MOTOROLA
Semiconductor Products Inc.

MONITOR FOR THE |
MC146805G2L1 MICROCOMPUTER

Prepared by
David Bush
-~ Microprocessor Product Engineer

and

~ Ed Rupp
Microprocessor System Design Eng
Austin, Texas

AN-852

Application Note

INTRODUCTION

The MC146805G2 -is a fully static single-chip CMOS
Microcomputer. It has 112 bytes of RAM, 2106 bytes of user
ROM, four 8-bit input/output ports, a timer, and an on-chip
oscillator, The MC146805G2L1 ROM contains a monitor
routine which provides the user with the ability t
the MC146805G2 using a standard RS232 termi
can enter short programs into the on-chip RAM
them via the monitor. A description of the
follows along with an assembled listin,
gram.

MONITOR MODE

In this mode the MC14680Q
nected to a terminal capabl
9600 baud. Figure 1 ¢
momtor mode connect

‘microcomputer is reset, a power-up message is
ollowing the message, the prompt character ““.” is
and the monitor waits for a response. The response
onsist of single letter commands with some commands
‘tequiring additional input. Unrecognized commands respond.
by printing “?”’. Valid commands are:

R — Display the Register

A — Display/Change the Accumulator
X — Display/Change the Index Register
M — Display/Change Memory
C — Continue Program Execution
E — Execute Program at Address
S — Display State of 170 and Timer

. followed by a hexadecimal address
$0000-$1FFF. The monitor responds by beginning a new line

isplay the Register

The processor registers are displayed as they appear on the
ack. The format of the register print is:

HINZC AA XX PP

The first field shows the state of the condition code register
bits. Each bit in the register has a single letter corresponding
to the bit name. If the letter is present, the bit is 1. If a **.”’ is
printed in place of the letter, that bit is 0. For example,
‘“H..ZC” means that the H, Z, and C bits are 1 and that the I
and N bits are 0. The remainder of the line shows the status
of the accumulator, index register, and ;program counter,
tespectively. The stack pointer is always at a fixed address (in
this case $7A). The values shown are the values loaded into
the CPU when a “C”’ or “E”’ command is executed. All
register values except the condition code register can be
changed with other commands. To change the condition
code register, it is necessary to use the memory change com-
mand and modify location $7B.

A — Examine/Change the Accumulator

This command begins by printing the current value of the
accumulator and then waits for more input. In order to
change the current value, type in a new value (two hex digits).
To leave the accumulator unchanged, type any non-hex digit
(a space is a good choice).

X — Exa_mine/Change the Index Register

This procedure is the same as the ““A’’ command, but af-
fects the index register instead.

M — Examine/Change Memory

Any memory location may be examined or changed with
this command (except of course, ROM). To begm type ““M”’
in the range

©MOTOROLA INC., 1981

+6V

10k C1Baud Raé; Switcl;
ate
MV 20 pF = = > 0
_ 0 1 1200
Reset 6_1___1_{ reser Voo B o 1 0 4800
__I 1 —zf,TR_CI 0sCH j’o;z_ ? 3.579545 MHz = C:osed 1 9600
Q{——c NUM osc2[1— , 1=0Open
= grA7 TIMERD T ©FF
- gPA6 .. rD7 =
‘deas PD6P
g ra4 PD5[
grA3 PD4N
rA2 PD3 +5V
dear Po2 l To Terminal
grao PD1D : See Table 5
[PBO poof) SOk 0 o 3 6
[l Pe1 PCO 23 O—e¢—0] 8
drss ool
gre4 PC3 325
arss pcad Serial Out
fires P50 1 10
frB7 pce 7
_ﬁ{ Vgs pc7

DB25 Connector

and

contents of that location. At
1.

. HCR’) an

RE 1.

mvéd by the current
oint you may. type:
byte. (Try this with loca-

printing the memory addre

€.”” and re-examine th

tion $0008.)
. N’ and go to ous byte. Typing ‘YN’ at loca-
tion $0000 monitor to go to $1FFF.

the next byte. ““CR”’ is the carriage
. The byte after $1FFF is $0000.

e “DD” is a valid 2-digit hexadecimal
. "The new data is stored at the current address
1e monitor then goes to the next location. This
s that to enter a program it is only necessary to go
1o the starting address of the program and start typing
in the bytes. To see if the byte was really inputted, you
can use the “/\ character to return to the last byte
typed in.

. Finally, any character other than those described
above causes the memory command to- return to the.

prompt level of the monitor and prints *.**,

Monitor Mode Schematic Diagram

- C — Continue Program Execution

The “C*” command merely executes an RTI instruction.

