AN-807

Application Note

SPECIAL CONSIDERATIONS IN USING THE
MC6801 INTERRUPT CAPABILITIES

Prepared by
Clint Bauer
Systems Engineer
Motorola Automotive Electronic Systems
Mesa, Arizona

M6800 Microprocessor family components are used in
numerous real-time control applications, many of which use
external interrupt, timer and/or ACIA interface devices to
increase system capability. The MC6801 microcomputer
brings all these capabilities together with ROM and RAM on
a single chip, while also providing a dramaticaily enhanced,
yet machine-code compatible version of the MC6800 pro-
cessor.

The MC6801 interrupt control methods are also enhanced,
but still retain the same philosophy of operation used by
other M6800 family components. The improvements increase
performance, but also make possible several application-
dependent constraints which merit consideration in certain
systems. It is hoped that the information contained in this
application note will aid the reader during his system design,
so that a similar education is not required at debug time. It is
assumed that the reader is familiar with basic operation of
the MC6801 as described in the MC6801 Data Sheet and/or
the MC6801 Manual. An optional review of MC6801 inter-
rupt operation is provided first, followed by a discussion of
important interrupt design constraints.

The MC6801 interrupt structure is similar to that available
in the MC6800. The principle difference is that the MC6801
has four additional interrupt vectors and handshake logic to
control them (see Figure 1). MC6800 systems are able to sup-
port external circuits that offer this same capability, but nor-
mally do so by sharing the single IRQ line and interrupt vec-
tor. The additional MC6801 vectors allow more efficient in-
terrupt service by eliminating polling requirements for the
triple-function timer/counter (where quick response is
especially helpful), and reducing them elsewhere.

Having more vectors, MC6801 systems now offer a greater
probability that near simuitaneous interrupts will occur. For
example, the three vector internal timer will often handle
multiple asynchronous events. Therefore, it is important that
the MC6801 system designer carefully observe the exact rules
concerning interrupt recognition, entry, and service. A
review of these rules is provided below.

Highest [Vector (MSB:LSB) Description

Priority FFFE:FFFF Reset

FFFC:FFFD Non-Maskabie Interrupt (NMI}
FFFA:FFFB Software Interrupt (SWI)

FFFB:FFF9 |IRQY Interrupt (TROY, 1S3 — Mode 7)
FFF6:FFF7 {RC2/ Timer Input Capture (ICF)
FFF4:FFF5 TRQZ/ Timer Output Compare (OCF)
Lowest FFF2:FFF3 {RO2/ Timer Overflow (TOF)

Priority FFFO:FFF1 TRQ2/SCY (RDRF, ORFE, TDRE)

FIGURE 1 — MC6801 INTERRUPT PRIORITY
AND VECTOR MEMORY MAP

a. All interrupt possibilities but two are disallowed, or
““masked’’ when the interrupt-mask bit I is set. Bit I in
the processor condition code register (CCR) is
automatically set during MC6801 Power-up/Reset.
The I-bit does not *‘mask’’ NMI (non-maskable inter-
rupt). SWI (software interrupt) does not interrupt a
program but executes like any other machine code and
as such it is not maskable.

b. I-Bit behavior can be summarized as follows:

(1) Actions that set the I-bit do so immediately.
(2) Actions that clear the I-bit do so after one E cycle
delay.

Therefore, the CLI instruction can often be
placed one program step sooner than might other-
wise be thought, for the I-bit actually clears dur-
ing the first cycle of the instruction following
CLI.

¢. Most MCG680! interrupts can be inhibited at a second
level. Specific control bits in several MC6801 registers
(see Figure 2) separately enable or disable the six inter-
rupt possibilities shown in Table 1. All interrupt enable
bits are cleared (disabled) during MC6801 Power-
up/Reset. User programs can set or clear these bits, the
action taking place during E time of an MPU write cy-
cle to the specified register.

