CHAPTER 1
INTRODUCTION

This publication describes the Intel® 8086 family
of microcomputing components, concentrating
on the 8086, 8088 and 8089 microprocessors. It is
written for hardware and software engineers and
technicians who understand microcomputer
operating principles. The manual is intended to
introduce the product line and to serve as a refer-
ence during system design and implementation.

Recognizing that successful microcomputer-based
products are judicious blends of hardware and
software, the User’s Manual addresses both sub-
jects, although at different levels of detail. This
publication is the definitive source for informa-
tion describing the 8086 family components. Soft-
ware topics, such as programming languages,
utilities and examples, are given moderately
detailed, but by no means complete, coverage.
Additional references, available from Intel’s
Literature Department, are cited in the program-
ming sections.

1.1 Manual Organization

The manual contains four chapters and three
appendices. The remainder of this chapter
describes the architecture of the 8086 family, and
subsequent chapters cover the individual com-
ponents in detail.

Chapter 2 describes the 8086 and 8088 Central
Processing Units, and Chapter 3 covers the 8089
Input/Output Processor. These two chapters are
identically organized and focus on providing a
functional description of the 8086, 8088 and
8089, plus related Intel hardware and software
products. Hardware reference information—
electrical characteristics, timing and physical
interfacing considerations—for all three pro-
cessors is concentrated in Chapter 4.

Appendix A is a collection of 8086 family applica-
tion notes; these provide design and debugging
examples. Appendix B contains complete data
sheets for all the 8086 family components and
system development aids; summary data sheets
covering compatible components from other Intel
product lines are also reproduced in Appendix B.

1.2 8086 Family Architecture

Considered individually, the 8086, 8088 and 8089
are advanced third-generation microprocessors.
Moreover, these processors are elements of a
larger design, that of the 8086 family. This
systems architecture specifies how the processors
and other components relate to each other, and is
the key to the exceptional versatility of these
products.

The components in the 8086 family have been
designed to operate together in diverse combina-
tions within the systematic framework of the
overall family architecture. In this way a single
family of components can be used to solve a wide
array of microcomputing problems. A compo-
nent mix can be tailored to fit the performance
needs of an application precisely, without having
to pay for unneeded capabilities that may be
bundled into more monolithic, CPU-centered
architectures. Using the same family of com-
ponents across multiple systems limits the learn-
ing curve problem and builds on past experience.
Finally, the modular structure of the family
architecture provides an orderly way for systems
to grow and change.

The 8086 family architecture is characterized by
three major principles:

1. System functions are distributed among
specialized components.

2. Multiprocessing capabilities are inherent in
the hardware.

3. A hierarchical bus organization provides for
the complex data flows required by high-
performance systems without burdening
simpler systems with unneeded capabilities.

Functional Distribution

Table 1-1 lists the components that constitute the
8086 microprocessor family. All components are
contained in standard dual in-line packages and
require single +5V power sources.
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Table 1-1. 8086 Component Family

Microprocessor

Technology Pins

Description

8086 Central Processing Unit (CPU)

8088 Central Processing Unit (CPU)

8089 Input/Output Processor (I0P)

HMOS 40 |8/16 bit general-purpose micro-
processor; 16-bit external data path.

HMOS 40 |8/16 bit general-purpose micro-
processor; 8-bit external data path.

HMOS 40 |8/16 bit microprocessor optimized for

high-speed 1/O operations; 8-bit and
16-bit external data paths.

Support Component Technology Pins Function
8259A Programmable Interrupt Controller (PIC) NMOS 28 |ldentifies highest-priority interrupt
request.
8282 Octal Latch Bipolar 20 |Demultiplexes and increases drive of
8283 Octal Latch (Inverting) address bus.
8284 Ciock Generator and Driver Bipolar 18 |Provides time base.
8286 Octal Bus Transceiver Bipotar 20 |Increases drive on data bus.
8287 Octal Bus Transceiver (Inverting)
8288 Bus Controller Bipolar 20 |Generates bus command signals.
8289 Bus Arbiter Bipolar 20 |Controls access of microprocessors
to mulitimaster system bus.
Microprocessors The 8086 and 8088 are third-generation central
At the core of the product line are three processing units (CPUs) that differ primarily in

microprocessors that share these characteristics:

* Standard operating speed is 5 MHz (200 ns
cycle time); a selected 8 MHz version of the
8086 CPU is also available.

s  Chips are housed in reliable 40-pin packages.

*  Processors operate on both 8- and 16-bit data
types; internal data paths are at least 16 bits
wide.

e Up to | megabyte of memory can be
addressed, along with a separate 64k byte
1/0 space.

*  The address/data and status interfaces of the
processors are compatible (the address and
data buses are time-multiplexed at the pro-
cessor, i.e., an address transmission is
followed by a data transmission over a subset
of the same physical lines).

their external data paths. The 8088 transfers data
between itself and other system components 8 bits
at a time. The 8086 can transfer either 8 or 16 bits
in one bus cycle and is therefore capable of
greater throughput. Both processors have two
operating modes, selectable by a strapping pin. In
minimum mode, the CPUs emit the bus control
signals needed by memory and I/O peripheral
components. In maximum mode, an 8288 Bus
Controller assumes responsibility for controlling
devices attached to the system bus. CPU pins no
longer needed for bus control are then redefined
to provide signals that support multiprocessing
systems.

The 8089 Input/Output Processor (IOP) is an
independent microprocessor whose design has
been optimized for transferring data. The 8089

1-2



INTRODUCTION

typically runs under the direction of a CPU, but it
executes a separate instruction stream and can
operate in parallel with other system processors.
The IOP contains two independent 1/0O channels
that combine attributes of both CPUs and
advanced DMA (direct memory access) con-
trollers. The channels can execute programs and
perform programmed 1/O operations similar to
CPUs. They may also transfer data by DMA, at
rates up to 1.25 megabytes per second (5 MHz
version). The channels can support mixes of 8-
and 16-bit I/0 devices and memory. Combining
speed with programmable intelligence, the 8089
can assume the bulk of I/0 processing overhead
and thereby free a CPU to perform other tasks.

Interrupt Controller

The 8259A Programmable Interrupt Controller
(PIC) is a new, 8086 family-compatible version
of the familiar 8259 that has been enhanced to
operate with the advanced interrupt facilities of
the 8086 and 8088 CPUs. The 8259A accepts
interrupt requests from up to eight sources; up
to 64 sources may be accommodated by
‘“‘cascading’’ additional 8259As. Each interrupt
source is assigned a priority number that typi-
cally reflects its ‘‘criticality’’ in the system. The
8259A has several built-in, priority-resolving
mechanisms that are selectable by software com-
mands from the CPU. These modes operate
somewhat differently, but in general the 8259A
continuously identifies the highest-priority active
interrupt request and generates an interrupt
request to the CPU if this request has higher
priority than the request currently being pro-
cessed. When the CPU recognizes the interrupt
request, the 8259A transfers a code to the CPU
that identifies the interrupt source.

Bus Interface Components

Components may be selected from this modular
group to implement different system bus con-
figurations. Except for the 8284, all components
are optional; their inclusion in a system is based
on the needs of the application. All of the bus
interface components are implemented using
bipolar technology to provide high-quality, high-
drive signals and very fast internal switching.

The 8284 Clock Generator and Driver provides
the time base for the 8086 family micro-
processors. It divides the frequency signal from

an external crystal or TTL signal by three and
outputs the 5 MHz or 8 MHz processor clock
signal. It also provides the microprocessors with
reset and ready signals.

8282 or 8283 Octal Latches may be added to a
system to demultiplex the combined address/data
bus generated by the 8086 family micro-
processors. A demultiplexed bus provides
separate stable address and data lines required by
many peripheral components. Two latches
demultiplex 16 bits of the bus to provide an
address space of up to 64k bytes, while three
latches generate the full 20-bit (megabyte) address
space. The latches also provide the high drive on
the address lines needed in larger systems.

8286 and 8287 Octal Bus Transceivers are used to
provide more drive on data lines than the pro-
cessors themselves are capable of providing. One
or two transceivers may be used depending on the
width of the data bus (8 or 16 bits).

The 8288 Bus Controller decodes status signals
output by an 8089, or a maximum mode 8086 or
8088. When these signals indicate that the pro-
cessor is to run a bus cycle, the 8288 issues a bus
command that identifies the bus cycle as memory
read, memory write, I/0 read, 1/0 write, etc. It
also provides a signal that strobes the address into
8282/83 latches. The 8288 provides the drive
levels needed for the bus control lines in medium
to large systems.

The 8289 Bus Arbiter controls the access of a pro-
cessor to a multimaster system bus. A multi-
master bus is a path to system resources (typically
memory) that is shared by two or more
microprocessors (masters). Arbiters for each
master may use one of several priority-resolving
techniques to ensure that only one master drives
the shared bus.

Multiprocessing

Employing multiple processors in medium to
large systems offers several significant advantages
over the centralized approach that relies on a
single CPU and extremely fast memory:

* system tasks may be allocated to
special-purpose processors whose designs are
optimized to perform certain types of tasks
simply and efficiently;
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* very high levels of performance can be
attained when multiple processors can
execute simultaneously (parallel processing);

¢ robustness can be improved by isolating
system functions so that a failure or error in
one part of the system has a limited effect on
the rest of the system;

¢ the natural partitioning of the system
promotes parallel development of sub-
systems, breaks the application into smaller,
more manageable tasks, and helps isolate the
effects of system modifications.

The 8086 family architecture is explicitly designed
to simplify the development of multiple processor
systems by providing facilities for coordinating
the interaction of the processors.

The architecture supports two types of pro-
cessors: independent processors and
coprocessors. An independent processor is one
that executes its own instruction stream. The
8086, 8088 and 8089 are examples of independent
processors. An 8086 or 8088 typically executes a
program in response to an interrupt. The 8089
starts its channels in response to an interrupt-like
signal called a channel attention; this signal is
typically issued by a CPU.

The 8086 architecture also supports a second type
of processor, called a coprocessor. Coprocessor
“hooks”” have been designed into the 8086 and
8088 so that this type of processor can be
accommodated in the future. A coprocessor dif-
fers from an independent processor in that it
obtains its instructions from another processor,
called a host. The coprocessor monitors instruc-
tions fetched by the host and recognizes certain of
these as its own and executes them. A
coprocessor, in effect, extends the instruction set
of its host processor.

The 8086 family architecture provides built-in
solutions to two classic multiprocessing coordina-
tion problems: bus arbitration and mutual exclu-
sion. Bus arbitration may be performed by the
bus request/grant logic contained in each of the
processors, by 8289 Bus Arbiters, or by a com-
bination of the two when processors have access
to multiple shared buses. In all cases, the arbitra-
tion mechanism operates invisibly to software.

For mutual exclusion, each processor has a
LOCK (bus lock) signal which a program may
activate to prevent other processors from obtain-
ing a shared system bus. The 8089 may lock the
bus during a DMA transfer to ensure that both
the transfer completes in the shortest possible
time and that another processor does not access
the target of the transfer (e.g., a buffer) while it is
being updated. Each of the processors has an
instruction that examines and updates a memory
byte with the bus locked. This instruction can be
used to implement a semaphore mechanism for
controlling the access of multiple processors to
shared resources. (A semaphore is a variable that
indicates whether a resource, such as a buffer or a
pointer, is ‘‘available’’ or “‘in use’’; section 2.5
discusses semaphores in more detail).

Bus Organization

Figure 1-1 summarizes the 8086 family bus struc-
ture. There are two different types of buses:
system and local. Both buses may be shared by
multiple processors, i.e., both are multimaster
buses. Microprocessors are always connected to a
local bus, and memory and 1/0 components
usually reside on a system bus. The 8086 family
bus interface components link a local bus to a
system bus.

Local Bus

The local bus is optimized for use by the 8086
family microprocessors. Since standard memory
and 1/0 components are not attached to the local
bus, information can be multiplexed and encoded
to make very efficient use of processor pins {cer-
tain MCS-85™ peripheral components can be
directly connected to the local bus). This allows
several pins to be dedicated to coordinating the
activity of multiple processors sharing the local
bus. Multiple processors connected to the same
local bus are said to be local to each other; pro-
cessors on different local buses are said to be
remote to each other, or configured remotely.
Both independent processors and cOprocessors
may share a local bus; on-chip arbitration logic
determines which processor drives the bus.
Because the processors on the local bus share the
same bus interface components, the local con-
figuration of multiple processors provides a com-
pact and inexpensive multiprocessing system.

1-4




INTRODUCTION

<
r——--—----
| |
______________________ "’l PROCESSING |
|" - I MODULE
| |
F—_—— .,
|4 | S |
| |
I private | I |
| | mEMORY | I
| po———
| I I I | PUBLIC
| MEMORY
| I J | | BUS |
| I" INTERFACE PROCESSOR| | INTERFACE H
| g | GROUP
r 1 |
I I L JI |
I 1 private |¢ ’I - | PUBLIC
|| Vo * 170
' >
|1 LOCAL BUS ’ ;
b — — J - -——— =
| r-¥-4r 1 %
I I I ! o Fr-—----"
| ROCESSING :PROCESSOR: lPROCESSOR: = | I
a PROCESSING
: MODULE I 1 1 : "M MODULE I
| | I R I —— | | 1
L
L _

Figure 1-1. Generalized 8086 Family Bus Structure

System Bus

A full implementation of an 8086 system bus con-
sists of the following five sets of signals:

address bus,

data bus,

control lines,

interrupt lines, and

v B W N

arbitration lines.

These signals are designed to meet the needs of
standard memory and 1/0O devices; the address
and data buses are demultiplexed and traditional
control signals (memory read/write, 1/0
read/write, etc.) are provided on the system bus.

The system bus design is modular and subsets
may be implemented according to the needs of the
application. For example, the arbitration lines are
not needed in single-processor systems or in
multiple-processor systems that perform arbitra-
tion at the local-bus level.

A group of bus interface components transforms
the signals of a local bus into a system bus. The
number of bus interface components required to
generate a system bus depends on the size and
complexity of the system; reduced application
needs translate directly into reduced component
counts. These main variables determine the con-
figuration of a bus interface group: address space
size (number of latches), data bus width (number
of transceivers), and arbitration needs (presence
of a bus arbiter).
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The 8086 family system bus is functionally and
electrically compatible with the Multibus™
multimaster system bus used in Intel’s iSBC™
line of single board computing products. This
compatability gives system designers access to a
wide variety of computer, memory, communica-
tions and other modules that may be incorporated
into products, used for evaluation or for test
vehicles.

Processing Modules

The processor(s) and bus interface group(s) that
are connected by a local bus constitute a process-
ing module. A simple processing module could
consist of a single CPU and one bus interface
group. A more complex module would contain
multiple processors, such as two IOPs, or a CPU
and one or two IOPs. One bus interface group
typically links the processors in the module to a
public system bus. If there are multiple processing
modules in the system, all memory or I/O con-
nected to the public bus is accessible to all pro-
cessing modules on the public bus. 8289 Bus
Arbiters in each processing module control the
access of the modules to the public bus and hence
to the public memory and 1/0.

A second bus interface group may be connected
to a processing module’s local bus, generating a
second bus. This bus can provide the processing
module with a private address space that is not
accessible to other processing modules. Distri-
buting memory and /0 resources in this manner
can improve system robustness by isolating the
effects of failures. It can also increase system
throughput dramatically. If processor programs
and local data are placed in private memory, con-

tention for use of the public system bus can be
held to a minimum to ensure that shared
resources are quickly available when they are
needed. In addition, processors in separate
modules can simultaneously fetch instructions
from private memory spaces to allow multiple
system tasks to proceed in parallel.

Bus Implementation Examples

This section summarizes the 8086 family bus
organization by showing how components from
the family can be combined to implement diverse
bus configurations. The first two examples
illustrate special cases that extend the applicabil-
ity of the 8086 family to smaller systems. The
remaining examples add and recombine the same
basic components to form progressively more
complex bus configurations. Note that these
examples are intended to be illustrative rather
than exhaustive; many different combinations of
components can be tailored to fit the needs of
individual applications.

In its minimum mode configuration, the 8088
time-multiplexes its 8-bit data bus with the lower
eight bits of its 20-bit address bus (figure 1-2).
This multiplexed address/data bus, and the bus
control signals emitted by the 8088, are directly
compatible with the multiplexed bus components
of Intel’s 8085 family. These peripherals contain
on-chip logic that demultiplexes a combined
address/data bus. In addition, many of these
devices are multifunctional, combining, for
example, RAM, 1/0 ports and a timer on a single
chip. By using these components, it is possible to
build small (as few as four chips) economical
systems that are nonetheless capable of perform-
ing significant computing tasks.

8284
8088

cLoCK —-
GENERATOR cPy

CONTROL LINES

ADDRESS/
DATA LINES

8088 MULTIPLEXED
BUS

Figure 1-2. 8088 Multiplexed Bus
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Combining 8282/83 latches with a minimum
mode 8086 or 8088 produces a minimum mode
system bus (figure 1-3). Two latches provide an
address space of up to 64k bytes; adding a third
latch provides access to the full megabyte of
memory. An 8288 Bus Controller is not required
for this implementation as the CPUs themselves
emit the bus control signals when they are con-
figured in the minimum mode. This demulti-
plexed bus structure is compatible with the wide
array of memory and I/O components that have

been developed for the industry-standard 8080A
CPU. Eight-bit peripherals may be connected to
both the upper and lower halves of the 8086°s
16-bit data bus. 8286/87 transceivers may be
added to provide additional drive on the data
lines, where required. Including an 8259A gives
the CPU the ability to respond to multiple inter-
rupt sources without polling. The minimum mode
system bus configuration is well-suited to a
variety of systems whose computational require-
ments can be met by a single 8086 or 8088 CPU.
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Figure 1-3. Minimum Mode System Bus
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When an 8086 or 8088 is configured in maximum
mode and an 8288 is added to control the system
bus, one or two 8089s may be directly connected
to the CPU (figure 1-4). The processors all share
the same latches, transceivers, clock and bus con-
troller, via the local bus. Arbitration logic built
into the 8086, 8088 and 8089 coordinates use of
the local bus, and thus of the system bus. This bus
configuration enables the powerful I/0 handling
capabilities of the 8089 to be incorporated into
systems of moderate size and cost.

The 8289 enables high-performance systems to be
designed as a series of independent processing
modules whose activities are coordinated via a
shared system bus. Figure 1-5 shows the multi-

master system bus interface; this bus structure is
electrically compatible with the Multibus™
architecture used in Intel iSBC™ single-board
computing systems.

Several different combinations of processors may
be attached to the local bus of a multimaster com-
puting module:

* asingle 8086 or 8088

* asingle 8089

e two 8089s

*  an 8086 or 8088 and one 8089

e an 8086 or 8088 and two 8089s
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Figure 1-5. Basic Multimaster Processing Module

All of the processors on the local bus obtain
access to the system bus through a single set of
interface components.

One or two 8089s in a multimaster processing
module may be configured with a private I/0 bus
as shown in figure 1-6. In this configuration,
memory access commands are directed to the
public multimaster system bus, while 1/0 com-
mands use the private I/O bus. Memory, contain-
ing the 8089’s programs, as well as 1/0 devices,

may be connected to the private I/O bus. Taking
this approach can greatly reduce the 8089’s use of
the system bus as most memory and 1/0 accesses
can be made to the private address space. The
system bus is thus made available for use by other
processors, and the 8089 can execute in parallel
with other processors for extended periods. A
limited private 1/0 bus may be implemented
using the 8-bit multiplexed peripherals of the 8085
family, eliminating the latches and transceivers
shown in figure 1-6.
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Figure 1-6. Private I/0 Bus

Adding a second 8288 to the local bus allows an
8086 or 8088 in a processing module to divide its
address space into system and resident sections
(figure 1-7). A PROM or decoder is used to direct
an address reference to the system bus or to the
resident bus. The resident bus allows the CPU to
run out of its own address space to minimize its

use of the system bus. Since no other processors
can access the private memory on the CPU’s resi-
dent bus, operating system code and data in this
space is protected from errors in other processor
programs. If a second 8289 is added to a resident
bus module, the resident bus becomes a second
multimaster system bus.
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Figure 1-7. Resident Bus

As an alternative to the resident bus, a private
read-only memory space can be implemented
using the RD (read) signal provided by the CPUs
in lieu of an 8288 Bus Controller.

Multiprocessing systems of widely varying com-
plexity can be constructed from multimaster pro-
cessing modules. Each module can be designed
and implemented separately and can be optimized
to perform a given task. The modules can com-
municate with each other by means of interrupts
and messages placed in system memory. Addi-
tional functions can be added to a system by
incorporating the new functions into modules and
connecting the modules to the system bus.

Figure 1-8 illustrates a hypothetical system in
which nine processors are distributed among five

multimaster processing modules. (For clarity, bus
interface components are not shown in figure
1-8.) A supervisor module controls the system,
primarily responding to interrupts and dis-
patching other modules to perform tasks. The
supervisor CPU, like the other processors in the
system, executes code from private memory that
is inaccessible to other modules. System memory,
which is accessible to all the processors, is used
only for messages, common buffers, etc. This
helps to “‘protect’’ the processors from each other
and to keep system bus contention at a minimum.
The database module is responsible for maintain-
ing all system files. Each of the three graphics
modules supports a graphics CRT terminal. An
8089 in each module performs data transfers and
CRT refresh and calls upon an 8088 for intensive
computational routines.
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Figure 1-8. Multimaster Design Example

1.3 Development Aids

Intel provides the sophisticated tools needed for
timely and economical development of products
based on the 8086 family. The 8086 family system
development environment is focused on the
Intellec® Series II Microcomputer Development
System (figure 1-9). The Intellec system is a
multiple-microprocessor system that runs
ISIS-1I, a disk-based operating system that has
been proven in thousands of installations. The
Intellec has built-in interfaces for a printer,
a PROM programmer and a paper tape
reader/punch. This same hardware and operating

system may be used to develop systems based on
other Intel microprocessor families such as the
8085 and the 8048.

Three language translators support 8086 family
programming. PL/M-86 is a high-level language
for the 8086 and 8088 that supports structured
programming techniques. It is upward-
compatible with PL/M-80, the most widely used
high-level microprocessor language. ASM-86 may
be used to write assembly language programs for
the 8086 and the 8088 CPUs and gives the pro-
grammer access to the full power of these CPUs.
8089 programs are written in ASM-89, the 8089
assembly language.
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The language translators produce compatible out-
puts that can be manipulated by the software
development utilities. LINK-86, for example, can
combine programs written in ASM-86 with
PL/M-86 programs. LIB-86 allows related pro-
grams to be stored in libraries to simplify storage
and retrival. LOC-86 assigns absolute memory
addresses to programs. OH-86 changes the for-
mat of an executable program for PROM pro-
gramming or for loading into the RAM of a test
vehicle.

The UPP-301 Universal PROM Programmer can
burn programs into any of Intel’s PROM
memories; the UPP plugs into the Intellec®
system and allows program data to be
manipulated from the console before it is pro-
grammed into the PROM.

The SDK-86 is an (minimum mode) 8086-based
prototyping and evaluation kit. It includes the
CPU, RAM, 1/0 ports and a breadboard area for
interfacing customer circuits. A ROM-based
monitor program is supplied with the Kkit.
Monitor commands may be entered from an on-
board keypad or from a terminal; the monitor
returns results to the SDK-86’s on-board LED
display or to a terminal. Monitor commands
allow programs to be entered, run, stopped, and
single-stepped; memory contents can be altered as
well as displayed. The SDK-C86 Software and
Cable Interface connects an SDK-86 to an
Intellec® system. The software supplied with the
cable enables programs to be transferred between
the development system and the SDK-86 to allow
users to develop programs using the text editor,
translators and utilities of the Intellec system and
then download the program to the SDK-86 for
execution.

The iSBC 86/12™ board is a high-performance
single board computer based on a maximum
mode 8086 CPU. The board contains 32k of dual-
port RAM that is accessible to the CPU via the
on-board bus and to other processors via the
built-in Multibus™ interface. The board also has
an asynchronous serial port, parallel ports with
sockets for drivers and terminators, two timers
and sockets for 16k of ROM.

An iSBC 86/12™ can be linked to an Intellec®
system using the iISBC 957™ Intellec-iSBC 86/12
Interface and Execution Package. The package
includes a ROM-based monitor for the iSBC
86/12 board, software for the Intellec system and
cabling to connect the two. The package supports
data transfers between Intellec diskettes and iSBC
86/12 memory, full speed execution of customer
programs on the iSBC 86/12 board, breakpoints,
single-stepping, and data moves, replacements,
searches and compares. All commands are
entered from the Intellec console.

The ICE-86™ module is an in-circuit emulator
for the 8086 microprocessor. A 40-pin probe
replaces the 8086 in the system under test. This
probe is connected to ICE-86 circuit boards that
in turn plug into the Intellec® chassis. The ICE-86.
module emulates the 8086 in the system under test
in response to commands entered through the
Intellec console. These commands allow the user
to debug the system by setting breakpoints, trac-
ing the flow of execution, single-stepping,
examining and altering memory and 1/0, etc. All
references to program variables and labels are
symbolic (i.e., their PL/M-86 or ASM-86 names).
Software testing can also map ‘‘system under
test’’ memory into the Intellec memory to permit
software testing to begin before prototype hard-
ware has been developed. ’
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CHAPTER 2
THE 8086 AND 8088
CENTRAL PROCESSING UNITS

This chapter describes the mainstays of the 8086

microprocessor family: the 8086 and 8088 central aol ]t N @ M vee
processing un.its (CPUs). The material is divided aota ]z s| 7 Ap1s
into ten seciions and generally proceeds from o ssf] aressa
hardware to software topics as follows: avv2 (s I
1. Processor Overview Ao [ s 36| ate/ss
2. Processor Architecture apto [J6 35[0 averse
3 M aps []7 3a[] BHE/s?
: emory aps s 33 ] MN/RIX
4. Input/Output ao7 [e 32| @
5. Multiprocessing Features sos[Jo 8088 wfTwow  wE/sT
. . AD RQ/GT1
6. Processor Control and Monitoring =i = EDA faseT
apa [J12 20 WR (LOCK)
7. Instruction Set a3 [ 2wt &
8. Addressing Modes a0z [ 7oA D
9. Programming Facilities a0 s mHoE &
o ano s 25 ] ALE (@so)
10. Programming Guidelines and Examples i v w[ IR sy
) . . TR [ 18 23| ] TEST
The chapter describes the internal operation of e e 22| reavy
the CPUs in detail. The interaction of the pro- ono oo 21| meser
cessors with other devices is discussed in func-
tional terms; electrical characteristics, timing, and
other information needed to actually interface = A = T
other devices with the 8086 and 8088 are provided aa[]2 3 [Ja1s
in Chapter 4. a3[]s 38 ] at6/s3
a2 37 A17/s4
a1n[]s 36 [ ] A18/85
2.1 Processor OverView a0 ]e 35| ] a1e/56
a7 3a[) sso (HIGH)
The 8086 and 8088 are closely related third- as[]s a3 [ ] MN/RIR
generation microprocessors. The 8088 is designed ao7[Jo 2|17
with an 8-bit external data path to memory and aps [J1o 8088 sQrow  wEaT
[0, while the 8086 can transfer 16 bits at a time. aos [ cPu o[ Hoa  @G/ETH
In almost every other respect the processors are e | ot
identical; software written for one CPU will aos s wos @
execute on the other without alteration. The chips d - &
are contained in standard 40-pin dual in-line s i
packages (figure 2-1) and operate from a single so1C31s o S
+5V power source. aoo (e splae s
nmi [ 24| ] iNTa sty
The 8086 and 8088 are suitable for an exception- wta[Jae 23] TEST
ally wide spectrum of microcomputer applica- ak]e 22[7] READY
tions, and this flexibility is one of their most ano[] 20 2 b RESET
outstanding characteristics. Systems can range
from uniprocessor minimal-memory designs
implemgnted with a handful of chips (figure 2-2), MAXIMUM MODE PIN FUNCTIONS (e.5.. [OCK)
to multiprocessor systems with up to a megabyte
of memory (figure 2-3). Figure 2-1. 8086 and 8088 Central Processing
Units

. 21
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8086 AND 8088 CENTRAL PROCESSING UNITS

The large application domain of the 8086 and
8088 is made possible primarily by the processors’
dual operating modes (minimum and maximum
mode) and built-in multiprocessing features.
Several of the 40 CPU pins have dual functions
that are selected by a strapping pin. Configured
in minimum mode, these pins transfer control
signals directly to memory and input/output
devices. In maximum mode these same pins take
on different functions that are helpful in medium
to large ystems, especially systems with multiple
processors. The control functions assigned to
these pins in minimum mode are assumed by a
support chip, the 8288 Bus Controller.

The CPUs are designed to operate with the 8089
Input/Output Processor (IOP) and other pro-
cessors in multiprocessing and distributed pro-
cessing systems. When used in conjunction with
one or more 8089s, the 8086 and 8088 expand
the applicability of microprocessors into 1/0-
intensive data processing systems. Built-in coor-
dinating signals and instructions, and electrical
compatibility with Intel’s Multibus™ shared bus
architecture, simplify and reduce the cost of
developing multiple-processor designs.

Both CPUs are substantially more powerful than
any microprocessor previously offered by Intel.
Actual performance, of course, varies from
application to application, but comparisons to the
industry standard 2-MHz 8080A are instructive.
The 8088 is from four to six times more powerful
than the 8080A; the 8086 provides seven to ten
times the 8080A’s performance (see figure 2-4).

100

RELATIVE PERFORMANCE
>

1
1974

A i 1
1977 1978 1979

1972

YEAR INTRODUCED

Figure 2-4. Relative Performance of the
8086 and 8088

The 8086’s advantage over the 8088 is attributable
to its 16-bit external data bus. In applications that
manipulate 8-bit quantities extensively, or that
are execution-bound, the 8088 can approach to
within 10% of the 8086’s processing throughput.

The high performance of the 8086 and 8088 is
realized by combining a 16-bit internal data path
with a pipelined architecture that allows instruc-
tions to be prefetched during spare bus cycles.
Also contributing to performance is a compact
instruction format that enables more instructions
to be fetched in a given amount of time.

Software for high-performance 8086 and 8088
systems need not be written in assembly language.
The CPUs are designed to provide direct hard-
ware support for programs written in high-level
languages such as Intel’s PL/M-86. Most high-
level languages store variables in memory; the
8086/8088 symmetrical instruction set supports
direct operation on memory operands, including
operands on the stack. The hardware addressing
modes provide efficient, straightforward
implementations of based variables, arrays, ar-
rays of structures and other high-level language
data constructs. A powerful set of memory-to-
memory string operations is available for efficient
character data manipulation. Finally, routines
with critical performance requirements that can-
not be met with PL/M-86 may be written in
ASM-86 (the 8086/8088 assembly language) and
linked with PL/M-86 code.

While the 8086 and 8088 are totally new designs,
they make the most of users’ existing investments
in systems designed around the 8080/8085
microprocessors. Many of the standard Intel
memory, peripheral control and communication
chips are compatible with the 8086 and the 8088.
Software is developed in the familiar Intellec®
Microcomputer Development System environ-
ment, and most existing programs, whether writ-
ten in ASM-80 or PL/M-80, can be directly con-
verted to run on the 8086 and 8088.

2.2 Processor Architecture

Microprocessors generally execute a program by
repeatedly cycling through the steps shown below
(this description is somewhat simplified):

1. Fetch the next instruction from memory.

2. Read an operand (if required by the

instruction).
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3. Execute the instruction.

4. Write the result (if required by the
instruction).

In previous CPUs, most of these steps have been
performed serially, or with only a single bus cycle
fetch overlap. The architecture of the 8086 and
8088 CPUs, while performing the same steps,
allocates them to two separate processing units
within the CPU. The execution unit (EU) executes
instructions; the bus interface unit (BIU) fetches
instructions, reads operands and writes results.

The two units can operate independently of one
another and are able, under most circumstances,
to extensively overlap instruction fetch with exe-
cution. The result is that, in most cases, the time
normally required to fetch instructions “‘dis-
appears’’ because the EU executes instructions
that have already been fetched by the BIU. Figure
2-5 illustrates this overlap and compares it with
traditional microprocessor operation. In the
example, overlapping reduces the elapsed time
required to execute three instructions, and allows
two additional instructions to be prefetched as
well.

|
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Execution Unit

The execution units of the 8086 and 8088 are iden-
tical (figure 2-6). A 16-bit arithmetic/logic unit
(ALU) in the EU maintains the CPU status and
control flags, and manipulates the general
registers and instruction operands. All registers
and data paths in the EU are 16 bits wide for fast
internal transfers.

The EU has no connection to the system bus, the
“outside world.”’ It obtains instructions from a
queue maintained by the BIU. Likewise, when an
instruction requires access to memory or to a
peripheral device, the EU requests the BIU to
obtain or store the data. All addresses
manipulated by the EU are 16 bits wide. The BIU,
however, performs an address relocation that
gives the EU access to the full megabyte of
memory space (see section 2.3).

Bus Interface Unit

The BIUs of the 8086 and 8088 are functionally
identical, but are implemented differently to
match the structure and performance
characteristics of their respective buses.

The BIU performs all bus operations for the EU.
Data is transferred between the CPU and memory
or I/0 devices upon demand from the EU. Sec-
tions 2.3 and 2.4 describe the interaction of the
BIU with memory and 1/0 devices.

In addition, during periods when the EU is busy
executing instructions, the BIU ‘‘looks ahead”
and fetches more instructions from memory. The
instructions are stored in an internal RAM array
called the instruction stream queue. The 8088
instruction queue holds up to four bytes of the
instruction stream, while the 8086 queue can store

EXECUTION UNIT (EU)

GENERAL
REGISTERS

- - e o ——

BUS INTERFACE UNIT (BIU)

SEGMENT
REGISTERS

INSTRUCTION
POINTER

1

ADDRESS
GENERATION

MULTIPLEXED BUS

1
1

AND BUS
CONTROL

1]

INSTRUCTION
QUEUE

Figure 2-6. Execution and Bus Interface Units (EU and BIU)
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up to six instruction bytes. These queue sizes
allow the BIU to keep the EU supplied with pre-
fetched instructions under most conditions
without monopolizing the system bus. The 8088
BIU fetches another instruction byte whenever
one byte in its queue is empty and there is no
active request for bus access from the EU. The
8086 BIU operates similarly except that it does
not initiate a fetch until there are two empty bytes
in its queue. The 8086 BIU normally obtains two
instruction bytes per fetch; if a program transfer
forces fetching from an odd address, the 8086
BIU automatically reads one byte from the odd
address and then resumes fetching two-byte
words from the subsequent even addresses.

Under most circumstances the queues contain at
least one byte of the instruction stream and the
EU does not have to wait for instructions to be
fetched. The instructions in the queue are those
stored in the memory locations immediately adja-
cent to and higher than the instruction currently
being executed. That is, they are the next logical
instructions so long as execution proceeds seri-
ally. If the EU executes an instruction that
transfers control to another location, the BIU
resets the queue, fetches the instruction from the
new address, passes it immediately to the EU, and
then begins refilling the queue from the new loca-
tion. In addition, the BIU suspends instruction
fetching whenever the EU requests a memory or
170 read or write (except that a fetch already in
progress is completed before executing the EU’s
bus request).

General Registers

Both CPUs have the same complement of eight
16-bit general registers (figure 2-7). The general
registers are subdivided into two sets of four
registers each: the data registers (sometimes called
the H & L group for ““high’” and “‘low’’), and the
pointer and index registers (sometimes called the
P & I group).

The data registers are unique in that their upper
(high) and lower halves are separately
addressable. This means that each data register
can be used interchangeably as a 16-bit register,
or as two 8-bit registers. The other CPU registers
always are accessed as 16-bit units only. The data
registers can be used without constraint in most
arithmetic and logic operations. In addition,
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Figure 2-7. General Registers

some instructions use certain registers implicitly
(see table 2-1) thus allowing compact yet powerful
encoding.

Table 2-1. Implicit Use of General Registers

REGISTER OPERATIONS

AX Word Multiply, Word Divide,
Word I/O

AL Byte Multiply, Byte Divide, Byte
110, Translate, Decimal Arithmetic

AH Byte Multiply, Byte Divide

BX Translate

CX String Operations, Loops

CL Variable Shift and Rotate

DX Word Multiply, Word Divide,
Indirect /O

SP Stack Operations

Sl String Operations

DI String Operations

The pointer and index registers can also par-
ticipate in most arithmetic and logic operations.
In fact, all eight general registers fit the definition
of ‘“‘accumulator’’ as used in first and second
generation microprocessors. The P & 1 registers
(except for BP) also are used implicitly in some
instructions as shown in table 2-1.
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Segment Registers

The megabyte of 8086 and 8088 memory space is
divided into logical segments of up to 64k bytes
each. (Memory segmentation is described in sec-
tion 2.3.) The CPU has direct access to four
segments at a time; their base addresses (starting
[ocations) are contained in the segment registers
(see figure 2-8), The CS register points to the cur-
rent code segment; instructions are fetched from
this segment. The SS register points to the current
stack segment; stack operations are performed on
locations in this segment. The DS register points
to the current data segment; it generally contains
program variables. The ES register points to the
current extra segment, which also is typically used
for data storage.

The segment registers are accessible to programs
and can be manipulated with several instructions.
Good programming practice and consideration of
compatibility with future Intel hardware and soft-
ware products dictate that the segment registers
be used in a disciplined fashion. Section 2.10 pro-
vides guidelines for segment register use.

15 0
cs SEamENT
DS Se&Ment
ss SEGMENT
ES SEGMENT

Figure 2-8. Segment Registers

Instruction Pointer

The 16-bit instruction pointer (IP) is analogous to
the program counter (PC) in the 8080/8085
CPUs. The instruction pointer is updated by the
BIU so that it contains the offset (distance in
bytes) of the next instruction from the beginning
of the current code segment; i.e., IP points to the
next instruction. During normal execution, IP
contains the offset of the next instruction to be
fetched by the BIU; whenever IP is saved on the
stack, however, it first is automatically adjusted
to point to the next instruction to be executed.
Programs do not have direct access to the instruc-
tion pointer, but instructions cause it to change
and to be saved on and restored from the stack.

Flags

The 8086 and 8088 have six 1-bit status flags
(figure 2-9) that the EU posts to reflect certain
properties of the result of an arithmetic or logic

CONTROL STATUS
FLAGS FLAGS

— e A
CARRY

PARITY

AUXILIARY CARRY
ZERO

SIGN

OVERFLOW
INTERRUPT-ENABLE
DIRECTION

TRAP

Figure 2-9. Flags

operation. A group of instructions is available
that allows a program to alter its execution
depending on the state of these flags, that is, on
the result of a prior operation. Different instruc-
tions affect the status flags differently; in general,
however, the flags reflect the following
conditions:

1. If AF (the auxiliary carry flag) is set, there
has been a carry out of the low nibble into
the high nibble or a borrow from the high
nibble into the low nibble of an 8-bit quantity
(low-order byte of a 16-bit quantity). This
flag is used by decimal arithmetic
instructions.

2. If CF (the carry flag) is set, there has been a

carry out of, or a borrow into, the high-order
bit of the result (8- or 16-bit). The flag is used
by instructions that add and subtract
multibyte numbers. Rotate instructions can
also isolate a bit in memory or a register by
placing it in the carry flag.

3. If OF (the overflow flag) is set, an arithmetic

overflow has occurred; that is, a significant
digit has been lost because the size of the
result exceeded the capacity of its destination
location. An Interrupt On Overflow instruc-
tion is available that will generate an inter-
rupt in this situation.
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4. If SF (the sign flag) is set, the high-order bit
of the result is a 1. Since negative binary
numbers are represented in the 8086 and 8088
in standard two’s complement notation, SF
indicates the sign of the result (0 = positive,
1 = negative).

5. If PF (the parity flag) is set, the result has
even parity, an even number of 1-bits. This
flag can be used to check for data transmis-
sion errors.

6. If ZF (the zero flag) is set, the result of the
operation is 0.

Three additional control flags (figure 2-9) can be
set and cleared by programs to alter processor
operations:

1. Setting DF (the direction flag) causes string
instructions to auto-decrement; that is, to
process strings from high addresses to low
addresses, or from ‘‘right to left.”” Clearing

DF causes string instructions to auto-
increment, or to process strings from *‘left to
right.”’

2. Setting IF (the interrupt-enable flag) allows
the CPU to recognize external (maskable)
interrupt requests. Clearing IF disables these
interrupts. IF has no affect on either non-
maskable external or internally generated
interrupts.

3. Setting TF (the trap flag) puts the processor
into single-step mode for debugging. In this
mode, the CPU automatically generates an
internal interrupt after each instruction,
allowing a program to be inspected as it exe-
cutes instruction by instruction. Section 2.10
contains an example showing the use of TF in
a single-step and breakpoint routine.

8080/8085 Registers and Flag
Correspondence

The registers, flags and program counter in the
8080/8085 CPUs all have counterparts in the 8086
and 8088 (see figure 2-10). The A register (ac-
cumulator) in the 8080/8085 corresponds to the
AL register in the 8086 and 8088. The 8080/8085
H&L, B&C, and D & E registers correspond to
registers BH, BL, CH, CL, DH and DL, respec-
tively, in the 8086 and 8088. The 8080/8085 SP
(stack pointer) and PC (program counter) have
their counterparts in the 8086/8088 SP and IP.

The AF, CF, PF, SF, and ZF flags are the same in
both CPU families. The remaining flags and
registers are unique to the 8086 and 8088. This
8080/8085 to 8086 mapping allows most existing
8080/8085 program code to be directly translated
into 8086/8088 code.

Mode Selection

Both processors have a strap pin (MN/MX) that
defines the function of eight CPU pins in the 8086
and nine pins in the 8088. Connecting MN/MX to
+5V places the CPU in minimum mode. In this
configuration, which is designed for small
systems (roughly one or two boards), the CPU
itself provides the bus control signals needed by
memory and peripherals. When MN/MX is
strapped to ground, the CPU is configured in
maximum mode. In this configuration the CPU
encodes control signals on three lines. An 8288
Bus Controller is added to decode the signals
from the CPU and to provide an expanded set of
control signals to the rest of the system. The CPU
uses the remaining free lines for a new set of
signals designed to help coordinate the activities
of other processors in the system. Sections 2.5
and 2.6 describe the functions of these signals.

2.3 Memory

The 8086 and 8088 can accommodate up to
1,048,576 bytes of memory in both minimum and
maximum mode. This section describes how
memory is functionally organized and used.
There are substantial differences in the way
memory components are actually accessed by the
two processors; these differences, which are in-
visible to programs, are covered in section 4.2,
External Memory Addressing.

Storage Organization

From a storage point of view, the 8086 and 8088
memory spaces are organized as identical arrays
of 8-bit bytes (see figure 2-11). Instructions, byte
data and word data may be freely stored at any
byte address without regard for alignment thereby
saving memory space by allowing code to be
densely packed in memory (see figure 2-12). Odd-
addressed (unaligned) word variables, however,
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do not take advantage of the 8086’s ability to
transfer 16-bits at a time. Instruction alignment
does not materially affect the performance of
either processor.

Following Intel convention, word data always is
stored with the most-significant byte in the higher
memory location (see figure 2-13). Most of the
time this storage convention is ‘‘invisible’’ to
anyone working with the processors; exceptions
may occur when monitoring the system bus or
when reading memory dumps.

A special class of data is stored as doublewords;
i.e., two consecutive words. These are called
pointers and are used to address data and code
that are outside the currently-addressable
segments. The lower-addressed word of a pointer
contains an offset value, and the higher-addressed
word contains a segment base address. Each word
is stored conventionally with the higher-addressed
byte containing the most-significant eight bits of
the word (see figure 2-14).

724H
o ! 2 5
L _ 4
0000 | 0010

725H
I

5 HEX
_.'._

0101 | 0101 |BINARY

VALUE OF WORD STORED AT 724H: 5502H

Figure 2-13. Storage of Word Variables

Segmentation

8086 and 8088 programs ‘‘view’’ the megabyte of
memory space as a group of segments that are
defined by the application. A segment is a logical
unit of memory that may be up to 64k bytes long.
Each segment is made up of contiguous memory
locations and is an independent, separately-
addressable unit. Every segment is assigned (by
software) a base address, which is its starting
location in the memory space. All segments begin
on 16-byte memory boundaries. There are no
other restrictions on segment locations; segments
may be adjacent, disjoint, partially overlapped,
or fully overlapped (see figure 2-15). A physical
memory location may be mapped into (contained
in) one or more logical segments.

The segment registers point to (contain the base
address values of) the four currently addressable
segments (see figure 2-16). Programs obtain
access to code and data in other segments by
changing the segment registers to point to the
desired segments.

Every application will define and use segments
differently. The currently addressable segments
provide a generous work space: 64k bytes for
code, a 64k byte stack and 128k bytes of data
storage. Many applications can be written to
simply initialize the segment registers and then
forget them. Larger applications should be
designed with careful consideration given to seg-
ment definition.
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Figure 2-14. Storage of Pointer Variables
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Figure 2-16. Currently Addressable Segments

The segmented structure of the 8086/8088
memory space supports modular software design
by discouraging huge, monolithic programs. The
segments also can be used to advantage in many
programming situations. Take, for example, the
case of an editor for several on-line terminals. A
64k text buffer (probably an extra segment) could
be assigned to each terminal. A single program
could maintain all the buffers by simply changing
register ES to point to the buffer of the terminal
requiring service.

Physical Address Generation

It is useful to think of every memory location as
having two kinds of addresses, physical and
logical. A physical address is the 20-bit value that
uniquely identifies each byte location in the
megabyte memory space. Physical addresses may
range from OH through FFFFFH. All exchanges
between the CPU and memory components use
this physical address.

Programs deal with logical, rather than physical
addresses and allow code to be developed without
prior knowledge of where the code is to be located
in memory and facilitate dynamic management of
memory resources. A logical address consists of a
segment base value and an offset value. For any
given memory location, the segment base value
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locates the first byte of the containing segment
and the offset value is the distance, in bytes, of
the target location from the beginning of the
segment. Segment base and offset values are
unsigned 16-bit quantities; the lowest-addressed
byte in a segment has an offset of 0. Many dif-
ferent logical addresses can map to the same
physical location as shown in figure 2-17. In
figure 2-17, physical memory location 2C3H is
contained in two different overlapping segments,
one beginning at 2BOH and the other at 2C0H.

Whenever the BIU accesses memory—to fetch an
instruction or to obtain or store a variable—it
generates a physical address from a logical
address. This is done by shifting the segment base
value four bit positions and adding the offset as
illustrated in figure 2-18. Note that this addition
process provides for modulo 64k addressing
(addresses wrap around from the end of a seg-
ment to the beginning of the same segment).

The BIU obtains the logical address of a memory
location from different sources depending on the
type of reference that is being made (see table

2-2). Instructions always are fetched from the cur-
rent code segment; IP contains the offset of the
target instruction from the beginning of the seg-
ment. Stack instructions always operate on the
current stack segment; SP contains the offset of
the top of the stack. Most variables (memory
operands) are assumed to reside in the current
data segment, although a program can instruct
the BIU to access a variable in one of the other
currently addressable segments. The offset of a
memory variable is calculated by the EU. This
calculation is based on the addressing mode
specified in the instruction; the result is called the
operand’s effective address (EA). Section 2.8
covers addressing modes and effective address
calculation in detail.

Strings are addressed differently than other
variables. The source operand of a string instruc-
tion is assumed to lie in the current data segment,
but another currently addressable segment may be
specified. Its offset is taken from register SI, the
source index register. The destination operand of
a string instruction always resides in the current

PHYSICAL

2C4H

ADDRESS

LOGICAL
ADDRESSES

OFFSET

gEgMENT ,I
ASE

- 2C3H
2C2H
2CtH
2COH
2BFH
2BEH
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OFFSET 2BAH
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~ SEOMENT ———— 2BOH

Figure 2-17. Logical and Physical Addresses
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Figure 2-18. Physical Address Generation
Table 2-2. Logical Address Sources
DEFAULT ALTERNATE
TYPE OF MEMORY REFERENCE SEGMENT SEGMENT OFFSET
BASE BASE
Instruction Fetch (O] NONE P
Stack Operation SS NONE SP
Variable (except following) DS CS,ES,SS Effective Address
String Source DS CS,ES,SS Sl
String Destination ES NONE DI
BP Used As Base Register SS CS,DS,ES Effective Address

extra segment; its offset is taken from DI, the
destination index register. The string instructions
automatically adjust SI and DI as they process the
strings one byte or word at a time.

When register BP, the base pointer register, is
designated as a base register in an instruction, the
variable is assumed to reside in the current stack
segment. Register BP thus provides a convenient
way to address data on the stack; BP can be used,
however, to access data in any of the other cur-
rently addressable segments.

In most cases, the BIU’s segment assumptions are
a convenience to programmers. It is possible,
however, for a programmer to explicitly direct the
BIU to access a variable in any of the currently
addressable segments (the only exception is the
destination operand of a string instruction which
must be in the extra segment). This is done by
preceding an instruction with a segment override
prefix. This one-byte machine instruction tells the
BIU which segment register to use to access a
variable referenced in the following instruction.

Dynamically Relocatable Code

The segmented memory structure of the 8086 and
8088 makes it possible to write programs that are
position-independent, or dynamically relocatable.
Dynamic relocation allows a multiprogramming
or multitasking system to make particularly effec-
tive use of available memory. Inactive programs
can be written to disk and the space they occupied
allocated to other programs. If a disk-resident
program is needed later, it can be read back into
any available memory location and restarted.
Similarly, if a program needs a large contiguous
block of storage, and the total amount is available
only in nonadjacent fragments, other program
segments can be compacted to free up a con-
tinuous space. This process is shown graphically
in figure 2-19.

In order to be dynamically relocatable, a program
must not load or alter its segment registers and
must not transfer directly to a location outside the
current code segment. In other words, all offsets
in the program must be relative to fixed values
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Figure 2-19. Dynamic Code Relocation

contained in the segment registers. This allows the
program to be moved anywhere in memory as
long as the segment registers are updated to point
10 the new base addresses. Section 2.10 contains
an example that illustrates dynamic code
relocation.

Stack Implementation

Stacks in the 8086 and 8088 are implemented in
memory and are located by the stack segment
register (SS) and the stack pointer register (SP). A
system may have an unlimited number of stacks,
and a stack may be up to 64k bytes long, the max-
imum length of a segment. (An attempt to expand
a stack beyond 64k bytes overwrites the beginning
of the stack.) One stack is directly addressable at
a time; this is the current stack, often referred to
simply as ‘‘the’” stack. SS contains the base
address of the current stack and SP points to the
top of the stack (TOS). In other words, SP con-
tains the offset of the top of the stack from the

stack segment’s base address. Note, however, that
the stack’s base address (contained in SS) is not
the “bottom’’ of the stack.

8086 and 8088 stacks are 16 bits wide; instructions
that operate on a stack add and remove stack
items one word at a time. An item is pushed onto
the stack (see figure 2-20) by decrementing SP by
2 and writing the item at the new TOS. An item is
popped off the stack by copying it from TOS and
then incrementing SP by 2. In other words, the
stack grows down in memory toward its base
address. Stack operations never move items on
the stack, nor do they erase them, The top of the
stack changes only as a result of updating the
stack pointer.

Dedicated and Reserved Memory
Locations

Two areas in extreme low and high memory are
dedicated to specific processor functions or are
reserved by Intel Corporation for use by Intel
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Figure 2-20. Stack Operation

hardware and software products. As shown in
figure 2-21, the location are: OH throgh 7FH (128
bytes) and FFFFOH through FFFFFH (16 bytes).
These areas are used for interrupt and system
reset processing 8086 and 8088 application
systems should not use these areas for any other
purpose. Doing so may make these systems
incompatible with future Intel products.

8086/8088 Memory Access
Differences

The 8086 can access either 8 or 16 bits of memory
at a time. If an instruction refers to a word
variable and that variable is located at an even-
numbered address, the 8086 accesses the complete
word in one bus cycle. If the word is located at an
odd-numbered address, the 8086 accesses the
word one byte at a time in two consecutive bus
cycles.

To maximize throughput in 8086-based systems,
16-bit data should be stored at even addresses
(should be word-aligned). This is particularly true
of stacks. Unaligned stacks can slow a system’s
response to interrupts. Nevertheless, except for
the performance penalty, word alignment is

totally transparent to software. This allows max-
imum data packing where memory space is
constrained.

The 8086 always fetches the instruction stream in
words from even addresses except that the first
fetch after a program transfer to an odd address
obtains a byte. The instruction stream is
disassembled inside the processor and instruction
alignment will not materially affect the per-
formance of most systems.

The 8088 always accesses memory in bytes. Word
operands are accessed in two bus cycles regardless
of their alignment. Instructions also are fetched
one byte at a time. Although alignment of word
operands does not affect the performance of the
8088, locating 16-bit data on even addresses will
insure maximum throughput if the system is ever
transferred to an 8086.

2.4 Input/Output

The 8086 and 8088 have a versatile set of in-
put/output facilities. Both processors provide a
large 1/0 space that is separate from the memory
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Figure 2-21. Reserved and Dedicated Memory
and I/0 Locations

space, and instructions that transfer data between
the CPU and devices located in the /O space.
I/0O devices also may be placed in the memory
space to bring the power of the full instruction set
and addressing modes to input/output pro-
cessing. For high-speed transfers, the CPUs may
be used with traditional direct memory access
controllers or the 8089 Input/Output Processor.

Input/Output Space

The 8086/8088 1/0 space can accommodate up to
64k 8-bit ports or up to 32k 16-bit ports. The IN
and OUT (input and output) instructions transfer
data between the accumulator (AL for byte
transfers, AX for word transfers) and ports
located in the 1/0 space.

The 1/0 space is not segmented; to access a port,
the BIU simply places the port address (0-64k) on
the lower 16 lines of the address bus. Different
forms of the I/0 instructions allow the address to
be specified as a fixed value in the instruction or
as a variable taken from register DX.

Restricted i/0 Locations

Locations F8H through FFH (eight of the 64k
locations) in the I/0 space are reserved by Intel
Corporation for use by future Intel hardware and
software products. Using these locations for any
other purpose may inhibit compatibility with
future Intel products.

8086/8088 1/0 Access Differences

The 8086 can transfer either 8 or 16 bits at a time
to a device located in the I/0 space. A 16-bit
device should be located at an even address so
that the word will be transferred in a single bus
cycle. An 8-bit device may be located at either an
even or odd address; however, the internal
registers in a given device must be assigned all-
even or all-odd addresses.

The 8088 transfers one byte per bus cycle. If a
16-bit device is used in the 8088 1/0 space, it must
be capable of transferring words in the same
fashion, i.e., eight bits at a time in two bus cycles.
(The 8089 Input/Output Processor can provide a
straightforward interface between the 8088 and a
16-bit I/0 device.) An 8-bit device may be located
at odd or even addresses in the 8088 1/0 space
and internal registers may be assigned consecutive
addresses (e.g., 1H, 2H, 3H). Assigning all-odd
or all-even addresses to these registers, however,
will simplify transferring the system to an 8086
CPU.

Memory-Mapped I/0

[/0 devices also may be placed in the 8086/8088
memory space. As long as the devices respond like
memory components, the CPU does not know the
difference.

Memory-mapped 1/0 provides additional pro-
gramming flexibility. Any instruction that
references memory may be used to access an 170
port located in the memory space. For example,
the MOV (move) instruction can transfer data
between any 8086/8088 register and a port, or the
AND, OR and TEST instructions may be used to
manipulate bits in /0 device registers. In addi-
tion, memory-mapped I/O can take advantage of
the 8086/8088 memory addressing modes. A
group of terminals, for example, could be treated
as an array in memory with an index register

Mnemonics © Intel, 1978
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selecting a terminal in the array. Section 2.10 pro-
vides examples of using the instruction set and
addressing modes with memory-mapped 1[/0.

Of course, a price must be paid for the added pro-
gramming flexibility that memory-mapped 1/0
provides. Dedicating part of the memory space to
I/0 devices reduces the number of addresses
available for memory, although with a megabyte
of memory space this should rarely be a con-
straint. Memory reference instructions also take
longer to execute and are somewhat less compact
than the simpler IN and OUT instructions.

Direct Memory Access

When configured in minimum mode, the 8086
and 8088 provide HOLD (hold) and HLDA (hold
acknowledge) signals that are compatible with
traditional DMA controllers such as the 8257 and
8237. A DMA controller can request use of the
bus for direct transfer of data between an 1/0
device and memory by activating HOLD. The
CPU will complete the current bus cycle, if one is
in progress, and then issue HLDA, granting the
bus to the DMA controller. The CPU will not
attempt to use the bus until HOLD goes inactive.

The 8086 addresses memory that is physically
organized in two separate banks, one containing
even-addressed bytes and one containing odd-ad-
dressed bytes. An 8-bit DMA controller must
alternately select these banks to access logically
adjacent bytes in memory. The 8089 provides a
simple way to interface a high-speed 8-bit device
to an 8086-based system (see Chapter 3).

8089 Input/Output Processor (I0P)

The 8086 and 8088 are designed to be used with
the 8089 in high-performance 1/0 applications.
The 8089 conceptually resembles a
microprocessor with two DMA channels and an
instruction set specifically tailored for I/0 opera-
tions. Unlike simple DMA controllers, the 8089
can service 1/0 devices directly, removing this
task from the CPU. In addition, it can transfer
data on its own bus or on the system bus, can
match 8- or 16-bit peripherals to 8- or 16-bit
buses, and can transfer data from memory to
memory and from I/0 device to I/O device.
Chapter 3 describes the 8089 in detail.

2.5 Multiprocessing Features

As microprocessor prices have declined,
multiprocessing (using two or more coordinated
processors in a system) has become an increas-
ingly attractive design alternative. Performance
can be substantially improved by distributing
system tasks among separate, concurrently exe-
cuting processors. In addition, multiprocessing
encourages a modular approach to design, usually
resulting in systems that are more easily main-
tained and enhanced. For example, figure 2-22
shows a multiprocessor system in which 1/0
activities have been delegated to an 8089 IOP.
Should an 170 device in the system be changed
(e.g., a hard disk substituted for a floppy), the
impact of the modification is confined to the I/O
subsystem and is transparent to the CPU and to
the application software.

The 8086 and 8088 are designed for the
multiprocessing environment. They have built-in
features that help solve the coordination prob-
lems that have discouraged multiprocessing
system development in the past.

Bus Lock

When configured in maximum mode, the 8086
and 8088 provide the LOCK (bus lock) signal.
The BIU activates LOCK when the EU executes
the one-byte LOCK prefix instruction. The
LOCK signal remains active throughout execu-
tion of the instruction that follows the LOCK
prefix. Interrupts are not affected by the LOCK
prefix. If another processor requests use of the
bus (via the request/grant lines, which are
discussed shortly), the CPU records the request,
but does not honor it until execution of the locked
instruction has been completed.

Note that the LOCK signal remains active for the
duration of a single instruction. If two con-
secutive instructions are each preceded by a
LOCK prefix, there will still be an unlocked
period between these instructions. In the case of a
locked repeated string instruction, LOCK does
remain active for the duration of the block
operation.

When the 8086 or 8088 is configured in minimum
mode, the LOCK signal is not available. The
LOCK prefix can be used, however, to delay the
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Figure 2-22. Multiprocessing System

generation of an HLDA response to a HOLD
request until execution of the locked instruction is
completed.

The LOCK signal provides information only. It is
the responsibility of other processors on the
shared bus to not attempt to obtain the bus while
LOCK is active. If the system uses 8289 Bus
Arbiters to control access to the shared bus, the

8289°s accept LOCK as an input and do not relin-
quish the bus while this signal is active.

LOCK may be used in multiprocessing systems to
coordinate access to a common resource, such as
a buffer or a pointer. If access to the resource is
not controlled, one processor can read an
erroneous value from the resource when another
processor is updating it (see figure 2-23).

Access can be controlled (see figure 2-24) by using
the LOCK prefix in conjunction with the XCHG
(exchange register with memory) instruction. The
basis for controlling access to a given resource isa
semaphore, a software-settable flag or switch that
indicates whether the resource is ‘‘available”
(semaphore=0) or “busy”’ (semaphore=1). Pro-
cessors that share the bus agree by convention not
to use the resource unless the semaphore indicates

that it is available. They likewise agree to set the
semaphore when they are using the resource and
to clear it when they are finished.

The XCHG instruction can obtain the current
value of the semaphore and set it to ““busy”’ in a
single instruction. The instruction, however,
requires two bus cycles to swap 8-bit values. It is
possible for another processor to obtain the bus
between these two cycles and to gain access to the
partially-updated semaphore. This can be
prevented by preceding the XCHG instruction
with a LOCK prefix, as illustrated in figure 2-25,
The bus lock establishes control over access to the
semaphore and thus to the shared resource.

WAIT and TEST

The 8086 and 8088 (in either maximum or
minimum mode) can be synchronized to an exter-
nal event with the WAIT (wait for TEST) instruc-
tion and the TEST input signal. When the EU
executes a WAIT instruction, the result depends
on the state of the TEST input line. If TEST is
inactive, the processor _enters an idle state and
repeatedly retests the TEST line at five-clock
intervals. If TEST is active, execution continues
with the instruction following the WAIT.
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Figure 2-23. Uncontrolled Access to Shared

Escape

The ESC (escape) instruction provides a way for
another processor to obtain an instruction and/or
a memory operand from an 8086/8088 program.
When used in conjunction with WAIT and TEST,
ESC can initiate a ‘‘subroutine’’ that executes
concurrently in another processor (see figure
2-26).

Six bits in the ESC instruction may be specified by
the programmer when the instruction is written.
By monitoring the 8086/8088 bus and control
lines, another processor can capture the ESC
instruction when it is fetched by the BIU. The six
bits may then direct the external processor to per-
form some predefined activity.

If the 8086/8088 is configured in maximum
mode, the external processor, having determined
that an ESC has been fetched, can monitor QS0

Resource
SHARED POINTER
BUSCYCLE  SEMAPHORE IN MEMORY PROCESSOR ACTIVITIES
0 0 05,22 [4C, 1B
“A” OBTAINS EXCLUSIVE
1 1 05, 22[4c, 1B uaE
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3 1 c2,59 [4c, 18 AND WAITS
‘ 4 1 c2,59 [31,05] ““A” COMPLETES UPDATE
“B” TESTS SEMAPHORE
5 1 c2,59 [ 31,05 ARD WAITS
: 6 0 c2,59 )31 05] “A” RELEASES RESOURCE
! “B” OBTAINS
; 7 ! €2,59]31,05 EXCLUSIVE USE
}’ “B’ READS
1 8 ! 2,59 (31,0 UPDATED VALUE
| 9 0 c2,59 |31 05 “B" RELEASES RESOURCE

Figure 2-24. Controlled Access to Shared Resource
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Figure 2-25. Using XCHG and LOCK

MOV SEMAPHORE,0

and QS1 (the queue status lines, discussed in sec-
tion 2.6) and determine when the ESC instruction
is executed. If the instruction references memory
the external processor can then monitor the bus
and capture the operand’s physical address
and/or the operand itself.

