Zero (Same as BCC)

BIH Branch iff Interrupt Line is High

BIL Branch iff Iinterrupt Line is Low

BLO Branch iff Lower than Zero (Same as BCS)

BLS Branch iff Lower or Same as Zero

BMC Branch iff Interrupt Mask is Clear

BMI| Branch iff Minus

BMS Branch iff Interrupt Mask is Set

BNE Branch iff Not Equal to Zero

BPL Branch iff Plus

BRA Branch Always

BRN Branch Never

BSR Branch to Subroutine
Note that the BIH and BIL instructions permit an external interrupt pin (INT or IRQ) to be
easily tested.

33

	MC6805_page_11.tif
	MC6805_page_12.tif
	MC6805_page_13.tif
	MC6805_page_14.tif
	MC6805_page_15.tif
	MC6805_page_16.tif
	MC6805_page_17.tif
	MC6805_page_18.tif
	MC6805_page_19.tif
	MC6805_page_20.tif
	MC6805_page_21.tif
	MC6805_page_22.tif
	MC6805_page_23.tif
	MC6805_page_24.tif
	MC6805_page_25.tif
	MC6805_page_26.tif
	MC6805_page_27.tif
	MC6805_page_28.tif
	MC6805_page_29.tif
	MC6805_page_30.tif
	MC6805_page_31.tif
	MC6805_page_32.tif
	MC6805_page_33.tif
	MC6805_page_34.tif
	MC6805_page_35.tif