TANLINULS LINFATLNI
10890W 4O NOLLVINASTHITH TYNLJEONOD — 7 TINOLL

‘8IS 9ANOBUI S1 O LINIa! O} | DY)

8Ul| asned AjdauIpul 1snw 10 Aloep 1senbe. idnusiut eleudoidde ay) $ie3jo ejeyspuey

PUODSS SIY | "PaIesd SI 1G-| UBYM 8D1AI8S 1eads. JusAsId 01 Alessaoau Os|e s| ayeyspuey
818M|0s e ‘s1dnusBlul ZDY] pue LOH] 404 '(3yBu saddn) 1ig-| s)es eyl uonoe axeyspuey
Yim paiemsue s) jeubls | 1dniietu) alepu),, “AINouo |en1oe luaseidal O} juesw 10N

aAnIsueg
Pajionucy eul] io
18A87 '86p3 ‘tera

-~ 5

44 4-8

®sibey
smeig josuo)
S suigoges | [cug bery]
L
wsour | ™ | 3 | 3w | 3w | aw |awar] 3140 |sway

|
PaIoBIeS) !
101084 (/1 |euas ay) _
ussesd ase MOITIBAG g
si1sanbai 1dnuaiw ,M_M_M._m JBWI | _ g
Ou uBYAA ‘aloN Jotop, BIEAW0 |
dnuseiu inding Uld 0Zd
:oﬂwwm% oL} | - OTITER) | IaisiBay A’_O
bl Wndyy snielg /jostuoy o
uonoeleg -] Z | sig ejqau [~ suaee « o
Joioan Mu ou Jeun| g eiqeuy 8 beyy nduy
| 808
INN Hso1| M0 o0 | io13 | 1003 | 103 401 400
_ MOBAQ
_ 13wl
_ giedwiogy
_ inding
_ einidey l———0
_ indy, _ uid £S1
ajqeuy
408 Bigeu3
! wsoea| X | X [x o] sso o
_ 44 4-§
yole
_ puy
Aeag
108380014 0] aBoy 8R4y o
uonuBooay) 3800 d LOH|
wdnuaiy e S08L L)
[} ! Y
n
wndy I7 AN T yale
S AEBA,| _ e puy
_ we8ieq
——C obp3 —+—0
isanboy JWN Buney | ud IAN
|
{wnjay UG- S—
eyspue ‘Day Jear) N
BIempIBl)
108880049 WOy Boy IN w013

10

TABLE 1 — MC6801 INTERRUPT FLAG AND

ENABLE BITS
interrupt Interrupt
Interrupt Flag Bits Enable Bits

Input Strobe 3 IRQT IS3 FLAG [IS31RQ1 ENABLE
Timer Input Capture ICF EICI

Timer Output Compare | OCF EOQCI

Timer Overflow TOF ETOI

Serial Receive RDRF/ORFE |RIE

Serial Transmit TDRE TIE

d. MC6801 interrupts are requested when appropriate ac-
tions set particular flag bits (the flag bits are listed in
Table 1). If the matching enable bit is set and the pro-
cessor I-bit is clear, the flag bit will ‘‘request’’ inter-
rupt service, as shown in Figure 3.

Activating the external IRQ1 pin sets a non-
machine-readable flag that remains latched as long as
the I-bit is clear. The negative edge of NMI also in-
fluences a certain flip-flop to request service, but is ser-
viced so quickly that there is no point in making its
state readable.

. Interrupt request flags become set at the following
times:

IS3 FLAG: Directly clocked by the negative edge at
IS3 pin.

Any Instruction _J

ICF: During E time that the timer capture ac-
tually occurs, which is two cycles after the
capture pin edge.

OCF: During E time but one cycle after timer
compare occurs.
TOF: During E time that the timer counter

would read $FFFF.

RDRF: During E time that received data is latched
into buffer.

ORFE: During E time that an overrun or framing
error is detected.

TDRE: During E time that a data word is actually’
transferred to the serial out shift register.

. Once set, the interrupt flag bits are cleared during E

time of special memory accesses that occur after the
flag is “‘armed”’ for clearing: The NMI request flip-
flop is automatically cleared during the tenth cycle of
the interrupt entry sequence, as described later.

ag Bit] Arming Mechanism Bit Clearing Action

1S3 Flag |P3CSR read (at $F) P3DATA read or write (at $6)
|CF TCSR read (at $8) CAPREG read (at $D)

OCF TCSR read (at $8) CMPREG write {$B or $C)
TOF TCSR read (at $8) COUNTER read (at $9}
RDRF [TRCSR read (at $11) [RDR read (at $12)