Note that fetching an ESC instruction is not tan-
tamount to executing it. The ESC may be pre-
ceded by a jump that causes the queue to be
reinitialized. This event also can be determined
from the queue status lines.

Request/Grant Lines

When the 8086 or 8088 is configured in maximum
mode, the HOLD and HLDA lines evolve into
two more sophisticated signals called RQ/GTo
and RQ/GTI. These are bidirectional lines that
can be used to share a local bus between an 8086
or 8088 and two other processors via a handshake
sequence.

The request/grant sequence is a three-phase cycle:
request, grant and release. First, the processor
desiring the bus pulses a request/grant line. The
CPU returns a pulse on the same line indicating
that it is entering the “‘hold acknowledge’’ state
and is relinquishing the bus. The BIU is logically
disconnected from the bus during this period. The

PROQ§§SOR

CONTINUE
UNTIL “‘B”’s
RESULT
IS NEEDED

PROCESSOR
Gpn

TEST

Figure 2-26. Using ESC with WAIT and TEST
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EU, however, will continue to execute instruc-
tions until an instruction requires bus access or
the queue is emptied, whichever occurs first.
When the other processor has finished with the
bus, it sends a final pulse to the 8086/8088 in-
dicating that the request has ended and that the
CPU may reclaim the bus.

RQ/GTO has higher priority than RQ/GT1. If
requests arrive simultaneously on both lines, the
grant_goes to the processor on RQ/GTO and
RQ/GT1 is acknowledged after the bus has been
returned to the CPU. If, however, a request
arrives on RQ/GTO0 while the CPU is processing a
prior request on RQ/GT]I, the second request is
not honored until the processor on RQ/GTI1
releases the bus.

Multibus™ Architecture

Intel has designed a general-purpose
multiprocessing bus called the Multibus. This is
the standard design used in iSBC™ single-board
microcomputer products. Many other manufac-
turers offer products that are compatible with the
Multibus architecture as well. When the 8086 and
8088 are configured in maximum mode, the 8288
Bus Controller outputs signals that are electrically
compatible with the Multibus protocol. Designers
of multiprocessing systems may want to consider
using the Multibus architecture in the design of
their products to reduce development cost and

time, and to obtain compatibility with the wide
variety of boards available in the iSBC product
line.

The Multibus architecture provides a versatile
communications channel that can be used to coor-
dinate a wide variety of computing modules (see
figure 2-27). Modules in a Multibus system are
designated as masters or slaves. Masters may
obtain use of the bus and initiate data transfers on
it. Slaves are the objects of data transfers only.
The Multibus architecture allows both 8- and 16-
bit masters to be intermixed in a system. In addi-
tion to 16 data lines, the bus design provides 20
address lines, eight multilevel interrupt lines, and
control and arbitration lines. An auxiliary power
bus also is provided to route standby power to
memories if the normal supply fails.

The Multibus architecture maintains its own
clock, independent of the clocks of the modules it
links together. This allows different speed masters
to share the bus and allows masters to operate
asynchronously with respect to each other. The
arbitration logic of the bus permit slow-speed
masters to compete equably for use of the bus.
Once a module has obtained the bus, however,
transfer speeds are dependent only on the
capabilities of the transmitting and receiving
modules. Finally, the Multibus standard defines
the form factors and physical requirements of
modules that communicate on this bus. For a
complete description of the Multibus architec-
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Figure 2-27. Multibus™-Based System
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ture, refer to the Intel Multibus Specification
(document number 9800683) and Application
Note 28A, ““Intel Multibus Interfacing.”’

8289 Bus Arbiter

Multiprocessor systems require a means of coor-
dinating the processors’ use of the shared bus.
The 8289 Bus Arbiter works in conjunction with
the 8288 Bus Controller to provide this control
for 8086- and 8088-based systems. It is compati-
ble with the Multibus architecture and can be used
in other shared-bus designs as well.

The 8289 eliminates race conditions, resolves bus
contention and matches processors operating
asynchronously with respect to each other. Each
processor on the bus is assigned a different pri-
ority. When simultaneous requests for the bus
arrive, the 8289 resolves the contention and grants
the bus to the processor with the highest priority;
three different prioritizing techniques may be
used. Chapter 4 discusses the 8289 in more detail.

2.6 Processor Control and
Monitoring

Interrupts

The 8086 and 8088 have a simple and versatile
interrupt system. Every interrupt is assigned a
type code that identifies it to the CPU. The 8086

and 8088 can handle up to 256 different interrupt
types. Interrupts may be initiated by devices
external to the CPU; in addition, they also may be
triggered by software interrupt instructions and,
under certain conditions, by the CPU itself (see
figure 2-28). Figure 2-29 illustrates the basic
response of the 8086 and 8088 to an interrupt.
The next sections elaborate on the information
presented in this drawing.

External Interrupts

The 8086 and 8088 have two lines that external
devices may use to signal interrupts (INTR and
NMI). The INTR (Interrupt Request) line is
usually driven by an Intel® 8259A Programmable
Interrupt Controller (PIC), which is in turn con-
nected to the devices that need interrupt services.
The 8259A is a very flexible circuit that is con-
trolled by software commands from the 8086 or
8088 (the PIC appears as a set of 1/0 ports to the
software). Its main job is to accept interrupt
requests from the devices attached to it, deter-
mine which requesting device has the highest
priority, and then activate the 8086/8088 INTR
line if the selected device has higher priority than
the device currently being serviced (if there is
one).

When INTR is active, the CPU takes different
action depending on the state of the interrupt-
enable flag (IF). No action takes place, however,
until the currently-executing instruction has been

NON-MASKABLE h
INTERRUPT
REQUEST -~
NMI ———
I_ Y _] -————
| 1
MASKABLE
| INTERRUPT - pINTRY  go50n | INTERRUPT
i I <«—— [ REQUESTS
| i 4 | -~
I | e
I | {—o
i | iNte INTO oivipe | SWNELET J
| | TR INSTR. ERROR | (relh |
! " |
| |
Laoas/eosa cPU ]

Figure 2-28. Interrupt Sources

2-22



8086 AND 8088 CENTRAL PROCESSING UNITS
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|
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Figure 2-29. Interrupt Processing Sequence
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completed.* Then, if IF is clear (meaning that
interrupts signaled on INTR are masked or dis-
abled), the CPU ignores the interrupt request and
processes the next instruction. The INTR signal is
not latched by the CPU, so it must be held active
until a response is received or the request is
withdrawn. If interrupts on INTR are enabled (if
IF is set), then the CPU recognizes the interrupt
request and processes it. Interrupt requests arriv-
ing on INTR can be enabled by executing an STI
(set interrupt-enable flag) instruction, and dis-
abled by executing a CLI (clear interrupt-enable
flag) instruction. They also may be selectively
masked (some types enabled, some disabled) by
writing commands to the 8259A. It should be
noted that in order to reduce the likelihood of
excessive stack buildup, the STI and IRET
instructions will reenable interrupts only after
the end of the following instruction.

The CPU acknowledges the interrupt request by
executing two consecutive interrupt acknowledge
(INTA) bus cycles. If a bus hold request arrives
(via the HOLD or request/grant lines) during the
INTA cycles, it is not honored until the cycles
have been completed. In addition, if the CPU is
configured in maximum mode, it activates the
LOCK signal during these cycles to indicate to
other processors that they should not attempt to
obtain the bus. The first cycle signals the 8259A
that the request has been honored. During the
second INTA cycle, the 8259A responds by plac-
ing a byte on the data bus that contains the inter-
rupt type (0-255) associated with the device
requesting service. (The type assignment is made
when the 8259A is initialized by software in the
8086 or 8088.) The CPU reads this type code and
uses it to call the corresponding interrupt
procedure.

*There are a few cases in which an interrupt request is not reco

and segment override prefixes are considered “‘part of”’

execution of a prefix and an instruction. A MOV (mov:
instruction are treated similarly: no interrupt is recognize

An external interrupt request also may arrive on
another CPU line, NMI (non-maskable inter-
rupt). This line is edge-triggered (INTR is level-
triggered) and is generally used to signal the CPU
of a “catastrophic’’ event, such as the imminent
loss of power, memory error detection or bus
parity error. Interrupt requests arriving on NMI
cannot be disabled, are latched by the CPU, and
have higher priority than an interrupt request on
INTR. If an interrupt request arrives on both
lines during the execution of an instruction, NMI
will be recognized first. Non-maskable interrupts
are predefined as type 2; the processor does not
need to be supplied with a type code to call the
NMI procedure, and it does not run the INTA bus
cycles in response to a request on NMI.

The time required for the CPU to recognize an
external interrupt request (interrupt latency)
depends on how many clock periods remain in the
execution of the current instruction. On the
average, the longest latency occurs when a
multiplication, division or variable-bit shift or
rotate instruction is executing when the interrupt
request arrives (see section 2.7 for detailed
instruction timing data). As mentioned pre-
viously, in a few cases, worst-case latency will
span two instructions rather than one.

Internal Interrupts

An INT (interrupt) instruction generates an inter-
rupt immediately upon completion of its execu-
tion. The interrupt type coded into the instruction
supplies the CPU with the type code needed to
call the procedure to process the interrupt. Since
any type code may be specified, software inter-
rupts may be used to test interrupt procedures
written to service external devices.

gnized until after the following instruction. Repeat, LOCK
the instructions they prefix; no interrupt is recognized between
€) to segment register instruction and a POP segment register
d until after the following instruction. This mechanism protects

a program that is changing to a new stack (by updating SS and SP). If an interrupt were recognized after SS had been
changed, but before SP had been altered, the processor would push the flags, CS and IP into the wrong area of memory.
It follows from this that whenever a segment register and another value must be updated together, the segment register
should be changed first, followed immediately by the instruction that changes the other value. There are also two cases,
WAIT and repeated string instructions, where an interrupt request is recognized in the middle of an instruction. In these
cases, interrupts are accepted after any completed primitive operation or wait test cycle.

Mnemonics ¢ Intel, 1978 2-24




8086 AND 8088 CENTRAL PROCESSING UNITS

If the overflow flag (OF) is set, an INTO (inter-
rupt on overflow) instruction generates a type 4
interrupt immediately upon completion of its
execution.

The CPU itself generates a type O interrupt
immediately following execution of a DIV or
IDIV (divide, integer divide) instruction if the
calculated quotient is larger than the specified
destination.

If the trap flag (TF) is set, the CPU automatically
generates a type 1 interrupt following every
instruction. This is called single-step execution
and is a powerful debugging tool that is discussed
in more detail shortly.

All internal interrupts (INT, INTO, divide error,
and single-step) share these characteristics:

The interrupt type code is either contained in
the instruction or is predefined.

2. NoINTA buscycles are run.

3. Internal interrupts cannot be disabled, except
for single-step.

4. Any internal interrupt (except single-step)
has higher priority than any external inter-
rupt (see table 2-3). If interrupt requests
arrive on NMI and/or INTR during execu-
tion of an instruction that causes an internal
interrupt (e.g., divide error), the internal
interrupt is processed first.

Interrupt Pointer Table

The interrupt pointer (or interrupt vector) table
(figure 2-30) is the link between an interrupt type
code and the procedure that has been designated
to service interrupts associated with that code.
The interrupt pointer table occupies up to the first
1k bytes of low memory. There may be up to 256
entries in the table, one for each interrupt type

CS BASE ADDRESS

( 3FFH
| TYPE 255 POINTER: _]
(AVAILABLE)
3FCH
I
AVAILABLE
INTERRUPT T T
POINTERS
4
(228 | TYPE33POINTER: _|
(AVAILABLE)
084H
TYPE 32 POINTER:  _|
(AVAILABLE)
g
7
( | TYPE31POINTER: _]
(RESERVED)
RESERVED
INTERRUPT o
POINTERS .
(27)
i TYPESPOINTER:  _|
U o1an (RESERVED)
l
;
| TYPE4POINTER: _|
OVERFLOW
010H
| TYPE3POINTER. _|
1-BYTE INT INSTRUCTION
00CH
DEDICATED
INTERRUPT | TYPE2POINTER: _]
POINTERS NON-MASKABLE
(5) 008H
| TYPE1POINTER
SINGLE-STEP
004H
TYPE 0 POINTER
L DIVIDE ERROR
000H

IP OFFSET

| 16 BITS

Figure 2-30. Interrupt Pointer Table
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that can occur in the system. Each entry in the
table is a doubleword pointer containing the
address of the procedure that is to service inter-
rupts of that type. The higher-addressed word of
the pointer contains the base address of the seg-
ment containing the procedure. The lower-ad-
dressed word contains the procedure’s offset
from the beginning of the segment. Since each
entry is four bytes long, the CPU can calculate the
location of the correct entry for a given interrupt
type by simply multiplying (type*4).

Table 2-3. Interrupt Priorities

INTERRUPT PRIORITY
Divide error, INT n, INTO highest
NMI
INTR
Single-step lowest

Space at the high end of the table that would be
occupied by entries for interrupt types that cannot
occur in a given application may be used for other
purposes. The dedicated and reserved portions of
the interrupt pointer table (locations OH through
7FH), however, should not be used for any other
purpose to insure proper system operation and to
preserve compatibility with future Intel hardware
and software products.

After pushing the flags onto the stack, the 8086 or
8088 activates an interrupt procedure by exe-
cuting the equivalent of an intersegment indirect
CALL instruction. The target of the “CALL”’ is
the address contained in the interrupt pointer
table element located at (type*4). The CPU saves
the address of the next instruction by pushing CS
and IP onto the stack. These are then replaced by
the second and first words of the table element,
thus transferring control to the procedure.

If multiple interrupt requests arrive simulta-
neously, the processor activates the interrupt pro-
cedures in priority order. Figure 2-31 shows how
procedures would be activated in an extreme case.
The processor is running in single-step mode with
external interrupts enabled. During execution of a
divide instruction, INTR is activated. Further-
more the instruction generates a divide error
interrupt. Figure 2-31 shows that the interrupts

are recognized in turn, in the order of their
priorities except for INTR. INTR is not recog-
nized until after the following instruction because
recognition of the earlier interrupts cleared IF. Of
couse interrupts could be reenabled in any of the
interrupt response routines if earlier response to
INTR is desired.

As figure 2-31 shows, all main-line code is exe-
cuted in single-step mode. Also, because of the
order of interrupt processing, the opportunity
exists in each occurrence of the single-step routine
to select whether pending interrupt routines
(divide error and INTR routines in this example)
are executed at full speed or in single-step mode.

Interrupt Procedures

When an interrupt service procedure is entered,
the flags, CS, and IP are pushed onto the stack
and TF and IF are cleared. The procedure may
reenable external interrupts with the STI (set
interrupt-enable flag) instruction, thus allowing
itself to be interrupted by a request on INTR.
(Note, however, that interrupts are not actually
enabled until the instruction following STI has
executed.) An interrupt procedure always may be
interrupted by a request arriving on NMI.
Software- or processor-initiated interrupts
occurring within the procedure also will interrupt
the procedure. Care must be taken in interrupt
procedures that the type of interrupt being ser-
viced by the procedure does not itself inadver-
tently occur within the procedure. For example,
an attempt to divide by 0 in the divide error (type
0) interrupt procedure may result in the procedure
being reentered endlessly. Enough stack space
must be available to accommodate the maximum
depth of interrupt nesting that can occur in the
system.

Like all procedures, interrupt procedures should
save any registers they use before updating them,
and restore them before terminating. 1t is good
practice for an interrupt procedure to enable
external interrupts for all but ‘“critical sections’’
of code (those sections that cannot be interrupted
without risking erroneous results). If external
interrupts are disabled for too long in a pro-
cedure, interrupt requests on INTR can poten-
tially be lost.
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Figure 2-31. Processing Simultaneous Interrupts
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All interrupt procedures should be terminated
with an IRET (interrupt return) instruction. The
IRET instruction assumes that the stack is in the
same condition as it was when the procedure was
entered. It pops the top three stack words into 1P,
CS and the flags, thus returning to the instruction
that was about to be executed when the interrupt
procedure was activated.

The actual processing done by the procedure is
dependent upon the application. If the procedure
is servicing an external device, it should output a
command to the device instructing it to remove its
interrupt request. It might then read status
information from the device, determine the cause
of the interrupt and then take action accordingly.
Section 2.10 contains three typical interrupt pro-
cedure examples.

Software-initiated interrupt procedures may be
used as service routines (‘‘supervisor calls’’) for
other programs in the system. In this case, the
interrupt procedure is activated when a program,
rather than an external device, needs attention.
(The “‘attention’’ might be to search a file for a
record, send a message to another program,
request an allocation of free memory, etc.) Soft-
ware interrupt procedures can be advantageous in
systems that dynamically relocate programs dur-
ing execution. Since the interrupt pointer table is
at a fixed storage location, procedures may
‘““call’” each other through the table by issuing
software interrupt instructions. This provides a
stable communication ‘‘exchange’ that is
independent of procedure addresses. The inter-
rupt procedures may themselves be moved so long
as the interrupt pointer table always is updated to
provide the linkage from the “‘calling” program
via the interrupt type code.

Single-Step (Trap) Interrupt

When TF (the trap flag) is set, the 8086 or 8088 is
said to be in single-step mode. In this mode, the
processor automatically generates a type | inter-
rupt after each instruction. Recall that as part of
its interrupt processing, the CPU automatically
pushes the flags onto the stack and then clears TF
and IF. Thus the processor is not in single-step
mode when the single-step interrupt procedure is
entered; it runs normally. When the single-step
procedure terminates, the old flag image is
restored from the stack, placing the CPU back
into single-step mode.

Single-stepping is a valuable debugging tool. It
allows the single-step procedure to act as a ““win-
dow’” into the system through which operation
can be observed instruction-by-instruction. A
single-step interrupt procedure, for example, can
print or display register contents, the value of the
instruction pointer (it is on the stack), key
memory variables, etc., as they change after each
instruction. In this way the exact flow of a pro-
gram can be traced in detail, and the point at
which discrepancies occur can be determined.
Other possible services that could be provided by
a single-step routine include:

*  Writing a message when a specified memory
location or 170 port changes value (or equals
a specified value).

* Providing diagnostics selectively (only for
certain instruction addresses for instance).

* Letting a routine execute a number of times
before providing diagnostics.

The 8086 and 8088 do not have instructions for
setting or clearing TF directly. Rather, TF can be
changed by modifying the flag-image on the
stack. The PUSHF and POPF instructions are
available for pushing and popping the flags
directly (TF can be set by ORing the flag-image
with 0100H and cleared by ANDing it with
FEFFH). After TF is set in this manner, the first
single-step interrupt occurs after the first
instruction following the IRET from the single-
step procedure.

If the processor is single-stepping, it processes an
interrupt (either internal or external) as follows.
Control is passed normally (flags, CS and IP are
pushed) to the procedure designated to handle the
type of interrupt that has occurred. However,
before the first instruction of that procedure is
executed, the single-step interrupt is “‘recog-
nized”’ and control is passed normally (flags, CS
and IP are pushed) to the type 1 interrupt pro-
cedure. When single-step procedure terminates,
control returns to the previous interrupt pro-
cedure. Figure 2-31 illustrates this process in a
case where two interrupts occur when the pro-
cessor is in single-step mode.

Breakpoint Interrupt

A type 3 interrupt is dedicated to the breakpoint
interrupt. A breakpoint is generally any placeina
program where normal execution is arrested so
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that some sort of special processing may be per-
formed. Breakpoints typically are inserted into
programs during debugging as a way of display-
ing registers, memory locations, etc., at crucial
points in the program.

The INT 3 (breakpoint) instruction is one byte
long. This makes it easy to ‘‘plant’ a breakpoint
anywhere in a program. Section 2.10 contains an
example that shows how a breakpoint may be set
and how a breakpoint procedure may be used to
place the processor into single-step mode.

The breakpoint instruction also may be used to
“patch’ a program (insert new instructions)
without recompiling or reassembling it. This may
be done by saving an instruction byte, and replac-
ing it with an INT 3 (CCH) machine instruction.
The breakpoint procedure would contain the new
machine instructions, plus code to restore the
saved instruction byte and decrement IP on the
stack before returning, so that the displaced
instruction would be executed after the patch
instructions. The breakpoint example in section
2.10 illustrates these principles.

Note that patching a program requires machine-
instruction programming and should be under-
taken with considerable caution; it is easy to add
new bugs to a program in an attempt to correct
existing ones. Note also that a patch is only a tem-
porary measure to be used in exceptional condi-
tions. The affected code should be updated and
retranslated as soon as possible.

System Reset

The 8086/8088 RESET line provides an orderly
way to start or restart an executing system. When
the processor detects the positive-going edge of a
pulse on RESET, it terminates all activities until
the signal goes low, at which time it initializes the
system as shown in table 2-4.

Since the code segment register contains FFFFH
and the instruction pointer contains OH, the pro-
cessor executes its first instruction following
system reset from absolute memory location
FFFFOH. This location normally contains an
intersegment direct JMP instruction whose target
is the actual beginning of the system program.
The LOC-86 utility supplies this JMP instruction
from information in the program that identifies
its first instruction. As external (maskable) inter-

rupts are disabled by system reset, the system
software should reenable interrupts as soon as the
system is initialized to the point where they can be
processed.

Table 2-4. CPU State Following RESET

CPU COMPONENT CONTENT
Flags Clear
Instruction Pointer 0000H

CS Register FFFFH

DS Register 0000H

SS Register 0000H

ES Register 0000H
Queue Empty

Instruction Queue Status

When configured in maximum mode, the 8086
and 8088 provide information about instruction
queue operations on lines QS0 and QS1. Table 2-5
interprets the four states that these lines can
represent.

The queue status lines are provided for external
processors that receive instructions and/or
operands via the 8086/8088 ESC (escape) instruc-
tion (see sections 2.5 and 2.8). Such a processor
may monitor the bus to see when an ESC instruc-
tion is fetched and then track the instruction
through the queue to determine when (and if) the
instruction is executed.

Table 2-5. Queue Status Signals
(Maximum Mode Only)

QUEUE OPERATION IN LAST

0Sg|QS4 CLK CYCLE

0 0 |No operation; defaulit value

0 1 |First byte of an instruction was
taken from the queue

1 0 |Queue was reinitialized

1 1 |Subsequent byte of an instruction
was taken from the queue

Processor Halt

When the HLT (halt) instruction (see section 2.7)
is executed, the 8086 or 8088 enters the halt state.
This condition may be interpreted as ‘‘stop all
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operations until an external interrupt occurs or
the system is reset.”’ No signals are floated during
the halt state, and the content of the address and
data buses is undefined. A bus hold request
arriving on the HOLD line (minimum mode) or
either request/grant line (maximum mode) is
acknowledged normally while the processor is
halted.

The halt state can be used when an event prevents
the system from functioning correctly. An exam-
ple might be a power-fail interrupt. After
recognizing that loss of power is imminent, the
CPU could use the remaining time to move
registers, flags and vital variables to (for example)
a battery-powered CMOS RAM area and then
halt until the return of power was signaled by an
interrupt or system reset.

Status Lines

When configured in maximum mode, the 8086
and 8088 emit eight status signals that can be used
by external devices. Lines 50, 51 and 52 identify
the type of bus cycle that the CPU is starting to
execute (table 2-6). These lines are typically
decoded by the 8288 Bus Controller. S3 and S4
indicate which segment register was used to con-
struct the physical address being used in this bus
cycle (see table 2-7). Line S5 reflects the state of
the interrupt-enable flag. S6 is always 0. S7 is a
spare line whose content is undefined.

Table 2-6. Bus Cycle Status Signals

N ED TYPES OF BUS CYCLE
01 01} 0| Interrupt Acknowledge

0 0] 1] Readl/O

0] 1] 0] Writel/O

0| 1 {1 | HALT

1 0 | 0 | Instruction Fetch

1 0] 1 Read Memory

1 1 0 | Write Memory

1 1 1 Passive; no bus cycle

Table 2-7. Segment Register Status Lines

S4 (83 SEGMENT REGISTER
0|0]ES

0]1]SS

1 0 | CSornone (I/0 orinterrupt Vector)
1 1 DS

2.7 Instruction Set

The 8086 and 8088 execute exactly the same
instructions. This instruction set includes
equivalents to the instructions typically found in
previous microprocessors, such as the 8080/8085.
Significant new operations include:

* multiplication and division of signed and
unsigned binary numbers as well as unpacked
decimal numbers,

® move, scan and compare operations for
strings up to 64k bytes in length,

* non-destructive bit testing,
®  Dbyte translation from one code to another,
* software-generated interrupts, and

* a group of instructions that can help
coordinate the activities of multiprocessor
systems.

These instructions treat different types of
operands uniformly. Nearly every instruction can
operate on either byte or word data. Register,
memory and immediate operands may be
specified interchangeably in most instructions (ex-
cept, of course, that immediate values may only
serve as ‘‘source’” and not ‘‘destination”
operands). In particular, memory variables can be
added to, subtracted from, shifted, compared,
and so on, in place, without moving them in and
out of registers. This saves instructions, registers,
and execution time in assembly language pro-
grams. In high-level languages, where most
variables are memory based, compilers, such as
PL/M-86, can produce faster and shorter object
programs.

The 8086/8088 instruction set can be viewed as
existing at two levels: the assembly level and the
machine level. To the assembly language pro-
grammer, the 8086 and 8088 appear to have a
repertoire of about 100 instructions. One MOV
(move) instruction, for example, transfers a byte
or a word from a register or a memory location or
an immediate value to either a register or a
memory location. The 8086 and 8088 CPUs,
however, recognize 28 different MOV machine
instructions (‘‘move byte register to memory,”’
“move word immediate to register,”” etc.). The
ASM-86 assembler translates the assembly-level
instructions written by a programmer into the
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machine-level instructions that are actually exe-
cuted by the 8086 or 8088. Compilers such as
PL/M-86 translate high-level language statements
directly into machine-level instructions.

The two levels of the instruction set address two
different requirements: efficiency and simplicity.
The numerous—there are about 300 in all—forms
of machine-level instructions allow these instruc-
tions to make very efficient use of storage. For
example, the machine instruction that increments
a memory operand is three or four bytes long
because the address of the operand must be
encoded in the instruction. To increment a
register, however, does not require as much
information, so the instruction can be shorter. In
fact, the 8086 and 8088 have eight different
machine-level instructions that increment a dif-
ferent 16-bit register; these instructions are only
one byte long.

If a programmer had to write one instruction to
increment a register, another to increment a
memory variable, etc., the benefit of compact
instructions would be offset by the difficulty of
programming. The assembly-level instructions
simplify the programmer’s view of the instruction
set. The programmer writes one form of the INC
(increment) instruction and the ASM-86
assembler examines the operand to determine
which machine-level instruction to generate.

This section presents the 8086/8088 instruction
set from two perspectives. First, the assembly-
level instructions are described in functional
terms. The assembly-level instructions are then
presented in a reference table that breaks out all
permissible operand combinations with execution
times and machine instruction length, plus the
effect that the instruction has on the CPU flags.
Machine-level instruction encoding and decoding
are covered in section 4.2.

Data Transfer Instructions

The 14 data transfer instructions (table 2-8) move
single bytes and words between memory and
registers as well as between register AL or AX and
1/0 ports. The stack manipulation instructions
are included in this group as are instructions for
transferring flag contents and for loading seg-
ment registers.

Table 2-8. Data Transfer Instructions

GENERAL PURPOSE
MOV Move byte or word
PUSH Push word onto stack
POP Pop word off stack
XCHG Exchange byte or word
XLAT Translate byte
INPUT/OUTPUT
IN Input byte or word
ouT Output byte or word
ADDRESS OBJECT
LEA Load effective address
LDS Load pointer using DS
LES Load pointer using ES
FLAG TRANSFER
LAHF Load AH register from flags
SAHF Store AH register in flags
PUSHF Push flags onto stack
POPF Pop flags off stack

General Purpose Data Transfers
MOV destination,source

MOV transfers a byte or a word from the source
operand to the destination operand.

PUSH source

PUSH decrements SP (the stack pointer) by two
and then transfers a word from the source
operand to the top of stack now pointed to by SP.
PUSH often is used to place parameters on the
stack before calling a procedure; more generally,
it is the basic means of storing temporary data on
the stack.

POP destination

POP transfers the word at the current top of stack
(pointed to by SP) to the destination operand,
and then increments SP by two to point to the
new top of stack. POP can be used to move tem-
porary variables from the stack to registers or
memory.
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XCHG destination,source

XCHG (exchange) switches the contents of the
source and destination (byte or word) operands.
When used in conjunction with the LOCK prefix,
XCHG can test and set a semaphore that controls
access to a resource shared by multiple processors
(see section 2.5).

XLAT translate-table

XLAT (translate) replaces a byte in the AL
register with a byte from a 256-byte, user-coded
translation table. Register BX is assumed to point
to the beginning of the table. The byte in AL is
used as an index into the table and is replaced by
the byte at the offset in the table corresponding to
AL’s binary value. The first byte in the table has
an offset of 0. For example, if AL contains SH,
and the sixth element of the translation table con-
tains 33H, then AL will contain 33H following
the instruction. XLAT is useful for translating
characters from one code to another, the classic
example being ASCII to EBCDIC or the reverse.

IN accumulator,port

IN transfers a byte or a word from an input port
to the AL register or the AX register, respectively.
The port number may be specified either with an
immediate byte constant, allowing access to ports
numbered 0 through 255, or with a number
previously placed in the DX register, allowing
variable access (by changing the value in DX) to
ports numbered from 0 through 65,535.

OVUT port,accumulator

OUT transfers a byte or a word from the AL
register or the AX register, respectively, to an out-
put port. The port number may be specified either
with an immediate byte constant, allowing access
to ports numbered 0 through 255, or with a
number previously placed in register DX, allow-
ing variable access (by changing the value in DX)
to ports numbered from 0 through 65,535.

Address Object Transfers

These instructions manipulate the addresses of
variables rather than the contents or values of
variables. They are most useful for list process-
ing, based variables, and string operations.

LEA destination,source

LEA (load effective address) transfers the offset
of the source operand (rather than its value) to the
destination operand. The source operand must be
a memory operand, and the destination operand
must be a 16-bit general register. LEA does not
affect any flags. The XLAT and string instruc-
tions assume that certain registers point to
operands; LEA can be used to load these registers
(e.g., loading BX with the address of the translate
table used by the XLAT instruction).

LDS destination,source

LDS (load pointer using DS) transfers a 32-bit
pointer variable from the source operand, which
must be a memory operand, to the destination
operand and register DS. The offset word of the
pointer is transferred to the destination operand,
which may be any 16-bit general register. The seg-
ment word of the pointer is transferred to register
DS. Specifying SI as the destination operand is a
convenient way to prepare to process a source
string that is not in the current data segment
(string instructions assume that the source string
is located in the current data segment and that SI
contains the offset of the string).

LES destination,source

LES (load pointer using ES) transfers a 32-bit
pointer variable from the source operand, which
must be a memory operand, to the destination
operand and register ES. The offset word of the
pointer is transferred to the destination operand,
which may be any 16-bit general register. The seg-
ment word of the pointer is transferred to register
ES. Specifying DI as the destination operand is a
convenient way to prepare to process a destina-
tion string that is not in the current extra segment.
(The destination string must be located in the
extra segment, and DI must contain the offset of
the string.)

Flag Transfers

LAHF

LAHF (load register AH from flags) copies SF,
ZF, AF, PF and CF (the 8080/8085 flags) into
bits 7, 6, 4, 2 and 0, respectively, of register AH
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(see figure 2-32). The content of bits 5, 3 and 1 is
undefined; the flags themselves are not affected.
LAHF is provided primarily for converting
8080/8085 assembly language programs to run on
an 8086 or 8088.

SAHF

SAHF (store register AH into flags) transfers bits
7, 6,4, 2and 0 from register AH into SF, ZF, AF,
PF and CF, respectively, replacing whatever
values these flags previously had. OF, DF, IF and
TF are not affected. This instruction is provided
for 8080/8085 compatibility.

PUSHF

PUSHF decrements SP (the stack pointer) by two
and then transfers all flags to the word at the top
of stack pointed to by SP (see figure 2-32). The
flags themselves are not affected.

POPF

POPF transfers specific bits from the word at the
current top of stack (pointed to by register SP)
into the 8086/8088 flags, replacing whatever
values the flags previously contained (see figure
2-32). SP is then incremented by two to point to
the new top of stack. PUSHF and POPF allow a
procedure to save and restore a calling program’s
flags. They also allow a program to change the

LAHF,

SAHF [SJZIUIAIUIPIUJC]

{7 6543210
{~—8080/8085 FLAGS—|
1 I
[ I

PUSHF,
POPF IUIUIUIUIOIDIIlTlSlzIUlAIU]PlUlC]
15141312 1110 9 8 7 6 5 4 3 2 1 0

UNDEFINED; VALUE IS INDETERMINATE
OVERFLOW FLAG

DIRECTION FLAG

INTERRUPT ENABLE FLAG

TRAP FLAG

SIGN FLAG

ZERO FLAG

AUXILIARY CARRY FLAG

PABITY FLAG

CARRY FLAG

LU LI I T T B 1 T

OTVPNVWH—OOC

Figure 2-32. Flag Storage Formats

setting of TF (there is no instruction for updating
this flag directly). The change is accomplished by
pushing the flags, altering bit 8 of the memory-
image and then popping the flags.

Arithmetic Instructions

Arithmetic Data Formats

8086 and 8088 arithmetic operations (table 2-9)
may be performed on four types of numbers:
unsigned binary, signed binary (integers),
unsigned packed decimal and unsigned unpacked
decimal (see table 2-10). Binary numbers may be 8
or 16 bits long. Decimal numbers are stored in
bytes, two digits per byte for packed decimal and
one digit per byte for unpacked decimal. The pro-
cessor always assumes that the operands specified
in arithmetic instructions contain data that repre-
sent valid numbers for the type of instruction
being performed. Invalid data may produce
unpredictable results.

Table 2-9. Arithmetic Instructions

ADDITION
ADD Add byte or word
ADC Add byte or word with carry
INC Increment byte or word by 1
AAA ASCIl adjust for addition
DAA Decimal adjust for addition
SUBTRACTION
SuUB Subtract byte or word
SBB Subtract byte or word with
borrow
DEC Decrement byte or word by 1
NEG Negate byte or word
CMP Compare byte or word
AAS ASCIl adjust for subtraction
DAS Decimal adjust for subtraction
MULTIPLICATION
MUL Multiply byte or word unsigned
IMUL Integer multiply byte or word
AAM ASCIl adjust for multiply
DIVISION
DIV Divide byte or word unsigned
IDIV Integerdivide byte or word
AAD ASCIl adjust for division
cBw Convert byte to word
CwWD Convert word to doubleword
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Table 2-10. Arithmetic Interpretation of 8-Bit Numbers

x| omeamrene | vooneo | sover [ uwescren [ acren
07 00000111 7 +7 7 7

89 10001001 137 -119 invalid 89

Ch5 11000101 197 -59 invalid invalid

Unsigned binary numbers may be either 8 or 16
bits long; all bits are considered in determining a
number’s magnitude. The value range of an 8-bit
unsigned binary number is 0-255; 16 bits can
represent values from O through 65,535, Addi-
tion, subtraction, multiplication and division
operations are available for unsigned binary
numbers.

Signed binary numbers (integers) may be either 8
or 16 bits long. The high-order (leftmost) bit is
interpreted as the number’s sign: 0 = positive and
1 = negative. Negative numbers are represented
in standard two’s complement notation. Since
the high-order bit is used for a sign, the range of
an 8-bit integer is —128 through +127; 16-bit
integers may range from -32,768 through
+32,767. The value zero has a positive sign.
Multiplication and division operations are pro-
vided for signed binary numbers. Addition and
subtraction are performed with the unsigned
binary instructions. Conditional jump instruc-
tions, as well as an ‘‘interrupt on overflow’’
instruction, can be used following an unsigned
operation on an integer to detect overflow into
the sign bit.

Packed decimal numbers are stored as unsigned
byte quantities. The byte is treated as having one
decimal digit in each half-byte (nibble); the digit
in the high-order half-byte is the most significant.
Hexadecimal values 0-9 are valid in each half-
byte, and the range of a packed decimal number is
0-99. Addition and subtraction are performed in
two steps. First an unsigned binary instruction is
used to produce an intermediate result in register
AL. Then an adjustment operation is performed
which changes the intermediate value in AL to a
final correct packed decimal result. Muitiplica-
tion and division adjustments are not available
for packed decimal numbers.

Unpacked decimal numbers are stored as un-
signed byte quantities. The magnitude of the
number is determined from the low-order half-
byte; hexadecimal values 0-9 are valid and are
interpreted as decimal numbers. The high-order
half-byte must be zero for multiplication and divi-
sion; it may contain any value for addition and
subtraction. Arithmetic on unpacked decimal
numbers is performed in two steps. The unsigned
binary addition, subtraction and multiplication
operations are used to produce an intermediate
result in register AL. An adjustment instruction
then changes the value in AL to a final correct
unpacked decimal number. Division is performed
similarly, except that the adjustment is carried out
on the numerator operand in register AL first,
then a following unsigned binary division instruc-
tion produces a correct result.

Unpacked decimal numbers are similar to the
ASCII character representations of the digits 0-9.
Note, however, that the high-order half-byte of
an ASCII numeral is always 3H. Unpacked
decimal arithmetic may be performed on ASCII

numeric characters under the following

conditions:

®* the high-order half-byte of an ASCII
numeral must be set to OH prior to
multiplication or division.

* unpacked decimal arithmetic leaves the

high-order half-byte set to OH; it must be set
to 3H to produce a valid ASCII numeral.

Arithmetic Instructions and Flags

The 8086/8088 arithmetic instructions post cer-
tain characteristics of the result of the operation
to six flags. Most of these flags can be tested by
following the arithmetic instruction with a condi-
tional jump instruction; the INTO (interrupt on
overflow) instruction also may be used. The
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various instructions affect the flags differently, as
explained in the instruction descriptions.
However, they follow these general rules:

o CF (carry flag): If an addition results in a
carry out of the high-order bit of the result,
then CF is set; otherwise CF is cleared. If a
subtraction results in a borrow into the high-
order bit of the resuit, then CF is set; other-
wise CF is cleared. Note that a signed carry is
indicated by CF # OF. CF can be used to
detect an unsigned overflow. Two instruc-
tions, ADC (add with carry) and SBB (sub-
tract with borrow), incorporate the carry flag
in their operations and can be used to per-
form multibyte (e.g., 32-bit, 64-bit) addition
and subtraction.

¢ AF (auxiliary carry flag): If an addition
results in a carry out of the low-order half-
byte of the result, then AF is set; otherwise
AF is cleared. If a subtraction results in a
borrow into the low-order half-byte of the
result, then AF is set; otherwise AF is
cleared. The auxiliary carry flag is provided
for the decimal adjust instructions and
ordinarily is not used for any other purpose.

o SF (sign flag): Arithmetic and logical
instructions set the sign flag equal to the
high-order bit (bit 7 or 15) of the result. For
signed binary numbers, the sign flag will be 0
for positive results and 1 for negative results
(so long as overflow does not occur). A con-
ditional jump instruction can be used follow-
ing addition or subtraction to alter the flow
of the program depending on the sign of the
result. Programs performing unsigned opera-
tions typically ignore SF since the high-order
bit of the result is interpreted as a digit rather
than a sign.

o ZF (zero flag): If the result of an arithmetic
or logical operation is zero, then ZF is set;
otherwise ZF is cleared. A conditional jump
instruction can be used to alter the flow of
the program if the result is or is not zero.

¢ PF (parity flag): If the low-order eight bits of
an arithmetic or logical result contain an
even number of 1-bits, then the parity flag is
set; otherwise it is cleared. PF is provided for
8080/8085 compatibility; it also can be used
to check ASCII characters for correct parity.

e OF (overflow flag): If the result of an
operation is too large a positive number, or
too small a negative number to fit in the
destination operand (excluding the sign bit),
then OF is set; otherwise OF is cleared. OF
thus indicates signed arithmetic overflow; it
can be tested with a conditional jump or the
INTO (interrupt on overflow) instruction.
OF may be ignored when performing
unsigned arithmetic.

Addition

ADD destination,source

The sum of the two operands, which may be bytes
or words, replaces the destination operand. Both
operands may be signed or unsigned binary
numbers (see AAA and DAA). ADD updates AF,
CF, OF, PF, SF and ZF.

ADC destination,source

ADC (Add with Carry) sums the operands, which
may be bytes or words, adds one if CF is set and
replaces the destination operand with the result.
Both operands may be signed or unsigned binary
numbers (see AAA and DAA). ADC updates AF,
CF, OF, PF, SF and ZF. Since ADC incorporates
a carry from a previous operation, it can be used
to write routines to add numbers longer than 16
bits.

INC destination

INC (Increment) adds one to the destination
operand. The operand may be a byte or a word
and is treated as an unsigned binary number (see
AAA and DAA). INC updates AF, OF, PF, SF
and ZF; it does not affect CF.

AAA

AAA (ASCII Adjust for Addition) changes the
contents of register AL to a valid unpacked
decimal number; the high-order half-byte is
zeroed. AAA updates AF and CF; the content of
OF, PF, SF and ZF is undefined following execu-
tion of AAA.
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DAA

DAA (Decimal Adjust for Addition) corrects the
result of previously adding two valid packed
decimal operands (the destination operand must
have been register AL). DAA changes the content
of AL to a pair of valid packed decimal digits. It
updates AF, CF, PF, SF and ZF; the content of
OF is undefined following execution of DAA.

Subtraction

SUB destination, source

The source operand is subtracted from the
destination operand, and the result replaces the
destination operand. The operands may be bytes
or words. Both operands may be signed or
unsigned binary numbers (see AAS and DAS).
SUB updates AF, CF, OF, PF, SF and ZF.

SBB destination, source

SBB (Subtract with Borrow) subtracts the source
from the destination, subtracts one if CF is set,
and returns the result to the destination operand.
Both operands may be bytes or words. Both
operands may be signed or unsigned binary
numbers (see AAS and DAS). SBB updates AF,
CF, OF, PF, SF and ZF. Since it incorporates a
borrow from a previous operation, SBB may be
used to write routines that subtract numbers
longer than 16 bits.

DEC destination

DEC (Decrement) subtracts one from the destina-
tion, which may be a byte or a word. DEC
updates AF, OF, PF, SF, and ZF; it does not
affect CF.

NEG destination

NEG (Negate) subtracts the destination operand,
which may be a byte or a word, from 0 and
returns the result to the destination. This forms
the two’s complement of the number, effectively
reversing the sign of an integer. If the operand is
zero, its sign is not changed. Attempting to negate
a byte containing —128 or a word containing

—32,768 causes no change to the operand and sets
OF. NEG updates AF, CF, OF, PF, SF and ZF.
CF is always set except when the operand is zero,
in which case it is cleared.

CMP destination,source

CMP (Compare) subtracts the source from the
destination, which may be bytes or words, but
does not return the result. The operands are
unchanged, but the flags are updated and can be
tested by a subsequent conditional jump instruc-
tion. CMP updates AF, CF, OF, PF, SF and ZF.
The comparison reflected in the flags is that of the
destination to the source. If a CMP instruction is
followed by a JG (jump if greater) instruction, for
example, the jump is taken if the destination
operand is greater than the source operand.

AAS

AAS (ASCII Adjust for Subtraction) corrects the
result of a previous subtraction of two valid
unpacked decimal operands (the destination
operand must have been specified as register AL).
AAS changes the content of AL to a valid
unpacked decimal number; the high-order half-
byte is zeroed. AAS updates AF and CF; the con-
tent of OF, PF, SF and ZF is undefined following
execution of AAS.

DAS

DAS (Decimal Adjust for Subtraction) corrects
the result of a previous subtraction of two valid
packed decimal operands (the destination
operand must have been specified as register AL).
DAS changes the content of AL to a pair of valid
packed decimal digits. DAS updates AF, CF, PF,
SF and ZF; the content of OF is undefined
following execution of DAS.

Multiplication

MUL source

MUL (Multiply) performs an unsigned multi-
plication of the source operand and the
accumulator. If the source is a byte, then it is
multiplied by register AL, and the double-length
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result is returned in AH and AL. If the source
operand is a word, then it is multiplied by register
AX, and the double-length result is returned in
registers DX and AX. The operands are treated as
unsigned binary numbers (see AAM). If the upper
half of the result (AH for byte source, DX for
word source) is nonzero, CF and OF are set;
otherwise they are cleared. When CF and OF are
set, they indicate that AH or DX contains signifi-
cant digits of the result. The content of AF, PF,
SF and ZF is undefined following execution of
MUL.

IMUL source

IMUL (Integer Multiply) performs a signed
multiplication of the source operand and the
accumulator. If the source is a byte, then it is
multiplied by register AL, and the double-length
result is returned in AH and AL. If the source is a
word, then it is multiplied by register AX, and the
double-length result is returned in registers DX
and AX. If the upper half of the result (AH for
byte source, DX for word source) is not the sign
extension of the lower half of the result, CF and
OF are set; otherwise they are cleared. When CF
and OF are set, they indicate that AH or DX con-
tains significant digits of the result. The content
of AF, PF, SF and ZF is undefined following
execution of IMUL.

AAM

AAM (ASCII Adjust for Multiply) corrects the
result of a previous multiplication of two valid
unpacked decimal operands. A valid 2-digit
unpacked decimal number is derived from the
content of AH and AL and is returned to AH and
AL. The high-order half-bytes of the muitiplied
operands must have been OH for AAM to pro-
duce a correct result. AAM updates PF, SF and
ZF; the content of AF, CF and OF is undefined
following execution of AAM.,

Division
DIV source
DIV (divide) performs an unsigned division of the

accumulator (and its extension) by the source
operand. If the source operand is a byte, it is

divided into the double-length dividend assumed
to be in registers AL and AH. The single-length
quotient is returned in AL, and the single-length
remainder is returned in AH. If the source
operand is a word, it is divided into the double-
length dividend in registers AX and DX. The
single-length quotient is returned in AX, and the
single-length remainder is returned in DX. If the
quotient exceeds the capacity of its destination
register (FFH for byte source, FFFFFH for word
source), as when division by zero is attempted, a
type 0 interrupt is generated, and the quotient and
remainder are undefined. Nonintegral quotients
are truncated to integers. The content of AF, CF,
OF, PF, SF and ZF is undefined following execu-
tion of DIV.

IDIV source

IDIV (Integer Divide) performs a signed division
of the accumulator (and its extension) by the
source operand. If the source operand is a byte, it
is divided into the double-length dividend
assumed to be in registers AL and AH; the single-
length quotient is returned in AL, and the single-
length remainder is returned in AH. For byte in-
teger division, the maximum positive quotient is
+127 (7FH) and the minimum negative quotient is
—127 (81H). If the source operand is a word, it is
divided into the double-length dividend in
registers AX and DX; the single-length quotient is
returned in AX, and the single-length remainder
is returned in DX. For word integer division, the
maximum positive quotient is +32,767 (7FFFH)
and the minimum negative quotient is —32,767
(8001H). If the quotient is positive and exceeds
the maximum, or is negative and is less than the
minimum, the quotient and remainder are
undefined, and a type O interrupt is generated. In
particular, this occurs if division by 0 is
attempted. Nonintegral quotients are truncated
(toward 0) to integers, and the remainder has the
same sign as the dividend. The content of AF,
CF, OF, PF, SF and ZF is undefined following
IDIV.

AAD

AAD (ASCII Adjust for Division) modifies the
numerator in AL before dividing two valid
unpacked decimal operands so that the quotient
produced by the division will be a valid unpacked
decimal number. AH must be zero for the subse-
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quent DIV to produce the correct result. The quo-
tient is returned in AL, and the remainder is
returned in AH; both high-order half-bytes are
zeroed. AAD updates PF, SF and ZF; the content
of AF, CF and OF is undefined following execu-
tion of AAD.

cBw

CBW (Convert Byte to Word) extends the sign of
the byte in register AL throughout register AH.
CBW does not affect any flags. CBW can be used
to produce a double-length (word) dividend from
a byte prior to performing byte division.

CwD

CWD (Convert Word to Doubleword) extends the
sign of the word in register AX throughout
register DX. CWD does not affect any flags.
CWD can be used to produce a double-length
(doubleword) dividend from a word prior to per-
forming word division.

Bit Manipulation Instructions

The 8086 and 8088 provide three groups of
instructions (table 2-11) for manipulating bits
within both bytes and words: logical, shifts and
rotates.

Table 2-11. Bit Manipulation Instructions
LOGICALS
NOT “Not”’ byte or word
AND ‘*‘And’’ byte or word
OR “Inclusive or’’ byte or word
XOR ‘‘Exclusive or”’ byte or word
TEST “Test” byte or word
SHIFTS
SHL/SAL | Shiftlogical/arithmetic left
byte or word
SHR Shift logical right byte or word
SAR Shift arithmetic right byte or
word
ROTATES
ROL Rotate left byte or word
ROR Rotate right byte or word
RCL Rotate through carry left byte
or word
RCR Rotate through carry right byte
or word

Logical

The logical instructions include the boolean
operators ‘‘not,”” ‘“‘and,” “‘inclusive or,”’ and
“‘exclusive or,”” plus a TEST instruction that sets
the flags, but does not alter either of its operands.

AND, OR, XOR and TEST affect the flags as
follows: The overflow (OF) and carry (CF) flags
are always cleared by logical instructions, and the
content of the auxiliary carry (AF) flag is always
undefined following execution of a logical
instruction. The sign (SF), zero (ZF) and parity
(PF) flags are always posted to reflect the result of
the operation and can be tested by conditional
jump instructions. The interpretation of these
flags is the same as for arithmetic instructions. SF
is set if the result is negative (high-order bit is 1),
and is cleared if the result is positive (high-order
bit is 0). ZF is set if the result is zero, cleared
otherwise. PF is set if the result contains an even
number of 1-bits (has even parity) and is cleared if
the number of 1-bits is odd (the result has odd
parity). Note that NOT has no effect on the flags.

NOT destination

NOT inverts the bits (forms the one’s comple-
ment) of the byte or word operand.

AND destination, source

AND performs the logical “‘and’’ of the two
operands (byte or word) and returns the result to
the destination operand. A bit in the result is set if
both corresponding bits of the original operands
are set; otherwise the bit is cleared.

OR destination,source

OR performs the logical “‘inclusive or’’ of the two
operands (byte or word) and returns the result to
the destination operand. A bit in the result is set if
either or both corresponding bits in the original
operands are set; otherwise the result bit is
cleared.

XOR destination, source

XOR (Exclusive Or) performs the logical ““exclu-
sive or’’ of the two operands and returns the
result to the destination operand. A bit in the
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result is set if the corresponding bits of the
original operands contain opposite values (one is
set, the other is cleared); otherwise the result bit is
cleared.

TEST destination,source

TEST performs the logical ‘“‘and’’ of the two
operands (byte or word), updates the flags, but
does not return the result, i.e., neither operand is
changed. If a TEST instruction is followed by a
JNZ (jump if not zero) instruction, the jump will
be taken if there are any corresponding 1-bits in
both operands.

Shifts

The bits in bytes and words may be shifted
arithmetically or logically. Up to 255 shifts may
be performed, according to the value of the count
operand coded in the instruction. The count may
be specified as the constant 1, or as register CL,
allowing the shift count to be a variable supplied
at execution time. Arithmetic shifts may be used
to multiply and divide binary numbers by powers
of two (see note in description of SAR). Logical
shifts can be used to isolate bits in bytes or words.

Shift instructions affect the flags as follows. AF is
always undefined following a shift operation. PF,
SF and ZF are updated normally, as in the logical
instructions. CF always contains the value of the
last bit shifted out of the destination operand.
The content of OF is always undefined following
a multibit shift. In a single-bit shift, OF is set if
the value of the high-order (sign) bit was changed
by the operation; if the sign bit retains its original
value, OF is cleared.

SHL/SAL destination,count

SHL and SAL (Shift Logical Left and Shift
Arithmetic Left) perform the same operation and
are physically the same instruction. The destina-
tion byte or word is shifted left by the number of
bits specified in the count operand. Zeros are
shifted in on the right. If the sign bit retains its
original value, then OF is cleared.

SHR destination, source

SHR (Shift Logical Right) shifts the bits in the
destination operand (byte or word) to the right by

the number of bits specified in the count operand.
Zeros are shifted in on the left. If the sign bit
retains its original value, then OF is cleared.

SAR destination,count

SAR (Shift Arithmetic Right) shifts the bits in the
destination operand (byte or word) to the right by
the number of bits specified in the count operand.
Bits equal to the original high-order (sign) bit are
shifted in on the left, preserving the sign of the
original value. Note that SAR does not produce
the same result as the dividend of an
“‘equivalent”” IDIV instruction if the destination
operand is negative and 1-bits are shifted out. For
example, shifting —5 right by one bit yields -3,
while integer division of —5 by 2 yields —2. The
difference in the instructions is that IDIV trun-
cates all numbers toward zero, while SAR trun-
cates positive numbers toward zero and negative
numbers toward negative infinity.

Rotates

Bits in bytes and words also may be rotated. Bits
rotated out of an operand are not lost as in a
shift, but are ‘‘circled”’ back into the other ‘‘end”’
of the operand. As in the shift instructions, the
number of bits to be rotated is taken from the
count operand, which may specify either a con-
stant of 1, or the CL register. The carry flag may
act as an extension of the operand in two of the
rotate instructions, allowing a bit to be isolated in
CF and then tested by a JC (jump if carry) or JNC
(jump if not carry) instruction.

Rotates affect only the carry and overflow flags.
CF always contains the value of the last bit
rotated out. On multibit rotates, the value of OF
is always undefined. In single-bit rotates, OF is
set if the operation changes the high-order (sign)
bit of the destination operand. If the sign bit
retains its original value, OF is cleared.

ROL destination,count

ROL (Rotate Left) rotates the destination byte or
word left by the number of bits specified in the
count operand.
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ROR destination,count

ROR (Rotate Right) operates similar to ROL
except that the bits in the destination byte or word
are rotated right instead of left.

RCL destination,count

RCL (Rotate through Carry Left) rotates the bits
in the byte or word destination operand to the left
by the number of bits specified in the count
operand. The carry flag (CF) is treated as ‘‘part
of’” the destination operand; that is, its value is
rotated into the low-order bit of the destination,
and itself is replaced by the high-order bit of the
destination.

RCR destination,count

RCR (Rotate through Carry Right) operates
exactly like RCL except that the bits are rotated
right instead of left.

String Instructions

Five basic string operations, called primitives,
allow strings of bytes or words to be operated on,
one element (byte or word) at a time. Strings of
up to 64k bytes may be manipulated with these
instructions. Instructions are available to move,
compare and scan for a value, as well as for mov-
ing string elements to and from the accumulator
(see table 2-12). These basic operations may be
preceded by a special one-byte prefix that causes
the instruction to be repeated by the hardware,
allowing long strings to be processed much faster
than would be possible with a software loop. The
repetitions can be terminated by a variety of con-
ditions, and a repeated operation may be inter-
rupted and resumed.

The string instructions operate quite similarly in
many respects; the common characteristics are
covered here and in table 2-13 and figure 2-33
rather than in the descriptions of the individual
instructions. A string instruction may have a
source operand, a destination operand, or both.
The hardware assumes that a source string resides
in the current data segment; a segment prefix byte
may be used to override this assumption. A
destination string must be in the current extra seg-
ment. The assembler checks the attributes of the

operands to determine if the elements of the
strings are bytes or words. The assembler does
not, however, use the operand names to address
the strings. Rather, the content of register SI
(source index) is used as an offset to address the
current element of the source string, and the con-
tent of register DI (destination index) is taken as
the offset of the current destination string ele-
ment. These registers must be initialized to point
to the source/destination strings before executing
the string instruction; the LDS, LES and LEA
instructions are useful in this regard.

Table 2-12. String Instructions

REP Repeat

REPE/REPZ Repeat while equal/zero

REPNE/REPNZ Repeat while not
equal/not zero

MOVS Move byte or word string

MOVSB/MOVSW Move byte or word string

CMPS Compare byte or word
string

SCAS Scan byte or word string

LODS Load byte or word string

STOS Store byte or word string

Table 2-13. String Instruction Register and

Flag Use
Sl Index (offset) for source string
)] Index (offset) for destination
string
CX Repetition counter

AL/AX Scan value
Destination for LODS
Source for STOS

DF 0 = auto-increment Si, DI
1=auto-decrement Sl, DI

ZF Scan/compare terminator
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The string instructions automatically update SI
and/or DI in anticipation of processing the next
string element. The setting of DF (the direction
flag) determines whether the index registers are
auto-incremented (DF = 0) or auto-decremented
(DF = 1). If byte strings are being processed, SI
and/or DI is adjusted byl; the adjustment is 2 for
word strings.

If a Repeat prefix has been coded, then register
CX (count register) is decremented by 1 after each
repetition of the string instruction; therefore, CX
must be initialized to the number of repetitions
desired before the string instruction is executed. If
CXis 0, the string instruction is not executed, and
control goes to the following instruction.

Section 2.10 contains examples that illustrate the
use of all the string instructions.

REP/REPE/REPZ/REPNE/REPNZ

Repeat, Repeat While Equal, Repeat While Zero,
Repeat While Not Equal and Repeat While Not
Zero are five mnemonics for two forms of the
prefix byte that controls repetition of a subse-
quent string instruction. The different mnemonics
are provided to improve program clarity. The
repeat prefixes do not affect the flags.

REP is used in conjunction with the MOVS
(Move String) and STOS (Store String) instruc-
tions and is interpreted as ‘‘repeat while not end-
of-string”’ (CX not 0). REPE and REPZ operate
identically and are physically the same prefix byte
as REP. These instructions are used with the
CMPS (Compare String) and SCAS (Scan String)
instructions and require ZF (posted by these
instructions) to be set before initiating the next
repetition. REPNE and REPNZ are two
mnemonics for the same prefix byte. These
instructions function the same as REPE and
REPZ except that the zero flag must be cleared or
the repetition is terminated. Note that ZF does
not need to be initialized before executing the
repeated string instruction.

Repeated string sequences are interruptable; the
processor will recognize the interrupt before pro-
cessing the next string element. System interrupt
processing is not affected in any way. Upon
return from the interrupt, the repeated operation
is resumed from the point of interruption. Note,
however, that execution does not resume properly

if a second or third prefix (i.e., segment override
or LOCK) has been specified in addition to any of
the repeat prefixes. The processor ‘‘remembers’’
only one prefix in effect at the time of the inter-
rupt, the prefix that immediately precedes the
string instruction. After returning from the inter-
rupt, processing resumes at this point, but any
additional prefixes specified are not in effect. If
more than one prefix must be used with a string
instruction, interrupts may be disabled for the
duration of the repeated execution. However, this
will not prevent a non-maskable interrupt from
being recognized. Also, the time that the system is
unable to respond to interrupts may be unaccept-
able if long strings are being processed.

MOVS destination-string, source-string

MOVS (Move String) transfers a byte or a word
from the source string (addressed by SI) to the
destination string (addressed by DI) and updates
SI and DI to point to the next string element.
When used in conjunction with REP, MOVS per-
forms a memory-to-memory block transfer.

MOVSB/MOVSW

These are alternate mnemonics for the move
string instruction. These mnemonics are coded
without operands; they explicitly tell the
assembler that a byte string (MOVSB) or a word
string (MOVSW) is to be moved (when MOVS is
coded, the assembler determines the string type
from the attributes of the operands). These
mnemonics are useful when the assembler cannot
determine the attributes of a string, e.g., a section
of code is being moved.

CMPS destination-string, source-string

CMPS (Compare String) subtracts the destination
byte or word (addressed by DI) from the source
byte or word (addressed by SI). CMPS affects the
flags but does not alter either operand, updates SI
and DI to point to the next string element and
updates AF, CF, OF, PF, SF and ZF to reflect the
relationship of the destination element to the
source element. For example, if a JG (Jump if
Greater) instruction follows CMPS, the jump is
taken if the destination element is greater than the
source clement. If CMPS is prefixed with REPE
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or REPZ, the operation is interpreted as ‘‘com-
pare while not end-of-string (CX not zero) and
strings are equal (ZF = 1).”” If CMPS is preceded
by REPNE or REPNZ, the operation is inter-
preted as ‘‘compare while not end-of-string (CX
not zero) and strings are not equal (ZF = 0).”
Thus, CMPS can be used to find matching or dif-
fering string elements.

SCAS destination-string

SCAS (Scan String) subtracts the destination
string element (byte or word) addressed by DI
from the content of AL (byte string) or AX (word
string) and updates the flags, but does not alter
the destination string or the accumulator. SCAS
also updates DI to point to the next string element
and AF, CF, OF, PF, SF and ZF to reflect the
relationship of the scan value in AL/AX to the
string element. If SCAS is prefixed with REPE or
REPZ, the operation is interpreted as ‘‘scan while
not end-of-string (CX not 0) and string-element =
scan-value (ZF = 1).”’ This form may be used to
scan for departure from a given value. If SCAS is
prefixed with REPNE or REPNZ, the operation
is interpreted as ‘‘scan while not end-of-string
(CX not 0) and string-element is not equal to
scan-value (ZF = 0).”” This form may be used to
locate a value in a string.

LODS source-string

LODS (Load String) transfers the byte or word
string element addressed by SI to register AL or
AX, and updates SI to point to the next element
in the string. This instruction is not ordinarily
repeated since the accumulator would be over-
written by each repetition, and only the last ele-
ment would be retained. However, LODS is very
useful in software loops as part of a more com-
plex string function built up from string
primitives and other instructions.

STOS destination-string

STOS (Store String) transfers a byte or word from
register AL or AX to the string element addressed
by DI and updates DI to point to the next location
in the string. As a repeated operation, STOS pro-
vides a convenient way to initialize a string to a
constant value (e.g., to blank out a print line).

Program Transfer Instructions

The sequence of execution of instructions in an
8086/8088 program is determined by the content
of the code segment register (CS) and the instruc-
tion pointer (IP). The CS register contains the
base address of the current code segment, the 64k
portion of memory from which instructions are
presently being fetched. The IP is used as an off-
set from the beginning of the code segment; the
combination of CS and IP points to the memory
location from which the next instruction is to be
fetched. (Recall that under most operating condi-
tions, the next instruction to be executed has
already been fetched from memory and is waiting
in the CPU instruction queue.) The program
transfer instructions operate on the instruction
pointer and on the CS register; changing the con-
tent of these causes normal sequential execution
to be altered. When a program transfer occurs,
the queue no longer contains the correct instruc-
tion, and the BIU obtains the next instruction
from memory using the new IP and CS values,
passes the instruction directly to the EU, and then
begins refilling the queue from the new location.