* This means that all the registers are reloaded exactly as they

are shown in the register display. Execution continues until
the reset switch is depressed or the processor executes an
SWI. Upon executing an SWI, the monitor regains control
and prints the prompt character. This feature can be used for
an elementary form of breakpoints. Since there is really no
way to know where the stack pointer is after an SWI, the
monitor assumes that it is at $7A. This will not be the case if
an SWI is part of a subroutine. In this case, the monitor will
be re-entered but the stack pointer will point to $78. This is
perfectly valid and typing “C”* will pick up the program
from where it left off. However, the A, X, R, and E com-
mands-all assume the stack starts at $7A and will not func-
tion properly. If the stack location is known, it is still possi-
ble to examine the registers by using the M command,

E — Start Execution at Address
The “E” command waits for a valid memory address

($0000-$1FFF) and ‘places the address typed on the stack at
locations $7E and $7F. The command then executes an RTI
just like the “‘C’* command. If the address typed is not a
valid memory address, the command: exits to the monitor
without changing the current program counter-value:

S — Dlsplay 1/0 States and Timer

-The ““S”” command displays ports: A, B, C, and D data
along with the timer data and control register contents. The
format of the display is:

A B C D TIM TCR

The data displayed is simply memory (RAM) locations
$0000-$0003 with $0008 and $0009. Ports A; B, and D may
be written to by first making them all outputs; i.e:, for port
A, change location $0004 (port A DDR) to $FF. Port C and
the timer registers cannot be changed as they are used by the
monitor.

‘MONITOR PROGRAM

A flowchart for the monitor mode program is provided in
Figure 2. A listing for the ROM monitor program is a
to the end of this application note.

(MonitdrStart }

Print CR, LF

:Print Prompt

Get'Character
Print Space

‘l Main l

Char="\JY PrintA-’

A=Get 2 Hex

Char= Y

Print X
i nn{

Char= Y
USII . State -

Print -Machine

Char=

Get=Get 3 Hex

PC=Get 3 Hex

RTI

N

Print 2"

Print CR, LF
Print Get
Print Memory (Get)

'S
A= Get 2 Hex

!

Memory (Get) = A
Get=Get+1

Err

Get=
Get+1

Get=
Get—1

FIGURE 2. -Monitor Mode Operating Flowchart

Sepv £ 15:10 1981 146B056G2 ROM Monitor Listing Page 1

0000
0000
Q000
o000
OGO
0000
Q00
0000
0000
0000
slelele)

0000
0000
0000
alelele

K sk d oo sk ok ok sk ok ok & ok ok ok ok %k % Kk ook R ok % % %k

porta
porth
portc
portd
ddr
timer
tcr
RAM
ZROM
ROM
MEMSIZ

% & % ok K %k Kk A

MC1468065¢62 ROM PATTERN

The MC&BOSG2 single~chip microcomputer is a 40-pin CMOS
device with 2096 bytes -of ROM, 112 bytes of RAM, four
8-bit I/0 ports, a timer and an external interrupt
input The ROM contains two separate programs. Eithern
of these programs may be selected on reset by wiring po
C as follows:

C?7 Ci CO function

monitor (300 baud)
monitor (1200 baud)
i (4800 baud)
monitor (9400 baud)}
bicycle odometer

[I A
> OO
BN e R _Rw

3

=)

3

-

o

Q

~

all previous
s serial I/0 for
erial input is C2

The monitor is substantially the

monitars for . the 4805 The moni
its communication with the operat
and serial output is C3.

53

I/0 Register Addresses

equ %000

equ $001

2qu $002

equ G003 i

equ direction register offset (e.g. portat+ddr)
equ timer register

equ cantrol register

fqu of on-chip ram

equ of page zero Tom

equ start of main rom
aqu memory address space size

er Constants

0D carriage return
$0A line feed

$20 blank

$00 end of string

3436 3 3 354 3036 3 3 30 F I 303 30 36 A3 3030 30 3040 2 30 236 30 W S0 30 A0 IE 6 303030 30 303 I 3640 3 403 B 90 H 3 3 0630 12 B 3%

ROM MONITOR for the 1 4 4680562

Written by Ed Rupp., 1980

The monitor has the following commands:

Sep 8 15:10 1981 14480562 ROM Monitor Listing Page 2

R -— Print registers
format is CCCCC AA XX PPP

A == Print/change A accumulator.
Prints the register value, then
waits for new value. Type
any non—hex character to exit.

X =-— Print/change X accumulator.
Works. the same as ‘A’ except modifies X insteads

M -~ Memory examine/change.
: Type M AAA to begin,
then type: . -—-- to re-examine current
“o .=~ to Bxamine previous
CR —— to examine next
DD -~ new data
Anything else exits memory comma

C. —-- Continue program. - Execution s
the location specified in th
counter, and
cantinuves until an
or until reset

swi ecuted

E —-- Execute from address.
£ AAAA. AAAA is

at is
lid memory address

§ ~— .Display Machine

) ‘All important registers are
displayed

Special Equates

E N EEENENEEEE RS A AN R A R

0602 60 Ze PROMPT .aqu . prompt character
G662 00 Od FWD go to next byte
0402 00 Se BACK go to previous byte
G&L02 Q0 2o SAME re—-ezxamine same byte
#*
%
* . B
0602 GO 7¢ initsp] $7F initial stack pointer value
0602 00 7a stack initsp-5 top of stack
#*

ram variables.