ORFE TRCSR read (at $11) {RDR read (at $12)

TDRE TRCSR read {at $11) | TDR write (at $13)

Interrupt Entry

That Does Not ™
Set Bit |

ADDD $80 +

Sequence

J 1L U UL

Free-Running Counter

TOF

$FFFB | SFFFC , $FFFD | S$FFFE | FFFF $0000 |

/

OCF ‘

N’ I Compare Reigster = $FFFE
v_ N | Comparison

’ Matiches

i Edge at Capture input

($FFFF Captured}

[1/

RDRF, ORFE,
or TDRE f f

Z|

* AR AT TANRAA Y

o I A AAAANAN

or IS3 FLAG®IS3 IRQ1 ENABLE

The one cycle skew for IRQT resuits from signal conditioning and synchronization.
FIGURE 3 — INTERRUPT RECOGNITION WINDOWS

8. Regardless of how interrupts are caused, the end inter-
face between each interrupt request and the processor
is level controlled, as shown in Figure 2 (as the Inter-
rupt Vector Select Logic block). This feature gives an
MC6801 program more control over interrupt service
than is otherwise possible. For example, if the three
timer interrupts were enabled and their flags were to
simultaneously set, the input capture interrupt (having
the highest priority of the three) would be serviced
first. This service routine could temporarily inhibit
compare interrupt service by clearing bit EOCI, which
allows overflow interrupt service (normally the lower
priority) to occur when capture service is complete. If
the end interrupt request interface was latch rather
than level controlled, clearing bit EOCI in the example
would not prevent the compare interrupt from being
serviced before timer overflow.

Individual flag bits are separately latched, however.
In the example just given, bit OCF is temporarily in-
hibited but will indeed be serviced when the program
restores bit EOQCI to its enable state.

h. Interrupt requests trigger interrupt service at times well
defined relative to the end of the instruction in pro-
gress, as shown in Figure 3.

. After recognition, all interrupts are initiated by a
twelve-cycle interrupt entry sequence (see Figure 4).
The particular request that initiates the interrupt entry
sequence will normally be, but is not always, the same
one immediately serviced. Exceptions can occur where
two Oor more interrupts occur at nearly the same time,
because actual selection of which interrupt to service is
delayed until near the end of the resulting interrupt en-
try sequence. At the ninth cycle, a decision is made as
to whether NMI, IRQI, or TRQZ will be serviced. If
IRQ2 is selected, the exact selection of which TRQ2 to
service is made during the tenth cycle. Requests not
selected remain pending but are masked (I-bit sets dur-
ing the tenth cycle), allowing the selected service
routine to proceed undisturbed. Some example pat-
terns of near-coincidental interrupt service are shown
in Figure 5.

j. Interrupt service is complete when the processor ex-

ecutes an RTI instruction. This ten cycle instruction
simply returns seven bytes from the stack to the pro-
cessor registers, restoring the original machine state
present when the interrupt was serviced (assuming the
interrupt routine does not modify stack contents). In
particular, the original I-bit is restored. If it returns to
alogic ““0”, the IRQ1 and TRQ2 latches of Figure 2 are
again enabled so that any pending request can be ser-
viced.

. A CLI instruction can be executed during interrupt

service to allow prompt processor response to pending
IRQI or IRQ2 requests. The benefits gained by this are
sometimes offset by increased program complexity and
greater required stack depth,

. All interrupt service routines (except NMI and SWI)

should take action that removes its interrupt request
prior to executing an RTI instruction.

An IRQ2 or IS3 or IRQI request is normally re-
moved by clearing the appropriate flag bit. As an alter-
native, the matching enable bit can be cleared. Exter-
nal hardware must remove any external TRQI interrupt
requests, as this line is not directly controlled by the
processor. This is best handled by providing hand-
shake logic similar to that used internally to control the
IRQ2 requests. The MC6821 PIA and MC6846 RIOT
devices each provide an excellent TRQI interface,
though discrete logic designs will also work.

. Interrupt service cycle times are well defined;

Cserv: Number of cycles taken away from non-
interrupt execution by interrupt execution.

Centry: 12 cycles to enter interrupt service.

Celrflg: 4 to 9 cycles to clear interrupt request (zero
for NMI or SWI)

Ctask: number of cycles to perform desired service.
Cexit: 10 cycles to execute RTI instruction.