Four groups of program transfers are available in
the 8086/8088 (see table 2-14): unconditional
transfers, conditional transfers, iteration control
instructions and interrupt-related instructions.
Only the interrupt-related instructions affect any
CPU flags. As will be seen, however, the execu-
tion of many of the program transfer instructions
is affected by the states of the flags.

Unconditional Transfers

The unconditional transfer instructions may
transfer control to a target instruction within the
current code segment (intrasegment transfer) or
to a different code segment (intersegment
transfer). (The ASM-86 assembler terms an
intrasegment target NEAR and an intersegment
target FAR.) The transfer is made uncondition-
ally any time the instruction is executed.

CALL procedure-name

CALL activates an out-of-line procedure, saving
information on the stack to permit a RET (return)
instruction in the procedure to transfer control
back to the instruction following the CALL. The
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Table 2-14. Program Transfer Instructions

UNCONDITIONAL TRANSFERS

CALL Cali procedure
RET Return from procedure
JMP Jump
CONDITIONAL TRANSFERS
JAIJNBE Jump if above/not below
nor equal
JAE/JUNB Jump if above or
equal/not below
JB/JNAE Jump if below/not above
nor equal
JBE/JNA Jump if below or
equal/not above
JC Jump if carry
JE/JZ Jump if equal/zero
JG/INLE Jump if greater/not less
nor equal
JGE/JNL Jump if greater or
equal/not less
JL/INGE Jump if less/not greater
nor equal
JLE/UNG Jump if less or equal/not
greater
JNC Jump if not carry
JNE/JINZ Jump if not equal/not
zero
JNO Jump if not overflow
JNP/JPO Jump if not parity/parity
odd
JNS Jump if not sign
JO Jump if overflow
JPIJPE Jump if parity/parity
even
JS Jump if sign
ITERATION CONTROLS
LOOP Loop
LOOPE/LOOPZ Loop if equal/zero
LOOPNE/LOOPNZ | Loop if not equal/not
zero
JCXZ Jump if register CX =0
INTERRUPTS
INT Interrupt
INTO interrupt if overflow
IRET Interrupt return

assembler generates a different type of CALL
instruction depending on whether the program-
mer has defined the procedure name as NEAR or
FAR. For control to return properly, the type of
CALL instruction must match the type of RET
instruction that exits from the procedure. (The
potential for a mismatch exists if the procedure
and the CALL are contained in separately
assembled programs.) Different forms of the
CALL instruction allow the address of the target
procedure to be obtained from the instruction
itself (direct CALL) or from a memory location
or register referenced by the instruction (indirect
CALL). In the following descriptions, bear in
mind that the processor automatically adjusts [P
to point to the next instruction to be executed
before saving it on the stack.

For an intrasegment direct CALL, SP (the stack
pointer) is decremented by two and IP is pushed
onto the stack. The relative displacement (up to
+32k) of the target procedure from the CALL
instruction is then added to the instruction
pointer. This form of the CALL instruction is
““self-relative’” and is appropriate for position- in-
dependent (dynamically relocatable) routines in
which the CALL and its target are in the same
segment and are moved together.

An intrasegment indirect CALL may be made
through memory or through a register. SP is
decremented by two and IP is pushed onto the
stack. The offset of the target procedure is
obtained from the memory word or 16-bit general
register referenced in the instruction and replaces
IP.

For an intersegment direct CALL, SP is
decremented by two, and CS is pushed onto the
stack. CS is replaced by the segment word con-
tained in the instruction. SP again is decremented
by two. IP is pushed onto the stack and is
replaced by the offset word contained in the
instruction.

For an intersegment indirect CALL (which only
may be made through memory), SP is
decremented by two, and CS is pushed onto the
stack. CS is then replaced by the content of the
second word of the doubleword memory pointer
referenced by the instruction. SP again is
decremented by two, and IP is pushed onto the
stack and is replaced by the content of the first
word of the doubleword pointer referenced by the
instruction.
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RET optional-pop-value

RET (Return) transfers control from a procedure
back to the instruction following the CALL that
activated the procedure. The assembler generates
an intrasegment RET if the programmer has
defined the procedure NEAR, or an intersegment
RET if the procedure has been defined as FAR.
RET pops the word at the top of the stack
(pointed to by register SP) into the instruction
pointer and increments SP by two. If RET is
intersegment, the word at the new top of stack is
popped into the CS register, and SP is again
incremented by two. If an optional pop value has
been specified, RET adds that value to SP. This
feature may be used to discard parameters pushed
onto the stack before the execution of the CALL
instruction.

JMP farget

JMP unconditionally transfers control to the
target location. Unlike a CALL instruction, JMP
does not save any information on the stack, and
no return to the instruction following the JMP is
expected. Like CALL, the address of the target
operand may be obtained from the instruction
itself (direct JMP) or from memory or a register
referenced by the instruction (indirect JIMP).

An intrasegment direct JMP changes the instruc-
tion pointer by adding the relative displacement
of the target from the JMP instruction. If the
assembler can determine that the target is within
127 bytes of the JIMP, it automatically generates a
two-byte form of this instruction calied a SHORT
JMP; otherwise, it generates a NEAR JMP that
can address a target within x=32k. Intrasegment
direct JMPS are self-relative and are appropriate
in position-independent (dynamically relocatable)
routines in which the JMP and its target are in the
same segment and are moved together.

An intrasegment indirect JMP may be made
either through memory or through a 16-bit
general register. In the first case, the content of
the word referenced by the instruction replaces
the instruction pointer. In the second case, the
new [P value is taken from the register named in
the instruction.

An intersegment direct JMP replaces IP and CS
with values contained in the instruction.

An intersegment indirect JMP may be made only
through memory. The first word of the
doubleword pointer referenced by the instruction
replaces IP, and the second word replaces CS.

Conditional Transfers

The conditional transfer instructions are jumps
that may or may not transfer control depending
on the state of the CPU flags at the time the
instruction is executed. These 18 instructions (see
table 2-15) each test a different combination of
flags for a condition. If the condition is ‘‘true,”
then control is transferred to the target specified
in the instruction. If the condition is ‘‘false,”
then control passes to the instruction that follows
the conditional jump. All conditional jumps are
SHORT, that is, the target must be in the current
code segment and within —128 to +127 bytes of
the first byte of the next instruction (JMP 00H
jumps to the first byte of the next instruction).
Since the jump is made by adding the relative
displacement of the target to the instruction
pointer, all conditional jumps are self-relative and
are appropriate for position-independent
routines.

Iteration Control

The iteration control instructions can be used to
regulate the repetition of software loops. These
instructions use the CX register as a counter. Like
the conditional transfers, the iteration control
instructions are self-relative and may only
transfer to targets that are within —128 to +127
bytes of themselves, i.e., they are SHORT
transfers.

LOOP short-label

LOOP decrements CX by 1 and transfers control
to the target operand if CX is not 0; otherwise the
instruction following LOOP is executed.
LOOPE/LOOPZ short-label

LOOPE and LOOPZ (Loop While Equal and

Loop While Zero) are different mnemonics for
the same instruction (similar to the REPE and
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Table 2-15. Interpretation of Conditional Transfers

MNEMONIC CONDITION TESTED “JUMPIF ...”
JAIJNBE (CForZF)=0 above/not below nor equal
JAE/JNB CF=0 above or equal/not below
JB/JNAE CF=1 below/not above nor equal
JBE/JNA (CF oR ZF)=1 below or equal/not above
JC CF=1 carry
JEIJZ ZF=1 equal/zero
JG/JNLE ((SF xor OF) or ZF)=0 greater/not less nor equal
JGE/JNL (SF xor OF)=0 greater or equal/notless
JL/UNGE (SF xor OF)=1 less/not greater nor equal
JLE/JNG ((SF xor OF) or ZF)=1 less or equal/not greater
JNC CF=0 not carry
JNE/JUNZ ZF=0 not equal/not zero
JNO OF=0 not overflow
JNP/JPO PF=0 not parity/ parity odd
JNS SF=0 not sign
JO OF=1 overflow
JP/JPE PF=1 parity/parity equal
JS SF=1 sign

Note: ‘‘above’” and ‘‘below’’ refer to the relationship of two unsigned values;

‘‘greater’’ and ‘‘less’’ refer to the relationship of two signed values.

REPZ repeat prefixes). CX is decremented by 1,
and control is transferred to the target operand if
CXis not 0 and if ZF is set; otherwise the instruc-
tion following LOOPE/LOOPZ is executed.

LOOPNE/LOOPNZ short-label

LOOPNE and LOOPNZ (Loop While Not Equal
and Loop While Not Zero) are also synonyms for
the same instruction. CX is decremented by 1,
and control is transferred to the target operand if
CX is not 0 and if ZF is clear; otherwise the next
sequential instruction is executed.

JCXZ short-label

JCXZ (Jump If CX Zero) transfers control to the
target operand if CX is 0. This instruction is
useful at the beginning of a loop to bypass the
loop if CX has a zero value, i.e., to execute the
loop zero times.

Interrupt Instructions

The interrupt instructions allow interrupt service
routines to be activated by programs as well as by

external hardware devices. The effect of software
interrupts is similar to hardware-initiated inter-
rupts. However, the processor does not execute
an interrupt acknowledge bus cycle if the inter-
rupt originates in software or with an NMI. The
effect of the interrupt instructions on the flags is
covered in the description of each instruction.

INT interrupt-type

INT (Interrupt) activates the interrupt procedure
specified by the interrupt-type operand. INT
decrements the stack pointer by two, pushes the
flags onto the stack, and clears the trap (TF) and
interrupt-enable (IF) flags to disable single-step
and maskable interrupts. The flags are stored in
the format used by the PUSHF instruction. SP is
decremented again by two, and the CS register is
pushed onto the stack. The address of the inter-
rupt pointer is calculated by multiplying
interrupt-type by four; the second word of the in-
terrupt pointer replaces CS. SP again is
decremented by two, and IP is pushed onto the
stack and is replaced by the first word of the inter-
rupt pointer. If interrupt-type = 3, the assembler

_ generates a short (1 byte) form of the instruction,

known as the breakpoint interrupt.
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Software interrupts can be used as ‘‘supervisor
calls,” i.e., requests for service from an operating
system. A different interrupt-type can be used for
each type of service that the operating system
could supply for an application program. Soft-
ware interrupts also may be used to check out
interrupt service procedures written for hardware-
initiated interrupts.

INTO

INTO (Interrupt on Overflow) generates a soft-
ware interrupt if the overflow flag (OF) is set;
otherwise control proceeds to the following
instruction without activating an interrupt pro-
cedure. INTO addresses the target interrupt pro-
cedure (its type is 4) through the interrupt pointer
at location 10H; it clears the TF and IF flags and
otherwise operates like INT. INTO may be writ-
ten following an arithmetic or logical operation to
activate an interrupt procedure if overflow
occurs.

IRET

IRET (Interrupt Return) transfers control back to
the point of interruption by popping IP, CS and
the flags from the stack. IRET thus affects all
flags by restoring them to previously saved
values. IRET is used to exit any interrupt
procedure, whether activated by hardware or
software.

Processor Control Instructions

These instructions (sce table 2-16) allow programs
to control various CPU functions. One group of
instructions updates flags, and another group is
used primarily for synchronizing the 8086 or 8088
with external events. A final instruction causes
the CPU to do nothing. Except for the flag opera-
tions, none of the processor control instructions
affect the flags.

Flag Operations

CLC

CLC (Clear Carry flag) zeroes the carry flag (CF)
and affects no other flags. It (and CMC and STC)
is useful in conjunction with the RCL and RCR
instructions.

Table 2-16. Processor Control Instructions

FLAG OPERATIONS

STC Set carry flag

CLC Clear carry flag

CMC Complement carry flag
STD Set direction flag

CLD Clear direction flag

STI Setinterrupt enable flag
CL! Clear interrupt enable flag

EXTERNAL SYNCHRONIZATION

HLT Halit until interrupt or reset

WAIT Wait for TEST pin active

ESC Escape to external processor

LOCK Lock bus during next
instruction

NO OPERATION

NOP No operation

cMC

CMC (Complement Carry flag) ‘‘toggles’’ CF to
its opposite state and affects no other flags.

STC

STC (Set Carry flag) sets CF to 1 and affects no
other flags.

CLD

CLD (Clear Direction flag) zeroes DF causing the
string instructions to auto-increment the SI
and/or DI index registers. CLD does not affect
any other flags.

STD

STD (Set Direction flag) sets DF to 1 causing the
string instructions to auto-decrement the SI
and/or DI index registers. STD does not affect
any other flags.
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CLlI

CLI (Clear Interrupt-enable flag) zeroes IF.
When the interrupt-enable flag is cleared, the
8086 and 8088 do not recognize an external inter-
rupt request that appears on the INTR line; in
other words maskable interrupts are disabled. A
non-maskable interrupt appearing on the NMI
line, however, is honored, as is a software inter-
rupt. CLI does not affect any other flags.

STI

STI (Set Interrupt-enable flag) sets IF to 1, en-
abling processor recognition of maskable inter-
rupt requests appearing on the INTR line. Note
however, that a pending interrupt will not actu-
ally be recognized until the instruction following
STI has executed. STI does not affect any other
flags.

External Synchronization

HLT

HLT (Halt) causes the 8086/8088 to enter the halt
state. The processor leaves the halt state upon
activation of the RESET line, upon receipt of a
non-maskable interrupt request on NMI, or, if
interrupts are enabled, upon receipt of a
maskable interrupt request on INTR. HLT does
not affect any flags. It may be used as an alter-
native to an endless software loop in situations
where a program must wait for an interrupt.

WAIT

WAIT causes the CPU to enter the wait state
while its TEST line is not active. WAIT does not
affect any flags. This instruction is described
more completely in section 2.5,

ESC external-opcode, source

ESC (Escape) provides a means for an external
processor to obtain an opcode and possibly a
memory operand from the 8086 or 8088. The
external opcode is a 6-bit immediate constant that
the assembler encodes in the machine instruction

it builds (see table 2-26). An external processor
may monitor the system bus and capture this
opcode when the ESC is fetched. If the source
operand is a register, the processor does nothing.
If the source operand is a memory variable, the
processor obtains the operand from memory and
discards it. An external processor may capture the
memory operand when the processor reads it
from memory.

LOCK

LOCK is a one-byte prefix that causes the
8086/8088 (configured in maximum mode) to
assert its bus LOCK signal while the following
instruction executes. LOCK does not affect any
flags. See section 2.5 for more information on
LOCK.

No Operation

NOP

NOP (No Operation) causes the CPU to do
nothing. NOP does not affect any flags.

Instruction Set Reference Information

Table 2-21 provides detailed operational informa-
tion for the 8086/8088 instruction set. The
information is presented from the point of view
of utility to the assembly language programmer.
Tables 2-17, 2-18 and 2-19 explain the symbols
used in table 2-21. Machine language instruction
encoding and decoding information is given in
Chapter 4.

Instruction timings are presented as the number
of clock periods required to execute a particular
form (register-to-register, immediate-to-memory,
etc.) of the instruction. If a system is running with
a 5 MHz maximum clock, the maximum clock
period is 200 ns; at 8 MHz, the clock period is 125
ns. Where memory operands are used, ‘“+EA”’
denotes a variable number of additional clock
periods needed to calculate the operand’s effec-
tive address (discussed in section 2.8). Table 2-20
lists all effective address calculation times.
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Table 2-17. Key to Instruction Coding Formats

IDENTIFIER USED IN EXPLANATION
destination data transfer, A register or memory location that may contain data
bit manipulation operated on by the instruction, and which receives (is
replaced by) the result of the operation.
source data transfer, A register, memory location or immediate value that is
arithmetic, used in the operation, but is not altered by the instruc-

source-table

target

short-1abel

accumulator

port

source-string

dest-string

count

interrupt-type

optional-pop-value

external-opcode

bit manipulation

XLAT

JMP, CALL

cond. transfer,
iteration control

iN, OUT

IN,OUT

string ops.

string ops.

shifts, rotates

INT

RET

ESC

tion.

Name of memory translation table addressed by register
BX.

A label to which control is to be transferred directly, or a
register or memory location whose content is the
address of the location to which control is to be transfer-
red indirectly.

A label to which control is to be conditionally
transferred; must lie within —128 to +127 bytes of the first
byte of the next instruction.

Register AX for word transfers, AL for bytes.

An /O port number; specified as an immediate value of
0-255, or register DX (which contains port number in
range 0-64k).

Name of a string in memory that is addressed by register
Sl; used only to identify string as byte or word and
specify segment override, if any. This string is used in
the operation, but is not altered.

Name of string in memory that is addressed by register
DI; used only to identify string as byte or word. This
string receives (is replaced by) the result of the opera-
tion.

Specifies number of bits to shift or rotate; written as
immediate value 1 or register CL (which contains the
countin the range 0-255).

Immediate value of 0-2585 identifying interrupt pointer
number.

Number of bytes (0-64k, ordinarily an even number) to
discard from stack.

Immediate value (0-83) that is encoded in the instruction
for use by an external processor.
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Table 2-18. Key to Flag Effects

Table 2-19. Key to Operand Types

For control transfer instructions, the timings
given include any additional clocks required to
reinitialize the instruction queue as well as the
time required to fetch the target instruction. For
instructions executing on an 8086, four clocks
should be added for each instruction reference to
a word operand located at an odd memory
address to reflect any additional operand bus
cycles required. Similarly for instructions exe-
cuting on an 8088, four clocks should be added to
each instruction reference to a 16-bit memory
operand; this includes all stack operations. The
required number of data references is listed in
table 2-21 for each instruction to aid in this
calculation.

Several additional factors can increase actual
execution time over the figures shown in table
2-21. The time provided assumes that the instruc-
tion has already been prefetched and that it is
waiting in the instruction queue, an assumption
that is valid under most, but not all, operating
conditions. A series of fast executing (fewer than
two clocks per opcode byte) instructions can drain
the queue and increase execution time. Execution
time also is slightly impacted by the interaction of
the EU and BIU when memory operands must be
read or written. If the EU needs access to
memory, it may have to wait for up to one clock if
the BIU has already started an instruction fetch
bus cycle. (The EU can detect the need for a
memory operand and post a bus request far
enough in advance of its need for this operand to
avoid waiting a full 4-clock bus cycle). Of course
the EU does not have to wait if the queue is full,
because the BIU is idle. (This discussion assumes

source-table
source-string
dest-string
DX
short-label
near-label
far-label
near-proc
far-proc

memptri6

memptr32

regptri6

repeat

IDENTIFIER EXPLANATION IDENTIFIER EXPLANATION
(blank) not altered (no operands) | No operands are written
0 cleared to 0 register An 8- or 16-bit general register
1 setto 1 reg 16 A 16-bit generall register
seg-reg A segment register
X setor cleared according .
accumulator | Register AX or AL
toresult
) ) immediate A constant in the range
u undefined—contains no 0-FFFFH
reliable value immed8 A constantin the range 0-FFH
R restored from previously- memory An 8- or 16-bit memory
saved value location("
mem3s An 8-bit memory location"
mem16 A 16-bit memory location

Name of translate

table

Name of string addressed by
register Si

Name of string addressed by
register DI

Register DX

A labe! within —-128 to +127
bytes of the end of the instruc-
tion

256-byte

A label in current code
segment
A label in another code
segment
A procedure in current code
segment
A procedure in another code
segment

A word containing the offset of
the location in the current code
segment to which control is to
be transferred"

A doubleword containing the
offset and the segment base
address of the location in
another code segment to which
control is to be transferred

A 16-bit general register
containing the offset of the
location in the current code
segment to which control is to
be transferred

A string instruction
prefix

repeat

MAny addressing mode—direct, register in-
direct, based, indexed, or based
indexed—may be used (see section 2.8).
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8086 AND 8088 CENTRAL PROCESSING UNITS

Table 2-20. Effective Address Calculation

Time

EA COMPONENTS CLOCKS*
Displacement Only 6
Base orindex Only  (BX,BP,SI,DI) 5
Displacement

+ 9

Base or Index (BX,BP,SI,Dt)
Base BP + DI, BX+SI 7

+
Index BP + Sl, BX + Di 8
Displacement BP + DI +DISP 1

+ BX+ Si+DISP
Base

+ BP +Sl+DISP 12
Index BX + DI+ DISP

*Add 2 clocks for segment override

that the BIU can obtain the bus on demand, i.e.,
that no other processors are competing for the
bus.)

With typical instruction mixes, the time actually
required to execute a sequence of instructions will
typically be within 5-10% of the sum of the
individual timings given in table 2-21. Cases can
be constructed, however, in which execution time
may be much higher than the sum of the figures
provided in the table. The execution time for a
given sequence of instructions, however, is always
repeatable, assuming comparable external condi-
tions (interrupts, coprocessor activity, etc.). If the
execution time for a given series of instructions
must be determined exactly, the instructions
should be run on an execution vehicle such as the
SDK-86 or the iSBC 86/12™ board.

Table 2-21. Instruction Set Reference Data

AAA (no operands) ODITSZAPC
AAA ASCI adjust for addition Flags UU X U X
Operands Clocks | Transfers* | Bytes Coding Example
(no operands) 4 — 1 AAA
AAD (no operands) ODITSZAPC
AAD ASCII adjust for division Flags |, XX UXU
Operands Clocks | Transfers* | Bytes Coding Example
(no operands) 60 — 2 AAD
AAM (no operands) ODITSZAPC
AAM ASCI adjust for multiply Flags XX UXU
Operands Clocks | Transfers* | Bytes Coding Example
(no operands) 83 — 1 AAM
AAS (no operands) ODITSZAPC
AAS ASCIl adjust for subtraction Flags |, UUXUX
Operands Clocks | Transfers* | Bytes Coding Example
(no operands) 4 — 1 AAS

*For the 8086, add four clocks for each 16-bit word transfer with an odd address. For the 8088, add four clocks for each 16-bit word transfer.
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8086 AND 8088 CENTRAL PROCESSING UNITS

Table 2-21. Instruction Set Reference Data (Cont’d.)

ADC

ADC destination,source

ODITSZAPC

Add with carry Flags X X X X X
Operands Clocks | Transfers* | Bytes Coding Example
register, register 3 — 2 ADC AX, Sl
register, memory 9+EA 1 2-4 ADC DX, BETA (S}
memory, register 16+EA 2 2-4 ADC ALPHA [BX](SI], DI
register, immediate 4 — 3-4 ADC BX, 256
memory, immediate 17+EA 2 3-6 ADC GAMMA, 30H
accumulator, immediate 4 — 2-3 ADC AL,5
ADD destination,source ODITSZAPC
ADD Addition Flags X X X X X
Operands Clocks | Transfers* | Bytes Coding Example
register, register 3 — 2 ADD CX, DX
register, memory 9+EA 1 2-4 ADD DI, [BX].ALPHA
memory, register 16+EA 2 2-4 ADD TEMP, CL
register, immediate 4 — 3-4 ADD CL, 2
memory, immediate 17+ EA 2 3-6 ADD ALPHA, 2
accumulator, immediate 4 — 2-3 ADD AX, 200
AND destination,source ODITSZAPC
AND Logical and Flags XX U X 0
Operands Clocks | Transfers* | Bytes Coding Example
register, register 3 — 2 AND AL,BL
register, memory 9+EA 1 2-4 AND CX,FLAG_WORD
memory, register 16+ EA 2 2-4 AND ASCII [DIH],AL
register, immediate 4 — 3-4 AND CX,0F0H
memory, immediate 17+ EA 2 3-6 AND BETA, 01H
accumulator, immediate 4 — 2-3 AND AX, 010100008
CALL target ODITSZAPC
CALL Call a procedure Flags
Operands Clocks | Transfers* | Bytes Coding Examples
near-proc 19 1 3 CALL NEAR_PROC
far-proc 28 2 5 CALL FAR_PROC
memptr 16 21+ EA 2 2-4 CALL PROC_TABLE[SI]
regptr 16 16 1 2 CALL AX
memptr 32 37+EA 4 2-4 CALL [BX].TASK [SI]
CBW (no operands) ODITSZAPC
CBw Convert byte to word Flags
Operands Clocks | Transfers* | Bytes Coding Example
(no operands) 2 — 1 CBW

“For the 8086, add four clocks for each 16-bit word transfer with an odd address. For the 8088, add four clocks for each 16-bit word transfer.
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8086 AND 8088 CENTRAL PROCESSING UNITS

Table 2-21. Instruction Set Reference Data (Cont’d.)

CLC (no operands)

ODITSZAPC

CLC Clear carry flag Flags 0
Operands Clocks | Transfers* | Bytes Coding Example
(no operands) 2 — 1 CLC
CLD (no operands) ODITSZAPC
CLD Clear direction flag Flags 0
Operands Clocks | Transfers* | Bytes Coding Example
(no operands) 2 — 1 CLD
CL! (no operands) ODITSZAPC
CLi Clear interrupt flag Flags 0
Operands Clocks | Transfers* | Bytes Coding Example
{no operands) 2 — 1 CLI
CMC CMC (no operands) Flaas ODITSZAPC
Complement carry flag 9 X
Operands Clocks | Transfers* | Bytes Coding Example
(no operands) 2 — 1 CMC
CMP destination,source ODITSZAPC
CMP Compare destination to source Flags X XX XXX
Operands Clocks | Transfers* | Bytes Coding Example
register, register 3 — 2 CMP BX, CX
register, memory 9+EA 1 2-4 CMP DH, ALPHA
memory, register 9+EA 1 2-4 CMP [BP+2], SI
register, immediate 4 — 3-4 CMP BL, 02H
memory, immediate 10+ EA 1 3-6 CMP [BX].RADAR [Dl], 3420H
accumulator, immediate 4 — 2-3 CMP AL, 00010000B
CMPS dest-string,source-string ODITSZAPC
CMPS Compare string Flags X X X XXX
Operands Clocks | Transfers* | Bytes Coding Example
dest-string, source-string 22 2 1 CMPS BUFF1, BUFF2
(repeat) dest-string, source-string 9+22/rep 2/rep 1 REPE CMPS ID, KEY

*For the 8086, add four clocks for each 16-bit word transfer with an odd address. For the 8088, add four clocks for each 16-bit word transfer.
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8086 AND 8088 CENTRAL PROCESSING UNITS

Table 2-21. Instruction Set Reference Data (Cont’d.)

CWD (no operands) ODITSZAPC
CwD Convert word to doubleword Flags
Operands Clocks | Transfers* | Bytes Coding Example
(no operands) 5 —_ 1 CWD
DAA (no operands) ODITSZAPC
DAA Decimal adjust for addition Flags X X X X X X
Operands Clocks | Transfers* | Bytes Coding Example
(no operands) 4 — 1 DAA
DAS (no operands) ODITSZAPC
DAS Decimal adjust for subtraction Flags U X X X X X
Operands Clocks | Transfers* | Bytes Coding Example
(no operands) 4 — 1 DAS
DEC destination ODITSZAPC
DEC Decrement by 1 Flags X XX XX
Operands Clocks | Transfers* | Bytes Coding Example
regi6 2 — 1 DEC AX
reg8 3 — 2 DEC AL
memory 15+EA 2 2-4 DEC ARRAY [SI]
DIV source ODITSZAPC
DIV Division, unsigned Flags |, UUuuu Uy
Operands Clocks | Transfers* | Bytes Coding Example
reg8 80-90 - 2 DIV CL
reg16 144-162 — 2 DIV BX
memsg (86-96) 1 2-4 DIV ALPHA
+EA
mem16 (150-168) 1 2-4 DIV TABLE [S]]
+EA
ESC ESC external-opcode,source Flags ODITSZAPC
Escape 9
Operands Clocks | Transfers* | Bytes Coding Example
immediate, memory 8+ EA 1 2-4 ESC 6,ARRAY [SI]
immediate, register 2 — 2 ESC 20,AL

*For the 8086, add four clocks for each 16-bit word transfer with an odd address. For the 8088, add four ciocks for each 16-bit word transfer.
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8086 AND 8088 CENTRAL PROCESSING UNITS

Table 2-21. Instruction Set Reference Data (Cont’d.)

HLT HLT (no operands) Flags ODITSZAPC
Halt 9
Operands Clocks | Transfers* | Bytes Coding Example
(no operands) 2 — 1 HLT
IDIV source ODITSZAPC
IDIV Integer division Flags Uuuuu
Operands Clocks | Transfers* | Bytes Coding Example
reg8 101-112 — 2 IDIV BL
regl16 165-184 — 2 IDIV CX
mem3 (107-118) 1 2-4 IDIV DIVISOR_BYTE [S]]
+EA
mem16 (171-190) 1 2-4 IDIV [BX].DIVISOR_WORD
+EA
IMUL source ODITSZAPC
IMUL Integer multiplication Flags UUUU X
Operands Clocks | Transfers* | Bytes Coding Example
reg8 80-98 — 2 IMUL CL
regl16 128-154 — 2 IMUL BX
mem8 (86-104) 1 2-4 IMUL RATE_BYTE
+EA
mem16 (134-160) 1 2-4 IMUL RATE_WORD [BP] [DI]
+EA
IN IN accumulator,port Flaas ODITSZAPC
Input byte or word 9
Operands Clocks | Transfers* | Bytes Coding Example
accumulator, immed8 10 1 2 IN AL, OFFEAH
accumulator, DX 8 1 1 IN AX, DX
INC destination ODITSZAPC
INC Increment by 1 Flags X XX XX
Operands Clocks | Transfters* | Bytes Coding Example
reg16 2 — 1 INC CX
reg8 3 — 2 INC BL
memory 15+EA 2 2-4 INC ALPHA [DI] [BX]

*For the 8086, add four clocks for each 16-bit word transfer with an odd address. For the 8088, add four clocks for each 16-bit word transfer.
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8086 AND 8088 CENTRAL PROCESSING UNITS

Table 2-21. Instruction Set Reference Data (Cont’d.)

INT interrupt-type ODITSZAPC
INT Interrupt Flags 00
Operands Clocks | Transfers* Bytes Coding Example
immed8 (type = 3) 52 5 1 INT 3
immed8 (type # 3) 51 5 2 INT 67
1' INTR (externat maskable interrupt) ODITSZAPC
INTR Interrupt if INTR and IF=1 Flags 00
Operands Clocks | Transfers* Bytes Coding Example
(no operands) 61 7 N/A N/A
|NTO INTO (no operands) Flags ODITSZAPC
Interrupt if overflow 9 00
Operands Clocks | Transfers* Bytes Coding Example
(no operands) 530r4 5 1 INTO
IRET (no operands) ODITSzZzAPC
IRET Interrupt Return Flags C RRRRRRR R
Operands Clocks | Transfers* Bytes Coding Example
{no operands) 24 3 1 IRET
JA/JNBE JA/JNBE short-label Flags ODITSZAPC
Jump if above/Jump if not below nor equal 9
Operands Clocks | Transfers* Bytes Coding Example
short-label 16o0r4 — 2 JA ABOVE
JAE/JNB JAE/JNB short-label Flags ODITSZAPC
Jump if above or equal/Jump if not below 9
Operands Clocks | Transfers* Bytes Coding Example
short-label 16 or 4 — 2 JAE ABOVE__EQUAL
JB/JNAE JB/JNAE short-label Flags ODITSZAPC
Jump if below/Jump if not above nor equal 9
Operands Clocks | Transfers* Bytes Coding Example
short-label 16or4 — 2 JB BELOW

*For the 8086, add four clocks for each 16-bit word transfer with an odd address. For the 8088, add four clocks for each 16-bit word transfer.
$INTRis notan instruction; it is included in table 2-21 only for timing information.
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8086 AND 8088 CENTRAL PROCESSING UNITS

Table 2-21. Instruction Set Reference Data (Cont’d.)

JBE/JNA short-label

ODITSZAPC

JBE/JNA Jump if below or equal/Jump if not above Flags
Operands Clocks | Transfers* | Bytes Coding Example
short-label 16or4 — 2 JNA NOT_ABOVE
JC JC shqrt—label Flags ODITSZAPC
Jump if carry
Operands Clocks | Transfers* | Bytes Coding Example
short-label 16or4 — 2 JC CARRY_SET
JCXZ JCXZ §hort_—|abe| Flags ODITSZAPC
Jump if CX is zero
Operands Clocks | Transfers* | Bytes Coding Example
short-label 180r6 — 2 JCXZ COUNT__DONE
JE/JZ JE/JZ short-label Flags ODITSZAPC
Jump if equal/Jump if zero 9
Operands Clocks | Transfers* | Bytes Coding Example
short-label 160r4 — 2 JZ ZERO
JG/JNLE JG/JNLE short-label Flaas ODITSZAPC
Jump if greater/Jump if not less nor equal 9
Operands Clocks | Transfers* | Bytes Coding Example
short-label 16or4 — 2 JG GREATER
JGE/JNL JGE/JNL short-label Flaas ODITSZAPC
Jump if greater or equai/Jump if not less 9
Operands Clocks | Transfers* | Bytes Coding Example
short-label 16or4 — 2 JGE GREATER_EQUAL
JL/IJNGE JL/JNGE short-label Flags ODITSZAPC
Jump if less/Jump if not greater nor equal 9
Operands Clocks | Transfers* | Bytes Coding Example
short-label 16or4 — 2 JL LESS

*For the 8086, add four clocks for each 16-bit word transfer with an odd address. For the 8088, add four clocks for each 16-bit word transfer.
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8086 AND 8088 CENTRAL PROCESSING UNITS

Table 2-21. Instruction Set Reference Data (Cont’d.)

JLE/JNG JLE/J.NG short-label ' Flags ODITSZAPC
Jump if less or equal/Jump if not greater
Operands Clocks | Transfers* | Bytes Coding Example
short-label 16o0r4 — 2 JNG NOT_GREATER
JMP JMP target Flags ODITSzZzAPC
Jump
Operands Clocks | Transfers* Bytes Coding Example
short-label 15 — 2 JMP SHORT
near-label 15 — 3 JMP WITHIN__SEGMENT
far-label 15 — 5 JMP FAR__LABEL
memptri6 18+ EA 1 2-4 JMP [BX].TARGET
regptr16 11 — 2 JMP CX
memptr32 24+ EA 2 2-4 JMP OTHER.SEG [SI]
JNC short-label ODITSzAPC
J NC Jump if not carry Flags
Operands Clocks | Transfers* Bytes Coding Example
short-label 16or4 — 2 JNC NOT__CARRY
JNE/JNZ short-label ODITSZAPC
JN E/JNZ Jump if not equal/Jump if not zero Flags
Operands Clocks | Transfers* Bytes Coding Example
short-label 16or4 — 2 JNE NOT_EQUAL
JNO short-label ODITSZAPC
JNO Jump if not overflow Flags
Operands Clocks | Transfers* Bytes Coding Example
short-label 16or4 — 2 JNO NO__OVERFLOW
JNP/JPO short-label ODITSZAPC
JN P/J PO Jump if not parity/Jump if parity odd Flags
Operands Clocks | Transfers* Bytes Coding Example
short-label 16ord — 2 JPO ODD__PARITY
JNS short-label ODITSZAPC
JNS Jump if not sign Flags
Operands Clocks | Transfers* Bytes Coding Example
short-label 16or4 — 2 JNS POSITIVE

“For the 8086, add four clocks for each 16-bit word transfer with an odd address. For the 8088, add four clocks for each 16-bit word transfer.

Mnemonics © Intel, 1978

2-58




8086 AND 8088 CENTRAL PROCESSING UNITS

Table 2-21. Instruction Set Reference Data (Cont’d.)

ODITSZAPC

JO short-label
Jo Jump if overflow Flags
Operands Clocks | Transfers* | Bytes Coding Example
short-label 16 or4 — 2 JO SIGNED_OVRFLW
JP/JPE short-label ODITSZAPC
JP/JPE Jump if parity/Jump if parity even Flags
Operands Clocks | Transfers* | Bytes Coding Example
short-label 16or4 —_ 2 JPE EVEN__PARITY
JS J8 short-label Flaas ODITSZAPC
Jump if sign 9
Operands Clocks | Transfers* | Bytes Coding Example
short-label 16 or4 — 2 JS NEGATIVE
LAHF (no operands) ODITSZAPC
LAHF Load AH from flags Flags
Operands Clocks | Transfers* | Bytes Coding Example
(no operands) 4 — 1 LAHF
LDS destination,source ODITSZAPC
LDS Load pointer using DS Flags
Operands Clocks Transfers | Bytes Coding Example
reg16, mem32 16+ EA 2 2-4 LDS SI,DATA.SEG [DI]
LEA destination,source ODITSZAPC
LEA Load effective address Flags
Operands Clocks | Transfers* | Bytes Coding Example
reg16, memi6 2+EA - 2-4 LEA BX, [BP][DI]
LES destination,source ODITSZAPC
LES Load pointer using ES Flags
Operands Clocks | Transfers* | Bytes Coding Example
reg16, mema32 16+ EA 2 2-4 LES DI, [BX].TEXT_BUFF

“For the 8086, add four clocks for each 16-bit word transfer with an odd address. For the 8088, add four clocks for each 16-bit word transfer.
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8086 AND 8088 CENTRAL PROCESSING UNITS

Table 2-21. Instruction Set Reference Data (Cont’d.)

LOCK (no operands)

ODITSZAPC

LOCK Lock bus Flags
Operands Clocks | Transfers* | Bytes Coding Example
(no operands) 2 — 1 LOCK XCHG FLAG,AL
LODS source-string ODITSZAPC
LO DS Load string Flags
Operands Clocks | Transfers* | Bytes Coding Example
source-string 12 1 1 LODS CUSTOMER__NAME
(repeat) source-string 9+13/rep 1/rep 1 REP LODS NAME
LOOP short-label ODITSZAPC
LOOP Loo Flags
Operands Clocks | Transfers* | Bytes Coding Example
short-label 1715 — 2 LOOP AGAIN
LOOPE/LOOPZ LOOPE/LOOPZ short-label Flags ODITSZAPC
Loop if equal/Loop if zero g
Operands Clocks | Transfers* | Bytes Coding Example
short-label 18o0ré6 - 2 LOOPE AGAIN
LOOPNE/LOOPNZ short-label ODITSZAPC
LOOPNE/LOOPNZ Loop if not equal/Loop if not zero Flags
Operands Clocks | Transfers* | Bytes Coding Example
short-label 190r5 — 2 LOOPNE AGAIN
'|' NMI (external nonmaskable interrupt) OSITSZAPC
NMI Interrupt if NM1 =1 Flags 00
Operands Clocks | Transfers* | Bytes Coding Example
(no operands) 50° 5 N/A N/A

“Forthe 8086, add four clocks for each 16-bit word transfer with an odd address. For the 8088, add four clocks for each 16-bit word transfer.
tNMlis not an instruction; itis included in table 2-21 only for timing information.
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8086 AND 8088 CENTRAL PROCESSING UNITS

Table 2-21. Instruction Set Reference Data (Cont’d.)

MOV destination,source

ODITSZAPC

MOV Move Flags
Operands Clocks | Transfers* | Bytes Coding Example
memory, accumulator 10 1 3 MOV ARRAY [SI], AL
accumulator, memory 10 1 3 MOV AX, TEMP_RESULT
register, register 2 — 2 MOV AX,CX
register, memory 8+EA 1 2-4 MOV BP, STACK__TOP
memory, register 9+ EA 1 2-4 MOV COUNT [Di], CX
register, immediate 4 — 2-3 MOV CL, 2
memory, immediate 10+EA 1 3-6 MOV MASK [BX] [SI], 2CH
seg-reg, reg1é 2 — 2 MOV ES, CX
seg-reg, mem16 8+EA 1 2-4 MOV DS, SEGMENT__BASE
reg16, seg-reg 2 — 2 MOV BP, SS
memory, seg-reg 9+EA 1 2-4 MOV [BX].SEG__.SAVE, CS
MOVS dest-string,source-string ODITSZAPC
MOVS Move string Flags
Operands Clocks | Transfers* | Bytes Coding Example
dest-string, source-string 18 2 1 MOVS LINE EDIT__DATA
(repeat) dest-string, source-string 9+17/rep 2/rep 1 REP MOVS SCREEN, BUFFER
MOVSB/MOVSW MOVSB/MOVSW (no operands) Flaas ODITSZAPC
Move string (byte/word) 9
Operands Clocks | Transfers* | Bytes Coding Example
(no operands) 18 2 1 MOVSB
(repeat) (no operands) 9+17/rep 2/rep 1 REP MOVSW
MUL source ODITSZAPRPC
MUL Multiplication, unsigned Flags UU UU X
Operands Clocks | Transfers* | Bytes Coding Example
reg8 70-77 — 2 MUL BL
reg16 118-133 — 2 MUL CX
mem$§ (76-83) 1 2-4 MUL MONTH [SI}
+EA
mem16 (124-139) 1 2-4 MUL BAUD__RATE
+EA

*For the 80886, add four clocks for each 16-bit word transfer with an odd address. For the 8088, add four clocks for each 16-bit word transfer.
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8086 AND 8088 CENTRAL PROCESSING UNITS

Table 2-21. Instruction Set Reference Data (Cont’d.)

NEG destination ODITSZAP
NEG Negate Flags X X X X1
Operands Clocks | Transfers* | Bytes Coding Example
register 3 - 2 NEG AL
memory 16+ EA 2 2-4 NEG MULTIPLIER
*0 if destination=0
NOP (no operands) ODITSZAPC
NOP No Operation Flags
Operands Clocks | Transfers* | Bytes Coding Example
(no operands) 3 — 1 NOP
NOT destination ODITSZAPC
NOT Logical not Flags
Operands Clocks | Transfers* | Bytes Coding Example
register 3 — 2 NOT AX
memory 16+ EA 2 2-4 NOT CHARACTER
OR destination,source ODITSZAPC
OR Logical inclusive or Flags XXUX 0
Operands Clocks | Transfers* | Bytes Coding Example
register, register 3 — 2 OR AL, BL
register, memory 9+EA 1 2-4 OR DX, PORT_ID [DI]
memory, register 16+ EA 2 2-4 OR FLAG__BYTE, CL
accumulator, immediate 4 — 2-3 OR AL, 01101100B
register, immediate 4 — 3-4 OR CX,01H
memory, immediate 17+EA 2 3-6 OR [BX].CMD_WORD,0CFH
OUT port,accumulator ODITSZAPC
out Output byte or word Flags
Operands Clocks | Transfers* | Bytes Coding Example
immeds, accumulator 10 1 2 OUT 44, AX
DX, accumulator 8 1 1 OUT DX, AL
POP destination ODITSZAPC
POP Pop word off stack Flags
Operands Clocks | Transfers* | Bytes Coding Example
register 8 1 POP DX
seg-reg (CSillegal) 8 1 1 POP DS
memory 17+EA 2 2-4 POP PARAMETER

“For the 8088, add four clocks for each 16-bit word transfer with an odd address. For the 8088, add four clocks for each 16-bit word transfer.

Mnemonics © Intel, 1978

2-62




8086 AND 8088 CENTRAL PROCESSING UNITS

Table 2-21. Instruction Set Reference Data (Cont’d.)

POPF

POPF (no operands)
Pop flags off stack

ODITSZAPC
RRRRRRRRR

P
Flags R

Operands Clocks | Transfers* | Bytes Coding Example
(no operands) 8 1 1 POPF
PUSH source ODITSZAPC
PUSH Push word onto stack Flags
Operands Clocks | Transfers* | Bytes Coding Example
register 11 1 PUSH SI
seg-reg (CS tegal) 10 1 1 PUSH ES
memory 16+ EA 2 2-4 PUSH RETURN__CODE [SI]
PUSHF PUSHF (no operands) Flags ODITSZAPC
Push flags onto stack 9
Operands Clocks | Transfers* | Bytes Coding Example
{no operands) 10 1 1 HUSHF
RCL destination,count ODITSZAPC
RCL Rotate left through carry Flags X X
Operands Clocks | Transfers* | Bytes Coding Example
register, 1 2 — 2 RCL CX, 1
register, CL 8+ 4/bit — 2 RCL AL,CL
memory, 1 15+ EA 2 2-4 RCL ALPHA,1
memory, CL 20+EA+ 2 2-4 RCL [BP].PARM, CL
4/bit
RCR designation,count ODITSZAPC
RCR Rotate right through carry Flags X X
Operands Clocks | Transfers* | Bytes Coding Example
register, 1 2 — 2 RCR BX, 1
register, CL 8 +4/bit — 2 RCR BL, CL
memory, 1 15+ EA 2 2-4 RCR [BX].STATUS, 1
memory, CL 20+EA+ 2 2-4 RCR ARRAY [DI], CL
4/bit
REP REP (no operands) Flaas ODITSZAPC
Repeat string operation g
Operands Clocks | Transfers* | Bytes Coding Example
(no operands) 2 — 1 REP MOVS DEST, SRCE

*For the 8086, add four clocks for each 16-bit word transfer with an odd address. For the 8088, add four clocks for each 16-bit word transfer.




8086 AND 8088 CENTRAL PROCESSING UNITS

Table 2-21. Instruction Set Reference Data (Cont’d.)

REPE/REPZ (no operands)

ODITSZAPC

REPE/REPZ . . . . Flags
Repeat string operation while equal/while zero
Operands Clocks | Transfers* | Bytes Coding Example
(no operands) 2 — 1 REPE CMPS DATA, KEY

REPNE/REPNZ (no operands)

ODITSZAPC

REPNE/REPNZ h . . Flags
Repeat string operation while not equal/not zero
Operands Clocks | Transfers* | Bytes Coding Example
(no operands) 2 — 1 REPNE SCAS INPUT _LINE
RET RET optional-pop-value Flaas ODITSZAPC
Return from procedure 9
Operands Clocks | Transfers* | Bytes Coding Example
(intra-segment, no pop) 8 1 1 RET
(intra-segment, pop) 12 1 3 RET 4
(inter-segment, no pop) 18 2 1 RET
(inter-segment, pop) 17 2 3 RET 2
ROL destination,count ODITSZAPC
ROL Rotate left Flags X
Operands Clocks Transfers | Bytes Coding Examples
register, 1 2 — 2 ROL BX, 1
register, CL 8+ 4/bit — 2 ROL DI, CL
memory, 1 15+ EA 2 2-4 ROL FLAG__BYTE [Di],1
memory, CL 20+ EA + 2 2-4 ROL ALPHA ,CL
4/bit
ROR destination,count ODITSZAPC
ROR Rotate right Flags X X
Operand Clocks | Transfers* | Bytes Coding Example
register, 1 2 — 2 ROR AL, 1
register, CL 8+ 4/bit — 2 ROR BX, CL
memory, 1 15+ EA 2 2-4 ROR PORT__STATUS,1
memory, CL 20+ EA+ 2 2-4 ROR CMD_WORD, CL
4/bit
SAHF (no operands) ODITSZAPC
SAHF Store AH into flags Flags RRR R R
Operands Clocks | Transfers* | Bytes Coding Example
(no operands) 4 — 1 SAHF

*For the 8086, add four clocks for each 16-bit word transfer with an odd address. For the 8088, add four clocks for each 16-bit word transfer.
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8086 AND 8088 CENTRAL PROCESSING UNITS

Table 2-21. Instruction Set Reference Data (Cont’d.)

SAL/SHL destination,count

ODITSZAPC

SAL/SHL Shift arithmetic left/Shift logical left Flags X
Operands Clocks | Transfers* | Bytes Coding Examples
register,1 2 — 2 SAL ALA
register, CL 8+ 4/bit — 2 SHL DI, CL
memory,1 15+ EA 2 2-4 SHL [BX].OVERDRAW, 1
memory, CL 20+EA+ 2 2-4 SAL STORE_COUNT, CL
4/bit
SAR destination,source ODITSZAPC
SAR Shift arithmetic right Flags XX U XX
Operands Clocks | Transfers* | Bytes Coding Example
register, 1 2 — 2 SAR DX, 1
register, CL 8+ 4/bit — 2 SAR DI, CL
memory, 1 15+EA 2 2-4 SAR N__BLOCKS, 1
memory, CL 20+EA+ 2 2-4 SAR N__BLOCKS, CL
4/bit
SBB destination,source ODITSZAPC
SBB Subtract with borrow Flags X XX XXX
Operands Clocks | Transfers* | Bytes Coding Example
register, register 3 — 2 SBB BX, CX
register, memory 9+EA 1 2-4 SBB DI, [BX].PAYMENT
memory, register 16+ EA 2 2-4 SBB BALANCE, AX
accumulator, immediate 4 — 2-3 SBB AX,?2
register, immediate 4 — 3-4 SBB CL, 1
memory, immediate 17+ EA 2 3-6 SBB COUNT [SI],10
SCAS dest-string ODITSZAPC
SCAS Scan string Flags X XX XXX
Operands Clocks | Transfers* | Bytes Coding Example
dest-string 15 1 1 SCAS INPUT__LINE
(repeat) dest-string 9+15/rep 1/rep 1 REPNE SCAS BUFFER
SEGMENTT SEGMENT override prefix Flags OP!/TSZAPC
Override to specified segment 9
Operands Clocks | Transfers* | Bytes Coding Example
(no operands) 2 — 1 MOV SS:PARAMETER, AX

“For the 8086, add four clocks for each 16-bit word transfer with an odd address. For the 8088, add four clocks for each 16-bit word transfer.

tASM-86 incorporates the segment override prefix into the operand specification and not as a separate instruction. SEGMENT is included in table

2-21 only for timing information.
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Table 2-21. Instruction Set Reference Data (Cont’d.)

SHR destination,count

ODITSZAPC

SHR Shift logical right Flags X
Operands Clocks | Transfers* | Bytes Coding Example
register, 1 2 — 2 SHR S|, 1
register, CL 8+ 4/bit — 2 SHR SI,CL
memory, 1 15+EA 2 2-4 SHR ID__BYTE [SI] [BX], 1
memory, CL 20+ EA+ 2 2-4 SHR INPUT_WORD, CL
4/bit
SINGLE STEPT SINGLE STEP (Trap flag interrupt) Flags ODITSZAPC
Interrupt if TF =1 9 00
Operands Clocks | Transfers* | Bytes Coding Example
(no operands) 50 5 N/A N/A
STC (no operands) ODITSZAPC
STC Set carry flag Flags 1
Operands Clocks | Transfers* | Bytes Coding Example
(no operands) 2 — 1 STC
STD (no operands) ODITSZAPC
STD Set direction flag Flags 1
Operands Clocks | Transfers* | Bytes Coding Example
(no operands) 2 — 1 STD
STl (no operands) ODITSZAPC
STI Set interrupt enable flag Flags 1
Operands Clocks | Transfers* | Bytes Coding Example
(no operands) 2 — 1 STI
STOS STOS dest-string Flags ODITSZAPC
Store byte or word string 9
Operands Clocks | Transfers* | Bytes Coding Example
dest-string 11 1 1 STOS PRINT__LINE
(repeat) dest-string 9+10/rep 1/rep 1 REP STOS DISPLAY

*For the 8086, add four clocks for each 16-bit word transfer with an odd address. For the 8088, add four clocks for each 16-bit word transfer.
tSINGLE STEP is not an instruction; it is included in table 2-21 only for timing information.
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Table 2-21. Instruction Set Reference Data (Cont’d.)

SUB destination,source ODITSZAPC

SUB Subtraction Flags X X X X X
Operands Clocks | Transfers* | Bytes Coding Example

register, register 3 — 2 SUB CX, BX
register, memory 9+EA 1 2-4 SUB DX, MATH_TOTAL [S}}
memory, register 16+ EA M2 2-4 SUB [BP+2},CL
accumulator, immediate 4 - 2-3 SuUB AL, 10
register, immediate 4 — 3-4 SUB SI, 5280
memory, immediate 17+ EA 2 3-6 SUB [BP].BALANCE, 1000

TEST destination,source ODITSZAPC
TEST Test or non-destructive logical and Flags 0 XXUXO0
Operands Clocks | Transfers* | Bytes Coding Example
register, register 3 — 2 TEST SI, DI
register, memory 9+EA 1 2-4 TEST Si, END_COUNT
accumulator, immediate 4 - 2-3 TEST AL, 001000008
register, immediate 5 — 3-4 TEST BX, 0CC4H
memory, immediate 11+EA — 3-6 TEST RETURN__CODE, 01H
WAIT (no operands) ODITSZAPC
WAIT Wait while TEST pin not asserted Flags
Operands Clocks | Transfers* { Bytes Coding Example
(no operands) 3+ 5n — 1 WAIT
XCHG XCHG destination,source Flaas ODITSZAPC
Exchange 9
Operands Clocks | Transfers* | Bytes Coding Example
accumulator, reg16 3 —_ 1 XCHG AX, BX
memory, register 17+ EA 2 2-4 XCHG SEMAPHORE, AX
register, register 4 — 2 XCHG AL, BL
XLAT XLAT source-table Flaas ODITSZAPC
Translate g
Operands Clocks | Transfers* | Bytes Coding Example
source-table 1 1 1 XLAT ASCII_TAB

*For the 8086, add four clocks for each 16-bit word transfer with an odd address. For the 8088, add four clocks for each 16-bit word transfer.
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Table 2-21. Instruction Set Reference Data (Cont’d.)

XOR destination,source ODITSZAPC

XOR Logical exclusive or Flags 0 XXUXO0

Operands Clocks | Transfers* | Bytes Coding Example
register, register 3 — 2 XOR CX, BX
register, memory 9+EA 1 2-4 XOR CL, MASK__BYTE
memory, register 16+ EA 2 2-4 XOR ALPHA {SI], DX
accumulator, immediate 4 — 2-3 XOR AL, 01000010B
register, immediate 4 — 3-4 XOR SlI, 00C2H
memory, immediate 17+ EA 2 3-6 XOR RETURN__CODE, 0D2H

*For the 8086, add four clocks for each 16-bit word transfer with an odd address. For the 8088, add four clocks for each 16-bit word transfer.

2.8 Addressing Modes Memory Addressing Modes
The 8086 and 8088 provide many different ways Whereas the EU has direct access to register and
to access instruction operands. Operands may be immediate operands, memory operands must be
contained in registers, within the instruction transferred to or from the CPU over the bus.
itself, in memory or in 170 ports. In addition, the When the EU needs to read or write a memory
addresses of memory and 10 port operands can operand, it must pass an offset value to the BIU.
be calculated in several different ways. These The BIU adds the offset to the (shifted) content of
addressing modes greatly extend the flexibility a segment register producing a 20-bit physical
and convenience of the instruction set. This sec- address and then executes the bus cycle(s) needed
tion briefly describes register and immediate to access the operand.
operands and then covers the 8086/8088 memory
and 170 addressing modes in detail. The Effective Address
. . The offset that the EU calculates for a memory
Register and Immediate Operands operand is called the operand’s effective address
or EA. It is an unsigned 16-bit number that
Instructions that specify only register operands expresses the operand’s distance in bytes from the
are generally the most compact and fastest beginning of the segment in which it resides. The
executing of all instruction forms. This is because EU can calculate the effective address in several
the register ‘‘addresses’ are encoded in instruc- different ways. Information encoded in the
tions in just a few bits, and because these opera- second byte of the instruction tells the EU how to
tions are performed entirely within the CPU (no calculate the effective address of each memory
bus cycles are run). Registers may serve as source operand. A compiler or assembler derives this
operands, destination operands, or both. information from the statement or instruction
written by the programmer. Assembly language
Immediate operands are constant data contained programmers have access to all addressing modes.
in an instruction. The data may be either 8 or 16
bits in length. Immediate operands can be Figure 2-34 shows that the execution unit
accessed quickly because they are available calculates the EA by summing a displacement, the
directly from the instruction queue; like a register content of a base register and the content of an
operand, no bus cycles need to be run to obtain an index register. The fact that any combination of
immediate operand. The limitations of immediate these three components may be present in a given
operands are that they may only serve as source instruction gives rise to the variety of 8086/8088
operands and that they are constant values. memory addressing modes.
i
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Figure 2-34. Memory Address Computation

The displacement element is an 8- or 16-bit
number that is contained in the instruction. The
displacement generally is derived from the posi-
tion of the operand name (a variable or label) in
the program. It also is possible for a programmer
to modify this value or to specify the displace-
ment explicitly.

A programmer may specify that either BX or BP
is to serve as a base register whose content is to be
used in the EA computation. Similarly, either SI
or DI may be specified as an index register.
Whereas the displacement value is a constant, the
contents of the base and index registers may
change during execution. This makes it possible
for one instruction to access different memory
locations as determined by the current values in
the base and/or index registers.

It takes time for the EU to calculate a memory
operand’s effective address. In general, the more
elements in the calculation, the longer it takes.

Table 2-20 shows how much time is required to
compute an effective address for any combination
of displacement, base register and index register.

Direct Addressing

Direct addressing (see figure 2-35) is the simplest
memory addressing mode. No registers are in-
volved; the EA is taken directly from the displace-
ment field of the instruction. Direct addressing
typically is used to access simple variables
(scalars).

Register Indirect Addressing

The effective address of a memory operand may
be taken directly from one of the base or index
registers as shown in figure 2-36. One instruction
can operate on many different memory locations
if the value in the base or index register is updated

40
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appropriately. The LEA (load effective address)
and arithmetic instructions might be used to
change the register value.

Note that any 16-bit general register may be used
for register indirect addressing with the JMP or
CALL instructions.

CEMENT

JRpR |

=

I OPCODE l MODR/M | DISPLA

Figure 2-35. Direct Addressing

ropcone ] MOD R/M I

BP
=
Si

Figure 2-36. Register Indirect Addressing

Based Addressing

In based addressing (figure 2-37), the effective
address is the sum of a displacement value and the
content of register BX or register BP. Recall that
specifying BP as a base register directs the BIU to
obtain the operand from the current stack seg-

I OPCODE l MOD R/M DISPLAC|EMENT ]
BX I
- OR w———fe—o-|
BP

Figure 2-37. Based Addressing

ment (unless a segment override prefix is present).
This makes based addressing with BP a very con-
venient way to access stack data (see section 2.10
for examples).

Based addressing also provides a straightforward
way to address structures which may be located at
different places in memory (see figure 2-38). A
base register can be pointed at the base of the
structure and elements of the structure addressed
by their displacements from the base. Different
copies of the same structure can be accessed by
simply changing the base register.

HIGH ADDRESS

DISPLACEMENT DISPLACEMENT
I ®ae) | AGE |STATUS I wae) |}
RATE
vac_| sick
DEPT | DIV
r-IBASEREGISTERJ [ _EmeLovee | 8asE REGISTER
y |
oo 11
I
AGE_|STATUS |
RATE I
vac | sick |
DEPT | DIV
EMPLOYEE _|o— — — — — — -
LOW ADDRESS

Figure 2-38. Accessing a Structure With Based
Addressing

Indexed Addressing

In indexed addressing, the effective address is
calculated from the sum of a displacement plus
the content of an index register (SI or DI) as
shown in figure 2-39. Indexed addressing often is

I OPCODE MOD R/M DISPLAC|EMENT 1
sl
- OR
DI

Figure 2-39. Indexed Addressing
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used to access elements in an array (see figure
2-40). The displacement locates the beginning of
the array, and the value of the index register
selects one element (the first element is selected if
the index register contains 0). Since all array
elements are the same length, simple arithmetic
on the index register will select any element.

Based Indexed Addressing

Based indexed addressing generates an effective
address that is the sum of a base register, an
index register and a displacement (see figure
2-41). Based indexed addressing is a very flexible
mode because two address components can be
varied at execution time.

Based indexed addressing provides a convenient
way for a procedure to address an array allocated
on a stack (see figure 2-42). Register BP can con-
tain the offset of a reference point on the stack,
typically the top of the stack after the procedure
has saved registers and allocated local storage.
The offset of the beginning of the array from the
reference point can be expressed by a displace-
ment value, and an index register can be used to
access individual array elements.

Arrays contained in structures and matrices (two-
dimension arrays) also could be accessed with
based indexed addressing.
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[ |

ARRAY (8)
ARRAY (7)
ARRAY (6)
ARRAY (5)
ARRAY (4)
ARRAY (3)
ARRAY (2)
ARRAY (1)
ARRAY (0)

r  bispLacemenT |

I pispLacement b
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2

]
]
EA 1

1
| |
| |
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! |
| I

_I

:—1 WORD—:
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Figure 2-40. Accessing an Array With Indexed
Addressing
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Figure 2-41. Based Indexed Addressing
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Figure 2-42. Accessing a Stack Array With Based Indexed Addressing
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String Addressing

String instructions do not use the normal memory
addressing modes to access their operands.
Instead, the index registers are used implicitly as
shown in figure 2-43. When a string instruction is
executed, SI is assumed to point to the first byte
or word of the source string, and DI is assumed to
point to the first byte or word of the destination
string. In a repeated string operation, the CPUs
automatically adjust SI and DI to obtain subse-
quent bytes or words.

170 Port Addressing

If an 1/0 port is memory mapped, any of the
memory operand addressing modes may be used
to access the port. For example, a group of ter-
minals can be accessed as an ‘‘array.” String
instructions also can be used to transfer data to
memory-mapped ports with an appropriate hard-
ware interface. Section 2.10 contains examples of
addressing memory-mapped 1/0 ports.

Two different addressing modes can be used to
access ports located in the 170 space; these are
illustrated in figure 2-44. In direct port address-
ing, the port number is an 8-bit immediate

operand. This allows fixed access to ports
numbered 0-255. Indirect port addressing is
similar to register indirect addressing of memory
operands. The port number is taken from register
DX and can range from 0 to 65,535. By pre-
viously adjusting the content of register DX, one
instruction can access any port in the I/0 space.
A group of adjacent ports can be accessed using a
simple software loop that adjusts the value in DX.

2.9 Programming Facilities

A comprehensive integrated set of tools supports
8086/8088 software development. These tools are
programs that run on Intellec® 800 or Series II
Microcomputer Development Systems under the
ISIS-II operating system, the same hardware and
operating system used to develop software for the
8080 and the 8085. Since the 8086 and 8088 are
software-compatible with one another, the same
tools are used for both processors to provide
programmers with a uniform development
environment.

[ s
i DI

| sourceea |
__—>|pEsTiNaTioNEA]

Figure 2-43. String Operand Addressing
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Figure 2-44. 1/0 Port Addressing
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Software Development Overview

A program that will ultimately execute on an
8086- or 8088-based system is developed in steps
(see figure 2-45). The overall program is com-
posed of functional units called modules. For
purposes of this discussion, a module is a section
of code that is separately created, edited, and
compiled or assembled. A very small program
might consist of a single module; a large program
could be comprised of 100 or more modules. The
8086/8088 LINK-86 utility binds modules
together into a single program. (The module
structure of a program is critical to its successful
development and maintenance; see section 2.10
for guidelines.)

8086 and 8088 modules can be written in either
PL/M-86 or ASM-86 (see table 2-22). PL/M-86 is
a high-level language suitable for most
microprocessor applications. It is easy to use,
even by programmers who have little experience
with microprocessors. Because it reduces software
development time, PL/M-86 is ideal for most of
the programming in any application, especially
applications that must get to market quickly.

ASM-86 is the 8086/8088 assembly language.
ASM-86 provides the programmer who is familiar
with the CPU architecture, access to all processor
features. For critical code segments within pro-
grams that make sophisticated use of the hard-
ware, have extremely demanding performance or
memory constraints, ASM-86 is the best choice.
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Figure 2-45. Software Development Process
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Table 2-22. PL/M-86/ASM-86 Characteristics

PL/M-86

ASM-86

* Fast Development
¢ Less Programmer Training

* Detailed Hardware Knowtedge Not Required

* Fastest Execution Speed
¢ Smallest Memory Requirements

* Access To All Processor Facilities

The languages are completely compatible, and a
judicious combination of the two often makes
good sense. Prototype software can be developed
rapidly with PL/M-86. When the system is
operating correctly, it can be analyzed to see
which sections can best profit from being written
in ASM-86. Since the logic of these sections
already has been debugged, selective rewriting can
be done quickly and with low risk.

Each PL/M-86 or ASM-86 module (called a
source moduel) is keyed into the Intellec® system
using the ISIS-II text editor and is stored as a
diskette file. This source file is then input to the
appropriate language translator (ASM-86
assembler or PL/M-86 compiler). The language
translator creates a diskette file from the source
file, which is called a relocatable object module.
The translator also lists the program and flags any
errors detected during the translation. The
relocatable object module contains the 8086/8088
machine instructions that the translator created
from the statements in the source module. The
term ‘‘relocatable” refers to the fact that all
references to memory locations in the module are
relative, rather than being absolute memory
addresses. The module generally is not executable
until the relative references are changed to the
actual memory locations where the module will
reside in the execution system’s memory. The pro-
cess of changing the relative references to
absolute memory locations is called locating.

There are very good reasons for not locating
modules when they are translated. First, the exe-
cution system’s physical memory configuration
(where RAM and ROM/PROM segments are
actually located in the megabyte memory space)
may not be known at the time the modules are
written. Second, it is desirable to be able to use a
common module (e.g., a square root routine) in
more than one system. If absolute addresses were
assigned at translation time, the common module
would either have to occupy the same physical

addresses in every system, or separate versions
with different addresses would have to be main-
tained for each system. When locating is deferred,
a single version of a common routine can be used
by any number of systems. Finally, the locations
of modules typically change as a system s
developed, maintained and enhanced. Separating
the location process from the translation process
means that as modifications are made, unchanged
modules only need to be relocated, not
retranslated.

Relocatable object modules may be placed into
special files called libraries, using the LIB-86
library manager program. Libraries provide a
convenient means of collecting groups of related
modules so that they can be accessed automati-
cally by the LINK-86 program.

When enough relocatable object modules have
been created to test the system, or part of it, the
modules are linked and located. Linking com-
bines all the separate modules into a single pro-
gram. Locating changes the relative memory
references in the program to the actual memory
locations where the program will be loaded in the
execution system. The link and locate process also
isreferred to as R & L, for relocation and linkage.

Two other programs round out the software
development tools available for the 8086 and
8088. OH-86 converts an absolute object file into
a hexadecimal format used by some PROM pro-
grammers and system loaders (for example, the
SDK-86 and iSBC 957™ loaders). CONV-86 can
do most of the conversion work required to
translate 8080/8085 assembly language source
modules into ASM-86 source modules.

The 8086/8088 software development facilities
are covered in more detail in the remainder of this
section. However, these are only introductions to
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the use of these tools. Complete documentation is
available in the following publications available
from Intel’s Literature Department:

ISIS-II:
ISIS-II System User’s Guide, Order No. 9800306

ASM-86:

MCS-86 Assembly Language Reference Manual,
Order No. 9800640

MCS-86 Assembler Operating Instructions for
ISIS-II Users, Order No. 9800641

PL/M-86:

PL/M-86 Programming Manual,
9800466

ISIS-II PL/M-86 Compiler Operator’s Manual,
Order No. 9800478

Order No.

LINK-86, LOC-86, LIB-86, OH-86:

MCS-86 Software Development Utilities
Operating Instructions for ISIS-II Users, Order
No. 9800639

CONV-86:

MCS-86 Assembly Language Converter
Operating Instructions for ISIS-II Users, Order
No. 9800642

PL/M-86

PL/M-86 1is a general-purpose, high-level
language for programming the 8086 and 8088
microprocessors. It is an extension of PL/M-80,
the most widely-used, high-level programming
language for microprocessors. (PL/M-80 source
programs can be processed by the PL/M-86 com-
piler; the resulting object program is generally
reduced by 15-30% in size.) PL/M-86 is suitable
for all types of microprocessor software from
operating systems to application programs.

PL/M-86’s purpose is simple: to reduce the time
and cost of developing and maintaining software
for the 8086 and 8088. It accomplishes this by
creating a programming environment that, for the
most part, is distinct from the architecture of the
CPUs. Registers, segments, addressing modes,
stacks, etc., are effectively ‘‘invisible’’ to the

PL/M-86 programmer. Instead, the processors
appear to respond to simple commands and
familiar algebraic expressions. The responsibility
for translating these source statements into the
machine instructions ultimately required to exe-
cute on the 8086/8088 is assumed by the PL/M-86
compiler. By ““hiding’’ the details of the machine
architecture, PL/M-86 encourages programmers
to concentrate on solving the problem at hand.
Furthermore, because PL/M-86 is closer to
natural language, it is easier to ‘‘think in
PL/M-86"" than it is to ‘‘think in assembly
language.”” This speeds up the expression of a
program solution, and, equally important, makes
that solution easier for someone other than the
original programmer to understand. PL/M-86
also contains all the constructs necessary for
structured programming.

Statements and Comments

A programmer builds a PL/M-86 program by
writing statements and comments (see figure
2-46). There are several different types of
statements in PL/M-86; they always end with a
semicolon. Blanks can be used freely before,
within, and after statements to improve read-
ability. A statement also may span more than one
line.

The characters ‘‘/*” start a comment, and the
characters ““*/”’ end it; any characters may be
used in between. Comments do not affect the exe-
cution of a PL/M-86 program, but all good pro-
grams are thoughtfully commented. Comments
are notes that document and clarify the program’s
operation; they may be written virtually anywhere
ina PL/M-86 program.

Data Definition

Most PL/M-86 programs begin by defining the
data items (variables) with which they are going to
work. An individual PL/M-86 data element is
called a scalar. Every scalar variable has a
programmer-supplied name up to 31 characters
long, and a type. PL/M-86 supports five types of
scalars: byte, word, integer, real, and pointer.
Table 2-23 lists the characteristics of these
PL/M-86 data types.
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I*TRAFFIC DATA RECORDER CONTROL PROGRAM*
“VERSION 2.2, RELEASE 5, 23APR79.*
*THIS RELEASE FIXES THREE BUGS*
"DOCUMENTED IN PROBLEM REPORT #16.*/

/*COMPUTE TOTAL PAYMENT DUE*/
TOTAL = PRINCIPAL + INTEREST;

IF TERMINAL$READY

THEN CALL FILL$BUFFER;
ELSE CALL WAIT (50); /*"WAIT 50 MS FOR RESPONSE*/

Figure 2-46. PL/M-86 Statements and Comments

Table 2-23. PL/M-86 Data Types

TYPE BYTES RANGE USAGE
BYTE 1 0to 255 Unsigned Integer, Character
WORD 2 0to 65,535 Unsigned Integer
—-32,768 to ;
INTEGER 2 +32.767 Signed Integer
1x10"38 o . .
REAL 4 3.37 x 10+38 Floating Point
POINTER 2/4 N/A Address Manipulation

Variables are defined by writing a DECLARE
statement of this form:

DECLARE scalar-name type;

Options of the DECLARE statement can be used
to specify an initial value for the scalar and to
define a series of items in a shorthand form.

Besides scalar variables, scalar constants may be
used in PL/M-86 programs (see figure 2-47).
Constants may be written ‘‘as is’’ or may be given
names to improve program clarity.

Scalars can be aggregated into named collections
of data such as arrays and structures. An array is
a collection of scalars of the same type (all
integer, all real, etc.). Arrays are useful for
representing data that has a repetitive nature. For

example, monthly rainfall samples could be
represented as an array of 12 elements, one for
each month:

DECLARE RAINFALL (12) REAL;

Each element in an array is accessible by a
number called a subscript which is the element’s
relative location in the array. In PL/M-86, the
first element in an array has a subscript of 0; it is
considered the “‘Oth’’ element. Thus, RAINFALL
(11) refers to December’s sample. The subscript
need not be a constant; variables and expressions
also may be used as subscripts.

Strings of character data are typically defined as
byte arrays. Characters can be accessed with
subscripts or with powerful string-handling func-
tions built into PL/M-86.

2-76




8086 AND 8088 CENTRAL PROCESSING UNITS

10 /*DECIMAL NUMBER*/
0AH /*HEXADECIMAL NUMBER*/
12Q /*OCTAL NUMBER*/
00001010B /*BINARY NUMBER*/
10.0 /*FLOATING POINT NUMBER*/
1.0E1 /*FLOATING POINT NUMBER*/
‘A’ [*CHARACTER*/

/*CONSTANTS MAY BE GIVEN NAMES*/
DECLARE STATUS$PORT LITERALLY ‘OFFEH’;
DECLARE THRESHOLD LITERALLY ‘98.6’;

Figure 2-47. PL/M-86 Constants

A structure is a collection of related data elements
that do not necessarily have the same type. The
elements are related by virtue of ‘‘belonging’’ to
the entity represented by the structure. Here is a
simple structure declaration:

DECLARE BRIDGE STRUCTURE
(SPAN WORD,
YR$BUILT BYTE,
AVGS$TRAFFIC REAL);

The year the bridge was built could be accessed by
writing BRIDGE.YR$BUILT; the structure ele-
ment name is ‘‘qualified’”’ by the dot and the
structure name. This allows structures with the
same element names to be distinguished from
each other (e.g., HIGHWAY.YRS$SBUILT).

Arrays and structures can be combined into more
complex data aggregates:

* array elements may be structures rather than
scalars,

® structures in arrays may themselves contain
arrays.

Figure 2-48 provides sample PL/M-86 data
declarations.

Assignment Statement

Data that has been defined can be operated on
with PL/M-86 executable statements. The fun-
damental executable statement is the assignment
statement, written in this form:

variable-name = expression;

This means ‘‘evaluate the expression and assign
(move) the result to the variable.”’

There are three basic classes of expressions in
PL/M-86; arithmetic, relational and logical (see
table 2-24 and figure 2-49). All expressions are
combinations of operands and operators,
although an expression can consist of a single
operand. Operands are variables and constants;
operators vary according to the type of expres-
sion. Evaluation of an expression always yields a
single result; different classes of expressions yield

a structure element may be an array,

different types of results.

Table 2-24. Characteristics of PL/M-86 Expressions

EXPRESSION OPERATORS RESULT
ARITHMETIC +,=,*,1,MOD NUMBER

o e “TRUE" - FFH
RELATIONAL >, <= >=, <= CEALSE" - OH
LOGICAL AND, OR, XOR, NOT 8/16-BIT STRING
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[****SCALARS****]
DECLARE SWITCH
DECLARE COUNT WORD,

INDEX INTEGER;
DECLARE (NET, GROSS, TOTAL)

BYTE;

/***ﬁARRAYS‘i*ﬂ/
DECLARE MONTH (12)  BYTE;
DECLARE TERMINAL__LINE (80)

/****STRUGTURE****/
DECLARE EMPLOYEE STRUCTURE
(ID_NUMBER
DEPARTMENT

RATE

REAL,;

/"1 SCALAR*/
/*1 SCALAR*/
/*3 SCALARS*/

BYTE;

WORD,

BYTE
REAL);

/****ARRAY OF STRUCTURES****/

DECLAREINVENTORY__ITEM (100)
(PART_NUMBER
ON__HAND
RE_ORDER

STRUCTURE
WORD,
WORD,
BYTE),

[****ARRAY WITHIN-STRUCTURE****/

DECLARE COUNTY__DATA
(NAME (20)
TEN_YR_RAINFALL(10)
PER CAPITA_INCOME

STRUCTURE
BYTE,

BYTE,
REAL);

Figure 2-48. PL/M-86 Data Declarations
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+1;
*B) -2,
*B)+ 3) MOD 3;

O0Owm>»
s>

I*RELATIONAL™/

B<>A;
C=B=(A+1);

/*LOGICAL*/

A =0011$0001B;

B = 1000$00018B;
C=NOTB;
C=AANDB;
C=AO0ORB;
C=BXORA;

C=(A AND B) OROFO0H;

/*B CONTAINS 4*/
/*C CONTAINS 6™/
/*C CONTAINS 2*/

[*C CONTAINS OFFH*/
/*C CONTAINS OFFH*/
/*C CONTAINS OFFH*/

/*$1S FOR READABILITY*/

{*C CONTAINS 0111$1110B*/
/*C CONTAINS 0000$0001B*/
/*C CONTAINS 101130001B*/
/*C CONTAINS 1011$0000B* /
/*C CONTAINS 1111$0001B*/

Figure 2-49. Expressions in PL/M-86 Assignment Statements
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Program Flow Statements

Simple PL/M-86 programs can be written with
just DECLARE and assignment statements. Such
programs, however, execute exactly the same
sequence of statements every time they are run
and would not prove very useful. PL/M-86 pro-
vides statements that change the flow of control
through a program. These statements allow sec-
tions of the program to be executed selectively,
repeated, skipped entirely, etc.

The IF statement (figure 2-50) selects one or the
other of two statements for execution depending
on the result of a relational expression. The IF
statement is written:

IF relational-expression
THEN statementi;
ELSE statement2;

Statementl is executed if the expression is *‘true’’;
statement2 is not executed in this case. If the rela-
tion is “‘false,” statementl is skipped and state-
ment2 is executed. In determining the *‘truth’ of
an expression, the IF statement only examines the
low-order bit of the result (1=*‘true’’). Therefore,
arithmetic and logical expressions also may be
used in an IF statement.

A=3;B=35;

IFA<B
THEN MINIMUM = 1;
ELSE MINIMUM = 2;

/*EXECUTED*/
[*SKIPPED*/

MORE__DATA = 0FFH;

IFNOT MORE__DATA
THEN DONE =1;
ELSE DONE = 0;

/*SKIPPED*/
I*EXECUTED*/

/*NESTED IF STATEMENTS*/
CLOCK__ON =1; HOUR=24; ALARM=OFF;
IF CLOCK__ON
THEN IF HOUR = 24
THEN IF ALARM = OFF
THEN HOUR =0; /*EXECUTED*/

Figure 2-50. PL/M-86 IF Statements

A DO block begins with a DO statement and ends
with an END statement. All intervening
statements are part of the block. A DO block can
appear anywhere in a program that an executable
statement can appear. There are four kinds of DO
statements in PL/M-86: simple DO, DO CASE,
interative DO, and DO WHILE.

A simple DO statement (figure 2-51) causes all the
statements in the block to be treated as though
they were a single statement. Simple DOs enable a
single IF statement to cause multiple statements
to be executed (the alternative would be to repeat
the IF statement for every statement to be
executed).

[*SIMPLE DO*/

A=5; B=9;
IF(A+2)< BTHEN DO;
X=X-1,; I*EXECUTED*/
Y (X)=0; /*EXECUTED*/
END;
ELSE DO;
X=X+1; 1*SKIPPED*/
Y{X)=1; [*SKIPPED*/
END:;
/*DO CASE*/
A=2;
DO CASE (A);
X=X+1; /*SKIPPED*/
X=X+2; /*SKIPPED*/
X =X+3; /*EXECUTED*/
X = X+4; /*SKIPPED*/
END;
Figure 2-51. PL/M-86 Simple DO

and DO CASE

DO CASE (figure 2-51) causes one statement in
the DO block to be selected and executed depend-
ing on the result of the expression (usually
arithmetic) written immediately following DO
CASE:

DO CASE arithmetic-expression;

If the expression yields 0, the first statement in the
DO block is executed; if the expression yields 1,
the second statement is executed, etc. A statement
in the DO block may be null (consist of only a
semicolon) to cause no action for selected cases.
DO CASE provides a rapid and easily-understood
way to respond to data like ‘‘transaction codes’’

-~
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where a different action is required for each of
many values a code might assume (an alternative
would be an IF statement for every value the code
could assume).

An iterative DO block (figures 2-52 and 2-53) is
executed from 0 to an infinite number of times
based on the relationship of an index variable to
an expression that terminates execution. The
general form is:

DO index = start-expr TO stop-expr BY step-expr;

The ““BY step-expr’’ is optional, and the step is
assumed to be 1 if not supplied (the typical case).
When control first reaches the DO statement,
start-expr is evaluated and is assigned to index.
Then index is compared to stop-expr; if index
exceeds stop-expr, control goes to the statement
following the DO block, otherwise the block is
executed. At the end of the block, the result of
step-expr is added to index, and it is compared to

stop-expr again, etc. (The iterative DO is quite
flexible—this is a simplified explanation.)
Iterative DOs are handy for ‘“‘stepping through’’
an array. For example, an array of 10 elements
could be zeroed by:

DOI=0TO9;
ARRAY(l)=0;
END;

In a DO WHILE (figures 2-52 and 2-54), the
statements are executed repeatedly as long as the
expression  following WHILE evaluates to
“true.”” DO WHILE often can be applied in
situations where an interative DO will not work,
or is clumsy, such as where repetition must be
controlled by a non-integer value. Like an
iterative DO, DO WHILE may be executed from
0 times to an infinite number of times.

I"ITERATIVE DO*/

DOI=0TOS5;
ARRAY (I) = ;
TOTAL = TOTALH1;
END;

[*1=6 AT THIS POINT*/

/*DO WHILE*/

MORE = 0; SPACE__OK =1;
DO WHILE (MORE AND SPACE__ OK);

ITEMS = ITEMS + 1;

N__TRACKS =
N_TRACKS + 10;

IF N__TRACKS >=999
THEN SPACE_OK =0;

END;

/*DO WHILE*/
CODE = ‘A’;
DO WHILE (CODE = “‘A’);

TEMP = TEMP * STEP;

IF TEMP >98.6

THEN CODE = ‘B’;
N_STEPS=N_STEPS + 1;

END;

I"EXECUTED 6 TIMES*/
/*EXECUTED 6 TIMES*/

{*SKIPPED*/

/*SKIPPED*/
/*SKIPPED*/

[*EXECUTION STOPS*/
I*AFTER TEMP*/
/*EXCEEDS 98.6*/

Figure 2-52. PL/M-86 Iterative DO and DO WHILE
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D

INDEX<START

EXECUTE
BLOCK

/

INDEX<INDEX + STEP

I
;| ——

STATEMENT
FOLLOWING
END

Figure 2-53. PL/M-86 Iterative DO Flowchart

A GOTO written in the form

GOTO target;
causes an unconditional transfer (branch) to
another statement in the program. The statement
receiving control would be written

target: statement;

where ‘‘target”” is a label identifying the
statement.

A CALL statement written in the form

CALL proc-name (parm-list);

™

EXPRESSION

\

EXECUTE
BLOCK

I

STATEMENT
FOLLOWING
END

Figure 2-54. PL/M-86 DO WHILE Flowchart

activates a procedure defined earlier in the pro-
gram. The variables listed in ‘‘parm-list’”’ are
passed to the procedure, the procedure is
executed, and then control returns to the state-
ment following the CALL. Thus, unlike a GOTO,
a CALL brings control back to the point of
departure.

Procedures

Procedures are ‘‘subprograms’ that make it
possible to simplify the design of complex pro-
grams and to share a single copy of a routine
among programs. A procedure usually is designed
to perform one function; i.e., to solve one part of
the total problem with which the program is deal-
ing. For example, a program to calculate
paychecks could be broken down into separate
procedures for calculating gross pay, income tax,
Social Security and net pay. The organization of
the ““main’’ program then could be understood at
a glance:

CALL GROSS__PAY;
CALLINCOME__TAX;
CALL SOCIAL__SECURITY;
CALL NET__PAY;
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Furthermore, the income tax procedure could be
divided into separate procedures for calculating
state and federal taxes. Procedures, then, provide
a mechanism by which a large, complex problem
can be attacked with a ‘““divide and conquer”
strategy.

A procedure usually is defined early in a program,
but it is only executed when it is referred to by
name in a later PL/M-86 statement. A procedure
can accept a list of variables, called parameters,
that it will use in performing its function. These
parameters may assume different values each time
the procedure is executed.

PL/M-86 provides two classes of procedures,
typed and untyped. A typed procedure returns a
value to the statement that activates it and, in
addition, may accept parameters from that state-
ment. A typed procedure is activated whenever its
name appears in a statement; the value it returns
effectively takes the place of the procedure name
in the statement. Typed procedures can be used in
all kinds of PL/M-86 expressions. Untyped pro-
cedures may accept parameters, but do not return

a value. Untyped procedures are activated by
CALL statements. Figure 2-55 shows how simple
typed and untyped procedures may be declared
and then activated.

The statements forming the body of a procedure
need not exist within the module that activates the
procedure. The activating module can declare the
procedure EXTERNAL, and the LINK-86 utility
will connect the two modules.

PL/M-86 procedures can be written to handle
interrupts. Procedures also may be declared
REENTRANT, making them concurrently usable
by different tasks in a multitasking system.
PL/M-86 also has about 50 procedures built into
the language, including facilities for:

* converting variables from one type to another
¢ shifting and rotating bits

¢ performing input and output

* manipulating strings

* activating the CPU LOCK signal.

/*DECLARATION OF A TYPED PROCEDURE THAT
ACCEPTS TWO REAL PARAMETERS AND RETURNS A REAL VALUE*/

AVG: PROCEDURE (X,Y) REAL;
DECLARE (X,Y) REAL;
RETURN (X+Y)/2.0;

END AVG;

/*ACTIVATING A TYPED PROCEDURE*/

LOW = 2.0;
HIGH = 3.0;

TOTAL =TOTAL + AVG (LOW,HIGH); /*2.51S ADDED TO TOTAL*/

/*DECLARATION OF AN UNTYPED PROCEDURE
THAT ACCEPTS ONE PARAMETER*/
TEST: PROCEDURE (X);
DECLARE X BYTE;
IFX=0HTHEN
COUNT = COUNT +1;
END TEST,;

/*ACTIVATING AN UNTYPED PROCEDURE*/

CALL TEST (ALPHA); /*COUNTIS INCREMENTED
IF ALPHA =0/

Figure 2-55. PL./M-86 Procedures
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ASM-86

Programmers who are familiar with the CPU
architecture can obtain complete access to all pro-
cessor facilities with ASM-86. Since the execution
unit on both the 8086 and the 8088 is identical,
both processors use the same assembly language.
Examples of processor features not accessible
through PL/M-86 that can be utilized in ASM-86
programs include: software interrupts, the WAIT
and ESC instructions and explicit control of the
segment registers.

An ASM-86 program often can be written to
execute faster and/or to use less memory than the
same program written in PL/M-86. This is
because the compiler has a limited ‘‘knowledge’’
of the entire program and must generate a
generalized set of machine instructions that will
work in all situations, but may not be optimal in a
particular situation. For example, assume that the
elements of an array are to be summed and the
result placed in a variable in memory. The
machine instructions generated by the PL/M-86
compiler would move the next array element to a
register and then add the register to the sum
variable in memory. An ASM-86 programmer,
knowing that a register will be ‘“safe’’ while the
array is summed, could instead add all the array
elements to a register and then move the register
to the sum variable, saving one instruction execu-
tion per array element.

It is easier to write assembly language programs in
ASM-86 than it is in many assembly languages.
ASM-86 contains powerful data structuring
facilities that are usually found only in high-level

languages. ASM-86 also simplifies the program-
mer’s ‘‘view’’ of the 8086/8088 machine instruc-
tion set. For example, although there are 28 dif-
ferent types of MOV machine instructions, the
programmer always writes a single form of the
instruction:

MOV destination-operand, source-operand

The assembler generates the correct machine-
instruction form based on the attributes of the
source and destination operands (attributes are
covered later in this section). Finally, the ASM-86
assembler performs extensive checks on the con-
sistency of operand definition versus operand use
in instructions, catching many common types of
clerical errors.

Statements

Compared to many assemblers, ASM-86 accepts a
relaxed statement format (see figure 2-56). This
helps to reduce clerical errors and allows pro-
grammers to format their programs for better
readability. Variable and label names may be up
to 31 characters long and are not restricted to
alphabetic and numeric characters. In particular,
the underscore (__) may be used to improve the
readability of long names. Blanks may be inserted
freely between identifiers (there are no ‘‘column’’
requirements), and statements also may span
multiple lines.

All ASM-86 statements are classified as instruc-
tions or directives. A clear distinction must be
made here between ASM-86 instructions and

; THIS STATEMENT CONTAINS A COMMENT ONLY

MOV  AX, [BX+3]

MOV AX, (BX +3]
MOV  AX,
& [BX + 3]

ZERO EQU 0
CUR_PROJ EQU

PROJECT [BX] [SI]

; TYPICAL ASM-86 INSTRUCTION
; BLANKS NOT SIGNIFICANT

; CONTINUED STATEMENTS

; SIMPLE ASM-86 DIRECTIVE
; MORE COMPLEX DIRECTIVE

THE_STACK__STARTS_HERE SEGMENT ; LONG IDENTIFIER

TIGHT _LOOP: JMP TIGHT_LOOP

MOV ES: DATA_STRING [SI], AL

WAIT: LOCK XCHG AX,SEMAPHORE

; LABELLED STATEMENT
; SEGMENT OVERRIDE PREFIX
; LABEL & LOCK PREFIX

Figure 2-56. ASM-86 Statements

Mnemonics © Intel 1878
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8086/8088 machine instructions. The assembler
generates machine instructions from ASM-86
instructions written by a programmer. Each
ASM-86 instruction produces one machine
instruction, but the form of the generated
machine instruction will vary according to the
operands written in the ASM-86 instruction. For
example, writing

MOV BL 1

produces a byte-immediate-to-register MOV,
while writing

MOV TERMINAL__NO,BX

produces a word-register-to-memory MOV. To
the programmer, though, there is simply a MOV
source-to-destination instruction.

ASM-86 instructions are written in the form:
(label:) {prefix) mnemonic (operand(s)) (;comment)

where parentheses denote optional fields (the
parentheses are not actually written by program-
mers). The label field names the storage location
containing the machine instruction so that it can
be referred to symbolically as the target of a JMP
instruction elsewhere in the program. Writing a
prefix causes ASM-86 to generate one of the
special prefix bytes (segment override, bus lock or
repeat) immediately preceding the machine
instruction. The mnemonic identifies the type of
instruction (MOV for move, ADD for add, etc.)
that is to be generated. Zero, one or two operands
may be written next, separated by commas,
according to the requirements of the instruction.
Finally, writing a semicolon signifies that what
follows is a comment. Comments do not affect
the execution of a program, but they can greatly

improve its clarity; all good ASM-86 programs
are thoughtfully commented.

Writing a directive gives ASM-86 information to
use in generating instructions, but does not itself
produce a machine instruction. About 20 dif-
ferent directives are available in ASM-86. Direc-
tives are written like this:

(name) mnemonic (operand(s)) (;comment)

Some directives require a name to be present,
while others prohibit a name. ASM-86 recognizes
the directive from the mnemonic keyword written
in the next field. Any operands required by the
directive are written next, separated by commas.
A comment may be written as the last field of a
directive.

Some of the more commonly used directives
define procedures (PROC), allocate storage for
variables (DB, DW, DD) give a descriptive name
to a number or an expression (EQU), define the
bounds of segments (SEGMENT and ENDS),
and force instructions and data to be aligned at
word boundaries (EVEN).

Constants

Binary, decimal, octal and hexadecimal numeric
constants (see figure 2-57) may be written in
ASM-86 statements; the assembler can perform
basic arithmetic operations on these as well. All
numbers must, however, be integers and must be
representable in 16 bits including a sign bit.
Negative numbers are assembled in standard
two’s complement notation.

Character constants are enclosed in single quotes
and may be up to 255 characters long when used

MoV STRING [S]], ‘A’ ; CHARACTER

MOV STRING [SI], 41H ; EQUIVALENT IN HEX

ADD AX, 0C4H s HEXCONSTANT MUST START WITH NUMERAL
OCTAL_38 EQU 100 ; OCTAL

OCTAL_9 EQU 10Q ; OCTAL ALTERNATE

ALL_ ONES EQU 11111111B ; BINARY

MINUS_ 5 EQU -5 ; DECIMAL

MINUS_6 EQU -6D , DECIMAL ALTERNATE

Figure 2-57. ASM-86 Constants

Mnemonics © Intel, 1978
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to initialize storage. When used as immediate
operands, character constants may be one or two
bytes long to match the length of the destination
operand.

Defining Data

Most ASM-86 programs begin by defining the
variables with which they will work. Three direc-
tives, DB, DW and DD, are used to allocate and
name data storage locations in ASM-86 (see
figure 2-58). The directives are used to define
storage in three different units: DB means
“define byte,”” DW means ‘‘define word,” and
DD means ‘‘define doubleword.”” The operands
of these directives tell the assembler how many
storage units to allocate and what initial values, if
any, with which to fill the locations.

A SEG SEGMENT
?

ALPHA DB ; NOTINITIALIZED

BETA DwW ? ; NOT INITIALIZED
GAMMA DD ? ;NOT INITIALIZED
DELTA DB ? ;NOTINITIALIZED
EPSILON DW 5 ; CONTAINS 05H
A SEG ENDS
B__SEG SEGMENT AT 55H ; SPECIFYING BASE ADDRESS
I0TA DB ‘HELLO’ ; CONTAINS 48454C 4C4F H
KAPPA DwW ‘AB’ ; CONTAINS 4241 H
LAMBDA DD B  SEG ; CONTAINS 0000 5500 H
DB 100 DUPO ; CONTAINS (100 X) 00H

B _SEG ENDS

ATTRIBUTES OPERATORS
VARIABLE | SEGMENT | OFFSET | TYPE | LENGTH | SIZE
ALPHA A_SEG 0 1 1 1
BETA A_SEG 1 2 1 2
GAMMA A SEG 3 4 1 4
DELTA A_ SEG 7 1 1 1
EPSILON A SEG 8 2 1 2
I0TA B _SEG 0 1 5 5
KAPPA B _SEG 5 2 1 2
LAMBDA B SEG 7 4 1 4
MU B_SEG 11 1 100 100

Figure 2-58. ASM-86 Data Definitions

For every variable in an ASM-86 program, the
assembler keeps track of three attributes: seg-
ment, offset and type. Segment identifies the seg-
ment that contains the variable (segment control
is covered shortly). Offset is the distance in bytes
of the variable from the beginning of its contain-

ing segment. Type identifies the variable’s alloca-
tion unit (1 = byte, 2 = word, 4 = doubleword).
When a variable is referenced in an instruction,
ASM-86 uses these attributes to determine what
form of the instruction to generate. If the
variable’s attributes conflict with its usage in an
instruction, ASM-86 produces an error message.
For example, attempting to add a variable defined
as a word to a byte register is an error. There are
cases where the assembler must be explicitly told
an operand’s type. For example, writing MOVE
[BX],5 will produce an error message because the
assembler does not know if [BX] refers to a byte,
a word or a doubleword. The following operators
can be used to provide this information: BYTE
PTR, WORD PTR and DWORD PTR. In the
previous example, a word could be moved to the
location referenced by [BX] by writing MOVE
WORD PTR [BX],5.

ASM-86 also provides two built-in operators,
LENGTH and SIZE, that can be written in
ASM-86 instructions along with attribute
information. LENGTH causes the assembler to
return the number of storage units (bytes, words
or doublewords) occupied by an array. SIZE
causes ASM-86 to return the total number of
bytes occupied by a variable or an array. These
operators and attributes make it possible to write
generalized instruction sequences that need not be
changed (only reassembled) if the attributes of the
variables change (e.g., a byte array is changed to a
word array). See figure 2-59 for an example of
using the attributes and attribute operators.

Records

ASM-86 provides a means of symbolically defin-
ing individual bits and strings of bits within a byte
or a word. Such a definition is called a record,
and each named bit string (which may consist of a
single bit) in a record is called a field. Records
promote efficient use of storage while at the same
time improving the readability of the program
and reducing the likelihood of clerical errors.
Defining a record does not allocate storage;
rather, a record is a template that tells the
assembler the name and location of each bit field
within the byte or word. When a field name is
written later in an instruction, ASM-86 uses the
record to generate an immediate mask for instruc-
tions like TEST, AND, OR, etc., or an immediate
count for shifts and rotates. See figure 2-60 for an
example of using a record.
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; SUM THE CONTENTS OF TABLE INTO AX

TABLE Dw 50 DUP(?)

; NOTE SAME INSTRUCTIONS WOULD WORK FOR

; TABLE DB 25 DUP(?)

; TABLE DwW 118 DUP(?), ETC.
suB AX,AX ; CLEARSUM
MOV CX,LENGTH TABLE ; LOOP TERMINATOR
MoV S|, SIZE TABLE ;POINT SUBSCRIPT

; TOEND OF TABLE
ADD__NEXT: sSuB SI, TYPE TABLE ; BACK UP ONE ELEMENT
ADD AX, TABLE [SI] ; ADD ELEMENT
LOOP ADD__NEXT ;s UNTILCX =0
; AXCONTAINS SUM .

Figure 2-59. Using ASM-86 Attributes and Attribute Operators

EMP_BYTE DB ? : 1BYTE, UNINITIALIZED
; BIT DEFINITIONS:
; 7-2 *YEARS EMPLOYED

1 :SEX (1 = FEMALE)

0 :STATUS (1 = EXEMPT)

EMP__BITSRECORD ;RECORD DEFINED HERE
& YRS_EMP : 8,

& SEX:1,

& STATUS : 1

;' SELECT NONEXEMPT FEMALES EMPLOYED 10 + YEARS

MOV AL, EMP_BYTE ; KEEP ORIGINAL INTACT
TEST AL, MASK SEX ; FEMALE ?

JZ REJECT s NO, QUITE

TEST AL, MASK STATUS ; NONEXEMPT?

JINZ REJECT sNO, QUIT

SHR AL, CL ; ISOLATE YEARS

CMP AL, 11 ; >=10 YEARS?

JL REJECT ;NO, QuUIT

; PROCESS SELECTED EMPLOYE,E
REJECT: PROCESS REJECTED EMPLOYEE

. ; RECORD USED HERE
MOV CL, YRS_EMP ; GET SHIFT COUNT

Figure 2-60. Using an ASM-86 RECORD Definition

Mnemonics © Intel, 1978 2.86
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Structures

An ASM-86 structure is a map, or template, that
gives names and attributes (length, type, etc.)to a
collection of fields. Each field in a structure is
defined using DB, DW and DD directives;
however, no storage is allocated to the structure.
Instead, the structure becomes associated with a
particular area of memory when a field name is
referenced in an instruction along with a base
value. The base value ‘‘locates’’ the structure; it
may be a variable name or a base register (BX or
BP). The structure may be associated with
another area of memory by specifying a different
base value. Figure 2-61 shows how a simple struc-
ture may be defined and used. Note that a struc-
ture field may itself be a structure, allowing much
more complex organizations to be laid out.

Structures are particularly useful in situations
where the same storage format is at multiple loca-
tions, where the location of a collection of
variables is not known at assembly-time, and
where the location of a collection of variables
changes during execution. Applications include
multiple buffers for a single file, list processing
and stack addressing.

Addressing Modes

Figure 2-62 provides sample ASM-86 coding for
each of the 8086/8088 addressing modes. The
assembler interprets a bracketed reference to BX,
BP, SI or DI as a base or index register to be used
to construct the effective address of a memory
operand. An unbracketed reference means the
register itself is the operand.

The following cases illustrate typical ASM-86
coding for accessing arrays and structures, and
show which addressing mode the assembler
specifies in the machine instruction it generates:

e If ALPHA is an array, then ALPHA [SI] is
the element indexed by SI, and ALPHA
[SI+ 1] is the following byte (indexed).

e If ALPHA is the base address of a structure
and BETA is a field in the structure, then
ALPHA.BETA selects the BETA field
(direct).

*  If register BX contains the base address of a
structure and BETA is a field in the struc-
ture, then [BX].BETA refers to the BETA
field (based).

EMPLOYEE STRUC
SSN DB 9
RATE DB 1
DEPT DW 1
YR_HIRED DB 1
EMPLOYEE ENDS

MASTER DB 12

TXN DB 12

DUP(?)
DUP(?)
DUP(?)
DUP(?)

DUP(?)
DUP(?)

; CHANGE RATE IN MASTER TO VALUE IN TXN.
AL, TXN.RATE
MASTER:RATE, AL

MOV
MoV

; ASSUME BX POINTS TO AN AREA CONTAINING

. OFSSN
MOV
MOV

Si, 1

DATA IN THE SAME FORMAT AS THE EMPLOYEE
STRUCTURE. ZERO THE SECOND DIGIT

; INDEX VALUE OF 2ND DIGIT

[BX].SSN[SI],0

Figure 2-61. Using an ASM-86 Structure
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ADD  AX, BX
ADD  AL.5

ADD  CX, ALPHA

ADD  ALPHA 6

ADD  ALPHA, DX

ADD  BL, [BX]

ADD  [SI], BH

ADD  [PP.ALPHA, AH
ADD  CX, ALPHA [SI]
ADD  ALPHA [DI+2], 10
ADD  [BX].ALPHA [SI], AL
ADD S, [BP+4] [DI]

IN AL, 30

OUT DX, AX

; REGISTER ~ REGISTER

; REGISTER < IMMEDIATE

; REGISTER —~ MEMORY (DIRECT)
s MEMORY (DIRECT)
i MEMORY (DIRECT) « REGISTER

 REGISTER < MEMORY (REGISTER INDIRECT)
i MEMORY (
s MEMORY (BASED) <~ REGISTER

; REGISTER < MEMORY (INDEXED)

i MEMORY (INDEXED) « IMMEDIATE
: MEMORY (BASED INDEXED)
; REGISTER <~ MEMORY (BASED INDEXED)
; DIRECT PORT

; INDIRECT PORT

< IMMEDIATE

REGISTER INDIRECT) « IMMEDIATE

< REGISTER

Figure 2-62. ASM-86 Addressing Mode Examples

* If register BX contains the address of an
array, then [BX] [SI] refers to the element
indexed by SI (based indexed).

* If register BX points to a structure whose
ALPHA field is an array, then [BX]
-ALPHA [S]] selects the element indexed by
SI (based indexed).

* If register BX points to a structure whose
ALPHA field is itself a structure, then
(BX].ALPHA.BETA refers to the BETA
field of the ALPHA substructure (based).

* If register BX points to a structure and the
ALPHA field of the structure is an array and
each element of ALPHA is a structure, then
[BX].ALPHA[SI + 3].BETA refers to the
field BETA in the element of ALPHA
indexed by [SI + 3] (based indexed).

Note that DI may be used in place of SI in these
cases and that BP may be substituted for BX.
Without a segment override prefix, expressions
containing BP refer to the current stack segment,
and expressions containing BX refer to the cur-
rent data segment.

Segment Control

An ASM-86 program is organized into a series of
named segments. These are “logical™ segments;
they are eventually mapped into 8086/8088
memory segments, but this usually is not done
until the program is located. A SEGMENT direc-
tive starts a segment, and an ENDS directive ends
the segment (see figure 2-63). All data and

instructions written between SEGMENT and
ENDS are part of the named segment. In smal]
programs, variables often are defined in one or
two segment(s), stack space is allocated in another
segment, and instructions are written in a third or
fourth segment. It is perfectly possible, however,
to write a complete program in one segment; if
this is done, all the segment registers will contain
the same base address; that is, the memory
segments will completely overlap. Large pro-
grams may be divided into dozens of segments.

The first instructions in a program usually
establish the correspondence between segment
names and segment registers, and then load each
segment register with the base address of its cor-
responding segment. The ASSUME directive tells
the assembler what addresses will be in the seg-
ment registers at execution time. The assembler
checks each memory instruction operand, deter-
mines which segment it is in and which segment
register contains the address of that segment. If
the assumed register is the register expected by the
hardware for that instruction type, then the
assembler generates the machine instruction nor-
mally. If, however, the hardware expects one seg-
ment register to be used, and the operand is not in
the segment pointed to by that register, then the
assembler automatically precedes the machine
instruction with a segment override prefix byte.
(If the segment cannot be overridden, the
assembler produces an error message.) An exam-
ple may clarify this. If register BP is used in an
instruction, the 8086 and 8088 CPUs expect, as a
default, that the memory operand will be located
in the segment pointed to by SS—in the current
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DATA_SEG SEGMENT
; DATA DEFINITIONS GO HERE
DATA_SEG ENDS

STACK_SEG SEGMENT
; ALLOCATE 100 WORDS FOR A STACK AND
; LABEL THE INITIAL TOS FOR LOADING SP.
DW 100 DUP(?)
STACK TOP LABEL WORD
STACK__SEG ENDS

CODE__SEG SEGMENT
; GIVE ASSEMBLER INITIAL REGISTER-TO-SEGMENT
; CORRESPONDENCE. NOTE THAT IN THIS
;  PROGRAM THE EXTRA SEGMENT INITIALLY
;  OVERLAPS THE DATA SEGMENT ENTIRELY.
ASSUME CS: CODE__SEG,

& DS: DATA__SEG,
& ES: DATA__SEG,
& SS: STACK__SEG

START: ;THISIS THE BEGINNING OF THE PROGRAM.
; LOC-86 WILL PLACE A JMP TO THIS
; LOCATION AT ADDRESS FFFFOH.

LOAD THE SEGMENT REGISTERS. CS DOES NOT
;  HAVETO BE LOADED BECAUSE SYSTEM
;  RESETSETSIT TO FFFFH, AND THE
; LONG JMP INSTRUCTION AT THAT ADDRESS
;  UPDATESITTO THE ADDRESS OF CODE__SEG.
; SEGMENT REGISTERS ARE LOADED FROM AX
; BECAUSE THERE IS NO IMMEDIATE-TO-
; SEGMENT__REGISTER FORM OF THE MOV

INSTRUCTION.
MOV AX,DATA_SEG
MOV DS, AX
MOV ES, AX
MOV AX, STACK_SEG
MOV SS§, AX

; SET STACK POINTER TO INITIAL TOS.
MOV SP, OFFSET STACK_TOP

; SEGMENTS ARE NOW ADDRESSABLE.
; MAIN PROGRAM CODE GOES HERE.
CODE__SEG ENDS

; NEXT STATEMENT ENDS ASSEMBLY AND TELLS
;  LOC-86 THE PROGRAMS STARTING ADDRESS.

END START

Figure 2-63. Setting Up ASM-86 Segments
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stack segment. A programmer may, however,
choose to use BP to address a variable in the cur-
rent data segment—the segment pointed to by
DS. The ASSUME directive enables the assembler
to detect this situation and to automatically
generate the needed override prefix.

It also is possible for a programmer to explicitly
code segment override prefixes rather than relying
on the assembler. This may result in a somewhat
better-documented program since attention is
called to the override. The disadvantage of
explicit segment overrides is that the assembler
does not check whether the operand is in fact
addressable through the overriding segment
register.

ASM-86, in conjunction with the relocation and
linkage facilities, provides much more
sophisticated segment handling capabilities than
have been described in this introduction. For
example, different logical segments may be com-
bined into the same physical segment, and
segments may be assigned the same physical loca-
tions (allowing a “‘common’’ area to be accessed
by different programs using different variable
and label names),

Procedures

Procedures may be written in ASM-86 as well as
in PL/M-86. In fact, procedures written in one
language are callable from the other, provided
that a few simple conventions are observed in the
ASM-86 program. The purpose of ASM-86 pro-
cedures is the same as in PL/M-86: to simplify the
design of complex programs and to make a single
copy of a commonly-used routine accessible from
anywhere in the program.

An ASM-86 program activates a procedure with a
CALL instruction. The procedure terminates with
a RET instruction, which transfers control to the
instruction following the CALL. Parameters may
be passed in registers or pushed onto the stack
before calling the procedure. The RET instruction
can discard stack parameters before returning to
the caller.

Unlike PL/M-86 procedures, ASM-86 procedures
are executable where they are coded, as well as by
a CALL instruction. Therefore, ASM-86 pro-
cedures often are defined following the main pro-
gram logic, rather than preceding it as in

PL/M-86. Figure 2-64 shows how procedures
may be defined and called in ASM-86. Section
2-10 contains examples of procedures that accept
parameters on the stack.

LINK-86

Fundamentally, LINK-86 combines separate
relocatable object modules into a single program.
This process consists primarily of combining
(logical) segments of the same name into single
segments, adjusting relative addresses when
segments are combined, and resolving external
references.

A programmer can use a procedure that is actual-
ly contained in another module by naming the
procedure in an ASM-86 EXTRN directive, or
declaring the procedure to be EXTERNAL in
PL/M-86. The procedure is defined or declared
PUBLIC in the module where it actually resides,
meaning that it can be used by other modules.
When LINK-86 encounters such an external
reference, it searches through the other modules
in its input, trying to find the matching PUBLIC
declaration. If it finds the referenced object, it
links it to the reference, “‘satisfying’’ the external
reference. If it cannot satisfy the reference,
LINK-86 prints a diagnostic message. LINK-86
also checks PL/M-86 procedure calls and func-
tion references to insure that the parameters
passed to a procedure are the type expected by the
procedure.

LINK-86 gives the programmer, particularly the
ASM-86 programmer, great control over
segments (segments may be combined end to end,
renamed, assigned the same locations, etc.).
LINK-86 also produces a map that summarizes
the link process and lists any unusual conditions
encountered. While the output of LINK-86 is
generally input to LOC-86, it also may again be
input to LINK-86 to permit modules to be linked
in incremental groups.

LOC-86

LOC-86 accepts the single relocatable object
module produced by LINK-86 and binds the
memory references in the module to actual
memory addresses. Its output is an absolute
object module ready for loading into the memory
of an execution vehicle. LOC-86 also inserts a
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FREQUENCY DB 256 DUP(0)
USART_DATA  EQU  OFFOH - DATA PORT ADDRESS
USART__STAT EQU  OFF2H - STATUS PORT ADDRESS
NEXT: CALL CHAR_IN

CALL COUNT_IT

JMP  NEXT
CHAR_IN PROC

; THIS PROCEDURE DOES NOT TAKE PARAMETERS.

IT SAMPLES THE USART STATUS PORT

;  UNTIL ACHARACTER IS READY, AND
;  THEN READS THE CHARACTERINTO AL

MOV
AGAIN: IN
AND

MOV

IN AL, DX

RET
CHAR_IN ENDP

COUNT_IT PROC

DX, USART__STAT
AL, DX
AL, 2

JZ AGAIN
DX, USART_DATA

; READ STATUS
; CHARACTER PRESENT?
; NO, TRY AGAIN

; YES, READ CHARACTER

; THIS PROCEDURE EXPECTS A CHARACTERIN AL.

;  THECHARACTER.
XOR
MoV
INC
RET

COUNT_IT ENDP

AH, AH
SI, AL
FREQUENCY [S]; BUMP THE COUNTER

ITINCREMENTS A COUNTER IN A FREQUENCY
TABLE BASED ON THE BINARY VALUE OF

; CLEAR HIGH BYTE
; INDEXINTO TABLE

Figure 2-64. ASM-86 Procedures

direct intersegment JMP instruction at location
FFFFOH. The target of the JMP instruction is the
logical beginning of the program. When the 8086
or 8088 is reset, this instruction is automatically
executed to restart the system. LOC-86 produces
a memory map of the absolute object module and
a table showing the address of every symbol
defined in the program.

LIB-86
LIB-86 is a valuable adjunct to the R & L pro-

grams. It is used to maintain relocatable object
modules in special files called libraries. Libraries

are a convenient way to make collections of
modules available to LINK-86. When a module
being linked refers to “‘external’’ data or instruc-
tions, LINK-86 can automatically search a series
of libraries, find the referenced module, and
include it in the program being created.

OH-86

OH-86 converts an absolute object module into
Intel’s standard hexadecimal format. This format
is used by some PROM programmers and system
loaders, such as the iSBC 957™ and SDK-86
loaders.
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CONV-86

Users who have developed substantial, fully-
tested assembly language programs for the
8080/8085 microprocessors may want to use
CONV-86 to automatically convert large amounts
of this code into ASM-86 source code (see figure
2-65). CONV-86 accepts an ASM-80 source pro-
gram as input and produces an ASM-86 source
brogram as output, plus a print file that
documents the conversion and lists any diagnostic
messages.

Some programs cannot be completely converted
by CONV-86. Exceptions include:

. self-modifying code,

®  software timing loops,

®* 8085 RIM and SIM instructions,
* interrupt code, and

*  macros.

By using the diagnostic messages produced by
CONV-86, the converted ASM-86 source file can
be manually edited to clean up any sections not
converted. A converted program is typically
10-20% larger than the ASM-80 version and does
not take full advantage of the 8086/8088 architec-
ture. However, the development time saved by
using CONV-86 can make it an attractive alter-
native to rewriting  working programs from
scratch.

Sample Programs

Figures 2-66 and 2-67 show how a simple program
might be written in PL/M-86 and ASM-86. The
program simulates g pair of rolling dice and
€xecutes on an Intel SDK-86 System Design Kit,
The SDK-86 is an 8086-based computer with
memory, parallel and serial [/0 ports, a keypad
and a display. The SDK-86 is implemented on a
single PC board which includes a large prototype
area for system expansion and experimentation.
A ROM-based monitor program provides a user

cable and software interface (called SDK-C86),
the SDK-86 may be connected to an Intellec®
Microcomputer Development System. In this
mode, the user enters monitor commands from
the Intellec keyboard and receives replies on the
Intellec CRT display.

ASM-80

SOURCE
PROGRAM
CONV-86
ASM-86 / N
DIAGNOSTICS SOURCE f— — . —»( EDIT )
PROGRAM
|\ W/
l I
| ——
/EDITED 7
e« — — ASM-86
SOURCE
\PROGRAM
ASM.-86
ASSEMBLER

Figure 2-65. ASM-80/ASM-86 Conversion

The dice program runs on an SDK-86 that is con-
nected to an Intellec® Microcomputer Develop-
ment System. The program displays two con-
tinuously changing digits in the upper left corner
of the Intellec display. The digits are random
numbers in the range 1-6. A roll is Started by
entering a monitor GO command. Pressing the
INTR key on the SDK-86 keypad stops the roll.

There are two procedures in the PL/M-86 version
of the dice program. The first is called CO for
console output. This is an untyped PUBLIC pro-
cedure that is supplied on an SDK-C86 diskette.
CO is written in PL/M-86 and
character to the Intellec console. It is declared

module. searches the
SDK-C86 library for CO and includes it in the
single relocatable object module it builds.

RANDOM is an internal typed procedure; it is

contained in the dice module and returns g word
value that is a random number between 1 and 6.

tivated, then 30 s added to the number it returns
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PL/M-86 COMPILER DICE

ISIS-II PL/M-86 V1.2 COMPILATION OF MODULE DICE

OBJECT MODULE PLACED
COMPILER INVOKED BY:

1 DICE:
/% THIS

/% GIVE
DECLARE
DECLARE
DECLARE
DECLARE
DECLARE

o EwWN

/* PROG

IN :F1:DICE.OBJ

PLM86 :F1:DICE.P86 XREF

DO;

PéOGRAM SIMULATES THE ROLL OF A PAIR OF LICE */
NAMES TO CONSTANTS */

CLEAR$CRT1 LITEKALLY 'O1BH'; /* INTELLEC */
CLEAR$CRT2 LITERALLY 'OQ45H'; /* CKT */
HOME$CURSOR1 LITERALLY 'O1BH'; /¥ CONTROL */
HOME$CURSOR2 LITERALLY '048H'; /* CODES */
SPACE LITERALLY '020H'; /¥ASCII BLANK*/
RAM VARIABLES */

7 1 DECLARE (RANDOM$NUMBER,SAVE) WORD;

/* CONSOLE OUTPUT PROCEDURE ¥/

g8 1 CO: PROCEDURE(X) EXTERNAL;
9 2 DECLARE X BYTE;
10 2 END CO;
/% RANDOM NUMBER GENERATOR PRUCEDURE \%
/% ALGORITHM FOR 16-BIT RANDOM NUMBER FROM: */
/% "A GUIDE TO PL/M PROGRAMMING FOK ®/
/% MICROCOMPUTER APPLICATIONS," */
/% DANIEL D. MCCRACKEN, ®/
/% ADDISON-WESLEY, 1978 ®/
111 RANDOM: PROCEDURE WORD;
12 2 RANDOM$NUMBER = SAVE; /XSTART WITH OLD NUMBER*/
1302 RANDOM$NUMBER = 2053 * RANDOM$NUMBER + 13849;
o2 SAVE = RANDOM$NUMBER; /*SAVE FOR NEXT TIME¥/
/*FORCE 16-BIT NUMBER INTO RANGE 1-6%/
15 2 RANDOM$NUMBER = RANDOM$NUMBER MOD 6 + 1;
16 2 RETURN RANDOM$NUMBER;
17 2 END RANDOM;
/% MAIN ROUTINE */
/% CLEAR THE SCREEN*/
18 1 CALL CO(CLEAR$CRT1);
19 1 CALL CO(CLEAR$CRT2);
/% ROLL THE DICE UNTIL INTERRUPTED %/
20 1 DO WHILE 1;  /%vDO FOREVER"*/
/*NOTE THAT ADDING 30 TO THE DIE VALUE */
/% CONVERTS IT TO ASCII. L%
21 2 CALL CO(RANDOM + 030H); /%1ST DIE*/
22 2 CALL CO(SPACE); /*BLANK*/
23 2 CALL CO(RANDOM + 030H); /%2ND DIE*/
/% HOME THE CURSOR ¥/
24 2 CALL CO(HOME$CURSOR1);
25 2 CALL CO(HOME$CURSOR2);
26 2 END;
27 1 END DICE;

CROSS-REFERENCE LISTING

DEFN ADDR SIZE

8 0000H

1 0002H 71

11 0049H 44

NAME, ATTRIBUTES, AND REFERENCES

CLEARCRT1

CLEARCRT2

co

DICE

HOMECURSOR?

HOMECURSOR2

RANDOM

LITERALLY
18

LITERALLY
19

PROCEDURE EXTERNAL(G) STACK=0000H
18 19 21 22 23 24 25

PROCEDURE STACK=0004H
LITERALLY

24
LITERALLY

25

PROCEDURE WORD STACK=0002H
21 23

Figure 2-66. Sample PL/M-86 Program
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7 0000H 2 RANDOMNUMBER WORD

12 13 T4 15 16
7 0002H 2 SAVE WORD

12 14
6 SPACE LITERALLY

22
8 0000H 1T X BYTE PARAMETER

9

MODULE INFORMATION:

CODE AREA SIZE = 0075H 117D
CONSTANT AREA SIZE = 0000H 0D
VARIABLE AREA SIZE = 0004H 4D
MAXIMUM STACK SIZE = 0Q0QU4H 4D
51 LINES RE&D

0 PROGRAM ERROR(S)

END OF PL/M-86 COMPILATION

Figure 2-66. Sample PL/M-86 Program (Cont’d.)

MCS-86 MACRO ASSEMBLER DICE

ISIS-II MCS-86 MACRO ASSEMBLER V2.0 ASSEMBLY OF MODULE DICE
OBJECT MODULE PLACED IN :F1:DICE.OBJ
ASSEMBLER INVOKED BY: ASMB6 :F1:DICE.A86 XREF

LOC OBJ LINE SOURCE
; THIS PROGRAM SIMULATES THE ROLL OF A PAIR OF DICE

; CONSOLE OUTPUT PRCCEDURE
EXTRN CO:NEAR

; SEGMENT GROUP LEFINITIONS NEEDED FOR PL/M-86 COMPATIBILITY
CGROUP  GROUP CODE
DGROUP  GROUP DATA,STACK

i INFORM ASSEMBLER OF SEGMENT REGISTER CONTENTS.
ASSUME CS:CGROUP,DS:DGROUP,SS:DGROUP,ES:NOTHING

; ALLOCATE DATA

DATA SEGMENT PUBLIC 'DATA'

; NOTE THAT THE FOLLOWING ARE PASSED ON THE STACK TO THE PL/M-86
PROCEDURE 'CO'. BY CONVENTION, A BYTE PARAMETER IS PASSED IN
5 THE LOW~ORDER 8-BITS OF A WORD ON THE STACK. HENCE, THESE ARE
;  DEFINED AS WORD VALUES, THOUGH THEY OCCUPY 1 BYTE ONLY.

i

xooo\)omcwm—nowor)\lowm:wm_n

0000 1BOO CLEAR CRT1 LW 01BH ;5 INTELLEC
0002 4500 20 CLEAR_CR12 DW 045H H CRT
0004 1B0OO 21 HOME CURSOR1 DW O01BH H CONTROL
0006 4800 22 HOME”CURSOR2 LW 048H H CODES
0008 2000 23 SPACE DW 020H ; ASCII BLANK
G00A 727772 24 SAVE DW ? ; HOLDS LAST 16-BIT RANDOM NUMBER
———— 25 DATA ENDS
26
27
28 ; ALLOCATE STACK SPACE
——— 29 STACK SEGMENT STACK 'STACK"
0000 (20 30 Dw 20 DUP (?)
?277?
)
31 ; LABEL INITIAL TOS: FOR LATER USE.
0028 32 STACK_Top LABEL WORD
-———- 33 STACK™ ENDS
34
35
36 ; PROGRAM CODE
-———- 37 CODE SEGMENT PUBLIC 'CODE'
38
39
40 ; RANDOM NUMBER GENERATOR PROCEDURE
41 3 ALGORITHM FOR 16-BIT RANDOM NUMBER FROM:
42 ; "A GUIDE TO PL/M PROGRAMMING FOR
43 H MICROCOMPUTER APPLICATIONS,"
4y H DANIEL D. MCCRACKEN
45 ; ADDISON-WESLEY, 1978
0000 46 RANDOM  PROC
G000 A10400 R 47 MOV AX,SAVE ; NEW NUMBER =

Figure 2-67. ASM-86 Sample Program
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MCS-86 MACRO ASSEMBLER DICE

ASSEMBLY COMPLETE, NO ERRORS FOUND

LOC OBJ LINE SOURCE
0003 BY0508 48 MOV CX,2053 ; OLD NUMBER * 2053
0006 F7E1 49 MUL [ ; + 13849
0008 051936 50 ADD AX, 13849 ;
000B A30A00 R 51 MOV SAVE,AX ; SAVE FOR NEXT TIME
52 ; FORCE 16-BIT NUMBER INTO RANGE 1 - 6
53 ; BY MODULO & DIVISION + 1
000E 2BD2 54 SUB DX, DX ; CLEAR UPPER DIVIDEND
0010 B90600 55 MOV CX,6 ; SET DIVISOR
0013 F7F1 56 DIV [ ; DIVIDE BY 6
0015 8BC2 57 MOV AX, DX ; REMAINDER TO AX
0017 40 58 INC AX ; ADD 1
0018 C3 59 RET i RESULT IN AX
60 RANDOM ENDP
61
62
63 ; MAIN PROGRAM
64
65 ; LOAD SEGMENT REGISTERS
66 ; NOTE PROGRAM DOES NOT USE ES; €S IS INITIALIZED BY HAKDWARE RESET;
67 ; DATA & STACK ARE MEMBERS OF SAME GROUP, SO ARE TREATED AS A SINGLE
68 ;  MEMORY SEGMENT POINTED TO EY BOTH DS & SS.
0019 B---- R 69 START: MOV AX,DGROUP
001C 8EDS 70 MOV DS, AX
001E 8EDO 71 MOV SS, AX
72
73 ; INITIALIZE STACK POINTER
0020 BC2800 R T4 MOV SP,OFFSET DGROUP:STACK TOP
75
76 ; CLEAR THE SCREEN
0023 FF360000 R 77 PUSH CLEAR CRT1
0027 EB0000 E 78 CALL co
0024 FF360200 R 79 PUSH CLEAR CRT2
002E E80000 E 80 CALL co
81
82 ; ROLL THE DICE UNTIL INTERRUPTED
0031 E8CCFF 83 ROLL: CALL RANDOM ; GET 1ST DIE IN AL
0034 0430 84 ADD AL,030H ; CONVERT TO ASCII
0036 50 85 PUSH AX ; PASS IT T0
0037 EB0000 E 86 CALL co ; CONSOLE OUTPUT
003A FF360800 R 87 PUSH SPACE ; OUTPUT
003E EB0000 E 88 CALL co ; A BLANK
0041 ESBCFF 89 CALL RANDOM ; GET 2ND DIE IN AL
0044 030 90 ADD AL,030H ; CONVERT T0 ASCII
0046 50 91 PUSH AX ; PASS IT TO
0047 EB0000 E 92 CALL co ; CONSOLE OUTPUT
93 ; HOME THE CURSOR
004A FF360L00 R 94 PUSH HOME CURSOR1
OCUE EBOOOD E 95 CALL co
0051 FF360600 R 96 PUSH HOME CURSOR2
0055 EB000O E 97 CALL co
98 ; CONTINUE FOREVER
0058 EBDT 99 JMP ROLL
- 100 CODE ENDS
101
XKEF SYMBOL TABLE LISTING
NAME TYPE VALUE ATTRIBUTES, XREFS
??SEG . . . . SEGMENT SIZE=0000H PARA PUBLIC
CGROUP. . . . GROUP CODE 74 11
CLEAR _CRT1. . V WORD  O0OOOH DATA 194 77
CLEAR CRT2. V WORD  0002H DATA 20# 79
CG. .. . . . L NEAR OQCOCH EXTRN u4# 78 80 86 88 92 95 97
CODE. . . . . SEGMENT SIZE=005AH PARA PUBLIC 'CODE’ 100
DATA. . . . . SEGMENT SIZE=000CH PARA PUBLIC 'DATA’ 1428
DGROUP. . . . GROUP DATA STACK  8# 11 11 69 74
HOME _CURSOK1. V WORD  0CO4H DATA 21# 94
HOME CURSOR2. V WORD 0006H DATA 22# 96
RANLOM. L NEAR  000OH CODE U46# 60 83 89
ROLL. L NEAR  0031H CODE 83# 99
SAVE. V WORD  QOOAH DATA 244 47 51
SPACE V WORD  O0008H DATA 23# 87
STACK SEGMENT SIZE=0028H PARA STACK 'STACK'
STACK TOP V WOKD  0028H STACK 32# 74
START . L NEAR  0019H CODE 69# 104

Figure 2-67. ASM-86 Sample Program (Cont’d.)
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The ASM-86 version of the dice program operates
like the PL/M-86 version. Since the program uses
the PL/M-86 CO procedure for writing data to
the Intellec console, it adheres to certain conven-
tions established by the PL/M-86 compiler. The
program’s logical segments (called CODE,
DATA and STACK—the program does not use
an extra segment) are organized into two groups
called CGROUP and DGROUP. All the members
of a group of logical segments are located in the
same 64k byte physical memory segment.
Physically, the program’s DATA and STACK
segments can be viewed as ‘‘subsegments’ of
DGROUP.