TRQI, IRQ2 =Ctask + 26 to 31 cycles
CRMI, SWI = Crask + 22 cycles

Any of These
1RQ1 or 133 Conditions Wil
Cause Interrupt Service

12 Cycie Interrupt Entry Sequence ———————————o

| | I Fetch
t-finst.# ~Prepare- + — — — —Store 7 Bytes to Stack — — — — — el Fselected” ™ Service Routing————#»
! lee| Vector
L End of Instruction.Since “Initiate Int."” Select NMI T _n {RQ2, Decide
is Active {Fig. 2), Entry Sequence Begins. JRQ1 or IRQ2 Which One

I-Bit /

FIGURE 4 — MC6801 INTERRUPT ENTRY SEQUENCE

12

STTANVYXA LANWHALNI 10890W — § TUNOM

UOND3185 10100A Uy aledionied 01 BIOAD UIg JO pue Ag 1uesdid aq 1snw sisenbel L Y| 40 AN 810N,

T

T LJ —r — = (123221 1dNUBIL| BUNY U

11 17 117 171 T 17 171 M
Lomdo— L Jdoudob_Lta_c vt LAl
,UONOBI@S I0I0BA
BuipuierQ
0 =g BubuO A _ .Ma INN 1 : a” J\\ SassIpy 1snr utd INN
suimiay |1y 401 se [—1LH nm__ue_ W 101587 (AN PEOT ng-l Aq §8> oG L Po]
pemojyy aimden oY ’ Fll BE pexse 10N _.FJ

Wi
T|lw9>m L :m:m % T||| salAg £ usnd é:o:zooxm 106589019

_ _3oineg / ug- NdD 1ENLSIUY MOPIBAQ JoW) |
-1
tioa3e304) | _ ”M
L‘ ‘sisenbal |I.r ——

Nlmvﬂ_.huo,ﬁ Nﬁ“ 81dWeX3 JNN . SSIN., 88N D

Z0Y1 81242 Wil ”m—ozl—

T —I T = i~ .«1 4 =3
panoiiay jeubls S::B:_HTB.R; o18duI00 r.'. 1 § | 4202003
101087 Q/1 ewj peoy
jeues peol 9)
u
BDIAIBS (/1 [BUES T lew;m £ usnd :wu_ Tllwoim £4snd ||i‘:lhﬂX“co:=uoxw 105880044
..a BiA WIx3
pue 1dnuBlu| jauny 8AIAIBS {Aoud MmO JdnuBly|

Qigesuon] _ Voo
L.

8jdwex3 1ANLSIU| [BIUAPIDUID]) JeeN ']

eoneg 01
spoadg 10198 ﬁl&::w_:_ Ut 108185

euedaid IF \h:.x yxne4 peoq h aiedaid
.
weiBoiy4 uew ﬁl»noim L1nd UOIIN08X3 BUINOY 80IAISS T T‘lmo§m L ﬁ:mi uoIINDeX3 1088001
o p—————=| o
=\ g+l osy ug (195 =3
\b..%__..:_u:o som g+ % _ sur M/ oy

0.. 0} suInsy 10 uld NN
IR _:JfIH_
|||.I|_\ Ll

(8UQ ,,[RULION,, 8t)) 1dnielu Pelelos| Y

(etdwex3 ue 10 IsN(}

Mojog UMOYS se isenbey 1dnije; JOUOH s 0a1 “.,QSQSM
UUUrUUUrUUnUUUnrrur i vy riunrudr i iU

13

DESIGN CONSTRAINTS OF THE
MC6801 INTERRUPT SYSTEM

The expanded interrupt system of the MC6801 offers im-
portant benefits when software is constructed to utilize it
properly. However, certain specific software practices should
be avoided because unexpected program behavior may
result. These practices are now described, along with alter-
natives that will aid in better achieving the desired results.

AVOID IRQ2 HANDSHAKE VIOLATIONS

MC6801 interrupt requests (except for NMI and SWI) are
cleared with a software handshake during interrupt service to
avoid repetitive service of the same interrupt. The program-
mer should avoid several improper procedures that can clear
these requests at the wrong time, or several difficulties may
occur that can cause unexpected system performance.