PL/M-86 procedures expect parameters to be
passed on the stack, so the program pushes each
character before calling CO. Note that the stack
will be ““cleaned up’’ by the PL/M-86 procedure
before returning (i.e., the parameter will be
removed from the stack by CO).

2.10 Programming Guidelines
and Examples

This section addresses 8086/8088 programming
from two different perspectives. A series of
general guidelines is presented first. These
guidelines apply to all types of systems and are
intended to make software easier to write, and
particularly, easier to maintain and enhance. The
second part contains a number of specific pro-
gramming examples. Written primarily in
ASM-86, these examples illustrate how the
instruction set and addressing modes may be uti-
lized in various, commonly encountered program-
ming situations.

Programming Guidelines

These guidelines encourage the development of
8086/8088 software that is adaptable to change.
Some of the guidelines refer to specific processor
features and others suggest approaches to general
software design issues. PL/M-86 programmers
need not be concerned with the discussions that
deal with specific hardware topics; they should,
however, give careful attention to the system
design subjects.Systems that are designed in
accordance with these recommendations
should be less costly to modify or extend. In
addition, they should be better-positioned to

take advantage of new hardware and software
products that are constantly being introduced
by Intel.

Segments and Segment Registers

Segments should be considered as independent
logical units whose physical locations in memory
happen to be defined by the contents of the seg-
ment registers. Programs should be independent
of the actual contents of the segment registers and
of the physical locations of segments in memory.
For example, a program should not take
advantage of the “‘“knowledge’’ that two segments
are physically adjacent to each other in memory.
The single exception to this fully-independent
treatment of segments is that a program may set
up more than one segment register to point to the
same segment in memory, thereby obtaining
addressability through more than one segment
register. For example, if both DS and ES point to
the same segment, a string located in that segment
may be used as a source operand in one string
instruction and as a destination string in another
instruction (recall that a destination string must
be located in the extra segment).

Any data aggregate or construct such as an array,
astructure, a string or a stack should be restricted
to 64k bytes in length and should be wholly con-
tained in one segment (i.e., should not Cross a seg-
ment boundary).

Segment registers should only contain values sup-
plied by the relocation and linkage facilities. Seg-
ment register values may be moved to and from
memory, pushed onto the stack and popped from
the stack. Segment registers should never be used
to hold temporary variables nor should they be
altered in any other way.

As an additional guideline, code should not be
written within six bytes of the end of physical
memory (or the end of the code segment if this
segment is dynamically relocatable). Failure to
observe this guideline could result in an attempted
opcode prefetch from non-existent memory,
hanging the CPU if READY is not returned.

Self-Modifying Code

It is possible to write a program that deliberately
changes some of its own machine instructions
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during execution. While this technique may save a
few bytes or machine cycles, it does so at the
expense of program clarity. This is particularly
true if the program is being examined at the
machine instruction level; the machine instruc-
tions shown in the assembly listing may not match
those found in memory or monitored from the
bus. It also precludes executing the code from
ROM. Also, because of the prefetch queue within
the 8086 and 8088, code that is self-modified
within six bytes of the current point of execution
cannot be guaranteed to execute as intended.
(This code may already have been fetched.) Fin-
ally, a self-modifying program may prove
incompatible with future Intel products that
assume that the content of a code segment
remains constant during execution.

A corrollary to this requirement is that variable
data should not be placed in a code segment. Con-
stant data may be written in a code segment, but
this is not recommended for two reasons. First,
programs are simpler to understand if they are
uniformly subdivided into segments of code, data
and stack. Second, placing data in a code segment
can restrict the segment’s position independence.
This is because, in general, the segment base
address of a data item may be changed, but the
offset (displacement) of the data item may not.
This means that the entire segment must be
moved as a unit to avoid changing the offset of
the constant data. If the constant data were
located in a data segment or an extra segment,
individual procedures within the code segment
could be moved independently.

Input/Output

Since 1/0 devices vary so widely in their
capabilities and their interface designs, 1/0 soft-
ware is inevitably device dependent. Substituting
a hard disk for a floppy disk, for example,
necessitates software changes even though the
disks are functionally identical. I/0 software can,
however, be designed to minimize the effect of
device changes on programs.

Figure 2-68 illustrates a design concept that struc-
tures an I/O system into a hierarchy of separately
compiled/assembled modules. This approach
isolates application modules that wuse the
input/output devices from all physical
characteristics of the hardware with which they
ultimately communicate. An application module

that reads a disk file, for example, should have no
knowledge of where the file is located on the disk,
what size the disk sectors are, etc. This allows
these characteristics to change without affecting
the application module. To an application
module, the I/O system appears to be a series of
file-oriented commands (e.g., Open, Close, Read,
Write). An application module would typically
issue a command by calling a file system
procedure.

The file system processes 1/0 command requests,
perhaps checking for gross errors, and calls a pro-
cedure in the 170 supervisor. The 1/0 supervisor
is a bridge between the functional 1/0 request of
the application module and the physical 170 per-
formed by the lowest-level modules in the hier-
archy. There should be separate modules in the
supervisor for different types of devices and some
device-dependent code may be unavoidable at this
level. The 170 supervisor would typically perform
overhead activities such as maintaining disk
directories.

The modules that actually communicate with the
170 devices (or their controllers) are at the lowest
level in the hierarchy. These modules contain the
bulk of the system’s device-dependent code that
will have to be modified in the event that a device
is changed.

The 8089 Input/Output Processor is specifically
designed to encourage the development of
modular, hierarchical 1/0 systems. The 8089
allows knowledge of device characteristics to be
“‘hidden’ from not only application programs,
but also from the operating system that controls
the CPU. The CPU’s 1/0 supervisor can simply
prepare a message in memory that describes the
nature of the operation to be performed, and then
activate the 8089. The 8089 independently per-
forms all physical 10 and notifies the CPU when
the operation has been completed.

Operating Systems

Operating systems also should be organized in a
hierarchy similar to the concept illustrated in
figure 2-69. Application modules should ‘‘see”
only the upper level of the operating system. This
level might provide services like sending messages
between application modules, providing time
delays, etc. An intermediate level might consist of
housekeeping routines that dispatch tasks, alter
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priorities, manage memory, etc. At the lowest
level would be the modules that implement
primitive operations such as adding and removing
tasks or messages from lists, servicing timer inter-
rupts, etc.

Interrupt Service Procedures

Procedures that service external interrupts should
be considered differently than those that service
internal interrupts. A service procedure that is
activated by an internal interrupt, may, and often
should, be made reentrant. External interrupt
procedures, on the other hand, should be viewed
as temporary tasks. In this sense, a task is a single
sequential thread of execution; it should not be
reentered. The processor’s response to an external
interrupt may be viewed as the following sequence
of events:

¢ the running (active) task is suspended,

e anew task, the interrupt service procedure, is
created and becomes the running task,

¢ theinterrupt task ends, and is deleted,

e the suspended task is reactived and
becomes the running task from the point
where it was suspended.

An external interrupt procedure should only be
interruptable by a request that activates a dif-

ferent interrupt procedure. When the number of
interrupt sources is not too large, this can be
accomplished by assigning a different type code
and corresponding service procedure to each
source. In systems where a large number of
similar sources can generate closely spaced inter-
rupts (e.g., 500 communication lines), an
approach similar to that illustrated in figure 2-70,
may be used to insure that the interrupt service
procedure is not reentered, and yet, interrupts
arriving in bursts are not missed. The basic
technique is to divide the code required to service
an interrupt into two parts. The interrupt service
procedure itself is kept as short as possible; it per-
forms the absolute minimum amount of process-
ing necessary to service the device. It then builds a
message that contains enough information to per-
mit another task, the interrupt message processor,
to complete the interrupt service. It adds the
message to a queue (which might be implemented
as a linked list), and terminates so that it is
available to service the next interrupt. The inter-
rupt message processor, which is not reentrant,
obtains a message from the queue, finishes pro-
cessing the interrupt associated with that message,
obtains the next message (if there is one), etc.
When a burst of interrupts occurs, the queue will
lengthen, but interrupts will not be missed so long
as there is time for the interrupt service procedure
to be activated and run between requests.

MULTIPLE INTERRUPT SOURCES

y

INTERRUPT
SERVICE

ADD MESSAGE TO QUEUE

PROCEDURE

——-
P QUEUE (LIST)
- OF INTERRUPT
t - :: MESSAGES
| I |
OBTAIN NEXT MESSAGE
FROM QUEUE
INTERRUPT
MESSAGE
PROCESSOR

Figure 2-70. Interrupt Message Processor
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Stack-Based Parameters

Parameters are frequently passed to procedures
on a stack. Results produced by the procedure,
however, should be returned in other memory
locations or in registers. In other words, the called
procedure should ‘‘clean up”’ the stack by dis-
carding the parameters before returning. The.
RET instruction can perform this function.
PL/M-86 procedures always follow this
convention.

Flag-Images

Programs should make no assumptions about the
contents of the undefined bits in the flag-images
stored in memory by the PUSHF and SAHF
instructions. These bits always should be masked
out of any comparisons or tests that use these
flag-images. The undefined bits of the word flag-
image can be cleared by ANDing the word with
FD5H. The undefined bits of the byte flag-image
can be cleared by ANDing the byte with DSH.

Programming Examples

These examples demonstrate the 8086/8088
instruction set and addressing modes in common
programming situations. The following topics are
addressed:

®  procedures (parameters, reentrancy)

* various forms of JMP and CALL
instructions

*  bit manipulation with the ASM-86 RECORD
facility

* dynamic code relocation
®* memory mapped /O

*  breakpoints

* interrupt handling

®  string operations

These examples are written primarily in ASM-86
and will be of most interest to assembly language
programmers. The PL/M-86 compiler generates
code that handles many of these situations
automatically for PL/M-86 programs. For exam-
ple, the compiler takes care of the stack in
PL/M-86 procedures, allowing the programmer
o concentrate on solving the application prob-
lem. PL/M-86 programmers, however, may want

to examine the memory mapped 1/0 and
interrupt handling examples, since the concepts
illustrated are generally applicable; one of the
interrupt procedures is written in PL/M-86.

The examples are intended to show one way to use
the instruction set, addressing modes and features
of ASM-86. They do not demonstrate the “‘best”’
way to solve any particular problem. The flexibil-
ity of the 8086 and 8088, application differences
plus variations in programming style usually add
up to a number of ways to implement a program-
ming solution.

Procedures

The code in figure 2-71 illustrates several tech-
niques that are typically used in writing ASM-86
procedures. In this example a calling program
invokes a procedure (called EXAMPLE) twice,
passing it a different byte array each time. Two
parameters are passed on the stack; the first con-
tains the number of elements in the array, and the
second contains the address (offset in
DATA _SEG) of the first array element. This
same technique can be used to pass a variable-
length parameter list to a procedure (the “‘array”
could be any series of parameters or parameter
addresses). Thus, although the procedure always
receives two parameters, these can be used to
indirectly access any number of variables in
memory.

Any results returned by a procedure should be
placed in registers or in memory, but not on the
stack. AX or AL is often used to hold a single
word or byte result. Alternatively, the calling pro-
gram can pass the address (or addresses) of a
result area to the procedure as a parameter. It is
good practice for ASM-86 programs to follow the
calling conventions used by PL/M-86; these are
documented in MCS-86 Assembler Operating
Instructions For ISIS-IT Users, Order No.
9800641.

EXAMPLE is defined as a FAR procedure,
meaning it is in a different segment than the call-
ing program. The calling program must use an
intersegment CALL to activate the procedure.
Note that this type of CALL saves CS and IP on
the stack. If EXAMPLE were defined as NEAR
(in the same segment as the caller) then an intra-
segment CALL would be used, and only IP would
be saved on the stack. It is the responsibility of
the calling program to know how the procedure is
defined and to issue the correct type of CALL.

Mnemonics © Intel, 1978
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STACK_SEG SEGMENT

DW 20 DUP (?) ; ALLOCATE 20-WORD STACK
STACK__TOP LABEL WORD ; LABEL INITIAL TOS
STACK__SEG ENDS
DATA__SEG SEGMENT
ARRAY_1 DB 10 DUP (?) ; 10-ELEMENT BYTE ARRAY
ARRAY__ 2 DB 5DUP (?) ; -ELEMENT BYTE ARRAY
DATA__SEG ENDS
PROC__SEG SEGMENT
ASSUME CS:PROG__SEG,DS:DATA__SEG,SS:STACK__SEG,ES:NOTHING
EXAMPLE PROC FAR ; MUST BE ACTIVATED BY

; INTERSEGMENT CALL

; PROCEDURE PROLOG

PUSH BP ; SAVE BP

MOV BP, SP ; ESTABLISH BASE POINTER

PUSH CX ; SAVE CALLER’S

PUSH BX ; REGISTERS

PUSHF ; AND FLAGS

SuB SP,6 ; ALLOCATE 3 WORDS LOCAL STORAGE

; END OF PROLOG
; PROCEDURE BODY

MOV CX,[BP+8] ;GETELEMENTCOUNT

MOV BX,[BP+6] ;GETOFFSETOF1ST ELEMENT

; PROCEDURE CODE GOES HERE
: FIRST PARAMETER CAN BE ADDRESSED:
7 [BX]
: LOCAL STORAGE CAN BE ADDRESSED:
. [BP-8], [BP-10], [BP-12]
: END OF PROCEDURE BODY
: PROCEDURE EPILOG

ADD SP, 6 ; DE-ALLOCATE LOCAL STORAGE
POPF ; RESTORE CALLER’S

POP BX ;  REGISTERS

POP CX i AND

POP BP ; FLAGS

; END OF EPILOG
; PROCEDURE RETURN

RET 4 ; DISCARD 2 PARAMETERS
EXAMPLE ENDP ; END OF PROCEDURE “EXAMPLE"
PROC__SEG ENDS

Figure 2-71. Procedure Example 1
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CALLER__SEG  SEGMENT

; GIVE ASSEMBLER SEGMENT/
ASSUME CS:CALLER__SEG,
& DS:DATA__SEG,

& SS8:STACK_SEG,
& ES:NOTHING

; INITIALIZE SEGMENT REGISTERS

REGISTER CORRESPONDENCE

NO EXTRA SEGMENT IN THIS PROGRAM

START: Mov AX,DATA_SEG
MOV DS,AX
MOV AX,STACK__SEG
MOV 88,AX
MoOv

; ASSUME ARRAY_11S INITIALIZED
{ CALL “EXAMPLE"

MOV
PUSH
MoV
PUSH
CALL

; ASSUME ARRAY__21S INITIALIZED

EXAMPLE

SP,OFFSET STACK__TOP :POINT SP TO TOS

, PASSING ARRAY__1, THAT IS, THE NUMBER OF ELEMENTS
; INTHE ARRAY, AND THE LOCATION OF THE Fi
AX,SIZE ARRAY_ 1
AX

RST ELEMENT.

AX,OFFSET ARRAY__1
AX

;’ CALL ““EXAMPLE” AGAIN WITH DIFFERENT SIZE ARRAY.

MoV AX,SIZE ARRAY_ 2

PUSH AX

MOV AX,OFFSET ARRAY__2

PUSH AX

CALL EXAMPLE
CALLER__SEG ENDS

END START

Figure 2-71. Procedure Example 1 (Cont’d.)

Figure 2-72 shows the stack before the caller
pushes the parameters onto it. Figure 2-73 shows
the stack as the procedure receives it after the
CALL has been executed.

EXAMPLE is divided into four sections. The
“‘prolog’’ sets up register BP so it can be used to
address data on the stack (recall that specifying
BP as a base register in an instruction auto-
matically refers to the stack segment unless a seg-
ment override prefix is coded). The next step in
the prolog is to save the “‘state of the machine’’ as

it existed when the procedure was activated. This
is done by pushing any registers used by the pro-
cedure (only CX and BP in this case) onto the
stack. If the procedure changes the flags, and the
caller expects the flags to be unchanged following
execution of the procedure, they also may be
saved on the stack. The last instruction in the pro-
log allocates three words on the stack for the pro-
cedure to use as local temporary storage. Figure
2-74 shows the stack at the end of the prolog.
Note that PL/M-86 procedures assume that all
registers except SP and BP can be used without
saving and restoring.
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-——— SP (TOS)

Figure 2-72. Stack Before Pushing Parameters

HIGH ADDRESSES
BP + 8 —— PARAMETER 1
BP + 6 ——— PARAMETER 2
oLDCs
oLDIP
OLD BP -¢—~———BP
oLDCX
OLD BX
OLD FLAGS
BP-8 | LOCAL 1
BP-10 ——— LOCAL2
BP-12 ——— LOCAL3 -¢—— SP (TOS)
LOW ADDRESSES

Figure 2-74. Stack Following Procedure Prolog

HIGH ADDRESSES

PARAMETER 1
PARAMETER 2
oLDCs
oLDIP

%—— SP (TOS)

LOW ADDRESSES

Figure 2-73. Stack at Procedure Entry

The procedure “‘body’” does the actual processing
(none in the example). The parameters on the
stack are addressed relative to BP. Note that if
EXAMPLE were a NEAR procedure, CS would
not be on the stack and the parameters would be
two bytes “‘closer’” to BP. BP also is used to
address the local variables on the stack. Local
constants are best stored in a data or extra
segment.

The procedure “‘epilog’” reverses the activities of
the prolog, leaving the stack as it was when the
procedure was entered (see figure 2-75).

HIGHER ADDRESSES

T

PARAMETER 1
PARAMETER 2
RETURN ADDRESS
OLD BP

-+——BP & SP (TOS)

LOWER ADDRESSES

Figure 2-75. Stack Following Procedure Epilog
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The procedure “‘return’’ restores CS and IP from
the stack and discards the parameters. As figure
2-76 shows, when the calling program is resumed,
the stack is in the same state as it was before any
parameters were pushed onto it.

HIGH ADDRESSES

-«—— SP (TOS)

LOW ADDRESSES

Figure 2-76. Stack Following Procedure Return

Figure 2-77 shows a simple procedure that uses an
ASM-86 structure to address the stack. Register
BP is pointed to the base of the structure, which is
the top of the stack since the stack grows toward
lower addresses (see figure 2-78). Any structure
element can then be addressed by specifying BP as
a base register:

[BP].structure__element.

Figure 2-79 shows a different approach to using
an ASM-86 structure to define the stack layout.
As shown in figure 2-80, register BP is pointed at
the middle of the structure (at OLD__BP) rather
than at the base of the structure. Parameters and
the return address are thus located at positive
displacements (high addresses) from BP, while
local variables are at negative displacements
(lower addresses) from BP. This means that the
local variables will be “‘closer’’ to the beginning
of the stack segment and increases the likelihood
that the assembler will be able to produce shorter
instructions to access these variables, i.e., their
offsets from SS may be 255 bytes or less and can
be expressed as a I-byte value rather than a 2-byte
value. Exit from the subroutine also is slightly
faster because a MOV instruction can be used to
deallocate the local storage instead of an ADD
(compare figure 2-71).

It is possible for a procedure to be activated a sec-
ond time before it has returned from its first
activation. For example, procedure A may call
procedure B, and an interrupt may occur while
procedure B is executing. If the interrupt service
procedure calls B, then procedure B is reentered
and must be written to handle this situation cor-
rectly, i.e., the procedure must be made
reentrant.

In PL/M-86 this can be done by simply writing:
B: PROCEDURE (PARM1, PARM2) REENTRANT;

An ASM-86 procedure will be reentrant if it uses
the stack for storing all local variables. When the
procedure is reentered, a new ‘‘generation’’ of
variables will be allocated on the stack. The stack
will grow, but the sets of variables (and the
parameters and return addresses as well) will
automatically be kept straight. The stack must be
large enough to accommodate the maximum
“‘depth’’ of procedure activation that can occur
under actual running conditions. In addition, any
procedure called by a reentrant procedure must
itself be reentrant.

A related situation that also requires reentrant
procedures is recursion. The following are
examples of recursion:

*  Acalls A (direct recursion),
e  Acalls B, Bcalls A (indirect recursion),

* A calls B, B calls C, C calls A (indirect
recursion).

Mnemonics © intel, 1978
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CODE SEGMENT
ASSUME CS:CODE
MAX PROC
; THIS PROCEDURE IS CALLED BY THE FOLLOWING
; SEQUENCE:
; PUSH PARM1
; PUSH PARM2
; CALL MAX
; ITRETURNS THE MAXIMUM OF THE TWO WORD
; PARAMETERS IN AX.
; DEFINE THE STACK LAYOUT AS ASTRUCTURE.
STACK__LAYOUT STRUC

OoLD__BP DW? ; SAVED BP VALUE—BASE OF STRUCTURE
RETURN__ADDR DW? ; RETURN ADDRESS
PARM__2 DW? : SECOND PARAMETER
PARM__1 DW ? ; FIRST PARAMETER
STACK_LAYOUT ENDS
; PROLOG
PUSH BP ; SAVEIN OLD__BP
MOV BP, SP ; POINTTOOLD__BP
; BODY
MOV AX, {BP].PARM_1 ;IF FIRST
CMP AX, [BP].PARM__2 ;>SECOND
JG FIRST__I1S _MAX ; THEN RETURN FIRST
MOV AX, [BP].PARM_2 ;ELSERETURN SECOND
; EPILOG
FIRST_IS__MAX: POP BP ; RESTORE BP (& SP)
; RETURN
RET 4 ; DISCARD PARAMETERS
MAX ENDP
CODE ENDS
END

Figure 2-77. Procedure Example 2

HIGHER ADDRESSES
r < Jumps and Calls
\1

The 8086/8088 instruction set contains many dif-
ferent types of JMP and CALL instructions {e.g.,

PARAMETER 1 direct, indirect through register, indirect through
PARAMETER 2 memory, etc.). These varying types of transfer
RETURN ADDRESS provide efficient use of space and execution time
OLD BP ~«——BP &SP (TOS) in different programming situations. Figure 2-81

illustrates typical use of the different forms of
these instructions. Note that the ASM-86

L\ L“ (X3 3 (X3 bRd
LOWER ADDRESSES assembler uses the terms NEAR and “FAR
to denote intrasegment and intersegment trans-
Figure 2-78. Procedure Example 2 Stack Layout fers, respectively.
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EXTRA SEGMENT
; CONTAINS STRUCTURE TEMPLATE THAT “NEARPROC”’
; USESTO ADDRESS AN ARRAY PASSED BY ADDRESS.

DUMMY STRUC
PARM_ARRAY DB 256 DUP ?
DUMMY ENDS
EXTRA ENDS
CODE SEGMENT
ASSUME CS:CODE,ES:EXTRA
NEARPROC PROC
; LAY OUT THE STACK (THE DYNAMIC STORAGE AREA OR DSA).
DSASTRUC STRUC
| DW ? ; LOCAL VARIABLES FIRST
LOC_ARRAY DW 10 DUP (?) ;
OLD__BP Dw ? ; ORIGINAL BP VALUE
RETADDR DW ? ; RETURN ADDRESS
POINTER DD ? ; 2ND PARM—POINTER TO “‘PARM__ARRAY"
COUNT DB ? ; 1IST PARM—A BYTE OCCUPIES
DB ? ; A WORD ON THE STACK
DSASTRUC ENDS

; USE AN EQU TO DEFINE THE BASE ADDRESS OF THE
DSA. CANNOT SIMPLY USE BP BECAUSE IT WILL
BE POINTING TO “‘OLD__BP’’ IN THE MIDDLE OF

i THEDSA.
DSA EQU [BP — OFFSET OLD__BP]
; PROCEDURE ENTRY
PUSH BP ; SAVE BP
MOV BP, SP ; POINT BP AT OLD__BP
sus SP,OFFSET OLD_BP ; ALLOCATE LOC__ARRAY &1

; PROCEDURE BODY
; ACCESS LOCAL VARIABLE |

MOV AX,DSA.I

; ACCESS LOCAL ARRAY (3) I.E., 4TH ELEMENT

MOV S1,6 ; WORD ARRAY-INDEX IS 3*2
MOV AX,DSA.LOC_ARRAY [SI]

; LOAD POINTER TO ARRAY PASSED BY ADDRESS
LES BX,DSA.POINTER

; ES:BX NOW POINTS TO PARM__ARRAY (0)
; ACCESS SI'TH ELEMENT OF PARM__ARRAY
Mov AL,ES:[BX].PARM__ARRAY [SI]

; ACCESS THE BYTE PARAMETER
MOV AL,DSA.COUNT

Figure 2-79. Procedure Example 3

o @
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; PROCEDURE EXIT

| MOV SP,BP ; DE-ALLOCATE LOCALS
| POP BP ; RESTORE BP

1 ; STACK NOW AS RECEIVED FROM CALLER

; RET 6 ; DISCARD PARAMETERS
|

; NEARPROC ENDP

| CODE ENDS

| END

Figure 2-79. Procedure Example 3 (Cont’d.)

 HIGHERADDRESSES The procedure in figure 2-81 illustrates how a
] PL/M-86 DO CASE construction may be
[ count implemented in ASM-86. It also shows:
POINTER .
e an indirect CALL through memory to a
RETADDR procedure located in another segment,
OLD_BP «——BP
LOC__ARRAY (9) ¢ adirect JMP to a label in another segment,

LOC__ARRAY (8)
LOC_ARRAY (7)
LOC__ARRAY (6)
LOC__ARRAY (5)
LOC__ARRAY (4)
LOC__ARRAY (3)
LOC__ARRAY (2)

¢ anindirect JMP though memory to a label in
the same segment,

¢ an indirect JMP through a register to a label
in the same segment,

LOC__ARRAY (1) ) )
LOC__ARRAY (0) * a direct CALL to a procedure in another
| « .SP segment,
LOWER ADDRESSES ' e a direct CALL to a procedure in the same
segment,

e direct JMPs to labels in the same segment,
within —128 to +127 bytes (““SHORT’’) and

Figure 2-80. Procedure Example farther than ~128 to +127 bytes (“NEAR”).

3 Stack Layout
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DATA SEGMENT

; DEFINE THE CASE TABLE (JUMP TABLE) USED BY PROCEDURE
; “DO__CASE."” THE OFFSET OF EACH LABEL WILL

; BE PLACED IN THE TABLE BY THE ASSEMBLER.

CASE__TABLE Dw ACTIONO, ACTION1, ACTION2,
& ACTION3, ACTION4, ACTIONS
DATA ENDS

; DEFINE TWO EXTERNAL (NOT PRESENT IN THIS
; ASSEMBLY BUT SUPPLIED BY R & L FACILITY)
; PROCEDURES. ONE IS IN THIS CODE SEGMENT
; (NEAR) AND ONE IS IN ANOTHER SEGMENT (FAR).
EXTRN NEAR_PROC: NEAR, FAR_PROC: FAR

; DEFINE AN EXTERNAL LABEL (JUMP TARGET) THAT
; IS IN ANOTHER SEGMENT.
EXTRN ERR__EXIT: FAR

CODE SEGMENT

ASSUME CS:CODE, DS: DATA
; ASSUME DS HAS BEEN SET UP
; BY CALLERTO POINT TO ““DATA" SEGMENT.

DO__CASE PROC NEAR

; THIS EXAMPLE PROCEDURE RECEIVES TWO

;  PARAMETERS ON THE STACK. THE FIRST

; PARAMETERIS THE “CASE NUMBER’’ OF

;  AROUTINE TO BE EXECUTED (0-5). THE SECOND
;  PARAMETER IS A POINTER TO AN ERROR

;  PROCEDURE THAT IS EXECUTED IF AN INVALID
;  CASE NUMBER (>5) IS RECEIVED.

; LAY OUT THE STACK.
STACK_LAYOUT STRUC
OLD_BP DW ?
RETADDR Dw ?
ERR_PROC_ADDR DD ?
CASE_NO D8 ?

DB ?

STACK__LAYOUT ENDS

; SET UP PARAMETER ADDRESSING
PUSH BP
MoV BP, SP

; CODE TO SAVE CALLER’S REGISTERS COULD GO HERE.

; CHECK THE CASE NUMBER
MOV BH, 0
MOV BL, [BP].CASE__NO
CMP BX, LENGTH CASE__TABLE
JLE OK ; ALL CONDITIONAL JUMPS

; ARE SHORT DIRECT

Figure 2-81. JMP and CALL Examples
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; CALL THE ERROR ROUTINE WITH A FAR
INDIRECT CALL. AFARINDIRECT CALL
; ISINDICATED SINCE THE OPERAND HAS
;  TYPE “DOUBLEWORD.”
CALL [BP].ERR_PROC__ADDR

’

i ; JUMP DIRECTLY TO A LABEL IN ANOTHER SEGMENT.
‘ ; AFARDIRECT JUMP IS INDICATED SINCE

; THE OPERAND HAS TYPE “FAR.”
JMP ERR_EXIT

OK:
; MULTIPLY CASE NUMBER BY 2TO GET OFFSET
INTO CASE_TABLE (EACH ENTRY IS 2 BYTES).
SHL BX, 1
: NEAR INDIRECT JUMP THROUGH SELECTED
; ELEMENT OF CASE__TABLE. ANEAR
; INDIRECT JUMP IS INDICATED SINCE THE
; OPERAND HAS TYPE ““WORD.”
JMP CASE__TABLE [BX]

’

ACTIONO: ; EXECUTED tF CASE_NO=0
; CODE TO PROCESS THE ZERO CASE GOES HERE.
FOR ILLUSTRATION PURPOSES, USE A
NEAR INDIRECT JUMP THROUGH A
REGISTER TO BRANCH TO THE POINT
WHERE ALL CASES CONVERGE.
A DIRECT JUMP (JMP ENDCASE) 1S
ACTUALLY MORE APPROPRIATE HERE.

’
’
’
’
1

MOV AX, OFFSET ENDCASE
JMP AX
ACTION1: ; EXECUTED IF CASE_NO =1

; CALL A FAR EXTERNAL PROCEDURE. AFAR
; DIRECT CALL IS INDICATED SINCE OPERAND
; HASTYPE ““FAR.”

CALL FAR__PROC
; CALL ANEAR EXTERNAL PROCEDURE.
CALL NEAR_PROC

; BRANCH TO CONVERGENCE POINT USING NEAR
DIRECT JUMP. NOTE THAT “"ENDCASE”’

IS MORE THAN 127 BYTES AWAY

SO ANEAR DIRECT JUMP WILL BE USED.

’
’

]

JMP ENDCASE
ACTION2: ; EXECUTED IF CASE_NO =2
; CODE GOES HERE
JMP ENDCASE ; NEAR DIRECT JUMP

Figure 2-81. JMP and CALL Examples (Cont’d.)
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ACTIONS: ; EXECUTED IF CASE_NO =3
; CODE GOES HERE
JMP ENDCASE ; NEAR DIRECT JMP

; ARTIFICIALLY FORCE “ENDCASE” FURTHER AWAY
SO THAT ABOVE JUMPS CANNOT BE *“SHORT."”

s

ORG 500
ACTION4: ; EXECUTED IF CASE_NO =4
; CODE GOES HERE
JMP ENDCASE ; NEAR DIRECT JUMP
ACTIONS: s EXECUTEDIF CASE_NO =5

; CODE GOES HERE.

; BRANCH TO CONVERGENCE POINT USING
SHORT DIRECT JUMP SINCE TARGET IS
WITHIN 127 BYTES. MACHINE INSTRUCTION
HAS 1-BYTE DISPLACEMENT RATHER THAN
2-BYTE DISPLACEMENT REQUIRED FOR
NEAR DIRECT JUMPS. ““SHORT"' IS
WRITTEN BECAUSE “ENDCASE’’ IS A FORWARD
REFERENCE, WHICH ASSEMBLER ASSUMES IS
“NEAR.”" IF “ENDCASE’’ APPEARED PRIOR
TO THE JUMP, THE ASSEMBLER WOULD
AUTOMATICALLY DETERMINE IF IT WERE REACHABLE
WITH A SHORT JUMP.

JMP SHORT ENDCASE

;
’
3
'
H
’
)
’
’
’
’

ENDCASE: ; ALL CASES CONVERGE HERE.

; POP CALLER’S REGISTERS HERE.
; RESTORE BP & SP, DISCARD PARAMETERS
7 ANDRETURN TO CALLER.

MOV SP, BP
POP BP
RET 6
DO__CASE ENDP
CODE ENDS
END ; OF ASSEMBLY

Figure 2-81. JMP and CALL Examples (Cont’d.)

Records

Figure 2-82 shows how the ASM-86 RECORD
facility may be used to manipulate bit data. The

example shows how to: ®  assign a constant known at assembly time,
¢ right-justify a bit field, ®  assign a variable,
* test for a value, ®  setor clear a bit field.
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DATA SEGMENT
; DEFINE AWORD ARRAY
XREF DW 3000 DUP (?)

; EACH ELEMENT OF XREF CONSISTS OF 3 FIELDS:
; A 2-BIT TYPE CODE,
A1-BIT FLAG,
A13-BIT NUMBER.
DEFlNE A RECORD TO LAY OUT THIS ORGANIZATION.

3

LINE REC RECORD  LINE__TYPE:2,
& VISIBLE: 1,

& LINE__NUM:13
DATA ENDS

CODE SEGMENT

ASSUME CS: CODE, DS:DATA
; ASSUME SEGMENT REGISTERS ARE SET UP PROPERLY
; AND THAT St INDEXES AN ELEMENT OF XREF.
: ARECORD FIELD-NAME USED BY ITSELF RETURNS
;  THE SHIFT COUNT REQUIRED TO RIGHT-JUSTIFY
: THEFIELD. ISOLATE “LINE_TYPE" IN THIS

;  MANNER.
MoV AL, XREF [Sl]
MOV CL,LINE_TYPE
SHR AX,CL

: THE *“MASK’’* OPERATOR APPLIED TO A RECORD
;  FIELD-NAME RETURNS THE BIT MASK

; REQUIRED TO ISOLATE THE FIELD WITHIN

;  THE RECORD. CLEAR ALL BITS EXCEPT

“LINE_NUM.”
MOV DX, XREF(SI]
AND DX, MASK LINE__NUM

: DETERMINE THE VALUE OF THE “'VISIBLE" FIELD
TEST XREF[SI], MASK VISIBLE
Jz NOT_VISIBLE

; NOJUMP IF VISIBLE =1
NOT__VISIBLE: ;JUMP HERE{F VISIBLE=0

- ASSIGN A CONSTANT KNOWN AT ASSEMBLY-TIME
: TOAFIELD, BY FIRST CLEARING THE BITS
© AND THEN OR’ING IN THE VALUE. IN
: THIS CASE “LINE__TYPE’ IS SET TO 2 (10B).
AND XREF[SI], NOT MASK LINE_TYPE
OR XREF[SI],2 SHL LINE_TYPE
: THE ASSEMBLER DOES THE MASKING AND SHIFTING.
: THE RESULT IS THE SAME AS:
AND XREF[SI], 3FFFH
OR XREF[SI], 8000H
. BUT IS MORE READABLE AND LESS SUBJECT
: TO CLERICAL ERROR.

Figure 2-82. RECORD Example
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; ASSIGN A VARIABLE (THE CONTENT OF AX)

; TO LINE_TYPE.
MOV CL, LINE_TYPE
SHL
AND
OR XREF[SI], AX

; SHIFT COUNT

AX,CL ; SHIFTTO “LINE UP" BITS
XREF[SI], NOT MASK LINE _TYPE

i CLEAR BITS
; ORIN NEW VALUE

 NO SHIFT IS REQUIRED TO ASSIGN TOTHE
; RIGHT-MOST FIELD. ASSUMING AX CONTAINS

. ASSIGN AXTO “LINE__NUM."”
AND
OR

’

s AFIELD MAY BE SET OR CLEARED WITH

AVALID NUMBER (HIGH 3 BITS ARE 0),

XREF[SI], NOT MASK LINE__NUM
XREF[SI], AX

; ONEINSTRUCTION. CLEAR THE “VISIBLE”

;i FLAG AND THEN SET (T.

XREF([SI], NOT MASK VISIBLE

AND

OR XREF[SI], MASK VISIBLE
CODE ENDS

END ;s OF ASSEMBLY

Figure 2-82. RECORD Example (Cont’d.)

The following considerations apply to position-
independent code sequences:

A label that is referenced by a direct FAR
(intersegment) transfer is not moveable.

A label that is referenced by an indirect
transfer (either NEAR or FAR) is moveable
so long as the register or memory pointer to
the label contains the label’s current address.

A label that is referenced by a SHORT (e.g.,
conditional jump) or a direct NEAR (in-
lrasegment) transfer is moveable so long as
the referencing instruction is moved with the
label as a unit. These transfers are self-
relative; that is they require only that the
label maintain the same distance from the
referencing instruction, and actual addresses
are immaterial.

Data is segment-independent, but not offset-
independent. That is, a data item may be
moved to a different segment, but it must
maintain the same offset from the beginning
of the segment. Placing constants in a unit
of code also effectively makes the code
offset-dependent, and therefore is not
recommended.

A procedure should not be moved while it is
active or while any procedure it has called is
active.

* A section of code that has been interrupted
should not be moved.

The segment that is receiving a section of code
must have “‘room’’ for the code. If the MOVS (or
MOVSB or MOVSW) instruction attempts to
auto-increment DI past 64k, it wraps around to 0
and causes the beginning of the segment to be
overwritten. If a segment override is needed for
the source operand, code similar to the following
can be used to properly resume the instruction if it
is interrupted:

RESUME: REP Movs DESTINATION, ES:SOURCE
HF CXNOT = 0 THEN INTERRUPT HAS OCCURRED
AND CX,CXx ; CX=0?
JNZ  RESUME :NO, FINISH EXECUTION
:CONTROL COMES HERE WHEN STRING HAS BEEN MOVED.

If the MOVS is interrupted, the CPU
“‘remembers’’  the segment override, but
“forgets” the presence of the REP prefix when
execution resumes. Testing CX indicates whether
the instruction is completed or not. Jumping back
to the instruction resumes it where it left off. Note
that a segment override cannot be specified with
MOVSB or MOVSW.
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Dynamic Code Relocation

Figure 2-83 illustrates one approach to moving
programs in memory at execution time. A ‘‘super-
visor”” program (which is not moved) keeps
a pointer variable that contains the current loca-
tion (offset and segment base) of a position-
independent procedure. The supervisor always

calls the procedure through this pointer. The
supervisor also has access to the procedure’s
length in bytes. The procedure is moved with the
MOVSB instruction. After the procedure is
moved, its pointer is updated with the new loca-
tion. The ASM-86 WORD PTR operator is writ-
ten to inform the assembler that one word of the
doubleword pointer is being updated at a time.

MAIN__DATA SEGMENT
; SET UP POINTERS TO POSITION-INDEPENDENT PROCEDURE
AND FREE SPACE.

1

PIP_PTR DD EXAMPLE
FREE_PTR DD TARGET__SEG
; SET UP SIZE OF PROCEDURE IN BYTES
PIP__SIZE DW EXAMPLE _LEN
MAIN__DATA ENDS
STACK SEGMENT
DW 20 DUP (?) ; 20 WORDS FOR STACK
STACK__TOP LABEL WORD ; TOS BEGINS HERE
STACK ENDS
SOURCE_SEG  SEGMENT

: THE POSITION-INDEPENDENT PROCEDURE IS INITIALLY IN THIS SEGMENT.
; OTHER CODE MAY PRECEDE IT, I.LE., ITS OFFSET NEED NOT BE ZERO.
ASSUME CS:SOURCE_SEG
EXAMPLE PROC FAR

; THIS PROCEDURE READS AN 8-BIT PORT UNTIL

; BIT3OF THE VALUE READ IS FOUND SET. IT

; THEN READS ANOTHER PORT. IF THE VALUE READ

;1S GREATER THAN 10H IT WRITES THE VALUE TO

; ATHIRD PORT AND RETURNS; OTHERWISE IT STARTS

; OVER.
STATUS_PORT EQU O0DOH
PORT_READY EQU 008H
iNPUT__PORT EQU 0D2H
THRESHOLD EQU 010H
OUTPUT_PORT EQU 0D4H

CHECK__AGAIN: IN AL,STATUS_PORT ;GETSTATUS

TEST AL,PORT__READY ; DATA READY?
JNE CHECK__AGAIN ; NO, TRY AGAIN
IN AL,INPUT__PORT ; YES, GET DATA
CMP AL, THRESHOLD ; > 10H?

JLE CHECK__AGAIN ; NO, TRY AGAIN
ouT OUTPUT_PORT,AL ;YES,WRITEIT

Figure 2-83. Dynamic Code Relocation Example
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RET ; RETURN TO CALLER

; GET PROCEDURE LENGTH

EXAMPLE_LEN EQU (OFFSET THIS BYTE)—(OFFSET CHECK__AGAIN)
ENDP EXAMPLE ENDP

SOURCE_SEG ENDS

TARGET_SEG  SEGMENT
; THE POSITION-INDEPENDENT PROCEDURE
;  ISMOVED TO THIS SEGMENT, WHICH IS
i INITIALLY “EMPTY.”
;1 INTYPICAL SYSTEMS, A *‘FREE SPACE MANAGER' WOULD
;i MAINTAIN A POOL OF AVAILABLE MEMORY SPACE
; FORILLUSTRATION PURPOSES, ALLOCATE ENOUGH
;  SPACETOHOLDIT
DB EXAMPLE _LEN DUP (?)

TARGET_SEG  ENDS

MAIN__CODE SEGMENT

; THIS ROUTINE CALLS THE EXAMPLE PROCEDURE
s AT ITS INITIAL LOCATION, MOVES IT, AND

; CALLS IT AGAIN AT THE NEW LOCATION.

ASSUME CS:MAIN__CODE,SS:STACK,
& DS:MAIN__DATA,ES:NOTHING
; INITIALIZE SEGMENT REGISTERS & STACK POINTER.
START: MOV AX,MAIN_DATA
MOV DS,AX
MoV AX,STACK
MOV SS,AX
Mov SP,OFFSET STACK__TOP

; CALL EXAMPLE AT INITIAL LOCATION.
CALL PIP_PTR

; SET UP CX WITH COUNT OF BYTES TO MOV
MOV CX,PIP__SIZE

; SAVE DS, SET UP DS/SIAND ES/DITO

;  POINT TO THE SOURCE AND DESTINATION

; ADDRESSES.
PUSH DS
LES DI,FREE__PTR
LDS SL,PIP_PTR
; MOVE THE PROCEDURE.
CLD ; AUTO INCREMENT
REP MOVSB
; RESTORE OLD ADDRESSABILITY.
MOV AX,DS ; HOLD TEMPORARILY
POP DS
; UPDATE POINTER TO POSITION-INDEPENDENT PROCEDURE
MoV WORD PTR PIP_PTR+2,ES
suB DI,PIP__SIZE ; PRODUCES OFFSET
MoV WORD PTR PIP__PTR,DI

Figure 2-83. Dynamic Code Relocation Example (Cont’d.)
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; UPDATE POINTER TO FREE SPACE

MOV WORD PTR FREE_PTR+2,AX
SuB SI,PIP_SIZE ; PRODUCES OFFSET
MoV WORD PTR FREE__PTR,SI

; CALL POSITION-INDEPENDENT PROCEDURE AT

i NEW LOCATION AND STOP

CALL PIP_PTR

MAIN__CODE ENDS

END START

Figure 2-83. Dynamic Code Relocation Example (Cont’d.)

Memory-Mapped 1/0

Figure 2-84 shows how memory-mapped 1/0 can
be used to address a group of communication
lines as an ‘‘array.” In the example, indexed
addressing is used to poll the array of status ports,
one port at a time. Any of the other 8086/8088
memory addressing modes may be used in con-
junction with memory-mapped I/0 devices as
well.

In figure 2-85 a MOVS instruction is used to per-
form a high-speed transfer to a memory-mapped
line printer. Using this technique requires the
hardware to be set up as follows. Since the MOVS

instruction transfers characters to successive
memory addresses, the decoding logic must select
the line printer if any of these locations is written.
One way of accomplishing this is to have the chip
select logic decode only the upper 12 lines of the
address bus (A19-AB), ignoring the contents of
the lower eight lines (A7-A0). When data is writ-
ten to any address in this 256-byte block, the
upper 12 lines will not change, so the printer will
be selected.

If an 8086 is being used with an 8-bit printer, the
8086’s 16-bit data bus must be mapped into 8-bits
by external hardware. Using an 8088 provides a
more direct interface.

COM__LINES

SEGMENT AT 800H

; THE FOLLOWING IS A MEMORY MAPPED ‘“ARRAY”’
OF EIGHT 8-BIT COMMUNICATIONS CONTROLLERS

OR ALL-EVEN ADDRESSES (EVERY OTHER BYTE

; (E.G., 8251 USARTS). PORTS HAVE ALL-ODD

IS SKIPPED) FOR 8086-COMPATIBILITY.

COM__DATA DB ?

DB ?
COM_STATUS DB ?

DB ?

DB 28 DUP(?)

COM__LINES ENDS
CODE SEGMENT

; SKIP THIS ADDRESS

; SKIP THIS ADDRESS
; REST OF ““ARRAY”’

; ASSUME STACK IS SET UP, AS ARE SEGMENT
; REGISTERS (DS POINTING TO COM__LINES).
; FOLLOWING CODE POLLS THE LINES.

CHAR__RDY EQU
START_POLL: MOV CX, 8
SuB Sl, Sl

00000010B

; CHARACTER PRESENT
; POLL 8 LINES ZERO
; ARRAY INDEX

Figure 2-84. Memory Mapped 1/0 ‘‘Array”’
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POLL_ NEXT: TEST COM__STATUS [SI], CHAR__RDY
JE READ_CHAR ; READ IF PRESENT
ADD Sl 4 ; ELSE BUMP TO NEXT LINE
LOOP POLL _NEXT ; CONTINUE POLLING UNTIL
; ALL 8 HAVE BEEN CHECKED
JMP START_POLL; START OVER
READ__CHAR: MOV AL,COM__DATA [Sl] ;GETTHE DATA
; ETC.
CODE ENDS
END

Figure 2-84, Memory Mapped 1/0 ‘“Array”’ (Cont’d.)

PRINTER SEGMENT

; THIS SEGMENT CONTAINS A “STRING” THAT

;  ISACTUALLY A MEMORY-MAPPED LINE PRINTER.

; THE SEGMENT (PRINTER) MUST BE ASSIGNED (LOCATED)
i+ TO ABLOCK OF THE ADDRESS SPACE SUCH
; THAT WRITING TO ANY ADDRESS INTHE
;  BLOCK SELECTS THE PRINTER.

PRINT_SELECT DB 133 DUP (?) ; “STRING’’ REPRESENTING PRINTER
DB 123 DUP (?) ; REST OF 256-BYTE BLOCK

PRINTER ENDS

DATA SEGMENT

PRINT_BUF DB 133 DUP (?) ; LINETO BE PRINTED

PRINT_COUNT DB1 ? ; LINE LENGTH

; OTHER PROGRAM DATA

DATA ENDS

CODE SEGMENT

; ASSUME STACK AND SEGMENT REGISTERS HAVE
; BEEN SET UP (DS POINTS TO DATA SEGMENT).
; FOLLOWING CODE TRANSFERS A LINE TO

; THE PRINTER.
ASSUME  ES:PRINTER
Mov AX, PRINTER » PREVENT SEGMENT OVERRIDE
MOV ES, AX
SuB DI, Di ; CLEAR SOURCE AND
SuB SI, SI ; DESTINATION POINTERS
MOV CX, PRINT_COUNT
CLD ; AUTO-INCREMENT

REP MOvs PRINT_SELECT, PRINT__BUF

; ETC.

CODE ENDS
END

Figure 2-85. Memory Mapped Block Transfer Example
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Breakpoints

Figure 2-86 illustrates how a program may set a
breakpoint. In the example, the breakpoint
routine puts the processor into single-step mode,
but the same general approach could be used for
other purposes as well. A program passes the
address where the break is to occur to a procedure

that saves the byte located at that address and
replaces it with an INT 3 (breakpoint) instruction.
When the CPU encounters the breakpoint
instruction, it calls the type 3 interrupt procedure.
In the example, this procedure places the pro-
cessor into single-step mode starting with the
instruction where the breakpoint was placed.

INT_PTR_TAB SEGMENT

s INTERRUPT POINTER TABLE-LOCATE AT OH

TYPE_O DD ? ; NOT DEFINED iN EXAMPLE
TYPE__1 DD SINGLE__STEP

TYPE_ 2 DD ? ; NOT DEFINED IN EXAMPLE
TYPE_3 DD BREAKPOINT

INT_PTR_TAB ENDS

SAVE__SEG SEGMENT

SAVE_INSTR DB1 DUP (?) ; INSTRUCTION REPLACED
; BY BREAKPOINT

SAVE_SEG ENDS

MAIN__CODE SEGMENT
; ASSUME STACK AND SEGMENT REGISTERS ARE SET UP.

; ENABLE SINGLE-STEPPING WITH INSTRUCTION AT
;  LABEL ““NEXT’’ BY PASSING SEGMENT AND
OFFSET OF “*“NEXT" TO “‘SET_BREAK’' PROCEDURE

’

PUSH cs
LEA AX, CS: NEXT
PUSH AX
CALL FAR SET_BREAK
; ETC.
NEXT: IN AL, OFFFH ; BREAKPOINT SET HERE
; ETC.

MAIN_CODE ENDS

BREAK SEGMENT

SET__BREAK PROC FAR

: THIS PROCEDURE SAVES AN INSTRUCTION BYTE (WHOSE
; ADDRESS IS PASSED BY THE CALLER) AND WRITES

; AN INT 3 (BREAKPOINT) MACHINE INSTRUCTION

: AT THE TARGET ADDRESS.

TARGET EQU DWORD PTR (BP + 6]

Figure 2-86. Breakpoint Example
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+ SET UP BP FOR PARM ADDRESSING & SAVE REGISTERS
BP

PUSH
MOV BP, SP
PUSH DS
PUSH ES
PUSH AX
PUSH BX
; POINT DS/BX TO THE TARGET INSTRUCTION
LDS BX, TARGET
; POINT ES TO THE SAVE AREA
MOV AX, SAVE__SEG
MOV ES, AX
| SWAP THE TARGET INSTRUCTION FOR INT 3 (0CCH)
MOV AL, 0CCH
XCHG AL, DS: [BX]
; SAVE THE TARGET INSTRUCTION
MoV ES: SAVE_INSTR, AL
; RESTORE AND RETURN
POP BX
POP AX
POP ES
POP DS
POP BP
RET 4

SET_BREAK ENDP

BREAKPOINT PROC FAR

: THE CPU WILL ACTIVATE THIS PROCEDURE WHEN IT
EXECUTES THE INT 3INSTRUCTION SET BY THE
SET_BREAK PROCEDURE. THIS PROCEDURE
RESTORES THE SAVED INSTRUCTION BYTE TO ITS
ORIGINAL LOCATION AND BACKS UP THE
INSTRUCTION POINTER IMAGE ON THE STACK

SO THAT EXECUTION WILL RESUME WITH

THE RESTORED INSTRUCTION. IT THEN SETS

TF (THE TRAP FLAG) IN THE FLAG-IMAGE

ON THE STACK. THIS PUTS THE PROCESSOR

IN SINGLE-STEP MODE WHEN EXECUTION

'
i
[l
)
’
’
1
1
)
i
’

RESUMES.
FLAG_IMAGE EQU WORD PTR [BP + 6]
IP_IMAGE EQU WORD PTR [BP + 2]
NEXT__INSTR EQU DWORD PTR [BP + 2]
 SET UP BP TO ADDRESS STACK AND SAVE REGISTERS
PUSH BP
MOV BP, SP
PUSH DS
PUSH ES
PUSH AX
PUSH BX
; POINTES AT THE SAVE AREA
MoV AX, SAVE__SEG
MOV ES, AX
; GET THE SAVED BYTE
MOV AL, ES: SAVE__INSTR

Figure 2-86. Breakpoint Example (Cont’d.)
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; GET THE ADDRESS OF THE TARGET + 1

(INSTRUCTION FOLLOWING THE BREAKPOINT)

LDS BX, NEXT_INSTR
: BACK UP IP-IMAGE (IN BX) AND REPLACE ON STACK
DEC BX
MOV IP_IMAGE, BX
; RESTORE THE SAVED INSTRUCTION
MOV DS: [BX], AL
; SET TF ON STACK
AND FLAG__IMAGE, 0100H
: RESTORE EVERYTHING AND EXIT
POP BX
POP AX
POP ES
i poP DS
3 POP BP
IRET
BREAKPOINT ENDP
SINGLE STEP PROC FAR

TF ON THE STACK.
SINGLE STEP CODE GOES HERE.
; SINGLE_STEP ENDP
BREAK ENDS

END ;

ONCE SINGLE-STEP MODE HAS BEEN ENTERED,
THE CPU “TRAPS" TO THIS PROCEDURE
AFTER EVERY INSTRUCTION THAT IS NOT IN
AN INTERRUPT PROCEDURE. IN THE CASE
OF THIS EXAMPLE, THIS PROCEDURE WILL
BE EXECUTED IMMEDIATELY FOLLOWING THE
“IN AL, OFFFH’' INSTRUCTION (WHERE THE
BREAKPOINT WAS SET) AND AFTER EVERY
SUBSEQUENT INSTRUCTION. THE PROCEDURE
COULD “'TURN ITSELF OFF" BY CLEARING

Figure 2-86. Breakpoint Example (Cont’d.)

Interrupt Procedures

Figure 2-87 is a block diagram of a hypothetical
system that is used to illustrate three different
examples of interrupt handling: an external
(maskable) interrupt, an external non-maskable
interrupt and a software interrupt.

In this hypothetical system, an 8253 Program-
mable Interval Timer is used to generate a time
base. One of the three timers on the 8253 is pro-
grammed to repeatedly generate interrupt
requests at 50 millisecond intervals. The output
from this timer is tied to one of the eight interrupt
request lines of an 8259A Programmable Inter-
rupt Controller. The 82594, in turn, is connected
to the INTR line of an 8086 or 8088.

d—_—_—g
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ACLO iV BATTERY
BATTERY s POWERED
COLD START - RAM
o =
POWER DOWN
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RESET MPRO DECODER
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(PULSE) PES
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ADDRESS BUS s
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Figure 2-87. Interrupt Example Block Diagram

A power-down circuit is used in the system to
illustrate one application of the 8086/8088 NMI
(non-maskable interrupt) line. If the ac line
voltage drops below a certain threshold, the
power supply activates ACLO. The power-down
circuit then sends a power-fail interrupt (PFI)
pulse to the CPU’s NMI input. After 5
milliseconds, the power-down circuit activates
MPRO (memory protect) to disable reading
from and writing to the system’s battery-powered
RAM. This protects the RAM from fluctuations
that may occur when power is actually lost 7.5
milliseconds after the power failure is detected.
The system software must save all vital informa-
tion in the battery-powered RAM segment within
5 milliseconds of the activation of NMI.

When power returns, the power-down circuit
activates the system RESET line. Pressing the
“cold start’” switch also produces a system
RESET. The PFS (power fail status) line, which is

connected to the low-order bit of port EO, iden-
tifies the source of the RESET. If the bit is set, the
software executes a ‘“‘warm start’’ to restore the
information saved by the power-fail routine. If
the PFS bit is cleared, the software executes a
‘““cold start’’ from the beginning of the program.
In either case, the software writes a “‘one’’ to the
low-order bit of port E2. This line is connected to
the power-down circuit’s PFSR (power fail status
reset) signal and is used to enable the battery-
powered RAM segment.

A software interrupt is used to update a simple
real-time clock. This procedure is written in
PL/M-86, while the rest of the system is written in
ASM-86 to demonstrate the interrupt handling
capability of both languages. The system’s main
program simply initializes the system following
receipt of a RESET and then waits for an
interrupt. An example of this interrupt procedure
is given in figure 2-88.
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INT_POINTERS SEGMENT

;INTERRUPT POINTER TABLE, LOCATE AT OH, ROM-BASED
TYPE -0 DD ; DIVIDE-ERROR NOT SUPPLIED IN EXAMPLE.
TYPE_ 1 DD ? ,SINGLE STEP NOT SUPPLIED IN EXAMPLE.
TYPE_ 2 DD POWER__FAIL ; NON-MASKABLE INTERRUPT
TYPE_3 DD ? ; BREAKPOINT NOT SUPPLIED IN EXAMPLE.
TYPE_4 DD ? ; OVERFLOW NOT SUPPLIED IN EXAMPLE.

: SKIP RESERVED PART OF EXAMPLE

ORG 32*4
TYPE_32 DD ? ; 8259A IR0 - AVAILABLE
TYPE_33 DD ? ; 8259A IR1 - AVAILABLE
TYPE__34 pD ? ; 8259A IR2 - AVAILABLE
TYPE_35 bD TIMER_PULSE ; 8259A 1IR3
TYPE__36 DD ? ; 8259A IR4 - AVAILABLE
TYPE__37 DD ? ; 8259A 1R5 - AVAILABLE
TYPE__38 DD ? ;8259A IR6 - AVAILABLE
? ; 8259A IR7 - AVAILABLE

TYPE_39 DD

Y POINTER FOR TYPE 40 SUPPLIED BY PL/M-86 COMPILER
;NT,POINTERS ENDS

BATTERY SEGMENT

: THIS RAM SEGMENT IS BATTERY-POWERED. IT CONTAINS VITAL DATA
. THAT MUST BE MAINTAINED DURING POWER OUTAGES.

STACK__PTR DW ? ; SP SAVE AREA
STACK__SEG Dw ? ; SS SAVE AREA

: SPACE FOR OTHER VARIABLES COULD BE DEFINED HERE
BATTERY ENDS
DATA SEGMENT
: RAM SEGMENT THAT IS NOT BACKED UP BY BATTERY
N_PULSES DB 1DUP (0) ; # TIMER PULSES
; ETC.
DATA ENDS
STACK SEGMENT
; LOCATED IN BATTERY-POWERED RAM

DW 100 DUP (?) : THIS IS AN ARBITRARY STACKSIZE

STACK__TOP LABEL WORD . LABEL THE INITIALTOS
STACK ENDS
INTERRUPT__HANDLERS SEGMENT

; INTERRUPT PROCEDURES EXCEPT TYPE 40 (PL/M-86)
ASSUME: CS:INTERRUPT__HANDLERS,DS:DATA,SS:STACK,ES:BATTERY

POWER__FAIL PROC ; TYPE 2INTERRUPT
- POWER FAIL DETECT CIRCUIT ACTIVATES NMI LINE ON CPU IF POWER IS

;  ABOUT TO BE LOST. THIS PROCEDURE SAVES THE PROCESSOR STATE IN
;' RAM (ASSUMED TO BE POWERED BY AN AUXILIARY SOURCE) SO THATIT
;  CAN BE RESTORED BY A WARM START ROUTINE IF POWER RETURNS

Figure 2-88. Interrupt Procedures Example
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+IP, CS, AND FLAGS ARE ALREADY ON THE STACK.
;i SAVETHE OTHER REGISTERS.

PUSH AX
PUSH BX
PUSH CX
PUSH DX
PUSH SI
PUSH D!
PUSH BP
PUSH Ds
PUSH ES

; CRITICAL MEMORY VARIABLES COULD ALSO BE SAVED ON THE STACK AT THIS
;  POINT. ALTERNATIVELY, THEY COULD BE DEFINED IN THE “BATTERY"”
;  SEGMENT, WHERE THEY WILL AUTOMATICALLY BE PROTECTED IF MAIN POWER

; ISLOST.
 SAVE SP AND SS IN FIXED LOCATIONS THAT ARE KNOWN BY WARM START ROUTINE.
MOV AX,BATTERY
MOV ES,AX
Mov ES:STACK _PTR,SP
MoV ES:STACK__SEG,SS
; STOP GRACEFULLY
HLT
POWER__FAIL ENDP
TIMER__PULSE PROC ; TYPE 35INTERRUPT

; THIS PROCEDURE HANDLES THE 50MS INTERRUPTS GENERATED BY THE 8253.
; ITCOUNTS THE INTERRUPTS AND ACTIVATES THE TYPE 40 INTERRUPT

;  PROCEDURE ONCE PER SECOND.

; DS IS ASSUMED TO BE POINTING TO THE DATA SEGMENT

; THE 82531S RUNNING FREE, AND AUTOMATICALLY LOWERS ITS INTERRUPT
;  REQUEST. IF A DEVICE REQUIRED ACKNOWLEDGEMENT, THE CODE MIGHT GO HERE.

; NOW PERFORM PROCESSING THAT MUST NOT BE INTERRUPTED (EXCEPT FOR NMI).

INC N_PULSES

 ENABLE HIGHER-PRIORITY INTERRUPTS AND DO LESS CRITICAL PROCESSING
ST
CMP N__PULSES,200 ;1 SECOND PASSED?
JBE DONE ; NO, GOON.
MoV N_PULSES,0 ; YES, RESET COUNT.
INT 40 ; UPDATE CLOCK

; SEND NON-SPECIFIC END-OF-INTERRUPT COMMAND TO 8259A, ENABLING EQUAL
i ORLOWER PRIORITY INTERRUPTS.

DONE: MOV AL,020H ; EOICOMMAND
ouT 0COH, AL ; 8258A PORT
IRET

TIMER _PULSE ENDP

INTERRUPT_HANDLERS ENDS

CODE SEGMENT

; THIS SEGMENT WOULD NORMALLY RESIDE IN ROM.

ASSUME CS:CODE,DS:DATA,SS:STACK,ES:NOTHING

Figure 2-88. Interrupt Procedures Example (Cont’d.)
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INIT

PROC

NEAR

; THIS PROCEDURE IS CALLED FOR BOTH WARM AND COLD STARTS TO INITIALIZE
THE 8253 AND THE 8259A. THIS ROUTINE DOES NOT USE STACK, DATA, OR
EXTRA SEGMENTS, AS THEY ARE NOT SET PREDICTABLY DURING A WARM START.
; INTERRUPTS ARE DISABLED BY VIRTUE OF THE SYSTEM RESET.

; INITIALIZE 8253 COUNTER 1- OTHER COUNTERS NOT USED.
; CLKINPUT TO COUNTER IS ASSUMED TO BE 1.23 MHZ.

LO50MS
HI5S0MS
CONTROL
COUNT_1
MODE?2

EQU
EQU
EQU
EQU
EQU

MoV
MOV
ouT
MoV
MOV
ouT
MOV
ouT

000H
OFOH
0D6H
0D2H
011101008

DX,CONTROL

AL,MODE2
DX,AL

DX,COUNT_

AL,LO50MS
DX,AL
AL, HI50MS
DX,AL

1

;COUNT VALUEIS
;61440 DECIMAL.

; CONTROL PORT ADDRESS
; COUNTER 1 ADDRESS

; MODE 2, BINARY

; LOAD CONTROL BYTE

; LOAD 50MS DOWNCOUNT

; COUNTER NOW RUNNING, INTERRUPTS STILL DISABLED.

; INITIALIZE 8259A TO: SINGLE INTERRUPT CONTROLLER, EDGE-TRIGGERED,
INTERRUPT TYPES 32-40 (DECIMAL) TO BE SENT TO CPU FOR INTERRUPT

:  REQUESTS 0-7 RESPECTIVELY, 8086 MODE, NON-AUTOMATIC END-OF-INTERRUPT.

; MASKOFF UNUSEDINTERRUPT REQUEST LINES.

ICW1
ICW2
ICW4
Oocwi1
PORT__A
PORT_B

EQU
EQU
EQU
EQU
EQU
EQU

MOV
MOV
ouT
MoV
MOV
ouT
MOV
ouTt
MoV
ouT

000100118
001000008
000000018
11110111B
0COH
0C2H

DX,PORT_A
AL, ICW1
DX,AL
DX,PORT__B
AL,ICW2
DX,AL

AL, ICW4
DX,AL
AL,0CW1
DX,AL

; EDGE-TRIGGERED, SINGLE 8259A, {CW4 REQUIRED.
; TYPE 20H, 32 - 40D

; 8086 MODE, NORMAL EOI

; MASK ALL BUTIR3

; ICW1 WRITTEN HERE

; OTHER ICW'S WRITTEN HERE

s WRITE1ST ICW

; WRITE 2ND ICW

; WRITE 4TH ICW

; MASK UNUSED IR’S

; INITIALIZATION COMPLETE, INTERRUF”TS STILL DISABLED

INIT

USER_PGM:

RET

ENDP

. “REAL’ CODE WOULD GO HERE. THE EXAMPLE EXECUTES AN ENDLESS LOOP

; UNTIL AN INTERRUPT OCCURS.

: EXECUTION STARTS HERE WHEN CPU IS RESET.
EQU CEOH

JMP

POWER__FAIL__STATUS

ENABLE__RAM

USER_PGM

EQU 0E2H

; PORT ADDRESS
; PORT ADDRESS

Figure 2-88. Interrupt Procedures Example (Cont’d.)
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y ENABLE BATTERY-POWERED RAM SEGMENT

START: MoV AL,001H
ouT ENABLE_RAM,AL
; DETERMINE WARM OR COLD START
IN AL,POWER_FAIL__STATUS
RCR AL,1 ; ISOLATE LOW BIT
Je WARM__START

COLD_START:

s INITIALIZE SEGMENT REGISTERS AND STACK POINTER.
ASSUME CS:CODE,DS:CATA,SS:STACK,ES:NOTHING
; RESET TAKES CARE OF CS AND IP.

MOV AX,DATA

MOV DS,AX

MoV AX,STACK

MoV 8§,AX

MOV SP,OFFSET STACK__TOP

; INITIALIZE 8253 AND 8259A.
CALL INIT

; ENABLE INTERRUPTS
STI

; START MAIN PROCESSING
JMP USER_PGM

WARM__START:
; INITIALIZE 8253 AND 8259A.
CALL INIT

; RESTORE SYSTEM TO STATE AT THE TIME POWER FAILED
; MAKE BATTERY SEGMENT ADDRESSABLE
MOV AX,BATTERY
MOV DX,AX
i VARIABLES SAVED IN THE “BATTERY’' SEGMENT WOULD BE MOVED
i BACKTO UNPROTECTED RAM NOW. SEGMENT REGISTERS AND
i ""ASSUME" DIRECTIVES WOULD HAVE TO BE WRITTEN TO GAIN
; ADDRESSABILITY.

; RESTORE THE OLD STACK
MOV 8S,DS:STACK_SEG
MOV SP,DS:STACK_.PTR

; RESTORE THE OTHER REGISTERS

POP  ES
POP DS
POP  BP
POP DI
POP S
POP DX
POP  CX
POP  BX
POP  AX

; RESUME THE ROUTINE THAT WAS EXECUTING WHEN NM! WAS ACTIVATED.
»  LE.,POPCS,IP, & FLAGS, EFFECTIVELY “RETURNING' FROM THE
; NMIPROCEDURE.
IRET
CODE ENDS

; TERMINATE ASSEMBLY AND MARK BEGINNING OF THE PROGRAM.
END START

Figure 2-88. Interrupt Procedures Example (Cont’d.)
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TYPES$40: DO;
DECLARE (HOUR, MIN, SEC) BYTE PUBLIC;
UPDATE$TOD: PROCEDURE INTERRUPT 40;
/*THE PROCESSOR ACTIVATES THIS PROCEDURE

*TO HANDLE THE SOFTWARE INTERRUPT
*GENERATED EVERY SECOND BY THE TYPE 35
*EXTERNAL INTERRUPT PROCEDURE. THIS
*PROCEDURE UPDATES A REAL-TIME CLOCK.
*IT DOES NOT PRETEND TO BE “REALISTIC”
*AS THERE IS NO WAY TO SET THE CLOCK.*/

SEC=SEC + 1,
IF SEC = 60 THEN DO;

SEC=0;

MIN =MIN + 1;

IF MIN = 60 THEN DO;
MIN = 0;
HOUR=HOUR + 1;
IF HOUR =24 THEN DO;

HOUR = 0;
END;
END;

END;

END UPDATESTOD;
END;

Figure 2-88. Interrupt Procedures Example (Cont’d.)

String Operations

Figure 2-89 illustrates typical use of string instruc-
tions and repeat prefixes. The XLAT instruction
‘ also is demonstrated. The first example simply

moves 80 words of a string using MOVS. Then
two byte strings are compared to find the
alphabetically lower string, as might be done in a
sort. Next a string is scanned from right to left

(the index register is auto-decremented) to find
the last period (‘*.”’) in the string. Finally a byte
string of EBCDIC characters is translated to
ASCII. The translation is stopped at the end of
the string or when a carriage return character is
encountered, whichever occurs first. This is an
example of using the string primitives in combina-
tion with other instructions to build up more com-
plex string processing operations.

; ALPHA SEGMENT
! : THIS IS THE DATA THE STRING INSTRUCTIONS WILL USE
OUTPUT DW 100 DUP (?)
INPUT DW 100 DUP (?)
NAME__ 1 DB ‘JONES, JONA’
NAME__2 DB ‘JONES, JOHN’
SENTENCE DB 80 DUP (?)
EBCDIC_CHARS DB 80 DUP (?)
ASCIi_CHARS DB#80 DUP (?)
CONV_TAB DB 64 DUP(0H) ; EBCDIC TO ASCI

Figure 2-89. String Examples
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s ASCIINULLS ARE SUBSTITUTED FOR “UNPRINTABLE" CHARS
D

ALPHA
STACK
STACK__BASE
STACK

CODE
BEGIN:

B1 20H
DB9 DUP (0H)
DB7 L+, O, e
DB9 DUP (0H)
DB 8 Ty e
DB 8 DUP (0H)
DB6 %, s
DB9 DUP (0H)
DB 17 ‘ ’,‘:’,‘#’,‘@’,“",‘=',‘”',
OH, 'a’, ‘b, '¢’, “d’, ‘e’, 9%,
DB7 DUP (0H) ’
DB9 Bkl M o p g,
DB 7 DUP (0H)
DB LS U,V W, Xy
DB 22 DUP (0H)
DB 10 ‘ ’,‘A‘,‘B’,‘C’,‘D’,‘E’,‘F’,‘G’,‘H’,‘I'
DB#6 DUP (0H)
DB 10 AT O S Vi ‘N, ‘0", ‘P, ‘Q, ‘R
DB#6 DUP (0H)
DB 10 ", 0H, 8, T Y, VLWL Xy 2
DB6 DUP (0H)
DB 10 00,17, 8 g, ‘5’8", 7", 8", ‘9
DB#6 DUP (0H)
ENDS
SEGMENT
DW 100 DUP (?) ; THIS IS AN ARBITRARY STACK SIZE
; FORILLUSTRATION ONLY.
LABEL WORD VINITIAL TOS
ENDS
SEGMENT

; SET UP SEGMENT REGISTERS. NOTICE THAT
 ES & DS POINT TO THE SAME SEGMENT, MEANING
 THAT THE CURRENT EXTRA & DATA
 SEGMENTS FULLY OVERLAP. THIS ALLOWS
s ANY STRING IN ““ALPHA"’ TO BE USED
i AS ASOURCEOR A DESTINATION.
ASSUME CS: CODE, SS: STACK,
DS: ALPHA, ES: ALPHA

MOV AX, STACK

MOV 88, AX

MOV SP, OFFSET STACK__BASE  INITIAL TOS
MOV AX, ALPHA

MOV DS, AX

MOV ES, AX

; MOVE THE FIRST 80 WORDS OF “INPUT” TO
; THE LAST 80 WORDS OF “OUTPUT"",

LEA Sl INPUT ; INITIALIZE
LEA DI, OUTPUT + 20 ;i INDEX REGISTERS

Figure 2-89. String Examples (Cont’d.)
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MOV CX, 80 ; REPETITION COUNT
CLD ; AUTO-INCREMENT
REP MOVS OUTPUT, INPUT
; FIND THE ALPHABETICALLY LOWER OF 2 NAMES.
MoV SI, OFFSET NAME__1 ; ALTERNATIVE
MoV D}, OFFSETNAME_2 ; TOLEA
MoV CX, SIZENAME__2 ; CHAR. COUNT
CLD ; AUTO-INCREMENT
REPE CMPS NAME_2, NAME 1 “WHILE EQUAL”
JB NAME_2 LOW
NAME _1__LOW: ; NOT IN THIS EXAMPLE
NAME_ _2_LOW: ; CONTROL COMES HERE IN THIS EXAMPLE.

; DIPOINTS TO BYTE (‘H’) THAT
; COMPARED UNEQUAL.

; FIND THE LAST PERIOD (*.’) IN A TEXT STRING.

MOV DI, OFFSET SENTENCE +
& LENGTH SENTENCE ; START ATEND

MOV CX, SIZE SENTENCE

STD ; AUTO-DECREMENT

MOV AL, ; SEARCH ARGUMENT

REPNE SCAS SENTENCE ; “WHILENOT =~

JCXZ NO__PERIOD ; IF CX=0, NO PERIOD FOUND
PERIOD: ; IF CONTROL COMES HERE THEN

; DIPOINTS TO LAST PERIOD IN SENTENCE.
NO__PERIOD: ; ETC.

; TRANSLATE A STRING OF EBCDIC CHARAGCTERS
; TO ASCIHl, STOPPING IF A CARRIAGE RETURN
; (ODH ASCIl) IS ENCOUNTERED.

MOV BX, OFFSET CONV__TAB ; POINT TO TRANSLATE TABLE
MOV S|, OFFSET EBCDIC__CHARS ; INITIALIZE
MOV D!, OFFSET ASCII__CHARS ; INDEX REGISTERS
MOV CX, SIZE ASCII_CHARS ; ANDCOUNTER
CLD ; AUTO-INCREMENT

NEXT: LODS EBCDIC__CHARS ; NEXT EBCDIC CHAR IN AL
XLAT CONV_TAB ; TRANSLATE TO ASCII
STOS ASCII__CHARS ; STORE FROM AL
TEST AL, O0DH ; IS IT CARRIAGE RETURN?
LOOPNE  NEXT ; NO, CONTINUE WHILE CX NOT 0
JE . CR_FOUND ; YES, JUMP

; CONTROL COMES HERE IF ALL CHARACTERS
; HAVE BEEN TRANSLATED BUT NO
CARRIAGE RETURN IS PRESENT.

)

; ETC.

CR_FOUND:
; DI-1 POINTS TO THE CARRIAGE RETURN
; IN ASCil_CHARS.

CODE ENDS

END

Figure 2-89. String Examples (Cont’d.)

Mnemonics © Intel, 1978

2-127/2-128




CHAPTER 4
HARDWARE REFERENCE INFORMATION

4.1 Introduction

This chapter presents specific hardware informa-
tion regarding the operation and functions of the
8086 family processors: the 8086 and 8088 Central
Processing Units (CPUs) and the 8089 1/0 Pro-
cessor (IOP). Abbreviated descriptions of the
8086 family support circuits and their circuit
functions appear where appropriate within the
processor descriptions. For more specific
information on any of the 8086 family support
circuits, refer to the corresponding data sheets in
Appendix B.

4.2 8086 and 8088 CPUs

The 8086 and 8088 CPUs are characterized by a
20-bit (1 megabyte) address bus and an identical
instruction/function format, and differ essential-
ly from one another by their respective data bus
widths (the 8086 uses a 16-bit data bus, and the
8088 uses an 8-bit data bus). Except where
expressly noted, the ensuing descriptions are
applicable to both CPUs.

Both the 8086 and 8088 feature a combined or
“‘time-multiplexed”” address and data bus that
permits a number of the pins to serve dual func-
tions and consequently allows the complete CPU
to be incorporated into a single, 40-pin package.
As explained later in this chapter, a number of the
CPU’s control pins are defined according to the
strapping of a single input pin (the MN/MX pin).
In the ““minimum mode,”’ the CPU is configured
for small, single-processor systems, and the CPU
itself provides all control signals. In the ““max-
imum mode,”” an Intel® 8288 Bus Controller,
rather than the CPU, provides the control signal
outputs and allows a number of the pins pre-
viously delegated to these control functions to be
redefined in order to support multiprocessing
applications. Figures 4-1 and 4-2 describe the pin
assignments and signal definitions for the 8086
and 8088, respectively.

CPU Architecture

As shown in figures 4-3 and 4-4, both CPUs
incorporate two separate processing units; the
Execution Unit or ““EU”’ and the Bus Interface

Unit or “‘BIU.” The EU for each processor is
identical. The BIU for the 8086 incorporates a 16-
bit data bus and a 6-byte instruction queue
whereas the 8088 incorporates an 8-bit data bus
and a 4-byte instruction queue.

The EU is responsible for the execution of all
instructions, for providing data and addresses to
the BIU, and for manipulating the general
registers and the flag register. Except for a few
control pins, the EU is completely isolated from
the “‘outside world.”” The BIU is responsible for
executing all external bus cycles and consists of
the segment and communications registers, the
instruction pointer and the instruction object
code queue. The BIU combines segment and off-
set values in its dedicated adder to derive 20-bit
addresses, transfers data to and from the EU on
the ALU data bus and loads or ‘‘prefetches”
instructions into the queue from which they are
fetched by the EU.

The EU, when it is ready to execute an instruc-
tion, fetches the instruction object code byte from
the BIU’s instruction queue and then executes the
instruction. If the queue is empty when the EU is
ready to fetch an instruction byte, the EU waits
for the instruction byte to be fetched. In the
course of instruction execution, if a memory loca-
tion or I/O port must be accessed, the EU
requests the BIU to perform the required bus
cycle.

The two processing sections of the CPU operate
independently. In the 8086 CPU, when two or
more bytes of the 6-byte instruction queue are
empty and the EU does not require the BIU to
perform a bus cycle, the BIU executes instruction
fetch cycles to refill the queue. In the 8088 CPU,
when one byte of the 4-byte instruction queue is
empty, the BIU executes an instruction fetch
cycle. Note that the 8086 CPU, since it has a 16-
bit data bus, can access two instruction object
code bytes in a single bus cycle, while the 8088
CPU, since it has an 8-bit data bus, accesses one
instruction object code byte per bus cycle. If the
EU issues a request for bus access while the BIU is
in the process of an instruction fetch bus cycle,
the BIU completes the cycle before honoring the
EU’s request.
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Common Signals

Name Function Type
Bidirectional,
AD15-ADO Address/Data Bus 3.State
A19/S6- Qutput,
A16/S3 Address/Status 3-State
SO Bus High Enable/ Qutput,
BHE/S7 Status 3-State
i Minimum/Maximum
MN/MX Mode Control Input
=0 Output,
RD Read Control 3-State
TEST Wait On Test Control Input
READY Wait State Control Input
RESET System Reset Input
Non-Maskable
NMI Interrupt Request Input
INTR Interrupt Request Input
CLK System Clock Input
Vce +5V Input
GND Ground

Minimum Mode Signals (MN/MX =V¢c)

Name Function Type
HOLD Hold Request Input
HLDA Hold Acknowledge Output
WR Write Control g_ustt%l;te'
M/10 Memory/IO Control 8.%&‘{2’
= Data Transmit/ Output,
DT/R Receive 3-State
e Qutput,
EN Data Enable 3-State

Address Latch

ALE Enable Output

INTA Interrupt Acknowledge Output

Maximum Mode Signals (MN/MX = GND)

Name Function Type
=Te Request/Grant Bus " .
RQ/GT1,0 Access Control Bidirectional

e, Bus Priority Lock OQutput,

LOCK Control 3-State

§2-30 Bus Cycle Status g_ustg:é’
QS1, QS0 Instruction Queue Output

Status

aND [ U a0} ] vee
ap1a []2 391 ] AD15
ap13 []3 38[] at6/s3
ap12 [ 37| ] A17/s4
api1 []s 36| ] Atesss
ap10 [ ]s 351 a19/s6
aps [}7 341 BHE/s7
Aps []s 33| mn/mx
ap7 []e 32|] ”B
aps [J10 %033 31 ] HoLb  (RG/GTO)
aps |11 sof ] HDA  (RG/ETT)
apa ]2 29 ] WR (LOCK)
AD3 [J13 28] m/io (53)
ap2 [J14a 27[] oT/R &N
AD1 [Jis 26 ] DEN (S0)
ADO I: 186 25 :I ALE (Qs0)
i (17 2a]7] iNTA (Qs1)
INTR []18 23] TEST
ck 19 22[ ] READY
GND [J20 21[ ] RESET

MAXIMUM MODE PIN FUNCTIONS (e.g.,LOCK)
ARE SHOWN IN PARENTHESES

Figure 4-1. 8086 Pin Definitions
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Common Signals

Name Function Type
Bidirectional,
AD7-ADO Address/Data Bus 3-State
Output,
A15-A8 Address Bus 3-State
A19/S6- Output,
A16/S3 Address/Status 3.State
VI Minimum/Maximum
MN/MX Mode Control Input
25 Output,
RD Read Control 3-State im \/ sl Jvee
TEST Wait On Test Control Input a2 sl g s
READY Wait State Control Input ] ) avesss
RESET System Reset Input s %
NMI Non-Maskable Input a2[}a 37] A17/s4
Interrupt Request an]s 36 [ atasss
INTR Interrupt Request tnput
CLK System Clock Input a[]e 35 arerse
Voo 15V Input as[l7 3a| ] sso (HIGH)
GND Ground as[]s 33[7] mn/MX
ap7[]e s2[JR”D
Minimum Mode Signals (MN/MX =V¢c) w06 0 %033 swos  @a/aTe
Name Function Type aps [ 11 30| HLDA (FG/GTY)
HOLD Hold Request Input apa[J12 29[ ] WR (LOCK)
H_LEA Hold Acknowledge 83:53: ava[]n 28] 10/W &%)
WR Write Control 3.State apz[]14 [ or/R &9
10/M I0/Memory Control Quiput. a1 []1s 2[10eN &)
DT/R Data Transmit/ Output, aoo [J1s 2511 aLe (aso)
Receive 3-State Nmi 17 24 ] INTA (@s1)
DEN Data Enable g-usttpattne’ INTR[ J18 23[ ] TEST
22 rReaby
ALE Add;sas.b:_(aatch Output ck e [
—_ GND[] 20 21[] RESET
INTA Interrupt Acknowledge Output
Output,
SS0 S0 Status 3-State
AR PR REEIg s o500
Maximum Mode Signals (MN/MX = GND)
Name Function Type
AT R Request/Grant Bus " .
RQ/GT1, 0 Access Control Bidirectional
TRAR Bus Priority Lock Output,
LOCK Control 3-State
S5_8n8 Output,
$2-50 Bus Cycle Status 3-State
Instruction Queue
QS1, QS0 Status Output

Figure 4-2. 8088 Pin Definitions
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ADDRESS BUS

120 BITS}

AH AL |
8H BL i
cH oL
~
OH oL
GENERAL
REGISTERS s 4 DATA BUS )|
AICEE
;1
-
Di
I E— cs
St
s
} S5S
£s
‘ Y 1P
4 INTERNAL
| COMMUNICATIONS —
-~ ALU DATA 8US ~ REGISTERS BUS 5086
CONTROL H Bos
N PN - s {16 BITS) l N LOGIC
~ +
r TEMPORARY REGISTERS --—a \
b b 4 l
INSTRUCTION
QUEUE
fe——o
EU 4 08Us | . il o 14
u CONTROL 2 5
A SvsTEm |V @ BITS) Al
[
o I
[ [
L Lt
r FLAGS |~—
EXECUTION UNIT | BUS INTERFACE UNIT
(€ ©I1)
Figure 4-3. 8086 Elementary Block Diagram
’ ADDRESS BUS
{20 BITS)
AH AL ‘
8H L
CcH oL
N
DH oL
GENERAL I
REGISTEAS e 4 OATABUS )|
| N @erss F
BF
-
DI
cs
St
DS
i ss
ES
I N 1P
|4 INTERNAL
I— COMMUNICATIONS —
~ ALU DATA BUS - REGISTERS Bus
CONTROL H gone
- E - 16 BITS) ‘ - LOGIC
~ b
TEMPORARY REGISTERS }4—4 ‘
h 4 h 4 ‘
INSTRUCTION
QUEUE
f——4
EU 4 cBus ! 4
ALY $— CONTROL 1234
SYSTEM [V @BITS) Al
[
[ |
[ [
11 L |
FLAGS 4]——
EXECUTION UNIT } BUS INTERFACE UNIT
(EV) ®IU)

Figure 4-4. 8088 Elementary Block Diagram
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Bus Operation

To explain the operation of the time-multiplexed
bus, the BIU’s bus cycle must be examined.
Essentially, a bus cycle is an asynchronous event
in which the address of an 1/O peripheral or
memory location is presented, followed by either
a read control signal (to capture or ‘‘read’’ the
data from the addressed device) or a write control
signal and the associated data (to transmit or
“write”” the data to the addressed device). The
selected device (memory or I[/O peripheral)
accepts the data on the bus during a write cycle or
places the requested data on the bus during a read
cycle. On termination of the cycle, the device
latches the data written or removes the data read.

As shown in figure 4-5, all bus cycles consist of a
minimum of four clock cycles or ‘“T-states’’ iden-
tified as Ty, Ty, T3 and T4. The CPU places the
address of the memory location or 1/0 device on
the bus during state T. During a write bus cycle,
the CPU places the data on the bus from state T,
until state T4. During a read bus cycle, the CPU
accepts the data present on the bus in states Ty

and T4, and the multiplexed address/data bus is
floated in state T5 to allow the CPU to change
from the write mode (output address) to the read
mode (input data).

It is important to note that the BIU executes a bus
cycle only when a bus cycle is requested by the EU
as part of instruction execution or when it must
fill the instruction queue. Consequently, clock
periods in which there is no BIU activity can
occur between bus cycles. These inactive clock
periods are referred to as idle states (Tp). While
idle clock states result from several conditions
(e.g., bus access granted to a coprocessor), as an
example, consider the case of the execution of a
“long’’ instruction. In the following example, an
8-bit register multiply (MUL) instruction (which
requires between 70 and 77 clock cycles) is exe-
cuted by the 8086. Assuming that the multiplica-
tion routine is entered as a result of a program
jump (which causes the instruction queue to be
reinitialized when the jump is executed) and, as
will be explained later in this chapter, that the
object code bytes are aligned on even-byte bound-
aries, the BIU’s bus cycle sequence would appear
as shown in figure 4-6.

BUS CYCLE —

| BUS CYCLE |
} T I T2 | T3 Ta

T2 | T T4

AYAVAWAWAWEWAWRNRS

x ADDRESSXBUFFERX DATA

XADDRESSX BUFFE;X DATA ‘

Figure 4-5. Typical BIU Bus Cycles

| }

| BUS CYCLE | BUS CYCLE

I\I\I\I\I
N W
2 3 4 7s 6

EU AS A RESULT OF THE JMP
ACTIVITY INSTRUCTION, TH COMPLETES INSTRUCTION EXECUTION IN 70 TO 77 CLOCK CYCLES.
REINITIALIZES THE QUEUE
RING EXECUTION OF
UMP.
BIU SINCE THE QUEUE IS BIU FETCHES TWO OBJECT
ACTIVITY EMPTY, THE BIU FETCHES |CODE BYTES. QUEUE OBJECT CODE BYTE:

TWO OBJECT CODE BYTES |AGAIN CONTAINS FOUR
{THE MUL INSTRUCTION) IN [ BYTES.

ONE BUS CYCLE AND

COMPLETES A SECOND

BUS CYCLE. THE QUEVE

CONTAINS FOUR BYTES.

E | IDLE CLOCK CYCLES BUS CYCLE
T4 | T2 1 T3 ‘ Ta ‘ T4 1 T2 1 T3 ’ T4 Ty } T ‘ T 1 ‘ T i TI T [ T2 ’ T3 I T4
[VAVAVAVAVAVAVAVAVAVAVAN |

EU FETCHES THE FIRST TWO BYTES FROM THE QUEUE (THE MUL INSTRUCTION) AND

BIU FETCHES TWO MORE BIU IS IDLE FOR 62-69 CLOCK CYCLES
QUEUE 1S NOW FULL isix
ES).

s | s 10

EU FETCHES THE NEXT |
OBJECT CODE BYTES i

FROM THE QUEUE AND

BEGINS EXECUTING THE

NEXT INSTRUCTION

BIU FETCHES TWO OBJECT
WHILE THE EU COMPLETES EXECUTION OF |CODE BYTES TO REFILL

THE QUEUE. THE QUEUE IS
AGAIN FULL. ‘

THE MUL INSTRUCTION.

Figure 4-6. BIU Idle States
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In addition to the idle state previously described,
both the 8086 and 8088 CPUs include a
mechanism for inserting additional T-states in the
bus cycle to compensate for devices (memory or
[/0) that cannot transfer data at the maximum
rate. These extra T-states are called wait states
(Tyw) and, when required, are inserted between
states T3 and T4. During a wait state, the data on
the bus remains unchanged. When the device can
complete the transfer (present or accept the data),
it signals the CPU to exit the wait state and to
enter state Ty.

As shown in the following timing diagrams, the
actual bus cycle timing differs between a read and
a write bus cycle and varies between the two
CPUs. Note that the timing diagrams illustrated
are for the minimum mode. (Maximum mode
timing is described later in this chapter.)

Referring to figures 4-7 and 4-8, the 8086 CPU
places a 20-bit address on the multiplexed
address/data bus during state Ty. During state
Ty, the CPU removes the address from the bus
and either three-states (floats) the lower 16
address/data lines in preparation for a read cycle
(figure 4-7) or places write data on these lines

(figure 4-8). At this time, bus cycle status is
available on the address/status lines. During state
T3, bus cycle status is maintained on the
address/status lines and either the write data is
maintained or read data is sampled on the lower
16 address/data lines. The bus cycle is terminated
in state T4 (control lines are disabled and the
addressed device deselects from the bus).

The 8088 CPU, like the 8086, places a 20-bit
address on the multiplexed address/data bus dur-
ing state Ty as shown in figures 4-9 and 4-10.
Unlike the 8086, the 8088 maintains the address
on the address lines (A15-Ag) for the entire bus
cycle. During state Ty, the CPU removes the
address on the address/data lines (AD7-AD0) and
either floats these lines in preparation for a read
cycle (figure 4-9) or places write data on these
lines (figure 4-10). At this time, bus cycle status is
available on the address/status lines. During state
T3, bus cycle status is maintained on the
address/status lines and either write data is main-
tained or read data is sampled on the
address/data lines. The bus cycle is terminated in
state. T4 (control lines are disabled and the
addressed device deselects from the bus).

ONE BUS CYCLE

o] 1' [~

—

1 T3 ‘ T4

A19/S6- A16/S3
AND BHE/S7

HADDRES& BHE OUT

-

STATUS OUT

AD15-ADg ADDRESS OUT

ALE / \

DATA IN

LOW =1/0 READ, HIGH = MEMORY READ

H

y

Figure 4-7. 8086 Read Bus Cycle
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ONE BUS CYCLE "

A19/Sp-A16/S3

aND BHE/SY ADDRESS, BHE OUT

><

STATUS OUT

AD15-ADg *>-—<

ADDRESS OUT *

DATA OUT

LOW =1/0 WRITE, HIGH = MEMORY WRITE

DV/R 7

&

Figure 4-8. 8086 Write Bus Cycle

A majority of system memories and peripherals
require a stable address for the duration of the
bus cycle (certain MCS-85™ components can
operate with a multiplexed address/data bus).
During state Ty of every bus cycle, the ALE
(Address Latch Enable) control signal is output
(either directly from the microprocessor in the
minimum mode or indirectly through an 8288 Bus
Controller in the maximum mode) to permit the
address to be latched (the address is valid on the
trailing-edge of ALE). This ‘“demultiplexing’® of
the address/data bus can be done remotely at
each device in the system or locally at the CPU
and distributed throughout the system as a
separate address bus. For optimum system per-
formance and for compatibility with multi-
processor systems” or with the Intel Multibus
architecture, the locally-demultiplexed address
bus is recommended. To latch the address, Intel®
8282 (non-inverting) or 8283 (inverting) Octal
Latches are offered as part of the 8086 product
family and are implemented as shown in figure
4-11. These circuits, in addition to providing the
desired latch function, provide increased current
drive capability and capacitive load immunity.

The data bus cannot be demultiplexed due to the
timing differences between read and write cycles
and the various read response times among
peripherals and memories. Consequently, the
multiplexed data bus either can be buffered or
used directly. When memory and 1/0 peripherals
are connected directly to an unbuffered bus, it is
essential that during a read cycle, a device is
prevented from corrupting the address present on
the bus during state Ty. To ensure that the
address is not corrupted, a device’s output drivers
should be enabled by an output enable function
(rather than the device’s chip select function) con-
trolled by the CPU’s read signal. (The MCS-86
family processors guarantee that the read signal
will not be valid until after the address has been
latched by ALE.) Many Intel peripheral,
ROM/EPROM, and RAM circuits provide an
output enable function to allow interface to an
unbuffered multiplexed address/data bus. The
alternative of using a buffered data bus should be
considered since it simplifies the interfacing
requirements and offers both increased drive cur-
rent capability and capacitive load immunity. The
Intel™ 8286 (non-inverting) and 8287 (inverting)

4-7
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ONE BUS CYCLE

l T2 ‘ T3

N

CLK ’

e U

A19/56- A16/S3 ADDRESS OUT X STATUS OUT

A15-Ag ADDRESS OUT

I

AD7-ADo ADDRESS OUT DATA IN

ALE -—[—\

-

10/# LOW = MEMORY READ, HIGH = /O READ X
o \ /
- ———
DT/IR 1 1

/
DEN i ~

Figure 4-9. 8088 Read Bus Cycle

Tt | T2 | T3

“ ONE BUS CYCLE

] [/

A19iSg- A16/S3

ADDRESS OUT N STATUS QUT

A15-Ag H ADDRESS QUT

AD7-ADg ADDRESS OUT X DATA OUT

ALE 4/—\
10/M X LOW =MEMORY WRITE, HIGH = /10 WRITE ‘
WR \ ’
—_——— ————
DT/R 1 \
—_——d [
T T
DE ]
————

Figure 4-10. 8088 Write Bus Cycle
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Octal Bus Transceivers, shown in figure 4-12, are
expressly designed to buffer the data bus. These
transceivers use the CPU’s DEN (Data Enable)
and DT/R (Data Transmit/Receive) control
signals to enable and control the direction of data
on the bus. These signals provide the proper tim-
ing relationship to guarantee isolation of the
address that is present on the multiplexed bus
during state T}.

Except where noted, all subsequent discussions
and examples in this chapter assume a locally
demultiplexed address bus and a buffered data
bus. The resultant address and data buses from
the address latches and data transceivers to the
memory and 1/0 devices will be referred to collec-
tively as the ¢‘system’’ bus.

r*l]

vee }_I

MN/MX w

CLK

8284 WR

RES _CLOCK —»{ READY 10/
GENERATOR

L[ RESET

8088
CPU ALE

ADDRESS ) ADDRESS BUS
A19-A1g —
ADDRESS 1 l l i l l
~
At5-Ag
|4 SEL RD WR
4 ADDRESS/DATA p
ap7-ano [ » MEMORY 110 PERIPHERAL
DATA DATA
- -
~ ~

Figure 4-11. Minimum Mode 8088 Demultiplexed Address Bus

Dj
vce I
MN/MX
] cLK D
WES_ clog o
K [——| READY
GENERATOR Mg
f~~—] RESET
BAE
= e A sTe B T
ADDRESS ADDRESS BUS
A19-A16 ﬁ 8282 ——
OR
5HE 8283 J
__ AD1s-ADg ADDRESS!DATA J
QLR ] b 4
= MEMORY 1O PERIPHERAL
| —| DATA DATA
- ~
> DATA BUS -
8286
T OR
8287

o

Figure 4-12. Minimum Mode 8086 Buffered Data Bus
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Clock Circuit

To establish the bus cycle time, the CPU requires
an external clock signal. As an integral part of the
8086 family, Intel offers the 8284 Clock
Generator/Driver for this purpose. In addition to
providing the primary (system) clock signal, this
device provides both the hardware reset interface
and the mechanism for the insertion of wait states
in the bus cycle.

The clock generator/driver requires an external
series-resonant crystal input (or external frequen-
cy source) at three times the required system clock
frequency (i.e., to operate the CPU at § MHz, a
15 MHz fundamental frequency source is
required). The divided-by-three output (CLK)
from the 8284 is routed directly to the CPU’s
CLK input. The clock generator/driver provides a
second clock output called PCLK (Peripheral
Clock) at one half the frequency of the CLK out-
put and a buffered TTL level OSC (oscillator)
output at the applied crystal input frequency.
These outputs are available for use by system
devices.

The 8284’s hardware reset function is accom-
plished with an internal Schmitt trigger circuit
that is activated by the RES (Reset) input. When
this input is pulled low (i.e., a contact closure to
ground), the RESET output is activated syn-
chronously with the CLK signal. This signal must
be active for four clock cycles and causes the CPU
to fetch and execute the instruction at location
FFFFOH. An external RC circuit is connected to
the RES input to provide the power-on reset func-
tion (on power-on, the RES input must be active
for 50 microseconds). The RESET output is
coupled directly to the RESET input of the CPU
as well as being available to system peripherals as
the system reset signal.

The insertion of wait states in the CPU’s bus cycle
is accomplished by deactivating one of the 8284’s
RDY inputs (RDY1 or RDY?2). Either of these
inputs, when enabled by its corresponding AEN1
or AEN2 input, can be deactivated directly by a
peripheral device when it must extend the CPU’s
bus cycle (when it is not ready to present or accept
data) or by a ‘‘wait state generator’’ circuit (a
logic circuit that holds the RDY input inactive for
a given number of clock cycles).

The READY output, which is synchronized to the
CLK signal is coupled directly to the CPU’s
READY input. As shown in figure 4-13, when the
addressed device needs to insert one or more wait
states in a bus cycle, it deactivates the 8284’°s RDY
input prior to the end of state T, which causes the
READY output to be deactivated at the end of
state Ty. The resultant wait state (Tyy) is inserted
between states T3 and T4. To exit the wait state,
the device activates the 8284’s RDY input which
causes the READY input to the CPU to g0 active
at the end of the current wait state and allows the
CPU to enter state Ty.

Minimum/Maximum Mode

A unique feature of the 8086 and 8088 CPUs is
the ability of a user to define a subset of the
CPU’s control signal outputs in order to tailor the
CPU to its intended system environment. This
‘‘system tailoring”’ is accomplished by the strap-
ping of the CPU’s MN/MX (minimum/max-
imum) input pin. Table 4-1 defines the 8086 and
8088 pin assignments in both the minimum and
maximum modes.

+——————————ONEBUSCYCLE———
T ‘ T2 r T3 | Tw , Tq
CLK

READY OUTPUT

./

Figure 4-13. Wait State Timing
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Table 4-1. Minimum/Maximum Mode Pin Assignments

8086 8088
Mode Mode

Pin Pin

Minimum Maximum Minimum Maximum
31 HOLD RQ/GTO 31 HOLD RQ/GTO
30 HLDA Q/GT1 30 HLDA RQ/GT1
29 WR. LOCK 29 WR_ LOCK
28 M/10 S2 28 lo/M S2
27 DT/R 51 27 DT/R Sl
26 DEN S0 26 DEN S0
25 ALE Qso 25 ALE Qso
24 INTA Qst 24 INTA Qs1

34 880 High State

Minimum Mode

In the minimum mode (MN/MX pin strapped to
+5V), the CPU supports small, single-processor
systems that consist of a few devices and that use
the system bus rather than support the
Multibus™ architecture. In the minimum mode,
the CPU itself generates all bus control
signals (DT/R, DEN, ALE and either M/10 or
10/M) and the command output signal (RD, WR
or INTA), and provides a mechanism for
requesting bus access (HOLD/HLDA) that is
compatible with bus master type controllers (e.g.,
the Intel® 8237 and 8257 DMA Controllers).

In the minimum mode, when a bus master
requires bus access, it activates the HOLD input
to the CPU (through its request logic). The CPU,
in response to the ‘‘hold”’ request, activates
HLDA as an acknowledgement to the bus master
requesting the bus and simultaneously floats the
system bus and control lines. Since a bus request
is asynchronous, the CPU samples the HOLD
input on the positive transition of each CLK
signal and, as shown in figure 4-14, activates
HLDA at the end of either the current bus cycle
(if a bus cycle is in progress) or idle clock period.
The hold state is maintained until the bus master
inactivates the HOLD input at which time the
CPU regains control of the system bus. Note that
during a ‘‘hold”’ state, the CPU will continue to
execute instructions until a bus cycle is required.

Note that in the minimum mode, the I/O-memory
control line for the 8088 CPU is the converse of
the corresponding control line for the 8086 CPU
(M/IO on the 8086 and 10/M on the 8088). This
was done to provide the 8088 CPU, since it is an

8-bit device, compatibility with existing
MCS-85™ gystems and specific MCS-85™ family
devices (e.g., the Intel® 8155/56).

Maximum Mode

In the maximum mode (MN/MX pin strapped to
ground), an Intel® 8288 Bus Controller is added
to provide a sophisticated bus control function
and compatibility with the Multibus architecture
(combining an Intel® 8289 Arbiter with the 8288
permits the CPU to support multiple processors
on the system bus). As shown in figure 4-15, the
bus controller, rather than the CPU, provides all
bus control and command outputs, and allows the
pins previously delegated to these functions to be
redefined to support multiprocessing functions.

§2,S1and SO

Referring to figure 4-15, the 8288 Bus Controller
uses the S2, S1 and SO status bit outputs from the
CPU (and the 8089 IOP) to generate all bus con-
trol and command output signals required for a
bus cycle. The status bit outputs are decoded as
outlined in table 4-2. (For a detailed description
of the operation of the 8288 Bus Controller, refer
to the associated data sheet in Appendix B.)

The 8088 CPU, in the minimum mode, provides
an SSO status output. This output is equivalent to
SO in the maximum mode and can be decoded
with DT/R and 10/M (inverted), which are
equivalent to S1 and S2 respectively, to provide
the same CPU cycle status information defined in
table 4-2. This type of decoding could be used in a
minimum mode 8088-based system to allow
dynamic RAM refresh during passive CPU cycles.
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Figure 4-14. HOLD/HLDA Timing
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Table 4-2. Status Bit Decoding

Status Inputs

— — — CPU Cycle 8288 Command
S2 S1 SO

0 0 0 interrupt Acknowledge INTA

0 0 1 Read /O Port I0RC

0 1 0 Write 1/0O Port IOWC, AIOWC
0 1 1 Halt None

1 0 0 Instruction Fetch MRDC

1 0 1 Read Memory MRDC

1 1 0 Write Memory MWTC, AMWC
1 1 1 Passive None
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RQ/GT1, RQ/GTO

The Request/Grant signal lines (RQ/GTO and
RQ/GT1) provide the CPU’s bus access
mechanism in the maximum mode (replacing the
HOLD/HLDA function available in the
minimum mode) and are designed expressly for
multiprocessor applications using the 8089 1/0
Processor in its local mode or other processors
that can support this function. These lines are
unique in that the request/grant function is
accomplished over a single line (RQ/GTO
or RQ/GT1) rather than the two-line
HOLD/HLDA function.

As shown in figure 4-16, the request/grant
sequence is a three-phase cycle: request, grant and
release. The sequence is initiated by another pro-
cessor on the system bus when it outputs a pulse
on one of the RQ/GT lines to request bus access
(request phase). In response, the CPU outputs a
pulse (on the same line) at the end of either the
current bus cycle (if a bus cycle is in progress) or
idle clock period to indicate to the requesting pro-
cessor that it has floated the system bus and that it
will logically disconnect from the bus controller
on the next clock cycle (grant phase) and enter a

““hold”’ state. Note that the CPU’s execution unit
(EU) continues to execute the instructions in the
queue until an instruction requiring bus access is
encountered or until the queue is empty. In the
third (release) phase, the requesting processor
again outputs a pulse on the RQ/GT line. This
pulse alerts the CPU that the processor is ready to
release the bus. The CPU regains bus access on its
next clock cycle. Note that the exchange of pulses
is synchronized and, accordingly, both the CPU
and requesting processor must be referenced to
the same clock signal.

The request/grant lines are prioritized with
RQ/GTO taking precedence over RQ/GTI. If a
request arrives_on both lines simultaneously, the
processor on_RQ/GTO is granted the bus (the
request on RQ/GTI is granted when the bus is
released by the first processor following a one or
two clock channel transfer delay). Both RQ/GT
lines (and the HOLD line in minimum mode) have
a higher priority than a pending interrupt.

Request/grant latency (the time interval between
the receipt of a request pulse and the return of a
grant pulse) for several conditions is given in table
4-3,

‘ T40RT |

CLK

B
o
gl

COPROCESSOR REQUESTS

CPU GRANTS BUS
BUS ACCESS TO COPROCESSOR

COPROCESSOR RELEASES
BUS

Figure 4-16. Request/Grant Timing

Table 4-3. Request/Grant Latency

Operating Condition

Request/Grant Delay

Normal Instruction Processing—LOCK inactive

NTA Cycle Executing—LOCK active

Locked XCHG Instruction Processing—LOCK active

8086 8088
-6 (10*) clocks 3-10 clocks
15clocks 15 clocks
24-31 (39*) clocks 24-39 clocks

*The number of clocks in parentheses applies when the instruction being executed references a word

operand at an odd address boundary.

4-13
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Latency during normal instruction processing
(LOCK inactive) can be as short as three clock
cycles (e.g., during execution of an instruction
that does not reference memory) and no more
than ten clock cycles. Whenever the LOCK out-
put is active (LOCK is activated during an inter-
rupt acknowledge cycle or during execution of an
instruction with a Lock prefix), latency is
increased. In the case of the execution of a locked
XCHG instruction (used during semaphore
examination), maximum latency is limited to 39
clock cycles. Greater latencies occur when a
“long”’ instruction is locked. This, however, is
neither necessary nor recommended.

At the end of processor activity, the 8086 or
8088 will not redirve its control and data buses
until two clock cycles following receipt of the
release pulse (or two clock cycles after HOLD
goes inactive in the minimum mode).

A Hold request is honored immediately following
CPU reset if the HOLD line is active when the
RESET line goes inactive. This action facilitates
the downloading of programs and, more
specifically, the setting of memory location
FFFFOH prior to CPU activation. Note that the
same result can be effected in the maximum mode
through the RQ/GT line by generating the request
pulse in the first or second clock cycle after
RESET goes inactive.

LOCK

The LOCK output is used in conjunction with an
Intel 8289® Bus Arbiter to guarantee exclusive
access of a shared system bus for the duration of
an instruction. This output is software controlled
and is effected by preceding the instruction
requiring exclusive access with a one byte ‘‘lock™
prefix (see instruction set description in Chapter
2).

When the lock prefix is decoded by the EU, the
EU informs the BIU to activate the LOCK output
during the next clock cycle. This signal remains
active until one clock cycle after the execution of
the associated instruction is concluded.

Qs1, Qso

The QS1 and QSO0 (Queue Status) outputs permit
external monitoring of the CPU’s internal
instruction queue to allow instruction set exten-

sion processing by a coprocessor. (The
corresponding Intel ICE modules use these status
bits during ‘‘trace’” operations.) The encoding of
the QS1 and QSO bits is shown in table 4-4.

Table 4-4. Queue Status Bit Decoding

Qs1 Qso Queue Status

0 (low) 0 {No Operation. During the last
clock cycle, nothing was taken

from the queue.

First Byte. The byte taken from the
queue was the first byte of the
instruction.

1 (high) 0 |Queue Empty. The queue has
been reinitialized as a result of the

execution of a transfer instruction.

Subsequent Byte. The byte taken
from the queue was a subsequent
byte of the instruction.

The queue status is valid during the clock cycle
after the indicated activity has occurred.

External Memory Addressing

The 8086 and 8088 CPUs have a 20-bit address
bus and are capable of accessing one megabyte of
memory address space.

The 8086 memory address space consists of a
sequence of up to one million individual bytes in
which any two consecutive bytes can be accessed
as a 16-bit data word. As shown in figure 4-17,
the memory address space is physically divided
into two banks of up to 512k bytes each.

One bank is associated with the lower half of the
CPU’s 16-bit data bus (data bits D7-D0), and the
other bank is associated with the upper half of the
data bus (data bits D15-D8). Address bits Al9
through Al are used to simultaneously address a
specific byte location in both the upper and lower
banks, and the A0 address bit is not used in
memory addressing. Instead, A0 is used in
memory bank selection. The lower bank, which
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ADDRESS BUS

A19-Aq

Ao
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7-Ho LOWER HALF OF DATA BUS

Figure 4-17. 8086 Memory Interface

contains even-address bytes, is selected when
A0=0. The upper bank, containing odd address
bytes (AO=1), is selected by a separate signal, Bus
High Enable (BHE). Table 4-5 defines the
BHE-AO bank selection mechanism.

Table 4-5. Memory Bank Selection

BHE A0 Byte Transterred
0 (low) 0 { Both bytes
0 1 | Upper byte to/from odd address
1 (high) 0 | Lower byte to/from even address
1 1 ] None

When accessing a data byte at an even address,
the byte is transferred to or from the lower bank
on the lower half of the data bus (D7-D0). In this
case, the inactive level of the A0 address bit
enables the addressed byte in the lower bank, and
the inactive level of the BHE signal disables the
addressed byte in the upper bank. Conversely,
when performing a byte access at an odd address,
the data byte is transferred to or from the upper
bank on the upper half of the data bus (D15-D8).
The active level of the BHE signal enables the
upper bank, and the active level of the A0 address
bit disables the lower bank.

As indicated in table 4-5, the 8086 can access a
byte in both the upper and lower banks
simultaneously as a 16-bit word. When the low-
order byte of the word to be accessed is on an
even address boundary (that is, when the low-

order byte is in the lower bank), the word is said
to be ‘“‘aligned” and can be accessed in a single
operation (a single bus cycle). As with the byte
transfers previously described, address bits A19
through Al address both banks, except that now
BHE is active (selecting the upper bank) and AO is
inactive (selecting the lower bank) to access both
bytes.

When the low-order byte of the word to be
accessed is on an odd address boundary (when the
low-order byte is in the upper bank), the word is
“‘not aligned’’ and must be accessed in two bus
cycles. During the first cycle, the low-order byte
of the word is transferred to or from the upper
bank as described for a byte access at an odd
address (A0 and BHE active). The memory
address is then incremented, which causes A0 to
shift to an inactive level (selecting the lower
bank), and a byte access at an even address is per-
formed during the next bus cycle to transfer the
word’s high-order byte to or from the lower bank.
The above sequence is initiated automatically by
the 8086 whenever a word access at an odd
address is performed. Also, the directing of the
high- and low-order bytes of the 8086’s internal
word registers to the appropriate halves of the
data bus is performed automatically and, except
for the additional four clock cycles required to
execute the second bus cycle, the entire operation
is transparent to the program.

The 8088 memory address space is logically
organized as a linear array of up to one million
bytes. Since the 8088 uses an 8-bit-wide data bus,
memory consists of a single bank. Address bit A0
is used to address memory, and a BHE signal is
not provided.

Word (16-bit) operands can be located at odd- or
even-address boundaries. The low-order byte of
the word is stored in the lower-valued address
location, and the high-order byte is stored in the
next, higher-valued address location. The 8088
automatically executes two bus cycles when
accessing word operands.

170 Interfacing

The 8086 and 8088 CPUs support both 1/0
mapped [/O and memory mapped 1/O. 1/0
mapped 1/0 permits an I/O device to reside in a
separate address space (first 64k of address
space), and the standard 1/O instruction set is
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available for device ¢Ommunications,

memory and allows the complete

CPU instruction Set to be used for 170
operations.
The 8086 Supports both 8-bit and I6-bit 170

when an [/0 device is
assigned to the upper half of the bus, all 170
odd (A0 equal “1”’). Note that
since AQ always will be either a ‘1’ or 4 “0” for
a specific device, it cannot be used as ap address
input to select registers within the
When an 170 device on the upper half of the bus

To permit data transfers to 16-bit I/0 devices to
be performed in a single bus cycle, the device s
i an even address. To ensure that the 1,0
selected only for word transfers, AQ and
BHE both mus¢ be conditions of device selection.

The 8088, since its data bus g eight bits wide, is
designed to support 8-bit 1/0 devices and places
no restrictions on odd or even addresses,

When the 8086 or the 8088 is operated in the
minimum_mode, the CPU’s read and write com-
mands (RD and WR) are common for memory
and 1/0 devices. If the memory and 1/0 addregs
Spaces overlap, device selection must be qualified
by M/IO (8086) or 10/M

Interrupts

CPU interrupts can be software or hardware
initiated. Software interrupts originate directly
from program execution (i.e., execution of g
breakpointed instruction) or indirectly through
program logic (i.e., attempting to divide by zero).
Hardware interrupts originate from external logic
and are classifieq as either non-maskable or
maskable. AJ] interrupts, whether software or
hardware initiated, result in the transfer of con-
trol to a new program location. A 256-entry vec-
tor table, which contains address pointers to the
interrupt routines, resides in absolute locations 0

Memory Table Vector
Address Entry Detinition
3FE €S 255
Vector 255,
I 1 ’
1 User Available
82
Vector 324,

1
80 P32 }
Ccs31
Vector 3140
P31
1

Reserved

|
Vector 5
iP5
]
} Vector 4 — Overflow
Vector 3 — Breakpoint

Vector 2 — Nmi

} Vector 1 — Single~5tep
} Vector 0 — Divide Error

Figure 4-18. Interrupt Vector Table

06 Cs1

04 P1
02 CS Valye — Vector 0 (CS 0)
IP Value — Vector 0P O)

2 Bytes \,,

00
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As shown in figure 4-18, the first five interrupt
vectors are associated with the software-initiated
interrupts and the hardware non-maskable inter-
rupt (NMI). The next 27 interrupt vectors are
reserved by Intel and should not be used if com-
patibility with future Intel products is to be main-
tained. The remaining interrupt vectors (vectors
32 thorugh 255) are available for user interrupt
routines.

The non-maskable interrupt (NMI) occurs as a
result of a positive transition at the CPU’s NMI
input pin. This input is asynchronous and, in
order to ensure that it is recognized, is required to
have a minimum duration of two clock cycles.
NMI is typically used with power fail circuitry,
error correcting memory or bus parity detection
logic to allow fast response to these fault condi-
tions. When NMI is activated, control is trans-
ferred to the interrupt service routine pointed to
by vector 2 following execution of the current
instruction. When a non-maskable interrupt is
acknowledged, the current contents of the flags
' register are pushed onto the stack (the stack

pointer is decremented by two), the interrupt

enable and trap bits in the flags register are
| cleared (disabling maskable and single-step inter-
! rupts), and the vector 2 CS and IP address
pointers are loaded into the CS and IP registers as
the interrupt service routine address.

The CPU provides a single interrupt request input
(INTR) that can be software masked by clearing
the interrupt enable bit in the flags register
through the execution of a CLI instruction. The
INTR input is level triggered and is synchronized
internally to the positive transition of the CLK
signal. In order to be accepted before the next
instruction, INTR must be active during the clock
period preceding the end of the current instruc-
tion (and the interrupt enable bit must be set).

As shown in figure 4-19, when a maskable inter-
rupt is acknowledged, the CPU executes two
interrupt acknowledge bus cycles.

During the first bus cycle, the CPU_floats the
address/data bus and activates the INTA (Inter-
rupt Acknowledge) command output during
states Ty through T4. In the minimum mode, the
CPU will not recognize a hold request from
another bus master until the full interrupt
acknowledge sequence is completed. In the max-
imum mode, the CPU activates the LOCK output
from state Ty of the first bus cycle until state T,
of the second bus cycle to signal all 8289 Bus
Arbiters in the system that the bus should not be
accessed by any other processor. During the
second bus cycle, the CPU again activates its
INTA command output. In response to the

e

CLK

ALE

<+——FIRST INTERRUPT ACKNOWLEDGE BUS CYCLE—
T4

- **SECOND INTERRUPT ACKNOWLEDGE BUS CYCLE

*LOCK \
|
i

INTA

/S

AD7-ADg

*MAXIMUM MODE ONLY

VECTOR TYPE

“*SEVERAL (3 TYPICAL) IDLE CLOCK STATES OCCUR BETWEEN THE FIRST AND SECOND

INTERRUPT ACKNOWLEDGE BUS CYCLES IN THE 8086 CPU (DURING THIS INTERVAL THE
BUS IS DRIVEN). INTERRUPT ACKNOWLEDGE BUS CYCLES OCCUR BACK-TQ-BACK IN
THE 8088 CPU.

Figure 4-19. Interrupt Acknowledge Sequence
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second INTA, the external interrupt system (e.g.,
an Intel® 8259A Programmable Interrupt Con-
troller) places a byte on the data bus that iden-
tifies the source of the interrupt (the vector
number or vector ‘‘type”’). This byte is read by
the CPU and then multiplied by four with the
resultant value used as a pointer into the interrupt
vector table. Before calling the corresponding
interrupt routine, the CPU saves the machine
status by pushing the current contents of the flags
register onto the stack. The CPU then clears the
interrupt enable and trap bits in the flags register
to prevent subsequent maskable and single-step
interrupts, and establishes the interrupt routine
return linkage by pushing the current CS and IP
register contents onto the stack before loading the
new CS and IP register values from the vector
table.

The four classes of interrupts are prioritized with
software-initiated interrupts having the highest
priority and with maskable and single-step inter-
rupts sharing the lowest priority (see section 2.6).
Since the CPU disables maskable and single-step
interrupts when acknowledging any interrupt, if
recognition of maskable interrupts or single-step
operation is required as part of the interrupt
routine, the routine first must set these bits.

The processing times for the various classes of
interrupts are given in table 4-6. (These times also
are included with the 8086/8088 instruction times
cited in section 2.7.)

Table 4-6. Interrupt Processing Time

Interrupt Class Processing Time

External Maskable interrupt

(INTR) 61 clocks
Non-Maskable Interrupt (NMI) 50 clocks
INT (with vector) 51 clocks
INT Type 3 52 clocks
INTO 53 clocks
Single Step 50 clocks

Note that the times shown in table 4-6 represent
only the time required to process the interrupt
request after it has been recognized. To determine
interrupt latency (the time interval between the
posting of the interrupt request and the execution
of ‘“‘useful” instructions within the interrupt

routine), additional time must be included for the
completion on an instruction being executed when
the interrupt is posted (interrupts are generally
processed only at instruction boundaries), for
saving the contents of any additional registers
prior to interrupt processing (interrupts
automatically save only CS, IP and Flags) and for
any wait states that may be incurred during inter-
rupt processing.

Machine Instruction Encoding and
Decoding

Writing a MOV instruction in ASM-86 in the
form:

MOV destination,source

will cause the assembler to generate 1 of 28 pos-
sible forms of the MOV machine instruction. A
programmer rarely needs to know the details of
machine instruction formats or encoding. An
exception may occur during debugging when it
may be necessary to monitor instructions fetched
on the bus, read unformatted memory dumps,
etc. This section provides the information
necessary to translate or decode an 8086 or 8088
machine instruction.

To pack instructions into memory as densely as
possible, the 8086 and 8088 CPUs utilize an effi-
cient coding technique. Machine instructions vary
from one to six bytes in length. One-byte instruc-
tions, which generally operate on single registers
or flags, are simple to identify. The keys to
decoding longer instructions are in the first two
bytes. The format of these bytes can vary, but
most instructions follow the format shown in
figure 4-20.

The first six bits of a multibyte instruction
generally contain an opcode that identifies the
basic instruction type: ADD, XOR, etc. The
following bit, called the D field, generally
specifies the ““direction’’ of the operation: 1 = the
REG field in the second byte identifies the
destination operand, 0 = the REG field identifies
the source operand. The W field distinguishes
between byte and word operations: 0 = byte, 1 =
word.

One of three additional single-bit fields, S, V or
Z, appears in some instruction formats. S is used
in conjunction with W to indicate sign extension

Mnemonics € Intel, 1978
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of immediate fields in arithmetic instructions. V the zero flag in conditional repeat and loop
distinguishes between single- and variable-bit instructions. All single-bit field settings are sum-
shifts and rotates. Z is used as a compare bit with marized in table 4-7.
BYTE 1 BYTE 2 BYTE 3 BYTE 4 BYTE 5 BYTE 6
—————— et el s S
I | |
LOWDISP/DATA | HIGHDISP/DATA| LOWDATA | HIGHDATA |
I
1

OPCODE lemon REG | R/M | |

REGISTER OPERAND/EXTENSION OF OPCODE
REGISTER MODE/MEMORY MODE WITH DISPLACEMENT LENGTH

WORD/BYTE OPERATION
DIRECTION IS TO REGISTER/DIRECTION IS FROM REGISTER
OPERATION (INSTRUCTION) CODE

Figure 4-20. Typical 8086/8088 Machine Instruction Format

Table 4-7. Single-Bit Field Encoding

Field Value Function
s 0 No sign extension
1 Sign extend 8-bit immediate data to 16 bits if W=1
0 Instruction operates on byte data
W )
1 Instruction operates on word data
D 0 Instruction source is specified in REG field
1 Instruction destination is specified in REG field
v 0 Shift/rotate countis one
1 Shift/rotate count is specified in CL register
0 Repeat/loop while zero flag is clear
z . .
1 Repeat/ioop while zero flag is set
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The second b
instruction’s operands.
(mode) field
operands is in memor
are registers
field identifies a register that is one of the instruc-
tion operands (see table 4-9),
, chiefly the immediate-[o-memory
REG is used as an extension of the
opcode to identify the type of operation. The
(register/memory) field (see
pends on how the mode field is set.
11 (register-to-register mode), then
ies the second register operand. If
MOD selects memory mode, then R/M indicates
how the effective address of
is to be calculated. Effectiv

tifies the

instructions

variety,

encoding of the R/M
table 4-10) de
If MOD =

R/M identif

indicates whether one

(see table 4-8). The REG

is covered in detail in section 2.8.

Bytes 3 throu
fields that usuall

an immediate constant operand.

Table 4-8. MOD (Mode) Field Encoding

yte of the instruction usually iden-
The MOD

y or whether both operands
(register)

In a number of

the memory operand |
¢ address calculation

gh 6 of an instruction are optional
y contain the displacement value
of a memory operand and/or the actual value of

Table 4-9. REG (Register) Field Encoding

of the

REG W=0 W=1
000 AL AX
001 CL CX
010 DL DX
011 BL BX
100 AH SP
101 CH BP
110 DH Sl
11 BH [»]]

displacement bytes are
convention, if the dis
most-significant byte
instruction. If the displacement is
byte, the 8086 or 8088 automaticall
this quantity to 16-bits before usin
tion in further address calculatio
values always follow any displace

There may be one or t

is stored

may be present. The second byt
immediate value is the most significant.

wo displacement bytes; the
anguage translators generate one byte whenever
possible. The MOD field indicates how many
present. Following Intel
placement is two bytes, the
second in the
only a single
y sign-extends
g the informa-
ns. Immediate
ment values that
e of a two-byte

CODE EXPLANATION

00 Memory Mode, no displacement
follows*

0] Memory Mode, 8-bit
displacement follows

10 Memory Mode, 16-bit
displacement follows

1 Register Mode (no
displacement)

*Exceptwhen R/M = 110, then 16-bit
displacement follows

Table 4-12 lists the instruction encodings for all
8086/8088 instructions. This table can be used to
predict the machine encoding of any ASM-86
instruction. Table 4-13 lists the 8086/8088
machine instructions in order by the binary value
of their first byte. This table can be used to
decode any machine instruction from its binary
Tepresentation. Table 4-11 is a key to the
abbreviations used in tables 4-12 and 4-13, Table
4-14 is a more compact instruction decoding
guide.

Table 4-10. R/M (Register/Memory) Field Encoding

MOD =11 EFFECTIVE ADDRESS CALCULATION

R/M W=0 W=1 R/M MOD =00 MOD =01 MOD=10
000 AL AX 000 | (BX)+(SI) (BX)+(Sl)+ D8 (BX)+(Sh+ D16
001 CL CX 001 [ (BX)+ (D1 (BX)+(DI)+ D8 (BX)+(Dl) + D18
010 DL DX 010 | (BP)+(SI) (BP)+(SI)+ D8 (BP)+(Sl)+ D16
011 BL BX 011 | (BP)+(D1) (BP)+(DI)+ D8 (BP)+(DI)+ D16
100 AH SP 100 | (SN S+ D8 (Sl)+ D16

101 CH BP 101 | (DN (D) + D8 (Dl)+ D16

110 DH Sl 110 | DIRECT ADDRESS (BP)+D8 (BP)+ D16

111 BH DI 111 | (BX) (BX)+D8 (BX)+ D16
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Table 4-11. Key to Machine Instruction Encoding and Decoding

IDENTIFIER EXPLANATION

MOD Mode field; described in this chapter.

REG Register field; described in this chapter.

R/M Register/Memory field; described in this chapter.

SR Segment register code: 00=ES, 01=CS, 10=8S, 11=DS.

W,S,D,V,2Z Single-bit instruction fields; described in this chapter.

DATA-8 8-bit immediate constant.

DATA-SX 8-bit immediate value that is automatically sign-extended to 16-bits
before use.

DATA-LO Low-order byte of 16-bit immediate constant.

DATA-HI High-order byte of 16-bit immediate constant.

(DISP-LO) Low-order byte of optional 8- or 16-bit unsigned displacement; MOD
indicates if present.

(DISP-H!) High-order byte of optional 16-bit unsigned displacement; MOD
indicates if present.

IP-LO Low-order byte of new IP value.

IP-HI High-order byte of new IP value

CS-L.O Low-order byte of new CS value.

CS-HI High-order byte of new CS value.

IP-INC8 8-bit signed increment to instruction pointer.