What happens if an TRQ2 request is somehow removed

prior to actual service (a handshake violation)? If the request
had not yet triggered an interrupt entry sequence, nothing
unusual takes place. If indeed triggered, however, the follow-
ing rule will apply: An IRQ2 interrupt entry sequence that
Jinds no request present during its tenth cycle will always
select the serial 1/0 vector for service. This may or may not
be a problem if the original request was for serial I/O service.
On the other hand, programs that allow IRQ2 requests to be
cleared between interrupt sequence triggering and actual vec-
tor selection will service the serial 170 vector in lieu of that
desired. Two methods exist that allow this to occur, which
are described below and then summarized in Table 2.

1. Clearing IRQ2 Enable Bits While I-bit is Clear — Pro-
grams are often structured such that mask-bit I is clear
during background or non-interrupt execution. Some
programs will also purposely clear the I-bit during in-
terrupt service routines. At either time, software that
clears an IRQ2 enable bit should be avoided because
the corresponding interrupt flag may have just become
set. Figure 6 shows that an IRQ2 interrupt only
momentarily requested can result in erroneous selec-
tion of the serial /0 vector. To prevent this, use in-

struction SEI to mask all interrupt requests for the
short time that it takes to clear the desired enable bit,
then clear the I-bit again with instruction CLI. The
SEI/CLI combination is unnecessary when the pro-
grammer knows that the I-bit is already set, as is usual-
ly true within interrupt service routines that do not
themselves alter the I-bit.

2. Clearing Enabled IRQ2 Flag Bits while 1-bit is Clear —

IRQ2 requests can also be removed by clearing the
interrupt-flag itself. Doing so just as the interrupt is to
be serviced should be avoided to prevent improper
serial 1/0 vector selection, as demonstrated in Figure
Ta.

Two special cases of programming practice can also
generate this undesirable result. The double-byte read
instructions “LDD TCSR”* ($8) and ““LDD TRCSR’’
(811) are used to arm and clear interrupt flags TOF,
RDRF, and ORFE. As such, they are excellent for use
as the software handshake needed during service of
these flags, but altogether improper any time their in-
terrupts are enabled and the I-bit is clear.

For example, TOF might set, arm, and clear within
the four cycles of “LDD TCSR” execution. Though
the request is removed, it is still able to initiate an in-
terrupt entry sequence, resulting in erroneous service
of the serial 1/0 routine (see Figure 7b). Good pro-
gramming practice would clear interrupt flags only
during the appropriate service routine, which is the
best solution to this difficulty. “LDD TRCSR™ can
similarly clear RDRF and/or ORFE while
simultaneously initiating an interrupt sequence. Again,
the serial 1/0 vector is selected, which is seemingly
proper in this special case. However, the serial inter-
rupt service routine normally polls flags RDRF,
ORFE, and TDRE to determine the actual interrupt
source, It is possible, then, that RDRF or ORFE ser-
vice be skipped due to improper flag-clearing.

Table 2 summarizes the several methods by which the
serial I/0 vector may be improperly selected.

TABLE 2 — METHODS OF GENERATING IMPROPER SERIAL I/0 VECTOR SELECTION

Control or Flag .
The Cause Bits Affected The Solution
Clearing IRQ2 enable bit just as EICI Disable these enable bits only while
interrupt entry sequence begins. EOCI I-bit is set.
ETOI
TIE
RIE
Clearing IRQ2 flags just as interrupt All {RQ2 Flags |Do not clear flags directly after
entry sequence begins CLI instruction.
TOF Execute these instructions only if
RDRF I-bit is set.
ORFE
LOD TCSR LDD TRCSR
LDX TCSR LDX TRCSR
ADDD TCSR ADDD TRCSR
SUBD TCSR SUBD TRCSR
CPX TCSR CPX TRCSR
LDS TCSR LDS TRCSR

14

AVOID IRQ1 HANDSHAKE VIOLATIONS

IRQI requests are latched as long as the I-bit is clear (see
Figure 2) and will not cause improper selection of the serial
170 vector. However, it is still wise to observe the precau-
tions described for IRQ2 to prevent any unexpected system
performance. For example, handshake violations can clear
IRQI request flags just as interrupt service is being initiated.
As with IRQ2, programmers should avoid clearing IRQ1
flags during an instruction that follows CLI. Any of the
“LDD-type’’ violations described previously should also be
avoided any time the I-bit is clear, for TRQ1 flags can also
set, arm and clear during a single instruction. These viola-
tions allow TRQI service to take place, but prevent recogni-
tion of the calling flag during IRQ1 polling.