IP-INC-LO Low-order byte of signed 16-bit instruction pointer increment.

IP-INC-HI High-order byte of signed 16-bit instruction pointer increment.

ADDR-LO Low-order byte of direct address (offset) of memory operand; EA not
calculated.

ADDR-HI High-order byte of direct address (offset) of memory operand; EA not
calculated.

_ Bits may contain any value.

XXX First 3 bits of ESC opcode.

YYY Second 3 bits of ESC opcode.

REGS8 8-bit general register operand.

REG16 16-bit general register operand.

MEMS8 8-bit memory operand (any addressing mode).
MEM16 16-bit memory operand (any addressing mode).
IMMEDS 8-bit immediate operand.

IMMED16 16-bit immediate operand.

SEGREG Segment register operand.

DEST-STRS8 Byte string addressed by DI.
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Table 4-11. Key to Machine Instruction Encoding and Decoding (Cont’d.)

IDENTIFIER EXPLANATION

SRC-STR8 Byte string addressed by SI.

DEST-STR16 Word string addressed by DI.

SRC-STR16 Word string addressed by SI.

SHORT-LABEL Label within +127 bytes of instruction.

NEAR-PROC Procedure in current code segment.

FAR-PROC Procedure in another code segment.

NEAR-LABEL Label in current code segment but farther than —128 to +127 bytes
from instruction.

FAR-LABEL Labelin another code segment.

SOURCE-TABLE XLAT translation table addressed by BX,

OPCODE ESC opcode operand.

SOURCE ESC register or memory operand.

DATA TRANSFER

MOV = Move:

Regls(er/memory to/from register

Immediate to register/memory

immedsate to register

Memory to accumulator

Accumulator to memory

Reg\s!er/memory to segment register

Segment register to register/memory

PUSH = Push:

Reglster/memory

Register

Segment register

POP = Pop:

Regls(er/memory

Register

Segment register

Table 4-12. 8086 Instruction Encoding

76543210 76543210 76543210 76543219 76543210 76543210

1000t0dw | moa reg  r/m (DISP-LO} (DISP-HI)

11000t 1w [mod 0o 0 rim {DISP-LO) (DISP-HI) data , data |lw=ﬂ
TO11 wreg data dataifw=1

1010000w addr-lo addr-hi

1010001 w addr-lo addr-hi

10001110 |mod 0 SR r/m

(DISP-LO) (DISP-HI)
(DISP-LO) (DISP-HI)

170001100 mod ¢ SR r/m

T111 111
01010799
000vreg 119

mod 1 1 0 r/m

10001111 (DISP-LO) ! {DISP-HI)

000reg 111

mod 0 0 0 r/m

Mnemonics < Intet, 1978
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DATA TRANSFER (Cont’d.)
XCHG = Exchange:
Register/memory with register

Register with accumulator

N = Input from:
Fixed port

Variable port

OUT = Output to:

Fixed port

Variable port

XLAT = Translate byte to AL
LEA = Load EA to register
LDS = Load pointer to DS
LES = Load pointer to ES
LAHF = Load AH with flags
SAHF = Store AH into flags
PUSHF = Push flags

POPF = Pop flags

ARITHMETIC

ADD = Add:

Aeg/memory with register to either
immediate to register/memory

Immediate to accumulator

ADC = Add with carry:
Reg/memory with register to either
immediate to register/memory

Immediate to accumulator

INC = increment:
Register/memory
Register

AAA = ASCIl adjust for add

DAA = Decimal adjust for add

Table 4-12. 8086 Instruction Encoding (Cont’d.)

76543210 76543210 76543210 76543210 76543210 76543210
1000011 w| mod reg rim {DISP-LO) (DISP-HY) J

10010 reg

111001 0w DATA-8

111011 0w

111001 1w DATA-8

111011 1w

110101t 1

10001107 | mod reg rim (DISP-LO) {DISP-HY)

14000101 mod reg r/m {DISP-LO) {DISP-HY

11000100)| mod reg rim (DISP-LO) (DISP-HY

10011111

10011110

10011100

t001% 101

000000dw| mod reg r/m (DISP-LO} (DISP-HI)

100000sw|mod G0 0 rim (DISP-LOY (DISP-HI) data data if s: w=01
0000010 w data data if w=1

000100dw | mod reg rim (DISP-LO) {DISP-HI}

100000sw | mod 0 10 rim {DISP-LO) (DISP-HI) data dataif s: w=01 ]
0001010w data data if w=1

11111+1w|mod 000 rim ({DISP-LO} (DISP-HI) J

01000 reg
00110111
001001ttt
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ARITHMETIC (Cont'd.)

SUB = Subtract:
Reg/memory and register to either
{mmediate from register/memory

immediate from accumutator

SBB = Subtract with borrow:
Reg/memory and register to either
Immediate from register/memory

immediate from accumulator

DEC Decrement:
Register/memory
Register

NEG Change sign

CMP = Compare:
Register/memory and register
Immediate with register/memory
Immediate with accumulator
AAS ASCI adjust for subtract
DAS Decimal adjust for subtract
MUL Multiply {unsigned)

IMUL integer multiply (signed)
AAM ASCH adjust for multiply
DIV Divide (unsigned)

IDIV Integer divide (signed)
AAD ASCIl adjust for divide
CBW Convert byte to word

CWD Convert word to double word

LOGIC

NOT Invert

SHL/SAL Shift logical/arithmetic left
SHR Shift togical right

SAR Shift arithmetic right

ROL Rotate left

Table 4-12. 8086 Instruction Encoding (Cont’d.)

76543210 76543210 76543210 76543210 76543210 76543210
001010dw | mod reg rim {DISP-LO} (DISP-HI)

10000606sw {mod 1 01 rim (DISP-LO) (DISP-HI) data dataifs; w=01 ]
0010110w data data if w=1

000110dw | mod reg rim {DISP-LO) (DISP-HI)

100000sw |mod 011 r/m {DISP-LO) (DISP-HI) data data lfSiW=01‘l
0001 110w data data it w=1

1111111 w|mod 061 r/mi (DISP-LO) (DISP-HI) 1

01001 reg

1171101 1w |mod 011 r/m l (DISP-LO} (DISP-HI) —l

001110dw|[mod reg rim (DISP-LO) {DISP-HI}

100000sw [mod 111 rim (DISP-LO) (DISP-HI) data l dataxls.w=1—|
Co0t1110w data

60111119

061061111

111101 1w |mod 100 r/m (DISP-LO) (DISP-Hi}

1111011t w|mod 101 r/im (DISP-LO) {DISP-HI)

11010100(1000CG1010 (DISP-LO) (DISP-HI)

111101 1w {mod 1t 10 rim (DISP-LO) (DISP-HI)

1111011 w !mod 111 rim (DISP-LO) (DISP-HI)

1101010110000 10710 (DISP-LO) (DISP-HI)

10011000

10011001

t111011w|mod 010 rim (DISP-LO) (DISP-HI)

110100vw imod 100 rim (DISP-LO) (DISP-HI)

110100vw | mod 101 rim (DISP-LO) (DISP-HI)

110100vw {mod 11 1 r/m (DISP-LO) (DISP-HI)

110100vw |mod 000 rim (DISP-LO) (DISP-HI)
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Table 4-12. 8086 Instruction Encoding (Cont’d.)

LOGIC (Cont’d.) 76543210 76543210 76543210 76543210 76543210 786543210
ROR Rotate right 110100vw |mod 001 r/im (DISP-LO) (DISP-HI)

RCL Rotate through carry flag left 1710100vw {mod 010 rim (DISP-LO) (DISP-HI)

RCR Rotate through carry right 110100vw [mod 011 rim (DISP-LO) (DISP-HI)

AND = And:

Reg/memory with register to either 001000dw |med reg r/m (DISP-LO) (DISP-H1}

Immediate to register/memaory 1000000w [mod 100 r/m (DISP-LO) (DISP-HI} data data if w=1 J
Immediate to accumulator 0010010w data data if w=1

TEST = And function to flags no result:

Register/memory and register 000100dw | mod reg rim (DISP-LO) (DISP-HI)
immediate data and register/memory 1111011 w {med 000 r/im (DISP-LO} (DISP-H1} data data if w=1
immediate data and accumulator 1010100 w data
OR =0r:
Reg/memory and register to either 000010dw {mod reg rim (DISP-LOY (DISP-H))
i Immediate to register/memory 1000000w [mod 0 0 1 rim (DISP-LOY (DISP-HI) data I data ifw=14]
‘l Immediate to accumulator 0000110w data data if w=1

XOR = Exclusive or:

} Reg/memory and register to either 001100dw | mod reg rim (DISP-LO) {DISP-HI)

|

‘ Immediate to register/memory 0011010w data (DISP-LO} {DISP-H!) data I data if w=1
! Immediate to accumuiator 0011010w data data if w=1

STRING MANIPULATION

REP =Repeat 1111001z
‘ MOVS = Move byte/word 1010010 w
CMPS =Compare byte/word 1010011 w
SCAS =Scan byte/word 10101 11w
1 LODS =Load byte/wd to AL/AX 1010110 w
|
1 STDS = Stor byte/wd from AL/A 1010101 w
i

|
1
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Table 4-12. 8086 Instruction Encoding (Cont’d.)

CONTROL TRANSFER
CALL = Cal:

Direct within segment
Indirect within segment

Directintersegment

Indirect intersegment

JMP = Unconditional Jump:
Direct within segment
Direct within segment-short
indirect within segment

Directintersegment

Indirect intersegment

RET = Return from CALL:

Within segment

Within seg adding immed to SP

Intersegment

Intersegment adding immediate to SP

JE/JZ =Jump on equal/zero

JL/INGE =Jjump on less/not greater or equal
SLE/ING =Jump on less or equal/not greater
JB/JNAE =Jump on below/not above or squal
JBE/JNA = Jump on below or equal/not above
JP/IPE = Jump on parity/parity even

JO =Jump on overflow

JS = Jump on sign

JNE/JNZ =Jump on not equal/not zerd
JNL/JGE=Jump on not less/greater or equal
JNLE/JG =Jump on not less or equal/greater
JNB/JAE = Jump on not below/above or equal
JNBE/JA=Jump on not below or equal/above
JNP/JPO = Jump on not par/par odd

JNO =Jump on not overflow

76543210

(DISP-HI) —|

(DISP-HI)

(DISP-HY}

{DISP-HI) l

0 76543210 76543210

[ IP-INC-LO IP-INC-HI

1 |mod 01 0 rim (DISP-LO)

0 IP-lo IP-hi
CS-io GCS8-hi

1 |lmod 011 rim (DISP-LO)

1 IP-INC-LO IP-INC-HI

1 IP-INC8

1t |mod 1 00 rim (DISP-LO)

0 IP-1o tP-hi
CS-lo CS8-hi

1 mod 1 01 rim (DISP-LO)

,

0 data-lo data-hi

1

0 data-lo data-hi

0 IP-INC8

0 IP-INC8

[} IP-INC8

0 IP-INC8

0 IP-INC8

[ IP-INC8

0 IP-INC8

0 IP-INC8

1 IP-INC8

1 IP-INC8

1 IP-INCB

1 IP-INC8

1 1P-INC8

1 IP-INCB

1 IP-INC8

76543210

76543210
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Table 4-12. 8086 Instruction Encoding (Cont’d.)

CONTROL TRANSFER (Cont'd.)

RET = Return from CALL: 76543210 76543210 76543210 76543210 76543210 76543210
JNS =Jump on not sign 61111001 IP-INC8
LOOP="Loop CX times 11100010 IP-INC8
LOOPZ/LOOPE = Loop while zero/equal 11100001 IP-INC8
LOOPNZ/LOOPNE =Loop while not zerc/equalf 1 1 1 00000 \P-INC8
JCXZ =Jump on CX zero 11100011 IP-INC8
INT = Interrupt:
Type specified 11001101 DATA-8
Typel 11001100
INTO =interrupt on overflow 11001110
IRET =Interrupt return 110041111
PROCESSOR CONTROL
CLC =Clearcarry 11111000
CMC =Complement carry 11110101
STC=Setcarry 11111001
CLD =Clear direction 11111100
STD =Set direction 11111101
CLI=Clearinterrupt 11111010
STI=Set interrupt 11111011
HLT =Halt 11110100
WAIT = Wait 10011011
ESC =Escape (to external device) 11011 xxx [modyyyrim (DISP-LO} {DISP-HI}
LOCK=Bus lock prefix 111100600
SEGMENT =Override prefix 001reg110
Table 4-13. Machine Instruction Decoding Guide
HEQST B;lTNEARY 2ND BYTE BYTES 3,4,5,6 ASM-86 INSTRUCTION FORMAT
00 0000 0000 | MOD REG R/M | (DISP-LO),(DISP-HI) ADD REG8/MEMS8,REGS
01 0000 0001 | MOD REG R/M [ (DISP-LO),(DISP-HI) ADD REG16/MEM16,REG16
02 0000 0010 [ MOD REG R/M | (DISP-LO),(DISP-HI) ADD REG8,REG8/MEMS
03 0000 0011 | MOD REG R/M [ (DISP-LO),(DISP-HI) ADD REG16,REG16/MEM16
04 0000 0100 [ DATA-8 ADD AL IMMEDS
05 0000 0101 | DATA-LO DATA-HI ADD AX,IMMED16
06 0000 0110 PUSH ES
07 0000 0111 POP ES
4-27 Mnemonics < Intel, 1978




HARDWARE REFERENCE INFORMATION

Table 4-13. Machine Instruction Decoding Guide (Cont’d.)

1ST BYTE
HEX BINARY 2ND BYTE BYTES 3,4,5,6 ASM-86 INSTRUCTION FORMAT

08 0000 1000 { MOD REG R/M (DISP-LO),(DISP-H!) OR REG8/MEMS8,REGS

09 0000 1001 |MOD REG R/M (DISP-LOY),(DISP-HI) OR REG16/MEM16,REG16

0A 0000 1010 | MOD REG R/M (DISP-LO},(DISP-HI) OR REG8,REG8/MEMS8

0B 0000 1011 | MOD REG R/M (DISP-LO),(DISP-HI) OR REG16,REG16/MEM16

0C 0000 1100 | DATA-8 OR AL,IMMEDS

0D 0000 1101 | DATA-LO DATA-HI OR AX,IMMED16

0E 0000 1110 PUSH CSs

OF 0000 1111 (not used)

10 0001 0000 | MOD REG R/M (DISP-LO),(DISP-HI) ADC REG8/MEMS,REGS

11 0001 0001 | MOD REG R/M (DISP-LO),(DISP-HI) ADC REG16/MEM16,REG16

12 0001 0010 | MOD REG R/M (DISP-LO),(DISP-HI) ADC REG8,REG8/MEMS

13 0001 0011 | MOD REG R/M (DISP-LO),(DISP-HI) ADC REG16,REG16/MEM16

14 0001 0100 | DATA-8 ADC AL,IMMEDS

15 0001 0101 | DATA-LO DATA-HI ADC AX,IMMED16

16 0001 0110 PUSH S8

17 0001 0111 POP SS

18 0001 1000 | MOD REG R/M (DISP-LOY},(DISP-HI) SBB REG8/MEMB,REGS

19 0001 1001 | MOD REG R/M (DISP-LO),(DISP-HI) SBB REG16/MEM16,REG16

1A 0001 1010 | MOD REG R/M (DISP-LO),(DISP-HI) SBB REG8,REG8/MEMS

1B 0001 1011 | MOD REG R/M (DISP-LO),(DISP-HI) SBB REG16,REG16/MEM16

1C 0001 1100 | DATA-8 SBB AL,IMMEDS

1D 0001 1101 | DATA-LO DATA-HI SBB AX,IMMED16

1E 0001 1110 PUSH DS

1F 0001 1111 POP DS

20 0010 0000 | MOD REG R/M (DISP-LO),(DISP-HI) AND REG8/MEMS8,REGS

21 0010 0001 | MOD REG R/M (DISP-LO),(DISP-HI) AND REG16/MEM16,REG16

22 0010 0010 | MOD REG R/M (DISP-LO),(DISP-HI) AND REG8,REG8/MEMS

23 0010 0011 | MOD REG R/M (DISP-LO),(DISP-H1) AND REG16,REG16/MEM16

24 0010 0100 | DATA-8 AND AL,IMMEDS

25 0010 0101 | DATA-LO DATA-HI AND AX,IMMED16

26 0010 0110 ES: (segment override
prefix)

27 0010 0111 DAA

28 0010 1000 | MOD REG R/M (DISP-LO),(DISP-HI) SuB REG8/MEMS8,REGS

29 0010 1001 | MOD REG R/M (DISP-LO),(DISP-HI) SUB REG16/MEM16,REG16

2A 0010 1010 | MOD REG R/M (DISP-LO),(DISP-HI) suB REG8,REG8/MEMS8

2B 0010 1011 | MOD REG R/M (DISP-LO,(DISP-HI) SuB REG16,REG16/MEM16

2C 0010 1100 | DATA-8 suB AL,IMMEDS8

2D 0010 1101 | DATA-LO DATA-HI SuUB AX,IMMED16

2E 0010 1110 CS: (segment override
prefix)

2F 0010 1111 DAS

30 0011 0000 { MOD REG R/M (DISP-LO),(DISP-HI) XOR REG8/MEMS,REGS

31 0011 0001 | MOD REG R/M (DISP-LO),(DISP-HI) XOR REG16/MEM16,REG16

32 0011 0010 | MOD REG R/M (DISP-LO),(DISP-HI) XOR REG8,REG8/MEMS

33 0011 0011 | MOD REG R/M (DISP-LO),(DISP-HI) XOR REG16,REG16/MEM16

34 0011 0100 | DATA-8 XOR AL,IMMEDS

35 0011 0101 | DATA-LO DATA-HI XOR AX,IMMED16

36 0011 0110 SS: (segment override
prefix)
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1STBYTE
HEX BINARY 2ND BYTE BYTES 3,4,5,6 ASM-86 INSTRUCTION FORMAT
37 0011 0110 AAA
38 0011 1000 | MOD REG R/M | (DISP-LO),(DISP-H}) CMP REG8/MEM8,REGS
39 0011 1001 | MOD REG R/M | (DISP-LO),(DISP-HI) CMP REG16/MEM16,REG16
3A 0011 1010 { MOD REG R/M | (DISP-LO),(DISP-HI) CMP REG8,REG8/MEMS
3B 0011 1011 | MOD REG R/M | (DISP-LO),(DISP-HI) CMP REG16,REG16/MEM16
3C 0011 1100 [ DATA-8 CMP AL,IMMEDS
3D 0011 1101 [ DATA-LO DATA-HI CMP AX,IMMED16
3E 0011 1110 DS: (segment override
prefix)
3F 0011 1111 AAS
40 0100 0000 INC AX
41 0100 0001 INC CX
42 0100 0010 INC DX
43 0100 0011 INC BX
44 0100 0100 INC SP
45 0100 0101 INC BP
46 0100 0110 INC Sl
47 0100 0111 INC DI
48 0100 1000 DEC AX
49 0100 1001 DEC CX
4A 0100 1010 DEC DX
4B 0100 1011 DEC BX
4C 0100 1100 DEC SP
4D 0100 1101 DEC BP
4E 0100 1110 DEC Si
4F 0100 1111 DEC Di
50 0101 0000 PUSH AX
51 0101 0001 PUSH CX
52 0101 0010 PUSH DX
53 0101 0011 PUSH BX
54 0101 0100 PUSH SP
55 0101 0101 PUSH BP
56 0101 0110 PUSH Sl
57 0101 0111 PUSH 8]
58 0101 1000 POP AX
59 0101 1001 POP CX
! 5A 0101 1010 POP DX
! 5B 0101 1011 POP BX
5C 0101 1100 POP SP
‘ 5D 0101 1101 POP BP
5E 0101 1110 POP Sl
5F 0101 1111 POP DI
60 0110 0000 (not used)
61 0110 0001 (not used)
62 0110 0010 (not used)
63 0110 0011 (not used)
64 0110 0100 (not used)
! 65 0110 (101 (not used)
66 0110 0110 (not used)
i 67 0110 0111 (not used)
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Table 4-13. Machine Instruction Decoding Guide (Cont’d.)

1STBYTE
HEX BINARY 2ND BYTE BYTES 3,4,5,6 ASM-86 INSTRUCTION FORMAT

68 0110 1000 (not used)

69 0110 1001 (not used)

B6A 0110 1010 (not used)

6B 0110 1011 (not used)

6C 0110 1100 (not used)

6D 0110 1101 (not used)

6E 0110 1110 (not used)

6F 0110 111 (not used)

70 0111 0000 | IP-INC8 JO SHORT-LABEL

71 0111 0001 [IP-INC8 JNO SHORT-LABEL

72 0111 0010 [IP-INC8 JB/IJNAE/ SHORT-LABEL

JC
73 0111 0011 | IP-INCS8 JNB/JAE/ SHORT-LABEL
JNC

74 0111 0100 | IP-INCS8 JE/IJZ SHORT-LABEL

75 0111 0101 | IP-INC8 JNE/JNZ SHORT-LABEL

76 0111 0110 |IP-INC8 JBE/JNA SHORT-LABEL

77 0111 0111 | IP-INCS8 JNBE/JA SHORT-LABEL

78 0111 1000 |IP-INC8 JS SHORT-LABEL

79 0111 1001 | IP-INC8 JNS SHORT-LABEL

7A 0111 1010 {IP-INC8 JP/JPE  SHORT-LABEL

7B 0111 1011 | IP-INC8 JNP/JPO SHORT-LABEL

7C 0111 1100 [IP-INC8 JL/JNGE SHORT-LABEL

70 0111 1101 | IP-INCS8 JNL/JGE SHORT-LABEL

7E 0111 1110 [ IP-INC8 JLE/JNG SHORT-LABEL

7F 0111 1111 | IP-INC8 JNLE/JG SHORT-LABEL

80 1000 0000 [ MOD OO0 R/M (DISP-LO),(DISP-HI), ADD REG8/MEMS8,IMMEDS
DATA-8

80 1000 0000 | MOD 001 R/M (DISP-LO),(DISP-HI), OR REG8/MEMS,IMMEDS
DATA-8

80 1000 0000 | MODO10R/M (DISP-L.O),(DISP-H), ADC REG8/MEMS8,IMMEDS
DATA-8

80 1000 0000 | MOD 011 R/M (DISP-LO),(DISP-HY), SBB REG8/MEMS8,IMMEDS
DATA-8

80 1000 0000 | MOD100 R/M (DISP-L.O),(DISP-HLI), AND REG8/MEMS8,IMMEDS
DATA-8

80 1000 0000 | MOD 101 R/M (DISP-LO),(DISP-HI), SUB REG8/MEMS8,IMMEDS
DATA-8

80 1000 0000 | MOD110R/M (DISP-LO),(DISP-HI), XOR REG8/MEMS8,IMMEDS
DATA-8

80 1000 0000 | MOD 111 R/M (DISP-LO),(DISP-HD, CMP REG8/MEMS8,IMMEDS
DATA-8

81 1000 0001 | MOD 000 R/M (DISP-LO),(DISP-HI), ADD REG16/MEM16,IMMED16
DATA-LO,DATA-HI

81 1000 0001 [ MOD 001 R/M (DISP-LO),(DISP-HI), OR REG16/MEM16,IMMED16
DATA-LO,DATA-HI

81 1000 0001 [ MOD 010 R/M (DISP-LO),(DISP-HD, ADC REG16/MEM16,IMMED16
DATA-LO,DATA-HI

81 1000 0001 | MOD 011 R/M (DISP-LO),(DISP-HI), SBB REG16/MEM16,IMMED16
DATA-LO,DATA-HI
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81 1000 0001 | MOD 100 R/M (DISP-LO),(DISP-HI), AND REG16/MEM16,IMMED16
DATA-LO,DATA-H!
81 1000 0001 [ MOD101 R/M {DISP-LO),(DISP-HI), suB REG16/MEM16,IMMED16
DATA-LO,DATA-HI
81 1000 0001 | MOD 110 R/M (DISP-LO),(DISP-HI), XOR REG16/MEM16,IMMED16
DATA-LO,DATA-HI
81 1000 0001 | MOD 111 R/M (DISP-LO),(DISP-HI), CMP REG16/MEM16,IMMED16
DATA-LO,DATA-HI
82 1000 0010 [ MOD 000 R/M (DISP-LO),(DISP-HY), ADD REG8/MEMS8,IMMEDS8
DATA-8
82 1000 0010 | MOD 001 R/M (not used)
82 1000 0010 | MOD 010 R/M (DISP-LO),(DISP-H), ADC REG8/MEMS8,IMMEDS
DATA-8
82 1000 0010 | MOD 011 R/M (DISP-LO),(DISP-HI), SBB REG8/MEMS8,IMMEDS8
DATA-8
82 1000 0010 | MOD 100 R/M (not used)
82 1000 0010 [ MOD 101 R/M (DISP-LO),(DISP-HI), sSuB REG8/MEMS,IMMEDS8
DATA-8
82 1000 0010 [ MOD110R/M (not used)
82 1000 0010 { MOD 111 R/M (DISP-LO),(DISP-HI), CMP REG8/MEMS8,IMMEDS
DATA-8
83 1000 0011 | MOD 000 R/M (DISP-LO),(DISP-HI), ADD REG16/MEM16, IMMEDS
DATA-SX
83 1000 0011 [ MOD 001 R/M (not used)
83 1000 0011 { MOD 010 R/M (DISP-LO), (DISP-HI), ADC REG16/MEM16,IMMEDS
DATA-SX
83 1000 0011 [ MOD 011 R/M (DISP-LO),(DISP-HI), SBB REG16/MEM16,IMMEDS
DATA-SX
83 1000 0011 | MOD 100 R/M (not used)
83 1000 0011 | MOD 101 R/M (DISP-LO),(DISP-HI), SUB REG16/MEM16,IMMEDS
DATA-SX
83 1000 0011 | MOD110R/M (not used)
83 1000 0011 | MOD 111 R/M (DISP-LO),(DISP-HI}, CMP REG16/MEM16,IMMEDS8
DATA-SX
84 1000 0100 | MOD REG R/M | (DISP-LO),(DISP-HI) TEST REG8/MEMB8,REGS
85 1000 0101 | MOD REG R/M [ (DISP-LO),(DISP-H)) TEST REG16/MEM16,REG16
86 1000 0110 | MOD REG R/M | (DISP-LO),(DISP-HI) XCHG REGS8,REG8/MEMS
87 1000 0111 | MOD REG R/M [ (DISP-LO),(DISP-HI) XCHG REG16,REG16/MEM16
88 1000 1000 | MOD REG R/M [ (DISP-LO),(DISP-HI) MOV REG8/MEMS8,REGS
89 1000 1001 | MOD REG R/M | (DISP-LO),(DISP-HI) MOV REG16/MEM16/REG16
8A 1000 1010 | MOD REG R/M | {DISP-LO),(DISP-HI) MOV REG8,REG8/MEMS8
8B 1000 1011 | MOD REG R/M | (DISP-LO),(DISP-HI) MOV REG16,REG16/MEM16
‘ 8C 1000 1100 [ MODOSRR/M | (DISP-LO),(DISP-HD MOV REG16/MEM16,SEGREG
! 8C 1000 1100 [ MOD1--R/M (not used)
8D 1000 1101 | MOD REG R/M [ (DISP-LO),(DISP-HI) LEA REG16,MEM16
8E 1000 1110 { MOD OSR R/M { (DISP-LO),(DISP-HI) MOV SEGREG,REG16/MEM16
| 8E 1000 1110 [ MOD 1--R/M (not used)
{ 8F 1000 1111 | MOD 000 R/M (DISP-LO),(DISP-HI) POP REG16/MEM16
8F 1000 1111 | MOD 001 R/M (not used)
8F 1000 1111 { MOD 010 R/M (not used)

Mnemonics

intel. 1978



HARDWARE REFERENCE INFORMATION

Table 4-13. Machine Instruction Decoding Guide (Cont’d.)

1STBYTE
HEX BINARY 2ND BYTE BYTES 3,4,5,6 ASM-86 INSTRUCTION FORMAT
8F 1000 1111 | MOD 011 R/M (not used)
8F 1000 1111 |MOD 100 R/M (not used)
8F 1000 1111 | MOD 101 R/M (not used)
8F 1000 1111 |[MOD 110 R/M (not used)
8F 1000 1111 [MOD 111 R/M (not used)
90 1001 0000 NOP (exchange AX,AX)
91 1001 0001 XCHG AX,CX
92 1001 0010 XCHG AX,DX
93 1001 0011 XCHG AX,BX
94 1001 0100 XCHG AX,SP
95 1001 0101 XCHG AX,BP
96 1001 0110 XCHG AX,SI
97 1001 0111 XCHG AX,DI
98 1001 1000 cBw
99 1001 1001 CwD
9A 11001 1010 | DISP-LO DISP-HI,SEG-LO, CALL FAR__PROC
SEG-HI
98 1001 1011 WAIT
9C 1001 1100 PUSHF
9D (1001 1101 POPF
9E 1001 1110 SAHF
9F 1001 1111 LAHF
A0 [1010 0000 | ADDR-LO ADDR-HI MOV AL,MEMS8
Al 1010 0001 | ADDR-LO ADDR-HI MOV AX,MEM16
A2 [1010 0010 | ADDR-LO ADDR-HI MOV MEMS8, AL
A3 (1010 001t | ADDR-LO ADDR-H! MOV MEM16,AL
A4 [1010 0100 MOVS DEST-STR8,SRC-STRS8
A5 11010 0101 MOVS DEST-STR16,SRC-STR16
A6 11010 0110 CMPS DEST-STR8,SRC-STRS
A7 11010 0111 CMPS DEST-STR16,SRC-STR16
A8 11010 1000 | DATA-8 TEST AL,IMMEDS
A9 11010 1001 | DATA-LO DATA-HI TEST AX,IMMED16
AA 1010 1010 STOS DEST-STR8
AB {1010 1011 STOS DEST-STR16
AC 11010 1100 LODS SRC-STRS8
AD (1010 1101 LODS SRC-STR16
AE [1010 1110 SCAS DEST-STR8
AF 1010 1111 SCAS DEST-STR16
BO {1011 0000 | DATA-8 MOV AL,IMMEDS8
B1 1011 0001 | DATA-8 MOV CL,IMMEDS8
B2 (1011 0010 { DATA-8 MOV DL,IMMEDS
B3 [1011 1011 | DATA-8 MoV BL,IMMEDS
B4 11011 0100 { DATA-8 MOV AH,IMMEDS
B5 [1011 0101 [ DATA-8 MOV CH,IMMEDS
B6 {1011 0110 | DATA-8 MOV DH,IMMEDS
B7 (1011 0111 | DATA-8 MOV BH,IMMEDS
B8 1011 1000 [ DATA-LO DATA-HI MOV AX,IMMED16
B9 11011 1001 | DATA-LO DATA-HI MOV CX,IMMED16
BA ]1011 1010 | DATA-LO DATA-HI MoV DX,IMMED16
BB 11011 1011 [ DATA-LO DATA-HI MOV BX,IMMED16
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Table 4-13. Machine Instruction Decoding Guide (Cont’d.)

1STBYTE

HEX BINARY 2ND BYTE BYTES 3,4,5,6 ASM-86 INSTRUCTION FORMAT
BC 1011 1100 | DATA-LO DATA-HI MOV SP,IMMED16

BD 1011 1101 | DATA-LO DATA-HI MOV BP,IMMED16

BE 1011 1110 | DATA-LO DATA-HI MOV SI,IMMED16

BF 1011 1111 | DATA-LO DATA-HI MOV DI, IMMED16

co 1100 0000 (not used)

C1 1100 0001 (not used)

C2 1100 0010 { DATA-LO DATA-HI RET IMMED16 (intraseg)
C3 1100 0011 RET (intrasegment)
C4 1100 0100 | MOD REG R/M | (DISP-LO),(DISP-HI) LES REG16,MEM16
Cc5 1100 0101 [ MOD REG R/M | (DISP-LO),(DISP-HI) LDS REG16,MEM16
Ccé 1100 0110 | MOD 00O R/M (DISP-LO),(DISP-HI), MOV MEMS8,IMMEDS8

DATA-8

C6 1100 0110 |MOD 001 R/M (not used)

Cc8 1100 0110 {MOD010R/M (not used)

Cé 1100 0110 [MOD 011 R/M (not used)

C6 1100 0110 [MOD100R/M (notused)

C6 1100 0110 {MOD 101 R/M (not used)

Cé 1100 0110 [MOD 110 R/M (not used)

Cé 1100 0110 [MOD 111 R/M (not used)

c7 1100 0111 | MOD 000 R/M (DISP-LO),(DISP-HI), MOV MEM16,IMMED16

DATA-LO,DATA-HI

Cc7 1100 0111 | MOD 001 R/M (not used)

c7 1100 0111 {MOD 010 R/M (not used)

c7 1100 0111 [MOD 011 R/M (not used)

Cc7 1100 0111 |[MOD 100 R/M (not used)

Cc7 1100 0111 |MOD 101 R/M (not used)

C7 1100 0111 |MOD 110 R/M (not used)

Cc7 1100 0111 [MOD 111 R/M (not used

Cc8 1100 1000 (not used)

Cc9 1100 1001 (not used)

CA 1100 1010 | DATA-LO DATA-HI RET IMMED16 (intersegment)
cB 1100 1011 RET (intersegment)
CcC 1100 1100 INT 3

CD 1100 1101 | DATA-8 INT IMMEDS8

CE 1100 1110 INTO

CF 1100 1111 IRET

DO 1101 0000 [ MOD 000 R/M (DISP-LO),(DISP-HI) ROL. REG8/MEMS,1
Do 1101 0000 | MOD 001 R/M (DISP-LO),(DISP-HI} ROR REG8/MEMS,1
DO 1101 0000 [ MOD 010 R/M (DISP-LO),(DISP-HI) RCL REG8/MEMS 1
]} 1101 0000 | MOD 011 R/M (DISP-LO),(DISP-HI) RCR REG8/MEMS8,1
DO 1101 0000 [ MOD 100 R/M (DISP-LO),(DISP-HI) SAL/SHL REG8/MEMS8,1
DO 1101 0000 | MOD 101 R/M (DISP-LO),(DISP-HI) SHR REG8/MEMS8,1
DO 1101 0000 [ MOD 110 R/M (not used)

DO 1101 0000 | MOD 111 R/M (DISP-LO),(DISP-HI) SAR REG8/MEMS8,1
D1 1101 0001 { MOD 000 R/M (DISP-LO),(DISP-HI) ROL REG16/MEM16,1
D1 1101 0001 | MOD 001 R/M (DISP-LO),(DISP-HI) ROR REG16/MEM16,1
D1 1101 0001 | MODO0O10R/M (DISP-LO),(DISP-HI) RCL REG16/MEM16,1
D1 1101 0001 ([ MOD 011 R/M (DISP-LO),(DISP-RHI) RCR REG16/MEM16,1
D1 1101 0001 | MOD 100 R/M (DISP-LO),(DISP-HI) SAL/SHL REG16/MEM16,1
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1STBYTE
HEX BINARY 2ND BYTE BYTES 3,4,5,6 ASM-86 INSTRUCTION FORMAT
D1 1101 0001 [MOD 101 R/M (DISP-LO),(DISP-HI) SHR REG16/MEM186,1
D1 1101 0001 | MOD 110 R/M (not used)
D1 1101 0001 {MOD 111 R/M (DISP-LO),(DISP-HI) SAR REG16/MEM16,1
D2 1101 0010 | MOD 000 R/M (DISP-LOY),(DISP-HI) ROL REG8/MEMS,CL
D2 1101 0010 [ MOD 001 R/M (DISP-LO),(DISP-HI) ROR REG8/MEMS,CL
D2 1101 0010 | MOD 010 R/M (DISP-LOY},(DISP-HI) RCL REG8/MEMS,CL
D2 1101 0010 | MOD 011 R/M (DISP-LO),(DISP-HI) RCR REG8/MEMS,CL
D2 1101 0010 | MOD 100 R/M (DISP-LO),(DISP-HI) SAL/SHL REG8/MEMS,CL
D2 1101 0010 | MOD 101 R/M (DISP-LO),(DISP-HI) SHR REG8/MEMS,CL
D2 1101 0010 | MOD 110 R/M (not used)
D2 1101 0010 {MOD 111 R/M (DISP-LO),(DISP-HI) SAR REG8/MEMS,CL
D3 1101 0011 | MOD 000 R/M (DISP-LOY},(DISP-H1) ROL REG16/MEM16,CL
D3 1101 0011 | MOD 001 R/M (DISP-LOY),(DISP-HI) ROR REG16/MEM16,CL
D3 1101 0011 [ MOD 010 R/M (DISP-LOY}, (DISP-HI) RCL REG16/MEM16,CL
D3 1101 0011 | MOD 011 R/M (DISP-LOY}, (DISP-HI) RCR REG16/MEM16,CL
D3 1101 0011 [MOD 100 R/M (DISP-LO), (DISP-HI) SAL/SHL REG16/MEM16,CL
D3 1101 0011 | MOD 101 R/M (DISP-LO),(DISP-HI) SHR REG16/MEM16,CL
D3 1101 0011 | MOD 110 R/M (not used)
D3 1101 0011 [MOD 111 R/M (DISP-LO),(DISP-HI) SAR REG16/MEM16,CL
D4 1101 0100 | 00001010 AAM
D5 1101 0101 | 00001010 AAD
D6 1101 0110 (not used)
D7 1101 0111 XLAT SOURCE-TABLE
D8 1101 1000 | MOD 000 R/M
XXX [MODYYY R/M (DISP-LO), (DISP-HI) ESC OPCODE,SOURCE
DF 1101 1111 | MOD 111 R/M
EO 1110 0000 [ IP-INC-8 LOOPNE/ SHORT-LABEL
LOOPNZ
E1 1110 0001 [IP-INC-8 LOOPE/ SHORT-LABEL
LOOPZ
E2 1110 0010 [IP-INC-8 LOOP SHORT-LABEL
E3 1110 0011 [ IP-INC-8 JCXZ SHORT-LABEL
E4 1110 0100 | DATA-8 IN AL,IMMEDS8
ES 1110 0101 [ DATA-8 IN AX,IMMEDS8
E6 1110 0110 | DATA-8 ouT AL,IMMEDS
E7 1110 0111 { DATA-8 ouT AX,IMMEDS
E8 1110 1000 [ IP-INC-LO IP-INC-HI CALL NEAR-PROC
E9 1110 1001 |} IP-INC-LO IP-INC-HI JMP NEAR-LABEL
EA 1110 1010 (IP-LO IP-HI,CS-LO,CS-HI JMP FAR-LABEL
EB 1110 1011 | IP-INC8 JMP SHORT-LABEL
EC 1110 1100 IN AL,DX
ED 1110 1101 IN AX,DX
EE 1110 1110 ouT AL,DX
EF 1110 1111 ouT AX,DX
FO 11110000 LOCK (prefix)
F1 1111 0001 (not used)
F2 1111 0010 REPNE/REPNZ
F3 1111 0011 REP/REPE/REPZ
Fa 1111 0100 HLT
F5 11110101 CMC
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Table 4-13. Machine Instruction Decoding Guide (Cont’d.)

1STBYTE

HEX T BINARY—] 2ND BYTE BYTES 3,4,5,6 ASM-86 INSTRUCTION FORMAT

F6 | 1111 0110 |[MODO0OOR/M | (DISP-LO),(DISP-HI), | TEST REGS/MEMS,IMMEDS
DATA-8

F6 | 1111 0110 [MOD 001 R/IM (not used)

F6 | 1111 0110 [MODO10R/M | (DISP-LO),(DISP-HI) NOT REGS8/MEMS

F6 | 1111 0110 |MODO11R/M | (DISP-LO),(DISP-H)) | NEG REG8/MEMS

F6 | 1111 0110 [MOD100R/M | (DISP-LO),(DISP-HI) MUL REGS8/MEMS

F6 | 1111 0110 |MOD 101 R/M | (DISP-LO),(DISP-HI) IMUL REG8/MEMS

F6 | 1111 0110 |MOD110R/M | (DISP-LO),(DISP-HI) DIV REG8/MEMS

F6 | 1111 0110 [MOD111R/M | (DISP-LO),(DISP-HI) IDIV REG8/MEMS

F7 | 1111 0111 [MODO0OOR/M | (DISP-LO),(DISP-HI), | TEST REG16/MEM16,IMMED16
DATA-LO,DATA-HI

F7 | 1111 0111 [MOD 001 R/IM (not used)

F7 | 1111 0111 [MODO1OR/M | (DISP-LO),(DISP-HI) NOT REG16/MEM16

F7 | 1111 0111 [MODO11R/M | (DISP-LO),(DISP-HI) NEG REG16/MEM16

F7 | 1111 0111 [MOD100R/M | (DISP-LO),(DISP-Hi) MUL REG16/MEM16

F7 | 1111 0111 [MOD101R/M | (DISP-LO),(DISP-HI) IMUL REG16/MEM16

F7 | 1111 0111 [MOD110R/M | (DISP-LO),(DISP-HI) DIV REG16/MEM16

F7 | 1111 0111 [MOD111R/M | (DISP-LO),(DISP-HI) IDIV REG16/MEM16

F8 | 1111 1000 CLC

F9 | 1111 1001 STC

FA | 1111 1010 CLl

FB | 1111 1011 STI

FC | 1111 1100 CLD

FD | 1111 1101 STD

FE | 1111 1110 [MODO000R/M | (DISP-LO),(DISP-HI) ING REGS/MEMS

FE | 1111 1110 [MOD 001 R/M | (DISP-LO),(DISP-HI) DEC REG8/MEMS

FE | 1111 1110 | MOD 010 R/M (not used)

FE | 1111 1110 [MOD 011 R/M (not used)

FE | 1111 1110 [MOD 100 R/M (not used)

FE [ 1111 1110 |MOD 101 R/M (not used)

FE 1111 1110 [MOD 110 R/M (not used)

FE | 1111 1110 |MOD 111 R/M (not used)

FF | 1111 1111 |MODO0OOR/M | (DISP-LO),(DISP-HI) INC MEM16

FF | 1111 1111 [MOD 001 R/M | (DISP-LO),(DISP-H) DEC MEM16

FF | 1111 1111 |MODO10R/M | (DISP-LO),(DISP-HI) CALL REG16/MEM16 (intra)

FF | 1111 1111 [MOD 011 R/M | (DISP-LO),(DISP-HI) CALL MEM16 (intersegment)

FF | 1111 1111 |MOD100R/M | (DISP-LO),(DISP-HI) | JMP REG16/MEM16 (intra)

FF | 1111 1111 |MOD 101 R/M | (DISP-LO),(DISP-HI) | JMP MEM16 (intersegment)

FF | 1111 1111 {MOD110R/M | (DISP-LO),(DISP-HI) PUSH MEM16

FF | 1111 1111 |MOD 111 R/M (not used)
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Table 4-14. Machine Instruction Encoding Matrix

Lo
i 0 1 2 3 4 5 6 7 8 9 A B c 0 £ F
0 ADD ADD ADD ADD ADD ADD PUSH POP OR OR OR OR OR OR PUSH
bir/m dwir/my btr/im| wtrim | bia w.ia ES ES bir/m | wir/m [ btr/m | wir/m b.i w.i cs
! ADC ADC ADC ADC ADC ADC PUSH POP SBB SBB SBB SBB SBB SBB PUSH POP
bir/im fwihrim | btr/m| wtr/m b.i w.i SS SS bir/m [whrim | bte/m | wtrim b.i w.i DS DS
2 AND AND AND AND AND AND SEG DAA SuB SuB SuB SUB SUB SUB SEG DAS
btr/m fwihr/m | btr/m| wti/m b.i w.i =ES birim b whr/m [ bte/m | wir/m b.i wi -CS
3 XOR XOR XOR XOR XOR XOR SEG AAA CmP Ccmp CMP cmp CMP o SEG AAS
bir/m {wihrim | bte/m| wtr/m b.i w.i =S8 bic/m [ wie/m [ bte/m | wir/m b.i wi -DS
4 INC INC INC INC INC INC INC INC DEC DEC DEC DEC DEC DEC DEC DEC
AX CX DX BX SP BP St DI AX CX DX BX SP BP Sl Di
5 | PUSH PUSH PUSH PUSH PUSH PUSH PUSH PUSH POP POP POP POP POP POP POP POP
AX CX DX BX SP BP Si DI AX CX DX BX Sp BP Sl i
8
7 10 INO JB/ JNB/ JE/ JNE/ JBE/ JNBE/ S INS JP/ NP/ JL/ JNL/ JLE/ JNLE/
JNAE JAE Jz JINZ JNA JA JPE JPO JNGE JGE JNG JG

8 | Immed | Immed | Immed | tmmed | TEST TEST XCHG XCHG MoV MoV MOV MoV MOV LEA MOV POP
beim | wrim | beim | iseim | boe/m | wrim | boim | owe/m bfe/m [ wihr/m | btr/m | wte/m | sefe/m srntrim | r/m

9 XCHG XCHG XCHG XCHG XCHG XCHG XCHG XCHG CALL
AX oX DX BX Sp 8P 5| ol CBW CWD Id WAIT | PUSHF | POPF SAHF LAHF
A MoV MOV MoV MOV TEST TEST
m ~AL|m — AX AL — m| AX — m | MOVS | MOVS | CMPS | CMPS bila wia STOS | STOS | LODS | LODS | SCAS | SCAS
] Mov MOV MoV MOV MoV MOV MOV MoV MOV MOV MOV MOV Mov Mov MOV MoV
t~AL Ji—-CLji—~DL{i—-BL {i~AH|{i~CH|i~oDH i ~BH [t ~AX | 1~ CX|i—~DX|i—-BX|i—-SP|i—pBP i—=St|i-0
[ RET, MoV Mov RET, RET INT INT
(i+SP) RET LES LDS bir/m | wir/m 1.(1+SP) | Type 3 | (Any) INTO IRET
0 Shift Shift Shift Shift ESC ESC ESC ESC ESC ESC ESC ESC
b w by | wy | AAM [ AAD XLAT 5 1 2 3 4 5 § 7
E { LOOPNZ/| LOOPZ/ LOOP JCXZ IN IN ouT out CALL JMP JMP JMP IN IN ouT out
LOOPNE | LOOPE b w b w d d 1.d si.d v,b v,w v.b W
F REP Grp 1 Grp1 Grp2 Grp2
LOCK REP 7 HLT CMC borfm w.r/m LCLC §TC cLl STI CLD STD b.r/m wr/m
where
mod[Jr/m | 000 001 | o0 o1t 100 | 101 110 11
tmmed ADD [ ADC 588 AND SuB XOR | CMP
Shift ROL ROR ACL RCR | SHL/SAL | SHR — SAR
Grp 1 TEST — NOT NEG Mol | iMuL DIV DIV
Grp2 INC DEC | CALL | CALL| JMP | JMP | PUSH -~
i Id id Lid
b = byte operation m = memory
d = direct rim = EA is second byte
t = from CPU reg si = short intrasegment
I = immediate Sr = segment register
ia = immed. to accum. t=1to CPU reg
id = indirect v = variable
1s = immed. byte. sign ext w = word operation
| = long ie. intersegment Z = zero
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8086 Instruction Sequence

Figure 4-22 illustrates the internal operation and
bus activity that occur as an 8086 CPU executes a
sequence of instructions. This figure presents the
signals and timing relationships that are impor-
tant in understanding 8086 operation. The follow-
ing discussion is intended to help in the interpreta-
tion of the figure.

Figure 4-22 shows the repeated execution of an
instruction loop. This loop is defined in both
machine code and assembly language by figure
4-21. A loop was chosen both to demonstrate the
effects of a program jump on the queue and to
make the instruction sequence easy to follow. The
program sequence shown was selected for several
reasons. First, consisting of seven instructions
and 16 bytes, the sequence is typical of the tight
loops found in many application programs.
Second, this particular sequence contains several
short, fast-executing instructions that
demonstrate both the effect of the queue on CPU
performance and the interaction between the exe-
cution unit (EU) fetching code from the queue
and the bus interface unit (BIU) filling the queue
and performing the requested bus cycles. Last,
for the purpose of this discussion, code, stack,
and memory data references were arranged to be
aligned on even word boundaries.

ASSEMBLY LANGUAGE MACHINE CODE

MOV AX, OF802H BB02F8
PUSH AX 50

MOV CX, BX 8BCB
MOV DX, CX 8BD1
ADD AX, [Sl] 0304
ADD SI, 8086H 81C68680
JMP § 114 EBFO

Figure 4-21. Instruction Loop Sequence

Figure 4-22 can be more easily interpreted by
keeping the following guidelines in mind.

*  The queue status lines (QS0, QS1) are the key
indicators of EU activity.

e Status lines S2 through SO are the main
indicators of 8086/8088 bus activity.

¢ Interaction of the BIU and EU is via the
queue for prefetched opcodes and via the EU
for requested bus cycles for data operands.

Keeping these guidelines in mind, the instruction
sequence depicted in figure 4-22 can be described
as follows. Starting the loop arbitrarily in clock
cycle 1 with the queue reinitialization that occurs
as part of the JMP instruction, JMP instruction
execution is completed by the EU, while the BIU
performs an opcode fetch to begin refilling the
queue. (Note that a shorthand notation has been
used in the figure to represent the two queue
status lines and the three status lines—active
periods on any of these lines are noted and the
binary value of the lines is indicated above each
active region.)

In clock cycle 8, the queue status lines indicate
that the first byte of the MOV immediate instruc-
tion has been removed from the queue (one clock
cycle after it was placed there by the BIU fetch)
and that execution of this instruction has begun.
The second byte of this instruction is taken from
the queue in clock cycle 10 and then, in clock
cycle 12, the EU pauses to wait one clock cycle for
the BIU’s second opcode fetch to be completed
and for the third byte of the MOV immediate
instruction to be available for execution
(remember the queue status lines indicate queue
activity that has occurred in the previous clock
cycle).

Clock cycle 13 begins the execution of the PUSH
AX instruction, and in clock cycle 15, the BIU
begins the fourth opcode fetch. The BIU finishes
the fourth fetch in clock cycle 18 and prepares for
another fetch when it receives a request from the
EU for a memory write (the stack push). Instead
of completing the opcode fetch and forcing the
EU to wait four additional clock cycles, the BIU
immediately aborts the fetch cycle (resulting in
two idle clock cycles (Ty) in clock cycles 19 and
20) and performs the required memory write. This
interaction between the EU and BIU results in a
single clock extension to the execution time of the
PUSH AX instruction, the maximum delay that
can occur in response to an EU bus cycle request.

Execution continues in clock cycle 24 with the
execution of back-to-back, register-to-register
MOY instructions. The first of these instructions
takes full advantage of the prefetched opcode to
complete this operation in two clock cycles. The
second MOV instruction, however, depletes the
queue and requires two additional clock cycles
(clock cycles 28 and 29).

4-37
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Table 4-14. Machine Instruction Encoding Matrix

Lo
Hi 0 1 2 3 4 5 6 7 8 9 A B c 1 E F
0 ADD ADD ADD ADD ADD ADD PUSH POP OR OR OR OR OR OR PUSH
bir/m | wihr/m| btr/m| wtr/im | b.ia w.ia ES ES bir/m | wir/m | btr/m | wtr/m b.i w.i CS
1 ADC ADC ADC ADC ADC ADC PUSH POP SBB SBB SBB SBB SBB SBB PUSH POP
bfr/m {whr/m| btr/m| wtr/m b.i w,i SS SS bir/m | wihr/m | btr/m | wtr/m b.i w.i DS DS
2 AND AND AND AND AND AND SEG DAA suB SUB SuB SuB sus Sus SEG DAS
btr/m twihr/m| btr/m| wtr/m b.i wi <ES bir/m | wihr/m | btrim | wtr/m b.i wi -CS
3 XOR XOR XOR XOR XOR XOR SEG AAA CMP CMP CMP CMmP CMP CMP SEG AAS
bfr/m [ wir/m| btr/m| wtr/m b.i w.i =SS ofrim | wir/mt btrim | wir/m b.i w.i -DS
4 INC INC INC INC INC INC INC INC DEC DEC DEC DEC DEC DEC DEC DEC
AX CX 0X BX SP BP St DI AX CX DX BX SP BP Sl DI
5 | PUSH | PUSH PUSH PUSH PUSH PUSH PUSH PUSH POP POP POP POP POP POP POP POP
AX CX DX BX SP 8P Si DI AX CX DX BX SP BP Sl DI
6
7 40 INO JB/ JNB/ JE/ JNE/ JBE/ JNBE/ 55 INS JP/ JINP/ JL/ JNL/ JLE/ JNLE/
JNAE JAE JZ INZ JNA JA JPE JPO JNGE JGE NG JG

8 | Immed | Immed | Immed | Immed | TEST TEST XCHG | XCHG | MOV MoV MoV MOV MOV LEA MoV POP
bs/im | wr/m | br/m isrim | boe/m | wr/m | boe/m | owe/m [ bfe/m L wiho/m | bte/m | wte/m | osefrim sntrimi{ r/m

9 [ XCHG | XCHG | XCHG | XCHG [ XCHG [ XCHG | XOHG | XCHG 1 cpy | cwp | CALL | wair | puswr | popr | saWr | LavF

SP BP S| Dl l.d
A MOV MOV MoV MOV TEST TEST
m o ALl m - AX|AL — ml AX — m MOVS | MOVS | CMPS | CMPS b,a wia STOS | STOS | LODS | LODS | SCAS | SCAS
8 MOV MOV MOV MOV MOV Mov MoV MOV MoV MOV MoV MoV MoV MoV MOV MOV
1 - AL |i-CL|i—-0OL|i-8BL {i ~AH{i~CH|i—~DOH|i~-BH|i—-AX|i—-CX|i—-DX|i—-BX{t—~SP{i—~BP| i—8 [i-D
c RET. MOV MOV RET. RET INT INT
(i+SP) RET LES LDS bir/m [ wir/m 1.(i+SP) | Type 3 | (Any) INT0 IRET
0 | Shift Shift Shift Shift ESC ESC ESC ESC ESC ESC ESC ESC
b w by | wy | AAM ) AAD XLAT | 5y 1 2 3 4 5 8 7
E | LOOPNZ/| LOOPZ/ | | gop JCXZ IN IN ouT OUT | CALL JMP JMP JMP IN IN out ouT
LOOPNE | LOOPE b w b w d d I.d si.d v,b v,W v,b VW
F REP Grp 1 Grp 1 Gip2 Grp2
LOCK REP 7 HLT CMC br/m | wrim CLe STC cu STl CLD STD brim | wrim

where

mod[Ir/m | 000 001 010 011 100 101 10 111
Immed ADD OR ADC SBB AND suB XO0R CMP
Shift ROL ROA RCL RCR | SHL/SAL | SHR - SAR
Grp 1 TEST - NOT NEG MUL [ IMUL o 1otV
Grp2 INC DEC | CALL | cALL| JMP | JmP | PUSH -
id Lid 1d Lid

b = byte operation m = memory

d = direct r/m = EA is second byte

f = from CPU reg si = short intrasegment

i = immediate Sr = segment register

ia = immed. to accum. = to CPU reg

id = indirect v = variable

is = immed. byte, sign ext. w = word operation

| = long ie. intersegment z = zero
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8086 Instruction Sequence

Figure 4-22 illustrates the internal operation and
bus activity that occur as an 8086 CPU executes a
sequence of instructions. This figure presents the
signals and timing relationships that are impor-
tant in understanding 8086 operation. The follow-
ing discussion is intended to help in the interpreta-
tion of the figure.

Figure 4-22 shows the repeated execution of an
instruction loop. This loop is defined in both
machine code and assembly language by figure
4-21. A loop was chosen both to demonstrate the
effects of a program jump on the queue and to
make the instruction sequence easy to follow. The
program sequence shown was selected for several
reasons. First, consisting of seven instructions
and 16 bytes, the sequence is typical of the tight
loops found in many application programs.
Second, this particular sequence contains several
short, fast-executing instructions that
demonstrate both the effect of the queue on CPU
performance and the interaction between the exe-
cution unit (EU) fetching code from the queue
and the bus interface unit (BIU) filling the queue
and performing the requested bus cycles. Last,
for the purpose of this discussion, code, stack,
and memory data references were arranged to be
aligned on even word boundaries.

ASSEMBLY LANGUAGE MACHINE CODE

MOV AX, 0F802H B802F8
PUSH AX 50

MOV CX, BX 8BCB
MOV DX, CX 8BD1
ADD AX, [SI] 0304
ADD SI, 8086H 81C68680
IMP § 14 EBFO

Figure 4-21. Instruction Loop Sequence

Figure 4-22 can be more easily interpreted by
keeping the following guidelines in mind.

®  The queue status lines (QS0, QS1) are the key
indicators of EU activity.

e Status lines S2 through SO are the main
indicators of 8086/8088 bus activity.

¢ Interaction of the BIU and EU is via the
queue for prefetched opcodes and via the EU
for requested bus cycles for data operands.

Keeping these guidelines in mind, the instruction
sequence depicted in figure 4-22 can be described
as follows. Starting the loop arbitrarily in clock
cycle 1 with the queue reinitialization that occurs
as part of the JMP instruction, JMP instruction
execution is completed by the EU, while the BIU
performs an opcode fetch to begin refilling the
queue. (Note that a shorthand notation has been
used in the figure to represent the two queue
status lines and the three status lines—active
periods on any of these lines are noted and the
binary value of the lines is indicated above each
active region.)

In clock cycle 8, the queue status lines indicate
that the first byte of the MOV immediate instruc-
tion has been removed from the queue (one clock
cycle after it was placed there by the BIU fetch)
and that execution of this instruction has begun.
The second byte of this instruction is taken from
the queue in clock cycle 10 and then, in clock
cycle 12, the EU pauses to wait one clock cycle for
the BIU’s second opcode fetch to be completed
and for the third byte of the MOV immediate
instruction to be available for execution
(remember the queue status lines indicate queue
activity that has occurred in the previous clock
cycle).

Clock cycle 13 begins the execution of the PUSH
AX instruction, and in clock cycle 15, the BIU
begins the fourth opcode fetch. The BIU finishes
the fourth fetch in clock cycle 18 and prepares for
another fetch when it receives a request from the
EU for a memory write (the stack push). Instead
of completing the opcode fetch and forcing the
EU to wait four additional clock cycles, the BIU
immediately aborts the fetch cycle (resulting in
two idle clock cycles (T) in clock cycles 19 and
20) and performs the required memory write. This
interaction between the EU and BIU results in a
single clock extension to the execution time of the
PUSH AX instruction, the maximum delay that
can occur in response to an EU bus cycle request.

Execution continues in clock cycle 24 with the
execution of back-to-back, register-to-register
MOV instructions. The first of these instructions
takes full advantage of the prefetched opcode to
complete this operation in two clock cycles. The
second MOV instruction, however, depletes the
queue and requires two additional clock cycles
(clock cycles 28 and 29).
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Figure 4-22. Sample Instruction Sequence Execution

In clock cycle 30, the ADD memory indirect to
AX instruction begins. In the time required to
execute this instruction, the BIU completes two
opcode fetch cycles and a memory read and
begins a fourth opcode fetch cycle. Note that in
the case of the memory read, the EU’s request for
a bus cycle occurs at a point in the BIU fetch cycle
where it can be incorporated directly (idle states
are not required and no EU delay is imposed).

In clock cycle 44, the EU begins the ADD
immediate instruction, taking four bytes from the
queue and completing instruction execution in
four clock cycles. Also during this time, the BIU
senses a full queue in clock cycle 45 and enters a
series of bus idle states (five or six bytes constitute
a full queue in the 8086; the BIU waits until it can
fetch a full word of opcode before accessing the
bus).

At clock cycle 47, the BIU again begins a bus
cycle sequence, one that is destined to be an
“overfetch’” since the EU is executing a JMP
instruction. As part of the JMP instruction, the
queue reinitialization (which began the instruc-
tion sequence) occurs.

The entire sequence of instructions has taken 55
clock cycles. Eighteen opcode bytes were fetched,
one word memory read occurred, and one word
stack write was performed.

This example was, by design, partially bus limited
and indicates the types of EU and BIU interaction
that can occur in this situation. Most application

code sequences, however, use a higher proportion
of more complex, longer-executing instructions
and addressing modes, and therefore tend to be
execution limited. In this case, less BIU-EU
interaction is required, the queue more often is
full, and more idle states occur on the bus.

The previous example sequence can be easily
extended to incorporate wait states in the bus
access cycles. In the case of a single wait state,
each bus cycle would be lengthened to five clock
cycles with a wait state (Tyy) inserted between
every T3 and T, state of the bus cycle. As a first
approximation, the instruction sequence exection
time would appear to be lengthened by 10 clock
cycles, one cycle for each useful read or write bus
cycle that occurs. Actually, this approximation
for the number of wait states inserted is incorrect
since the queue can compensate for wait states by
making use of previously idle bus time. For the
example sequence, this compensation reduced the
actual execution time by one wait state, and the
sequence was completed in 64 clock cycles, one
less than the approximated 65 clock cycles.

4.3 8089 1/0 Processor

The Intel® 8089 1/0 Processor (IOP) combines
the functions of a DMA controller with the pro-
cessing capabilities of a microprocessor. In addi-
tion to the normal DMA function of transferring
data, the 8089 is capable of dynamically
translating and comparing the data as it is

Mnemonics “: Intel, 1978
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Figure 4-22. Sample Instruction Sequence Execution

transferred and of supporting a number of ter-
minate conditions including byte count expired,
data compare or miscompare and the occurrence
of an external event. The 8089 contains two
separate DMA channels, each with its own
register set. Depending on the established
priorities (both inherent and program deter-
mined), the two channels can alternate
(interleave) their respective operations.

Designed expressly to relieve the 8086 or 8088
CPU of the overhead associated with 1/O opera-
tions, the 8089, when configured in the remote
mode, can perform a complete I/0 task while the
CPU is performing data processing tasks. The
8089, when it has completed its 1/0 task, can then
interrupt the CPU.

Transfer flexibility is an integral part of the
8089’s design. In addition to routine transfers
between an 1/0 peripheral and memory, transfers
can be performed between two I/O devices or
between two areas of memory. Transfers between
dissimilar bus widths are automatically handled
by the 8089. When data is transferred from an
8-bit peripheral bus to a 16-bit memory bus, the
8089 reads two bytes from the peripheral,
assembles the bytes into a 16-bit word and then
writes the single word to the addressed memory
location. Also, both 8- and 16-bit peripherals can
reside on the same (16-bit) bus; byte transfers are
performed with the 8-bit peripheral, and word
transfers are performed with the 16-bit
peripheral.

System Configuration

The 8089 can be implemented in one of two
system configurations: a ‘‘local’” mode in which
the 8089 shares the system bus with an 8086 or
8088 CPU and a “‘remote’” mode in which the
8089 has exclusive access to its own dedicated bus
as well as access to the system bus. Note that in
either the local or remote mode, the 8089 can
address a full megabyte of system memory and
64k bytes of 1/0 space.

Local Mode

In the local mode, the 8089 acts as a slave to an
8086 or 8088 CPU that is operating in the max-
imum mode. In this configuration, the 8089
shares the system address latches, data
transceivers and bus controller with the CPU as
shown in figure 4-23.

Since the IOP and CPU share the system bus,
either the IOP or the CPU will have access to the
bus at any one time. When one processor is using
the bus, the other processor floats its
address/data and control lines. Bus access
between the IOP and CPU is determined through
the request/grant function. Recalling the CPU’s
request/grant sequence, the IOP requests the bus
from the CPU, the CPU grants the bus to the
10P, and the IOP relinquishes the bus to the CPU
when its operation is complete. Remember that
the CPU cannot request the bus from the 10P
(the CPU is only capable of granting the bus and
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Figure 4-23. Typical 8088/8089 Local Mode Configuration

must wait for the IOP to release the bus). Also,
since the request/grant pulse exchange must be
synchronized, both the CPU and 10P must be
referenced to the same clock signal.,

The 8089 IOP, when used in the local mode, can
be added to an 8086 or 8088 maximum mode con-
figuration with little affect on component count
(channel attention decoding logic as required) and
offers the benefits of intelligent DMA
(scan/match, translate, variable termination con-
ditions), modular programming in a full
megabyte of memory address space and a set of
optimized 1/0 instructions that are unavailable to
the 8086 and 8088 CPUs. The major disadvantage
to the local configuration is that since the system
bus is shared, bus contention always exists
between the CPU and IOP. The use of the bus
load limit field in the channel control word can
help reduce IOP bus access during task block pro-
gram execution (bus load limiting has no affect on
DMA transfers) although, for I/0 intensive
systems, the remote mode should be considered.

Remote Mode

The 8089, when used in the remote mode, pro-
vides a multiprocessor system with true parallel
processing. In this mode, the 8089 has a separate
(local) bus and memory for I/O peripheral com-
munications, and the system bus is completely
isolated from the I/0 peripheral(s). Accordingly,
I/0 transfers between an /0 peripheral and the
IOP’s local memory can occur simultaneously
with CPU operations on the system bus.

As shown in figure 4-24, to interface the 8089 to
the system bus, data transceivers and address
latches are used to separate the IOP’s local bus
from the system bus, an 8288 Bus Controlier is
used to generate the bus control signals for both
the local and system buses as well as to govern the
operation of the transceivers/latches, and an 8289
Bus Arbiter is used to control access to the system
bus (each processor in the system would have an
associated 8289 Bus Arbiter). To interface the
8089 to its local bus, another set of address
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Figure 4-24. Typical 8089 Remote Mode Configuration

latches is required (unless MCS-85™ multiplexed
address components are exclusively interfaced)
and, depending on the bus loading demands, one
(8-bit bus) or two (16-bit bus) data transceivers
would be used.

In the remote mode, the IOP’s local bus is treated
as /0 space (up to 64k bytes), and the system bus
is treated as memory space (I megabyte). The
8288 Bus Controller’s I/O command outputs con-
trol the local (I/0) bus, and its memory command
outputs control the system (memory) bus. The
8289 Bus Arbiter, which is operated in its I10B
(I/0 peripheral bus) mode, also decodes the
IOP’s S2 through SO status outputs. In this mode,
the 8289 will not request the multimaster system
bus when the IOP indicates an operation on its
local bus. If the IOP’s bus arbiter currently has
access to the system bus, the CPU’s arbiter (or
any other arbiter in the system) can acquire use of
the system bus at this time (a bus arbiter main-
tains bus access until another arbiter requests the
bus).

Bus Operation

The 8089 utilizes the same bus structure as an
8086 or 8088 CPU that is configured in the max-
imum mode and performs a bus cycle only on de-
mand (e.g., to fetch an instruction during task
block execution or to perform a data transfer).
The bus cycle itself is identical to an 8086 or 8088
CPU’s bus cycle in that all cycles consist of four
T-states and use the same time-multiplexing
technique of the addressdata lines. As shown in
the following timing diagrams, the address (and
ALE signal) is output during state T for either a
read or write cycle. Depending on the type of
cycle indicated, the address/data lines are floated
during state Ty for a read cycle (figure 4-25) or
data is output on these lines during a write cycle
(figure 4-26). During state Ty, write data is main-
tained or read data is sampled, and the busy cycle
is concluded in state Ty4.

Since the 8089 is capable of transferring data to or
from both 8-bit and 16-bit buses, when an 8-bit
physical bus is specified (bus width is specified
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during the initialization sequence), the address
present on the AD15 through ADS8 address/data
lines is maintained for the entire bus cycle as
shown in figure 4-25 and, unless added drive
capability is required, the associated address latch
can be eliminated. An 8-bit data bus is compatible
with the 8088 CPU and with the MCS-85™
muitiplexed address peripherals (8155, 8185,
etc.).

The 8089 operates identically to the 8086 CPU
with respect to the use of the low- and high-order
halves of the data bus. Table 4-14 defines the data
bus use for the various combinations of bus width
and address boundary.

The S2 through SO status lines define the bus cycle
to be performed. These lines are used by an 8288
Bus Controller to generate all memory and 1/0
command and control signals, and are decoded
according to table 4-15.

Table 4-14. Data Bus Usage

Physical Bus Width*
Logical Address
Bus Width' Boundary 8 16
Byte Transfer Word Transfer
Even AD7-AD0O = DATA AD7-ADO = DATA N/A
(BHE not used) (BHE high)
8
AD7-AD0 = DATA AD15-AD8 = DATA
Odd (BHE not used) (BHE low) N/A
Even lteqal AD7-AD0 = DATA AD15-AD0 = DATA
g (BHE high) (BHE low)
16
AD15-AD8 = DATA ,
Odd Hlegal (BHE low) N/A
Notes:

1. Logical bus width is specified by the WID instruction prior to the DMA transfer.

2. Physical bus width is specified when the 8089 is initialized.

3. A word transfer to or from an odd boundary is performed as two byte transfers. The first byte trans-
ferred is the low-order byte on the high-order data bus (AD15-AD8), and the second byte is the high-
order byte on the low-order data bus (AD7-AD0). The 8089 automatically assembies the two bytes in
their proper order.

Table 4-15. Bus Cycle Decoding

Status Output

Bus Cycle Indicated Bus Controller

S2 | s1| So

Command Output

0 0 0 Instruction fetch from I/0 space INTA
0 0 1 Data read from /O space ___IORC
0 1 0 Data write t0 1/0O space IOWC, AIOWC
0 1 1 Not used None
1 0 0 Instruction fetch from system memory MRDC
1 0 1 Data read from system memory MRDC
1 1 0 Data write to system memory MWTC, AMWC
1 1 1 Passive None
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Note that the 8089 indicates an instruction fetch
from 1/0 space as a status of zero (52, SI and SO
equal 0). Since the 8288 Bus Controller decodes
an input status value of zero as an interrupt
acknowledge bus cycle, the bus controller’s INTA
output must be OR’ed with its IORC output to
permit fetching of task block instructions from
local 8089 memory (remote configuration) or
system I/0 space (local and remote
configurations).

The S2 through SO status lines become active in
state T4 if a subsequent bus cycle is to be per-
formed. These lines are set to the passive state (all
‘“‘ones”’) in the state immediately prior to state T4
of the current bus cycle (state T3 or T,,) and are
floated when the 8089 does not have access to the
bus.

The S6 through S3 status lines are multiplexed
with the high-order address bits (A19-A16) and,
accordingly, become valid in state T, of the bus
cycle. The S4 and S3 status lines reflect the type of
bus cycle being performed on the corresponding
channel as indicated in table 4-16.

Table 4-16. Type of Cycle Decoding

Status Output

) ) Type of Cycle

0 0 DMA on Channel 1

0 1 DMA on Channel 2

1 0 Non-DMA on Channel 1
1 1 Non-DMA on Channel 2

The S6 and S5 status lines are always ‘‘1’’ on the
8089. Since these lines are not both ‘‘1°” on the
other processors in the 8086 family (S6 is always
““0”’ on the 8086 and 8088 CPUs), these status
lines can be used as a ‘‘signature’’ in a
multiprocessor environment to identify the type
of processor performing the bus cycle.

The 8089 includes the same provision as do the
8086 and 8088 CPUs for the insertion of wait
states (Ty,) in a bus cycle when the associated
memory or I/0 device cannot respond within the
alloted time interval or when, in the remote mode,
the 8089 must wait for access to the system bus.
An 8284 Clock Generator/Driver is used to con-
trol the insertion of wait states which, when
required, are inserted between states T3 and Ty.
The actual insertion of wait states is accomplished
by deactivating one of the 8284’s RDY inputs

(RDY1 or RDY2). Either of these inputs, when
enabled by its corresponding AENI or AEN2
input, can be deactivated directly by the memory
or 1/0 device when it must extend the 8089’s bus
cycle (when the addressed device is not ready to
present or accept data). The 8284’s READY out-
put, which is synchronized to the CLK signal, is
directly connected to the 8089’s READY input.
As shown in figure 4-27, when the addressed
device requires one or more wait states to be
inserted into a bus cycle, it deactivates the 8284°s
RDY input prior to the end of state Ty. The
READY output from the 8284 is subsequently
deactivated at the end of state Ty which causes the
8089 to insert wait states following state T3. To
exit the wait state, the device activates the 8284’s
RDY input which causes the READY input to the
8089 to go active on the next clock cycle and
allows the 8089 to enter state Ty.

ONE BUS CYCLE

T | T2 T3 Tw l ™W T4

CLK
TRIVEL® —] [+ TRIVGL ] |o— —| |—TeLmx:

RDY INPUT

READY
OUTPUT

READY NOT READY READY

*REFER TO THE 8284 CLOCK GENERATQOR/DRIVER DATA SHEET IN APPENDIX B FOR
TIMING INFORMATION

Figure 4-27. Wait State Timing

Periods of inactivity can occur between bus
cycles. These inactive periods are referred to as
idle states (T[) and, as with the 8086 and 8088
CPUs, can result from the execution of a ‘‘long”’
instruction or the loss of the bus to another pro-
cessor during task block instruction execution.
Additionally, the 8089 can experience idle states
when it is in the DMA mode and it is waiting for a
DMA request from the addressed 1/0 device or
when the bus load limit (BLL) function is enabled
for a channel performing task block instruction
execution and the other channel is idle.

Initialization

Initialization of the IOP is generally the respon-
sibility of the host processor which, as stated in
Chapter 3, prepares the communications data
structure in shared memory. Initialization of the
IOP itself begins with the activation of its RESET
input. This input (originating typically from an
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8284 Clock Generator/Driver) must be held active
for at least five clock cycles to allow the 8089’s
internal reset sequence to be completed. Note that
like the 8086 and 8088 CPUs, the RESET input
must be held active for at least 50 microseconds
when power is first applied. Following the reset
interval, the host processor signals the IOP to
begin its initialization sequence by activating the
8089’s CA (Channel Attention) input. The 8089
will not recognize a pulse at its CA input until one
clock cycle after the RESET input returns to an
inactive level. Note that the minimum width for a
CA pulse is one clock cycle and that this pulse
may go active prior to RESET returning to an
inactive level provided that the negative-going,
trailing-edge of the CA pulse does not occur prior
to one clock cycle after RESET goes inactive.
Figure 4-28 illustrates the timing for this portion
of the initialization sequence.

MUST BE ACTIVE
RESET FOR FIVE CLOCK

CYCLES
|<-| CLK MIN—-’

T X CA
ca Iﬁw RECOGNIZED
___________ ~ 1 CLK MIN &

Figure 4-28. RESET-CA Initialization Timing

Coincident with the trailing edge of the first
CA pulse following reset, the 8089 samples its
SEL (Select) input from the host processor to
determine master/slave status for its
request/grant circuity. If the SEL input is low,
the 8089 is designated a ‘‘master,”” and if the SEL
input is high, the 8089 is designated a ‘‘slave.”” As
a master, the 8089 assumes that it has the bus
initially, and it will subsequently grant the bus to
a requesting slave when the bus becomes available
(i.e., the 8089 will respond to a ‘‘request’ pulse
on its RQ/GT line with a ‘‘grant” pulse). A single
8089 in the remote configuration (or one of two
8089s in a remote configuration) would be
designated a master. As a slave, the 8089 can only
request the bus from a master processor (i.e., the
8089 initiates the request/grant sequence by out-
putting a ‘‘request’’ pulse on its RQ/GT line). An
8089 that shares a bus with an 8086 or 8088 (or
one of two 8089s in a remote configuration)
would be designated a slave. Note that since the
8086 and 8088 CPUs can grant the bus only in
response to a request, whenever an 8086 or 8088

and an 8089 share a common bus, the 8089 must
be designated the slave. Also, when the RQ/GT
line is not used (i.e., a single 8089 in the remote
configuration), the 8089 must be designated a
master.

In addition to determining master/slave status,
the CA pulse also causes the 8089 to begin execu-
tion of its internal ROM initialization sequence.
Note that since the 8089 must have access to the
system bus in order to perform this sequence, the
8089 immediately initiates a request/grant
sequence (if designated a slave) and, if required,
then requests the bus through the 8289 Arbiter.
(If designated a master, the 8089 requests the bus
through the 8289 Arbiter.) In the execution of the
initialization sequence, the 8089 first fetches the
SYSBUS byte from location FFFF6H. The W bit
(bit 0) of this byte specifies the physical bus width
of the system bus. Depending on the bus width
specified, the 8089 then fetches the address of the
system configuration block (SCB) contained in
locations FFFF8H through FFFFBH in either two
bus cycles (16-bit bus, W bit equal 1) or four bus
cycles (8-bit bus, W bit equal 0). The SCB offset
and segment address values fetched are combined
into a 20-bit physical address that is stored in an
internal register. Using this address, the 8089 next
fetches the system operation command (SOC)
byte. As explained in Chapter 3, this byte
specifies both the request/grant operational mode
(R bit) and the physical width of the 1/0 bus (I
bit). After reading the SOC byte, the 8089 fetches
the channel control block (CB) offset and seg-
ment address values. These values are combined
into a 20-bit physical address and are stored in
another internal register. To inform the host CPU
that it has completed the initialization sequence,
the 8089 clears the Channel 1 Busy flag in the
channel control block by writing an all ‘‘zeroes”
byteto CB + 1.

After the IOP has been initialized, the system
configuration block may be altered in order to in-
itialize another IOP. Once an IOP has been in-
itialized, its channel control block in system
memory cannot be moved since the CB address,
which is internally stored by the IOP during the
initialization sequence, is automatically accessed
on every subsequent CA pulse.
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As previously stated, the generation of the CA
and SEL inputs to the IOP are the responsibility
of the host CPU. Typically, these signals result
from the CPU’s execution of an 1/0O write
instruction to one of two adjacent 1/0 ports (I/0
port addresses that only differ by AO). Figure 4-29
illustrates a simple decoding circuit that could be
used to generate the CA and SEL signals. Note
that by qualifying the CA output with IOWC, the
SEL output, since it is latched for the entire 170
bus cycle, is guaranteed to be stable on the trailing
edge of the CA pulse.

A7
Ag
As
A4
A3
A2

$30 Jo

R

Ay

CA

—» SEL

PORT FC=CHANNEL 1t CA
PORT FD=CHANNEL 2 CA

Figure 4-29. Channel Attention Decoding Circuit

I1/0 Dispatching

During normal operation, the I/O supervisory
program running in the host CPU will receive a
request to perform a specific 1/0O operation on
one of the 8089’s channels. In response to this
request, the supervisory program will typically
perform the following sequence of operations:

Check the availability of the specified
channel by examining the channel’s busy flag
in the Channel Control Block. If it is possible
for another processor to access the channel, a
semaphore operation (implemented by a
locked XCHG instruction) is used to check
channel availability.

Load the variable parameters required for
the intended operation into the channel’s
parameter block.

Load the channel command word (CCW)
into the channel control block.

Establish the necessary linkages by writing
the starting address of the channel program
(task block) in the first four bytes of the

parameter block and writing the address of
the parameter block in the channel control
block.

* Issue a channel
specified channel.

attention (CA) to the

In response to the CA, the 8089 interrupts any
current activity at its first opportunity (see ‘‘Con-
current Channel Operation’” in section 3.2) and
begins execution of an internal instruction
sequence that fetches and decodes the channel
command word (CCW) and then performs the
operation indicated (i.e., start, halt or continue
channel program execution).

If the CCW specifies start channel program (start
task block execution), the address of the
parameter block is fetched from the channel
control block, the address of the first channel
program instruction (contained in the first four
bytes of the parameter block) is fetched and then
loaded into the TP (task pointer) register and,
finally, task block execution is initiated from
either system or 1/0 space. Task block execution
continues, subject to the activity on the other
channel as described in ‘‘Concurrent Channel
Operation,”” until a XFER instruction is
executed. Following execution of this instruction,
the next sequential channel program instruction is
executed before the channel enters the DMA
transfer mode.

If the CCW specifies halt channel, the current
operation on the specified channel is halted. If the
channel is performing task block execution (either
chained or not chained), channel operation is
stopped at an instruction boundary, and if the
channel is performing a DMA transfer, channel
operation is stopped at a DMA transfer cycle
boundary. Note that a channel will not stop a
locked DMA transfer until the operation is com-
pleted. There are two unique halt channel com-
mands. One command simply halts the channel
and clears the busy flag in the channel control
block. This command is used when the halted
operation is to be discarded. The other command
halts the channel, saves the task pointer and pro-
gram status word (PSW) byte, and clears the busy
flag. This command is used when the halted
operation is to be resumed. Note that this halt
command will not affect the integrity of resumed
task block execution or a memory-to-memory
DMA transfer, but could affect the integrity of a
synchronized DMA transfer (a DMA request
occuring while the channel is halted could be
missed).

Mnemonics < Intel, 1979
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If the CCW specifies continue channel, an opera-
tion that has been previously halted is resumed
(and the busy flag is set). Since this command
restores the task pointer and PSW, it should be
used only if the task pointer and PSW have been
saved by a previous halt command.

Table 4-17 outlines the various CCW command
execution times. Note that the times listed in the
table for the halt commands do not include the
time required to complete any current channel
activity when the channel attention is received
(completion of the current DMA transfer cycle or
task block instruction).

DMA Transfers

The number of bytes transferred during a single
DMA cycle is determined by both the source and
destination logical bus widths as well as by the

address boundary (odd or even address). The
8089 performs DMA transfers between dissimilar
bus widths by assembling bytes or disassembling
words in its internal assembly register file. As
explained in Chapter 3, the DMA source and
destination bus widths are defined by the execu-
tion of a WID instruction during task block
(channel command) execution. Note that the bus
widths specified remain in force until changed by
a subsequent WID instruction. Table 4-18 defines
the various byte (B) and word (W)
source/destination transfer combinations based
on address boundary and bus width specified.

The 8089 additionally optimizes bus accesses dur-
ing transfers between dissimilar bus widths
whenever possible. When either the source or
destination is a 16-bit memory bus (auto-
incrementing) that is initially aligned on an odd

Table 4-17. CCW Command Execution Times

CCW Command Minimum Time* Maximum Time**

CANOP
CA Halt (no save)
CA Halt (with save)

48 + 2n clocks
48 + 2n clocks
100 + 6n clocks

48 + 2n clocks
48 + 2n clocks
94 + 5n clocks

CA Start (memory) 108 + 6n clocks 124 + 10n clocks
CA Start (1/0) 96 + 5nclocks 108 + 8nclocks
CA Continue 95 + 5n clocks 103 + 6n clocks

Notes:
n isthe number of wait states per bus cycle.

*  Minimum time occurs when both the channel control block and parameter block addresses are aligned on
an even address boundary and a 16-bit bus is used.

** Maximum time occurs when both the channel control block and parameter block addresses are aligned
on an odd address boundary on a 16-bit bus or when an 8-bit bus is used.

Table 4-18. DMA Assembly Register Operation

Logical Bus Width
Address Boundary (Source — Destination)
(Source — Destination)

8—>8 8> 16 16— 8 16 > 16
Even — Even B—-B B/IB-W W—-B/B W—-W
Even — Odd B—B B—B W-8B/B | W—~B/B
Odd — Even B—B B/B—-W B-B B/B—-W
Odd — Odd B—~B B—8B B—B B—>B
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address boundary (causing the first transfer cycle
to be byte-to-byte), following the first transfer
cycle, the memory address will be aligned on an
even address boundary, and word transfers will
subsequently occur. For example, when perform-
ing a memory-to-port transfer from a 16-bit bus
to an 8-bit bus with the source beginnihg on an
odd address boundary, the first transfer cycle will
be byte-to-byte (B — B) as indicated in table 4-18,
but subsequent transfers will be word-to-
byte/byte (W = B/B).

All DMA transfer cycles consist of at least two
bus cycles; one bus cycle to fetch (read) the data
form the source into the IOP, and one bus cycle
to store (write) the data previously fetched from
the IOP into the destination. Note that in all
transfers, the data passes through the IOP to
allow mask/compare and translate operations to
be optionally performed during the transfer as
well as to allow the data to be assembled or
disassembled.

The 10P performs DMA transfers in one of three
modes: unsynchronized, source synchronized or
destination synchronized (the transfer mode is
specified in the channel control register). The un-
synchronized mode is used when both the source
and destination devices do not provide a data re-
quest (DRQ) signal to the IOP as in the case of a
memory-to-memory transfer. In the synchronized
transfer modes, the source (source synchronized)
or destination (destination synchronized) device
initiates the transfer cycle by activating the IOP’s
DRQI! (channel 1) or DRQ2 (channel 2) input.

The DRQ input is asynchronous and usually
originates from an /O device controller rather
than from a memory circuit. This input is latched
on the positive transition of the clock (CLK)
signal and therefore must remain active for more
than one clock period (more than 200
nanoseconds when using a 5 MHz clock) in order
to guarantee that it is recognized.

During state T of the associated fetch bus cycle
(source synchronized) or store bus cycle (destina-
tion synchronized), the IOP outputs the address
of the I/0 device (the port address). This address
must be decoded (by external circuitry) to
generate the DMA acknowledge (DACK) signal
to the 1/0 controller as the response to the con-
troller’s DMA request. An 1/0O controller will
typically use DACK as a conditional input for the
removal of DRQ. (After receipt of the DACK
signal, most Intel peripheral controllers deac-
tivate DRQ following receipt of the correspon-
ding read or write signal.) Figures 4-30 and 4-31
illustrate the DRQ/DACK timing for both source
synchronized (i.e., port-to-memory) and destina-
tion synchronized (i.e., memory-to-port)
transfers.

Table 4-19 defines the DMA transfer cycles in
terms of the number of bus and clock cycles re-
quired. Note that the number of clocks required
to complete a transfer cycle does not take into ac-
count the effects of possible concurrent opera-
tions on the other channel or wait states within
any of the bus cycles.

DRQ HOLD
FROM READ

DRQ?
(FROM 1/O DEVICE)

DACK
{DECODED I/0 ADDRESS) ' VALID /O ADDRESS PRESENT ~

NOTES:

CLOCKS'

—

[+ TRANSFER CYCLE

«+————FETCH BUS CYCLE———|«—— STORE BUS CYCLE———|
—\Wm

2 IDLE , 4 IDLE - 5IDLE -
CLOCKS' CLOCKS'

DRQ FOR NEXT TRANSFER CYCLE

1. INDICATES THE NUMBER OF IDLE CLOCK CYCLES INSERTED BEFORE THE NEXT
TRANSFER CYCLE BEGINS. |F DRQ IS RECEIVED PRIOR TO STATE T4 OF THE CURRENT
FETCH CYCLE, THE NEXT FETCH CYCLE BEGINS IMMEDIATELY FOLLOWING THE

CURRENT STORE CYCLE.

2. IF THE 8089 IS IDLE WHEN DRQ iS RECOGNIZED, FIVE IDLE CLOCK CYCLES OCCUR
BEFORE THE ASSOCIATED TRANSFER CYCLE IS INITIATED.

Figure 4-30. Source Synchronized Transfer Cycle
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TRANSFER CYCLE 1 T CYCLE 2
IDLE
+———FETCH BUS CYCLE 1'——— |+—— STORE BUS CYCLE 1 ———=|~———FETCH BUS CYCLE 2*—*{CLOCKS [+——— STORE BUS CYCLE 2 —— =
U]
T1|T2|T3|T4 T1|72|T:;J74 71‘72|73|T4 T1|T2|T3\n
o _\_/—\I\J_\I\_[—\I\J—\I\_/—\_[_\_/—\I\J_\_/—\J—U_\I\_
DAQ HOLD e 2iDLE___ |, 4abLE___ [, SO
FROM WRITE ; CLOCKS? l CLOCKS® 8 IDLE CLOCKS

f r~
DRQ' { DRQ FOR NEXT TRANSFER CYCLE !
(FROM 1/0 DEVICE) i
DACK
(DECODED /O ADDRESS) ’ VALID 1/0 ADDRESS PRESENT \ ' ~

NOTES: 1. FIRST DMA FETCH CYCLE OCCURS IMMEDIATELY AFTER THE LAST TASK BLOCK

INSTRUCTION IS EXECUTED.

2. FETCH BUS CYCLE 2 BEGINS IMMEDIATELY FOLLOWING STORE BUS CYCLE 1.

3. INDICATES THE NUMBER OF IDLE CLOCK CYCLES INSERTED BEFORE STORE BUS
CYCLE 2 BEGINS. IF DRQ 1S RECEIVED PRIOR TO STATE T4 OF STORE BUS CYCLE 1,
STORE BUS CYCLE 2 BEGINS WMMEDIATELY FOLLOWING FETCH BUS CYCLE 2.

4. \F THE 8089 1S IDLE WHEN DRQ {S RECOGNIZED, FIVE IDLE CLOCK CYCLES OCCUR
BEFORE THE ASSOCIATED STORE BUS CYCLE IS INITIATED.

Figure 4-31. Destination Synchronized Transfer Cycle

Table 4-19. DMA Transfer Cycles

Transfer Mode
Logical Bus Width

Unsynchronized Source Synchronized Destination Synchronized
Source |Destination Bus Cycles Total Bus Cycles Total! Bus Cycles Total'
Required Clocks Required Clocks Required Clocks

8 8 2 (1 fetch, 1 store) 8: 2 (1 fetch, 1 store) 8: 2 (1 fetch, 1 store) 8:

8 16° 3(2fetch, 1 store})| 12 3(2fetch, 1 store)| 16° 3(2fetch, 1 store)] 12

163 8 3 (1 fetch, 2 store)| 12 3(1fetch, 2 store)l 12 3 (1 fetch, 2 store)} 16*

16® 16° 2 (1 fetch, 1 store) 8 2 (1 fetch, 1 store) 8 2 (1 fetch, 1 store) 8

Notes:

1. The “‘Total Clocks Required’’ does not include wait states. One clock cycle per wait state must be
added to each fetch and/or store bus cycle in which a wait state is inserted. When performing a
memory-to-memory transfer, three additional clocks must be added to the total clocks required (the
first fetch cycle of any memory-to-memory transfer requires seven clock cycles).

2. When performing a translate operation, one additional 7-clock bus cycle must be added to the values
specified in the table.

3.  Word transfers in the table assume an even address word boundary. Word transfers to or from odd
address boundaries are performed as indicated in tabie 4-18 and are subject to the bus cycle/clock
requirements for byte-to-byte transfers.

4. Transfer cycles that include two synchronized bus cycles (i.e., synchronous transfers between
dissimilar logical bus widths) insert four idie clock cycles between the two synchronized bus cycles
to allow additional time for the synchronzing device to remove its initial DMA request.
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DACK latency is defined as the time required for
the 8089 to acknowledge, by outputting the
device’s corresponding port address, a DMA
request at its DRQ input. This response latency is
dependent on a number of factors including the
transfer cycle being performed, activity on the
other channel, memory address boundaries, wait
states present in either bus cycle and bus arbitra-
tion times.

Generally, when the other channel is idle, the
maximum DACK latency is five clock cycles (1
microsecond at 5 MHz), excluding wait states and
bus arbitration times. An exception occurs when
performing a word transfer to or from an odd
memory address boundary. This operation, since
two store (source synchronized) or two fetch
(destination synchronized) bus cycles are required
to access memory, has a maximum possible laten-
cy of nine clock cycles. When the other channel is
performing DMA transfers of equal priority
(““P”’ bits equal), interleaving occurs at bus cycle
boundaries, and the maximum latency is either
nine clock cycles when the other channel is per-
forming a normal 4-clock fetch or store bus cycle
or twelve clock cycles when the other channel is
performing the first fetch cycle of a memory-to-
memory transfer. If the other channel is perform-
ing ‘‘chained”’ task block instruction execution of
equal priority, maximum latency can be as high as
12 clock cycles (channel command instruction
execution is interrupted at machine cycle boun-
daries which range from two to eight clock
cycles).

DMA Termination

As stated in Chapter 3, a channel can exit the
DMA transfer mode (and return to task block
execution) on any of the following terminate
conditions:

* Single cycle transfer

*  Byte count expired

*  Mask/compare match or mismatch
* External event

The terminate conditions are specified by in-
dividual fields in the channe! control register.
More than one terminaté condition can be
specified for a transfer (e.g., a transfer can be ter-
minated when a specific byte count is reached or
on the occurrence of an external event). When

more than one terminate condition is possible,
displacements (which are added to the task
pointer register value) are specified to cause task
block execution to resume at a unique entry point
for each condition. Three reentry points are
available: TP, TP + 4 and TP + 8. The time inter-
val between the occurrence of a terminate condi-
tion and the resumption of task block execution is
12 clock cycles for reentry point TP and 15 clock
cycles for reentry points TP + 4 and TP + 8.

Peripheral Interfacing

When interfacing a peripheral to an 8-bit physical
data bus, the 8089 uses only the lower half of the
address/data lines (AD7-ADO) as the bidirec-
tional data bus, and the upper half of the ad-
dress/data lines (AD15-AD8) maintain address
information for the entire bus cycle. Consequent-
ly, with this bus configuration, only one octal
latch (e.g., an Intel® 8282/83 Octal Latch) is re-
quired since only the lower half of the ad-
dress/data lines is time-multiplexed (unless the
address bus requires the increased current drive
capability and capacitive load immunity provided
by the latch).

When interfacing a peripheral to a 16-bit data
bus, both the lower and upper halves of the ad-
dress/data lines are time-multipelxed, and two oc-
tal latches are required. Note that unlike the 8086
and 8088 CPUs, the 8089 does not time-multiplex
BHE (this signal is valid for the entire bus cycle).
Both 8- and 16-bit peripherals can be interfaced to
a 16-bit bus. An 8-bit peripheral can be connected
to either the upper or lower half of the bus. An 8-
bit peripheral on the lower half of the bus must
use an even source/destination address, and an 8-
bit peripheral on the upper half of the bus must
use an odd source/destination address. To take
advantage of word transfers, a 16-bit peripheral
must use an even source/destination address.

To prepare a peripheral device for a DMA
transfer, command and parameter data is written
to the device’s command/status port. This is
usually accomplished using pointer register GC.
Recalling that the 8089 executes one additional
task block instruction following execution of the
XFER instruction (the XFER instruction causes
the 8089 to enter the DMA mode), this additional
instruction is used to access the command port of
an 1I/0O device that immediately begins DMA

Mnemonics © Intel, 1979
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operation on receipt of the last command (the
8271 Floppy Disk Controller begins its DMA
transfer on_receipt of the last command
parameter). Since a translate DMA operation re-

quires the use of all three pointer registers (GA -

and GB specify the source and destination ad-
dresses; GC specifies the base address of the
translation table), when it is necessary to use the
last task block instruction to start the device,
command port access can be accomplished
relative to one of the pointer registers or relative
to the PP register. If the device’s data port ad-
dress (GA or GB) is below the device’s command
port address, either an offset or an indexed
reference can be used to access the command
port.

A peripheral’s (or peripheral controller’s) DMA
communication protocol with the 8089 is as
follows:

*  The peripheral (when source or destination
synchronized) initiates a DMA transfer cycle
by activating the 8089’s DRQ (DMA request)
input.

e The 8089 acknowledges the request by
placing the peripheral’s assigned data port
address on the bus during state T of the cor-
responding fetch (source synchronized) or
store (destination synchronized) bus cycle.
The peripheral is responsible for decoding
this address as the DMA acknowledge
(DACK) to its request.

e The data 1is transferred between the
peripheral and the 8089 during the Tj
through Ty state interval of the bus cycle.
The peripheral must remove its DMA request
during this interval.

®  The peripheral, when ready, requests another
DMA transfer cycle by again activating the
DRQ input, and the above sequence is
repeated.

e  The peripheral can, as an option, end the
DMA transfer by activating the 8089’s EXT
(external terminate) input.

The 8089 can support mulitple peripheral devices
on a single channel provided that only one device
is in the active transfer mode at any one time. To
interface multiple devices, the DMA request
(DRQ) lines are OR’ed together as are the exter-
nal terminate (EXT) lines. Unique port addresses
are, however, assigned to each device so that an

individual DMA acknowledge (DACK) is return-
ed to only the active device. DACK decoding can
be accomplished with an Intel ® 8205 Binary
Decoder or a ROM circuit. Note that the 8089 can
only determine which device has requested service
or terminated by the context of the task block
program.

Most peripheral devices interfaced to the 8089 will
use the decoded DMA acknowledge signal
(DACK) as the ‘‘chip select’”” input. Peripheral
devices that do not follow this convention must
use DACK as a conditional input of chip select.

While most interrupts associated with the 8089
will be DMA requests or external terminates, non-
DMA related interrupts can additionally be
supported.

One technique that would be used when an 8089 is
the local configuration (or when an 8086 or 8088
and an 8089 are locally connected as a remote
module) is to allow the CPU to accept the inter-
rupt and then direct the 8089 to the interrupt ser-
vice routine. Another technique is to allow the
8089 to ‘‘poll”’ the device to determine when an
interrupt has occurred (most peripheral con-
trollers have an interrupt pending bit in a status
word). The 8089’s bit testing instructions are
ideally suited for polling.

When the 8089 is in a remote configuration, non-
DMA related interrupts can be supported with the
addition of an Intel® 8259A Programmable
Interrupt Controller. Systems that require this
type of interrupt structure would dedicate one of
the 8089’s channels to interrupt servicing. In
implementing this structure, the interrupt output
from the 8259A is directly connected to the chan-
nel’s external terminate (EXT) input, and the
channel’s DMA request (DRQ) input is not used.
A task block program is initially executed to per-
form a source-synchronized DMA transfer (with
an external terminate) on the ‘‘interrupt’’ channel
to ‘“‘arm’’ the interrupt mechanism. Since the
DRQ input is not used, when the channel enters
the DMA transfer mode, the channel idles while
waiting for the first DMA request (which never
occurs). The other channel, since the interrupt
channel is idle, operates at maximum throughput.
When an interrupt occurs, the ‘‘pseudo’”” DMA
transfer is immediately terminated, and task
block instruction execution is resumed. The task
block program would write a ‘‘poll’’ command to
the 8259A’s command port and then read the
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8259A’s data port to acknowledge the interrupt
and to determine the device responsible for the
interrupt (the device is identified by a 3-bit binary
number in the associated data byte). The device
number read would be used by the task block pro-
gram as a vector into a jump table for the device’s
interrupt service routine. Pertinent interrupt data
could be written into the associated parameter
block for subsequent examination by the host
processor.

The interrupt mechanism previously described,
since it uses the 8089’s external terminate func-
tion, provides an extremely fast interrupt
response time.

Note that when using dynamic RAM memory
with the 8089, an Intel® 8202 Dynamic RAM
Controller can be used to simplify the interface
and to perform the RAM refresh cycle. When
maximum transfer rates are required, the RAM
refresh cycle can be externally initiated by the
8089. By connecting the decoded DACK (DMA
acknowledge) signal to the 8202’s REFRQ
(refresh request) input, the refresh cycle will occur
coincident with the I/O device bus cycle and
therefore will not impose wait states in the
memory bus cycle.

Instruction Encoding

Most 8089 programming will be performed at the
assembly language level using ASM-89, the 8089
assembler. During program debugging, however,
it may be necessary to work directly with machine
instructions when monitoring the bus, reading un-
formatted memory dumps, etc. This section con-
tains both a table to encode any ASM-89 instruc-
tion into its corresponding machine instruction

(table 4-24) and a table to ‘‘disassemble’’ any
machine instruction back into its associated
assembly language equivalent (table 4-26).

Figure 4-32 shows the format of a typical 8089
machine instruction. Except for the LPDI and
memory-to-memory forms of the MOV and
MOVB instructions that are six bytes long, all
8089 machine instructions consist of from two to
five bytes. The first two bytes are always present
and are generally formatted as shown in figure
4-32 (table 4-24 contains the exact encoding of
every instuction).

Bits 5 through 7 of the first byte of an instruction
comprise the R/B/P field. This field identifies a
register, bit select or pointer register operand as
outlined in table 4-20.

Table 4-20. R/B/P Field Encoding

Code Register Bit Pointer
000 GA 0 GA
001 GB 1 GB
010 GC 2 GC
011 BC 3 N/A
100 TP 4 TP
101 IX 5 N/A
110 cC 6 N/A
111 MC 7 N/A

The WB field (bits 3 and 4 of the first byte) in-
dicates how many displacement/data bytes are
present in the instruction as outlined in table 4-21.
The displacement bytes are used in program
transfers; one byte is present for short transfers,
while long transfers contain a two-byte (word)
displacement. As mentioned in Chapter 3, the

BYTE1 BYTE 2

4 4 A [

e — - =

cp b b b oty ety

R/B/PfWB| AA |W] OPCODE MM OFFSET

-L BYTE4 BYTE 5
—_——— - —_— -

| LOW DISP/DATA |HIGH DISP/DATA

—— BASE REGISTER FOR MEMORY OPERAND
OPERATION (INSTRUCTION) CODE

WIDTH (BYTE OR WORD OPERANDS)
MEMORY ADDRESSING MODE

NUMBER OF DISPLACEMENT/DATA BYTES
REGISTER, BIT, POINTER SELECT

Figure 4-32. Typical 8089 Machine Instruction Format
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displacement is stored in two’s complement nota-
tion with the high-order bit indicating the sign.
Data bytes contain the value of an immediate con-
stant operand. A byte immediate instruction
(e.g., MOVBI) will have one data byte, and a
word immediate instruction (e.g., ADDI) will
have two bytes (a word) of immediate data. An
instruction may contain either displacement or
data bytes, but not both (the TSL instruction is an
exception and contains one byte of displacement
and one byte of data). If an offset byte is present,
the displacement/data byte(s) always follow the
offset byte.

Table 4-21. WB Field Encoding

Code Interpretation

00 No displacement/data bytes

01 One displacement/data byte
10 Two displacement/data bytes
11 TSL instruction only

The AA field specifies the addressing mode that
the processor is to use in order to construct the ef-
fective address of a memory operand. Four ad-
dressing modes are available as outlined in table
4-22. (Address modes are described in detail in
section 3.8.)

Table 4-22. AA Field Encoding

Code Interpretation
00 Base register only
01 Base register plus offset
10 Base register plus IX
1 Base register plus IX,
auto-increment

Bit 0 of the first instruction byte indicates whether
the instruction operates on a byte (W=0) or a
word (W=1).

DATA TRANSFER INSTRUCTIONS

Bits 7 through 2 of the second instruction byte
specify the instruction opcode. The opcode, in
conjunction with the W field of the first byte,
identifies the instruction. For example, the op-
code ““111011”° denotes the decrement instruc-
tion; if W=0, the assembly language instruction is
DECB, while if W=1, the instruction is DEC.
Table 4-26 lists, in hexadecimal order, the opcode
of every assembly language instruction.

The MM field (bits 0 and 1) indicates which
pointer (base) register is to be used to construct
the effective address of a memory operand. Table
4-23 defines the MM field encoding. (Memory
operand addressing is described in section 3.8.)

Table 4-23. MM Field Encoding

Code Base Register
00 GA
01 GB
10 GC
11 PP

When the AA field value is ¢‘01°’ (base register
+ offset addressing), the third byte of the instruc-
tion contains the offset value. This unsigned value
is added to the content of the base register
specified by the MM field to form the effective
address of the memory operand.

When the AA field value is “10,”” the IX register
value is added to the content of the base register
specified by the MM field to provide a 64k range
of effective addresses. (Note that the upper four
bits of the [X register are not sign-extended.)

When the AA field value is *“11,” the IX register
value is added to the base register value to form
the effective address as described for an AA field
value of “10.”’ In this addressing mode, however,
the IX register value is incremented by one after
every byte accessed.

Table 4-24. 8089 Instruction Encoding

I

MOV = Move word variable 76543210 76543210 76543210 76543210 76543210 76543210

Memory to register RRROOAA1 100000MM oftset if AA=01

Register to memory RRROOAAY [100001TMM offsetif AA=01

Memory to memory 000O0C0AA1T[100100MM offsetif AA=01 00000AA1T|110011TMM offset if AA=01
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Table 4-24. 8089 Instruction Encoding (Cont’d.)

DATATRANSFER INSTRUCTIONS (Cont'd.)

MOVB = Move byte variable

Memory to register

Register to memory

Memory to memory

MOVBI = Move byte immediate

Immediate to register

Immediate to memary

MOVI = Move word immediate

Immediate to register

Immediate to memory

MOVP = Move pointer

Memory to pointer register

Pointer register to memory

LPD = Load pointer with doubleword variable

LPDI = Load pointer with doubleword immediate

ARITHMETIC INSTRUCTIONS

ADD = Add word variable

Memory to register

Register to memory

ADDB = Add byte variable

Memory to register

Register to memory

ADDI = Add word immediate

tmmediate to register

Immediate to memory

76543210 76543210 76543210 76543210 76543210 76543210
RRROOAAD |100000MM offsetit AA=01

RRROGCAAD [100001 MM oftset if AA=01

Q0000AADQ|100100MM offset if AA=01 GO0000AAD|110011MM 01fseli!AA=01j
RRRO1000 (00110000 data-8

00001t AA

10011TMM

offset if AA=01

data-8

RRR10001]|00110000 data-lo data-hi
0001 0AAT JO10011IMM offset if AA=01 data-lo data-hi
PPPOOAAT ([100011MM offset it AA=01

PPPOOAAT [100110MM offset if AA=01

,:PPOOAA1 100010MM,0ﬂSe1rfAA=01—]

lj PP10001t[00001000 l offset-lo l offset-hi segment-lo segment-hi —,
RRROCAAT |[101000MM offset it AA=01

RRROOAATJ110100MM offset if AA=01

RRROOAAOC [101000MM offset it AA=01

RRROOAAD [110100MM offsetif AA=01

RRR10001 (00100000 data-lo data-hi

00010AAT [110000MM offsetif AA=01 data-lo data-hi ‘l
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ARITHMETIC INSTRUCTIONS (Cont’d.)

ADDBI = Add byte immediate
Immedaite to register

immediate to memory

INC = Increment word by 1
Register

Memory

INCB = Increment byte by 1

DEC = Decrement word by 1
Register

Memory

DECB = Decrement byte by 1

Table 4-24. 8089 Instruction Encoding (Cont’d.)

LOGICAL AND BIT MANIPULATION INSTRUCTIONS

AND = AND word variable
Memory to register

Register to memory

ANDB = AND byte variabie
Memory to register

Register to memory

AND{ = AND word immediate
Immediate to register

Immediate to memory

ANDB! = AND byte immediate
Immediate to register

Immediate to memory

OR = OR word variable
Memory to register

Register to memory

76543210

76543210 76543210 76543210 76543210 76543210
RRRO0O1000]0C100000 data-8

00001AAD|t1T0000MM offsetit AA=01 data-8
RRROO0OO0OO0]00111000

CO00DC0CAAT|11T1010MM oftset if AA=01

00000AAD 111010MMI offset if AA=01
RRROO0OQOO0OO}|0O0O0t1T1100

000CO0AAT|111011TMM offset it AA=01

00000AAD 111011MMlolfsetlfAA:01

RRROODAAT |101010MM offsetif AA=01

RRROODAAT |JT110110MM offsetif AA=01
RRRODAAO{101010MM oftset it AA=01
RRROOAADI1T10110MM offset if AA=01

RRR10001 0010100080 data-lo data-hi

00010AAT [110010MM offsetif AA=01 data-lo data-hi
RRRO1000 (00101000 data-8

00001AAD|t10010MM offsetif AA=01 data-8

RRROOAAT |101001TMM offsetif AA=01

RRROODAAT [110101MM offset if AA=(1
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Table 4-24. 8089 Instruction Encoding (Cont’d.)

LOGICAL AND 8IT MANIPULATION INSTRUCTIONS {Cont’d.}

ORB = OR byte variable 76543210 76543210 76543210 76543210 76543210 786543210
Memory to register RRROOAAD[T101001TMM offset if AA=01
Register to memory RRROOAAD|110101MM oftsetif AA=01

ORI = OR word immediate

Immediate to register RRR10001]|]00100100 data-lo data-hi

Immediate toe memory 00010AAI1 110001 MM offset if AA=01 data-lo data-hi

ORBI = OR byte immediate

immediate to register RRR01000]00100100 data-8

immediate to memory 00001AAD0[110001TMM offset if AA=01 data-8

NOT = NOT word variable

Register RRROO0O0O00]J0OC101100
Memory 00000AAT [1T101T1T1TMM offset if AA=01
Memory to register RRROOAA1 101011 MM offset it AA=01

NOTB = NOT byte variable

Memory 000C0AAOQ|110111MM offset it AA=01
Memory to register RRROOAAOD[10101T1TMM offset if AA=01
SETB = Setbitto1 lBBBOOAAO ’111101 M M ’ offsetif AA=01 |
CLR = Clear bitto 0 | BBBOOAAD I1 1T1110MM I oHsetlfAA:D1—|

PROGRAM TRANSFER INSTRUCTIONS

*CALL = Call I 10001 AAY ’ 100111 MM offset if AA=01 | disp-8 —I

LCALL = Long call hn 010AA1" ' 1001t1TMM offset if AA=01 | disp-lo | disp-hi —I
*JMP = Jump unconditional | 10001000 |0 0100000 | disp-8 —l

LJIMP = Long jump unconditional Ilo 10001 |0 0100000 | disp-lo ' disp-hi

“The ASM-83 Assembier will automaticaily generate the long form of a program transfer instruction when the

targetis known to be beyond the byte-displacement range.
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Table 4-24. 8089 Instruction Encoding (Cont’d.)

PROGRAM TRANSFER INSTRUCTIONS (Cont'd.)

*JZ = Jumpif word is 0

Label to register

Label to memory

LJZ = Longjurmp if word is 0

Label to register

Label to memory

*JZB = Jumpif byte is 0

LJZB = Long jump it byteisQ

*JINZ = Jump if word not 0

Label to register

Label to memory

LJNZ = Long jump if word not0

Label to register

Labet to memory

“JNZB = Jumpif byte not0

LJNZB = Long jump if byte not 0

*JMCE = Jump if masked compare equal

LIMCE = Long jump if masked compare equal

*JMCNE = Jump if masked compare not equal

LIMCNE = Long jump if masked compare not equal

*JBY = Jump if bitis 1

*The ASM-89 Assembler will automatically generate the long form of a program

76543210 76543210 76543210 76543210 76543210 76543210
RRRO0O1000]0100010¢0 disp-8

0000C1AA1T[111001TMM offset if AA=01 disp-8
RRR100600]01000100 disp-lo disp-hi

00010AA1 111001 MM oftset if AA=01 disp-lo disp-hi
|00001AA01111001 MM| offset if AA=01 | disp-8

100 010AAD |111001 M M‘[ offsetif AA=01 I disp-lo disp-hi
RRRO0O1000[01000000 disp-8

00001AA1T(|(11T1000MM oftset if AA=01 disp-8
RRR10000[01000000 disp-lo disp-hi
C0D0D10AAT[111000MM offset if AA=01 disp-lo disp-hi J
IODOO1AAO |111000MM| offset if AA=01 | disp-8 _]

|000 10AAD Iv 11000MM l offsetif AA=(1 [ disp-lo disp-hi
|00001 AAD !1 01100MM | oftset if AA=01 | disp-8

|0 0010AAD ]101 1T00MM l offset if AA=01 | disp-lo disp-hi
L00001 AAD |101101 MM[ offset if AA=01 | disp-8

00010AADQ |1 01101TMM I offset it AA=01 [ disp-lo disp-hi
|BBBD1AAO |101111MM | offset if AA=01 | disp-8

target is known to be beyond the byte-displacement range.

transfer instruction when the
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Table 4-24. 8089 Instruction Encoding (Cont’d.)

PROGRAM TRANSFER INSTRUCTIONS (Cont’d.)

76543210 76543210 76543210 76543210 76543210 76543210

LJIBT = Long jump if bitis1 BBB10AAC ’ 101111 MM offset it AA=0t l disp-lo ] disp-hi

*JINBT = Jump if bitis not 1 lj BBO0O1AAD | 1T01110MM | oftsetif AA=01 l disp-8 ]

LINBT = Long jump if bitis not 1 lB BB10AAO | 101110MM | offset it AA=01 [ disp-io I disp-hi 1
PROCESSOR CONTROL INSTRUCTIONS

TSL = Testand set while locked | 00011 AAD l 100101 MM I offset it AA=01 data-8 | disp-8 —|

WID = Set logical bus widths L1 §0°00000 IO 60000600 0—'

“8=source width, D=destination width: 0=8 bits, 1=16 bits

XFER = Enter DMA mode Ii1100000!00000000—’
SINTR = Setinterrupt service bit Iiﬂ 000000 IO 00000 ;‘
HLT = Haltchannel program 100100000|010010m
NOP = No operation L00000000|00000000|

“The ASM-89 Assembler will automatically generate the long form of a program transfer instruction when the

targetis known to be beyond the byte-displacement range

Table 4-26 lists all of the 8089 machine instruc- assembled machine instruction into its ASM-89
tions in hexadecimal/binary order by their second symbolic form. The preceding table (table 4-25)
byte. This table may be used to ‘““decode’’ an defines the notation used in table 4-26.
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Table 4-25. Key to 8089 Machine Instruction Decoding Guide

Identifier Explanation
S Logical width of source bus; 0=8, 1=16
D Logical width of destination bus; 0=8, 1=16
PPP Pointer register encoded in R/B/P field
RRR Register encoded in R/B/P field
AA AA (addressing mode) field
BBB Bit select encoded in R/B/P field
offset-lo Low-order byte of offset word in doubleword pointer
oftset-hi High-order byte of offset word in doubleword pointer
segment-io Low-order byte of segment word in doubleword pointer
segment-hi High-order byte of segment word in doubleword pointer
data-8 8-bitimmediate constant
data-lo Low-order byte of 16-bit immediate constant
data-hi High-order byte of 16-bit immediate constant
disp-8 8-bit signed displacement
disp-lo Low-order byte of 16-bit signed displacement
disp-hi High-order byte of 16-bit signed displacement
(offset) Optional 8-bit offset used in offset addressing

Table 4-26. 8089 Machine Instruction Decoding Guide

Byte 1 Byle-2 Bytes 3,4,5,6 ASMB89 Instruction Format
Hex | Binary
00000000 00 | 00000000 NOP
01000000 00 | 00000000 SINTR
1SD00000 00 | 00000000 WID source-width,dest-width
01100000 00 | 00000000 XFER
01 | 00000001
) ] } not used
07 | 00000111
PPP10001 08 | 00001000 | offset-lo,offset-hi,segment-lo,segment-hi LPDI ptr-reg,immed32
09 | 00001001
¥ ¥ } not used
1F | 00011111
RRR01000 20 | 00100000 | data-8 ADDBI register,immed8
RRR10001 20 | 00100000 | data-lo,data-hi ADDI register,immed16
10001000 20 | 00100000 | disp-8 JMP short-label
10010001 20 | 00100000 | disp-lo,disp-hi LJMP long-label
21 | 00100001
¥ ¥ ‘ not used
23 | 00100011
RRR01000 24 | 00100100 | data-8 ORBI register,immed8
RRR10001 24 | 00100100 | data-lo,data-hi ORI register,immed16
25 | 00100101
¥ ¥ } not used
27 | 00100111
RRR01000 28 | 00101000 | data-8 ANDBI register,immed8
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Table 4-26. 8089 Machine Instruction Decoding Guide (Cont’d.

Byte 1 Byte 2 Bytes 3,4,5,6 ASM89 Instruction Format
Hex | Binary
RRR10001 28 | 00101000 | data-lo,data-hi ANDI register,immed16
29 | 00101001
¥ not used
2B { 00101011
RRR00000 2C | 00101100 NOT register
2D | 00101101
¥ not used
2F | 00101111
RRR01000 30 | 00110000 | data-8 MOVBI register,immed8
RRR10001 30 | 00110000 | data-lo,data-hi MQOVI register,immedi6
K2l 00110001
} not used
37 | 00110111
RRR00000 38 | 00111000 INC register
39 | 00111001
] not used
3B | 00111011
RRR00000 3C | 00111100 DEC register
3D | 00111101
¥ not used
3F | 00111111
RRR01000 40 | 01000000 | disp-8 JNZ register,short-label
RRR10000 40 | 01000000 | disp-lo,disp-hi LJNZ register,long-label
41 | 01000001
¥ not used
43 | 01000011
RRR01000 44 | 01000100 | disp-8 JZ register,short-label
RRR10000 44 | 01000100 | disp-lo,disp-hi LJZ register,short-label
45 | 01000101
¥ not used
47 | 01000111
00100000 48 | 01001000 HLT
49 | 01001001
¥ not used
4B | 01001011
00001AA0 4C | 010011MM
¥ ¥ (offset),data-8 MOVBI mem8,immed8
00001AAD 4F | 010011MM
00010AA1 4C | 010011MM
) } (offset),data-lo,data-hi MOVl mem16,immed16
00010A A1 4F  [010011MM
50 | 01010000
} not used
7F 1 01111111
RRROOAAQO | 80 |100000MM
¥ ; (offset) MOVB register,mem8
RRROOAAQO | 83 |100000MM
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Table 4-26. 8089 Machine Instruction Decoding Guide (Cont’d.

Byte 2
Byte 1 Bytes 3,4,5,6 ASM89 Instruction Format

Hex | Binary
RRROOAA1 80 | 100000MM

v ‘ (offset) } MOV register,mem16
RRRO0AA1 83 | 100000MM
RRRO0DAAQ 84 | 100001MM

¥ } (offset) } MOVB mem83,register
RRROCAAD 87 | 100001MM
RRROOAA1 84 | 100001MM

Y } (offset) } MOV mem16,register
RRRO0AA1 87 | 100001MM
PPPOOAA1 88 | 100010MM

¥ } (offset) } LPD ptr-reg,mem32
PPPOOAAY 8B | 100010MM
PPPO0AA1 8C [ 100011MM

¥ } (offset) } MOVP ptr-reg,mem24
PPPOOAA1 8F | 100011MM
00000AAD 90 | 100100MM

i } (offset),00000AA0,110011MM, (offset) } MOVB mem8,mem8
00000AA0 93 | 100100MM
00000AA1 90 | 100100MM

¥ } (offset),00000AA1,110011MM, (offset) ‘ MOV mem16,mem16
00000AA1 93 | 100100MM
00011AAQ 94 | 100101MM

¥ } (offset),data-8,disp-8 TSL mem8,immed8,short-label
00011AAD 97 | 100101MM
PPPOOAA1 98 | 100110MM

¥ } (offset) MOVP mem24,ptr-reg
PPPOOAA1 9B | 100110MM
10001AA1 9C | 100111MM

¥ } (offset),disp-8 CALL mem24,short-label
10001AA1 9F | 100111MM
10010A A1 9C | 100111MM

¥ ) (offset),disp-lo,disp-hi LCALL mem24,long-labe!
10010AA1 9F | 100111MM
RRROOAAOD A0 | 101000MM

¥ } (offset) ] ADDB register,mem8
RRRO0AAD A3 | 101000MM
RRROCAA1 AQ | 101000MM

¥ } (offset) } ADD register,mem16
RRRO0OAA1 A3 | 101000MM
RRRO0AAOD A4 | 101001MM

¥ } (offset) } ORB register,mems8
RRROOAAQD A7 | 101001MM
RRROCAA1 A4 | 101001MM

) ; (offset) } OR register,mem16
RRRO0AA1 A7 | 101001MM
RRRO0AAO A8 | 101010MM

¥ } (offset) ‘ ANDB mem8, register
RRROOAAD AB [ 101010MM

4-61
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Table 4-26. 8089 Machine Instruction Decoding Guide (Cont’d.

Byte 2
Byte 1 - Bytes 3,4,5,6 ASM89 Instruction Format
Hex | Binary

RRROOCAA1 A8 | 101010MM
¥ ¥ (offset)
RRRO0AA1 AB | 101010MM
RRRO0OAAO | AC | 101011MM ]

AND mem16,register

v

RRROOAAD | AF | 101011MM
RRROOAA1 | AC | 101011MM
¥ v (offset)
RRROOAAT | AF | 101011MM
00001AAQ | BO | 101100MM
¥ ¥ (offset),disp-8
00001AA0 | B3 | 101100MM
00010AA0 | BO | 101100MM
¥ ¥ (offset),disp-lo,disp-hi
00010AA0 | B3 | 101100MM
00001AA0 | B4 | 101101MM
} ¥ (offset),disp-8 JMCNE mem8,short-label
0000TAAD | B7 | 101101MM
00010AA0 | B4 | 101101MM
¥ ] (offset),disp-lo,disp-hi LJMCNE mems8,long-label
00010AA0 | B7 [ 101101MM
BBBO1AAO | B8 | 101110MM
¥ ¥ (offset),disp-8 JNBT  mem8,bit-select,short-label
BBBO1AAD | BB | 101110MM

(offset) NOTB register,mem8
NOT register,mem16

JMCE mem8,short-label

LIMCE mem8,long-fabel

S——— —— i S e

BBB10AAO B8 | 101110MM

+ } (offset),disp-lo,disp-hi LINBT  mem3,bit-select,long-label
BBB10AAO | BB | 101110MM
BBB0O1AAO BC | 101111MM

* } (offset),disp-8 } JBT  mem8,bit-select,short-tabel
BBB01AAQ BF | 101111MM
BBB10AAQ BC | 101111MM

¥ } (offset),disp-lo,disp-hi } LJBT  mem8,bit-select,long-label
BBB10AAQ BF [ 101111MM
00001AAD C0 | 110000MM

¥ } (offset),data-8 ADDBI mem8,immed8
00001AAD C3 | 110000MM
00010AA1 CO | 110000MM

¥ } (offset),data-lo,data-hi ADDI mem16,immed16
00010AA1 C3 | 110000MM
00001AAQ C4 | 110001MM

} } (offset),data-8 ORBI mem8,immeds
00001AAD C7 | 110001MM
00010AA1 C4 | 110001MM

¥ } (offset),data-lo, data-hi } ORI mem16,immed16
00010AA1 C7 | 110001MM
00001AAD C8 [ 110010MM

] } (offset),data-8 ANDBI mem8,immeds
00001AAQ CB | 110010MM
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HARDWARE REFERENCE INFORMATION

Table 4-26. 8089 Machine Instruction Decoding Guide (Cont’d.

Byte 2
Byte 1 - Bytes 3,4,5,6 ASM89 Instruction Format
Hex | Binary
00010AA1 C8 { 110010MM
} (offset),data-1o0,data-hi } ANDI mem16,immedi16
00010AA1 CB | 110010MM
CC | 11001100
V } not used
CF | 11001111
RRRO0OAAQ DO | 110100MM
¥ } (offset) ADDB mem8, register
RRROOAAD D3 | 110100MM
RRROOAAT1 DO | 110100MM
} } (offset) ADD memi6,register
RRROCAA1 D3 | 110100MM
RRROOAAQD D4 | 110101MM
¥ ] (offset) ORB mem8,register
RRROCAAQ D7 | 110101MM
RRROOAA1 D4 | 110101MM
} } (offset) OR mem16,register
RRRO0AAT D7 | 110101MM
RRRO0OAAQD D8 [ 110110MM
¥ ] (offset) ANDB mem8, register
RRRO0OAAQ DB | 110110MM
RRRO0AA1 D8 | 110110MM
¥ ¥ ] (offset) } AND memi6,register
RRRO0AA1 DB | 110110MM
RRRO0AAQ DC [ 110111MM
v } (offset) NOTB mem8,register
RRROOAAD | DF | 110111MM
RRROOAA1 DC | 110111MM
¥ (offset) NOT mem16,register
RRROOAA1 DF { 110111MM
00001AAD EO [ 111000MM
} (offset),disp-8 JNZB mem8,short-label
00001AAD E3 [ 111000MM
00001 AA1 EO | 111000MM
¥ (offset),disp-8 JNZ mem16,short-label
00001 AA1 E3 | 111000MM
00010AAD EO | 111000MM
¥ } (oftset),disp-lo,disp-hi LIJNZB mem8,long-label
00010AAD E3 | 111000MM
00010AA1 EO [ 111000MM
+ } (offset),disp-to,disp-hi LJNZ mem18,ionglabel
00010AA1 E3 | 111000MM
00001AAQ E4 | 111001MM
¥ ¥ } (offset),disp-8 } JZB mem8,short-label
00001AAQ E7 | 111001MM
00001AA1 E4 | 111001MM
¥ ¥ ¥ } (offset),disp-8 JZ mem16,short-label
00001AAT E7 | 111001MM
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HARDWARE REFERENCE INFORMATION

Table 4-26. 8089 Machine Instruction Decoding Guide (Cont’d.

Byte 2
Byte 1 y - Bytes 3,4,5,6 ASM89 Instruction Format
Hex | Binary
00010AA0 E4 | 111001MM
¥ ¥ (offset),disp-lo,disp-hi LJZB mem8,long-label

00010AAQ E7 | 111001MM
00010AA1 E4 | 111001MM

¥ (offset),disp-lo,disp-hi LJZ memi6,long-label
00010AAt E7 | 11100tMM
00000AAD E8 | 111010MM

¥ \ (offset) INCB mem8
00000AA0 EB | 111010MM
00000AAt E8 | 111010MM

¥ (offset) INC mem16
00000AA1 EB | 111010MM
00000AAD EC | 111011MM

¥ ¥ (offset) DECB mems8
00000AAQ EF | 111011MM
000C0AA1 EC | 111011MM

¥ (offset) DEC memi6
00000AA1 EF | 111011MM

FO | 11110000

¥ not used

F3 | 11110000
BBBOOAAD F4 | 111101MM

¥ (offset) SETB mems8,0-7
BBBOOAAD | F7 | 111101MM
BBBOOAAOD | F8 | 111110MM

¥ ¥ (offset) CLR mems3,0-7

BBBO0OAAD | FB | 111110MM

FC | 11111100

¥ not used

FF | 11111111

B
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