Additionally, the MC6821 and MC6850 offer interrupt re-
quest flags that need not be ‘“‘armed’’ before clearing — a
single memory access does the job. Therefore, limit these ac-
cesses to the appropriate service routine so that no request
can be missed.

There is no hardware oriented reason to avoid clearing
TRQI interrupt enable bits while the I-bit is clear. However, a
polling routine cannot reliably test both flag and enable bits
when this is the case.

Pulsing the external IRQI line by any form of signal
generator without a handshake should normally be avoided.*
Edge triggered interrupt lines NMI, 1S3, and Input Capture
are better used for such signals. Or,-an MC6821 or MC6846
can transform these into level-sensitive, handshake con-
trolled request signals which are more suitable for IRQ1.

AVOID CLEARING THE I-BIT DURING NMI SERVICE
There is need to be cautious about clearing the I-bit during

'NMI service because this interrupt can occur at virtually any
point in program execution. Some programs that use this
technique are likely to service occasional IRQ1 or IRQ2 in-
terrupts twice per request.

Double service occurs whenever an I-bit clearing NMI ser-
vice routine is executed before the flag-clearing handshake of
an already entered IRQI or IRQ2 service routine. For exam-
ple, Figure 8 shows that an NMI occurrence during a par-
ticular window of time prevents the quick handshake that
clears ICF. When NMI service executes instruction CLI, flag
ICF teams with enable bit EICI to again request capture ser-
vice. As shown, all routines will execute properly and to com-
pletion, including double service of the twice-called capture
routine.

Clearing the I-bit during other service routines will not
generate this situation, although doing so before clearing the
calling interrupt request is disastrous. The best way to avoid
any problem is to leave the I-bit set throughout NMI service.
Where this is undesirable, additional software can be added
to the NMI routine stack and compare it to all possibilities
that lead to double service. Where such is indicated, clearing
the I-bit should be skipped. If the I-bit must be cleared every
time, additional software should first clear the interrupt flag
scheduled for double service. Clearly, the benefits desired
when clearing the I-bit during NMI service are potentially
offset by the added software required to support this tech-
nique. For the same reasons, do not program an NMI inter-
rupt service routine to clear the I-bit record contained on its
stack. This would allow all portions of a program to be sub-
jected to I-bit clear execution, resuiting in potential double
service of interrupts.

*Appendix A offers an application of TRQI pulsing that does work, but only under special circumstances.

STAA int. Serv. Problem
bt TCgR-—Smjee——— 12 CycleInterrupt Entry gl g Program
L]
E L]
.
ETOI Bit \ LDAA TCSR
ANDA F5FB
TOF STAA TCSR Clear ETOI
.
L]
Ti. Ov. Reqst._/ {Causes Interrupt Entry But Removes Request) .
. No-Problem
I-Bit / Program
-
I:.Ser 1/0 X_TOF X Serial |/0 - .
! LDAA TCSHR
Vector Because No " ANDA #5FB
Selection Request is \\//V;;ng
P or
resent is Selcted! STAA TCSR

FIGURE 6
Programs that clear IRQ2 enable bits while
I-bit is clear risk improper vector selection.

15

"UONDIRS 103094 sodosdun NS ISP ST HG-]
Slus si1Qq Fey ZOUL ,PIIqRW,, e Jey) swerdold

L 7anoLg
.
. ipaldales
12 S1 10100 Juaseld
4SoL aal Buoipp sl 1senbey uoiloajeg
13as — N ON @sneoag i0108A N
.
.z _O/ewes X" jor__Xons?
.
HINNGD m<o.._ N 401 sies|) pesy 404 .Swiy,, pesy
.
¥SOL vval N H1NNOD ﬁmwu...
. H¥SO1 Qa1 (isanbay seAoway ing Asug 1dnuisiu) sesnes) \ —\ B8y "AQ "Iy
o’f .
90AREURIY 1004 .
javino) ojnes idniseiu o . (MO 51 G- "UBIH 81 1013 1g) | [soL
apistno Bunes|d Beyy smojie eyl 188 s14q 1013,
8P00 BlLM JOU O 1UOANIOG 188g 18910 S Ng-|, 1
semseesenwssogwmeas L LU LU L
[SCINS U] ﬂL_ﬂ Alu3 1dnueiu| 8ppA) zt UT HSOL n_o._'i ,
w0
-~
. |Palosjag
. S1 10108 asaig
401 sie9d 4INNOD aa Buoipp st 1sanbay uonoeRg
sidnueiu) Mm__.ucﬂwo.%:mu. o opko ,Momo”_ww..._n.u ,«,..MF“ —_—— ON 8sneoag \\ 101037 J
j09) L Ui sieap a-i, % —3
a_mu "o 0/1 [euag X 301
086 BY1S 10 08s AV1S 08$ V1S
112, . (isanbey seroway ing Anuz 1dnusiu| sesnen) / ‘Boy ‘AQ 1)
i 404 SWe ys3) yval
HSO1 wval.

.
s 8iay uislas 40 Jeyl swnssy, (YBIH S 1013 g) 101
a0y 188 4O, N
. L]
13s sidnualu| yse 135 / 'IsU} Q7 8i0jeg 1dnuBlU| MOjly O 81T 00) Sie4) iig-| ’
W S (

.
108 s g (013, 188 §1 19 1013,
we.01 werg0ig-oN weiBo1g weiqoig o § 3
a—i-

PLIR Y Anug idnuisiu) eipAy zy "__ 18lunod 004’1_

“dnusui ZOUL 0 [OUI JO 331A1s Jqnop
0} pus] weS> AL JAN FuLMp 1q-] Suiredpd

8 TANOLA
ALY ud 1N
N\ Vo mamn I e Y
J 1sanbay aimden____
|LH Uy spu3 Lk s o8 © DAY i
80 K
DIA18S [N JO 1S8Y SPU] '80IAIBS jO 158y 101DBA eimde) Peay 10309 ,uw_o_whwwful.l_._ui 10108A {WN PesY 10108A 2inide]) peey JO1D8A 18185

93¥dvo aaT-e—H, D34dVD 01— USDL vya11bes Alu3 a)AY ZH——— soines INN

somseg aimden—— j————adipg ainideD———e|

puz [Ny 15|

ug-1 472 N0
L
L
L]
INN
8uilnoOyY 8oIAIeg,

dnusivl JAN. _._.m-_

L]
L
.
421 H1D ‘®ieQ H3IHVO 12D HIUdVYD ad1
Buues|d 10} 40} Wy WSJL VVQ) HNLAVYD
aujinoy 8oIAes,
wdnueiu aimde),

‘beg Al 8AY Z|———————}—Deg Anu3 3043 Zi—|

{IINN JeeN) Anug ‘i) sunide)

peles § 47| 91048q 1ng
uonubooas ainided Jelje adiales |WN asned
Im uoibas siyy Ui e6pe Buiijey IAN Uy

\ isenbey aimdey
| / 401

' |
| 10100A PRRY 15150 10810!
ﬂ.ex_u.. _:ms_#.\lrn,\j. m

F O3V QQ14-usO1 YYaH— bos Anug epAd Z1—f

aunnOy aoialeg idnualu| aimde) ‘|._

(leWION) Anug lu| simde)

17

APPENDIX A
USING IRQ1 AS AN INPUT PIN

If the circumstances are right, an I/0 limited MC6801
system may be able to use the IRQI pin as an extra input.
Where no other interrupts are used, this can be accomplished
with the simple program of Figure A-1 to clear RAM byte
IRQTST while also clearing the I-bit. The state of the IRQ1
pin then determines whether IRQTST will be changed (inter-
fupt occurs) or remain constant (no interrupt occurs). The
background program discovers which is the case by simply
reading IRQTST. Notice that the processor has no control of
input pin TRQT in this method, but can still perform the
necessary interrupt handshake by setting the I-bit record
stored on the stack. This prevents repeat service that would
otherwise tie up the processor as long as the TRQI pin is held
low.

The same basic method can also be used when other inter-
fupts are to be serviced as well. The IRQI pin is again tested
in the manner just described, but now routine IRQSRYV must
also poll other interrupt requests in case they need service, as
shown in Figure A-2. If it is important that the various inter-
rupts be serviced promptly, the programmer can scatter CL]
instructions through his background software. This still
allows the IRQI pin to be used as an input, and also permits
normal service of all interrupts while TRQI is high. Whenever
IRQI is low, TIRQSRYV becomes an alternate entry path for
other maskable interrupt requests.

$80 RAM BYTE AT $0080

*BACKGROUND PROGRAM, I-BIT IS SET.

$2000

*

*FIND OUT IF IRQ1 PIN IS HIGH OR LOW

0080 A IRQTST EQU
2000 ORG
2000 A BKGRND EQU

* .
2000 OE CLI
2001 7F 0080 A CLR

I CLRS DURING NEXT INST.

IRQTST WILL IT STAY ZERO?

*IF IRQl IS LOW, SERVICE OCCURS AT THIS MOMENT

2004 96 80 A LDAA IRQTST IS NOW #SFF IF IRQ] TS LOW
2006 26 00 2008 BNE IRQLOW IRQI DID OCCUR

*IRQL PIN WAS HIGH

* .

2008 A IRQLOW EQU * IRQ1 PIN WAS LOW

* -
2008 7JE 2000 A JMp BKGRND END OF BACKGROUND LOOP

*IRQ1 SERVICE ROUTINE
200B 73 0080 A IRQSRV COM IRQTST CHANGE IRQTST!
200E 30 TSX X=SP+1
200F A6 00 A LDAA 0,X THE CCR BYTE ON STACK
2011 8A 10 A ORAA #S10 SET I-BIT FOR RETURN
2013 A7 00 A STAA 0,X
2015 3B RTI

*I-BIT IS SET TO PREVENT IRQ1 RESERVICE

FIGURE A-1
Using IRQI as an input pin.

18

2000

2000
2003
2004
2006
2008

200A
200C
200E
2010
2012
2014

2015

2017

2019

201A
201C

201D

73
A6
8a
A7

96
2B

85

3B

96

DC

3B

DC
48

3B

$8 TIMER C/S REGISTER

$D CAPTURE REGISTER
$11 TX/RX C/S REGISTER
$12 RECEIVE BUFFER
$80 RAM BYTE AT $0080
$2000
ROUTINE
IRQTST CHANGE IRQTST!

X=SP+1
0,X THE CCR BYTE ON STACK
#s10 SET I-BIT FOR RETURN
0,X

*BEFORE RTI, SEE IF OTHER INTERRUPTS ARE PENDING

0080 A TCSR EQU
000D A CAPREG EQU
0011 A TRCSR EQU
0012 A RXBUF EQU
0080 A IRQTST EQU
ORG
*IRQ1 SERVICE
0080 A IRQSRV COM
TSX
00 A LDAA
10 A ORAA
00 A STAA
08 A LDAA
09 2017 BMI
11 A LDD
EO A BITA
08 201C BNE
RTI
*I-BIT IS SET
08 A TIMIC LDAA
oD A TIMIC1 LDD
* .
RTI
11 A SCIINT LDD

SCIIN2 ASLA
*

RTI

TCSR CHECK INPUT CAPTURE

TIMIC1 TIMER INPUT CAPTURE PENDING

TRCSR CHECK SCI IRQ2 REQUESTS

#SEO CHK RDRF,ORFE,TDRE FLAGS

SCIIN2 SERVICE SCI INTERRUPT
EXIT:NO INTERRUPTS PENDING

TO PREVENT IRQ1 RESERVICE

TCSR ARM ICF FOR CLEARING
CAPREG CLR ICF, GET CAPTURE DATA

TRCS ACCA=TRCS, ACCB=RXBUF
SORT OUT SCI FLAGS

FIGURE A-2
Routine IRQSRYV can also poll other interrupt
requests when using TRQI as an input.

19

	AN807_page01.tif
	AN807_page02.tif
	AN807_page03.tif
	AN807_page04.tif
	AN807_page05.tif
	AN807_page06.tif
	AN807_page07.tif
	AN807_page08.tif
	AN807_page09.tif
	AN807_page10.tif
	AN807_page11.tif