equ RAM+0 4-byte no-mans land, see pick and drop subroutines
squ RAM+4 acca temp for getc,putc

equ RAM+5 x Teg. temp Ffor getc,putc

2qu RAM+& current input/output character

aqu RAM+7 number of bits left to get/send

state —~~ print machine state

A°B C D TIM TCR
dd dd dd dd dd dd

Sep B 15:10 1981

14680562 ROM Monitor Listing Page 3

+*
header string for I/0 register display
#
0&02 Gd Oa iomsg fcb CR, LF
0404 Z0 41 20 20 42 20 ¢ fre /A B C D TIM TCR/
20 42 20 20 44 20
34 4% 44 20 54 43
52
0417 Qd 0a GO feb CR, LF,EDS
*
Uhia S5¢ state clrx
O&1b d& Q& 2 state2 lda iomsg, x get next char
O&1e al OO cmp HEDS quit?
0620 27 0& beqg state3 yes, now print values
0622 cd OB Qi jsr putc no; print char
08625 S incx bump pointer
Uh26 20 £3 bra state? do it again
0428 - i statel
*
#* now print values underneath the
M :
0628 5+ , clrx
0629 f6 pio ‘1da ' X start with
062a cd 07 Se Jsv
062d od O7 Bb 48T
0630 5S¢ incyx
0631 a3 G4 cpx
04633 26 f4 bne
*
G635 cd 07 8b Jsr
06328 bé 08 lda W print the value in the timer
063a cd 07 Se Jsr
0463d cd O7 Bb JsT
0640 cd 07 Bb JsT
04643 bé CF the control register too
0&45 cd 07 Se
04648 20 48 all done
#
print condition codes
*
* ing for pcc subroutine
* W
[- feoe /HINZC/
+*
lda stack+i condition codes in acca

asla
asla
asla
sta
clrx
lda
asl
becc
lda
§sr
incx

get

#/,

get
pced
ccstr, x
putc

move h bit ¢o bit 7

save it

put bit in ¢

bit off means print

pickup appropriate character
print . or character

point to next in string

Sep 2 15:1C 1981 14580592 ROM Monitor Listing Page 4

Ga&d ald 0% o cpx #9 quit after printing all 5 bits
GCabb4 25 of ’ blo pce2 : :
&4 81 : . rts R
* .
seta --= erxamine/change accumulator A
o o S :
0649 ar Tc) seta 1dy #stack+2 point to A
Ga&4b. 20 G2 bra setany
N3 - i
% o setx -—— gxamineschange accumulator X
N . * ’ ’
Q0&&d ae 7d : satx ldx #stack+3 point to X
: & y :
*0 setany -—— print (x) and change if neces
. L : : :
Oh&t f& B . setany - lda X pick up the data, and -
0670 ¢d G7 Se o R E-2 putbyt print it
G673 cod 07 Bb Jsr puts
0&74 c©d 07 .74 JsT getbyt see if it should anged
Ga79 2517 : : becs monit . .. error,.no cha
0467b 7. : :) sta S X else replace w ew value
0&7c 20 14 bra monit now retur
. # .
® - regs ———.print cpu regis
N * : ¥ .
0678 ad c¥ TRgS bsr egister
0480 cd O7 Bb) JaT from next stuft
0683 3¢ 11 : clr to page zero,
0685 as 7c : lda
0487 b7 12 : sta
048T cd G7 4h JsT ntinue print with A
0&8c ©d. OF 4b NE-3 and finally the
S 0688 cd O7 43 Jsr Program Counter
* . S
* fall main loop
* .
#* ~ print prompt and decode commands
» ;

crlf go te next line

#PROMPT
‘- pute print the prompt

getc .. get the' command character
#71111111 mask parity

puts cprint space (won’t destray A)
#4 change A

seta L)

#X - ghange X

setyx : :

#R registers

regs '

#E execute

exec

#C continue

cont.

#M memoTy

memorty

Sep

Chba
Cobe
O&be

6771
CGhed
Q&3
Chek

CheE
Ghaeh
Qbed
Qbece
Chd1l
Ged2
0hd3

Cad7

06d8
Obdb
Ohdd
O&d £
Obe2
Obed
[o7-7-7.3

O&ed

8 15:10 1981

25
97
cd
25
b7
bt

53
o3

£ 06

el
af
(3=
ca

o7
oS

o7
b
7 ¢
7e

a1

94

94

94

94

14480562 ROM

3%
monitd

exec

memary

memz

lda

Monitor Listing Page S

cmp #S display machine state

bne monitl

Jmp state commands are getting too far away
Cequ *

lda #7 none of the above

JsT pute

bra monit loop around

axec ~—~ pyxecute from given address

Jsm getbyt get high nybble

bes monit bad digit

tax save for a second

fsr getbyt now the low byte

bes monit bad address

sta stack+d program counter low

sty stack+d4 program counter high .
cont -~— continue users program

Tti simple enough
memory --— memory examine/c

Jer getbyt build a

bes monit bad h character

sta get+i

J8T gethbyt \

bes monit hex character

sta get+d 5 15 now in get+1&2
Jsr cerlf in new line

lda rint current location
and mask upper 3 bits (8K map)
Jsr

a blank, then

get that byte

and print it

another blank.,

try to get a byte

might be a special character
otherwise, put it and continue
go to next address

and repeat

re-examine same?

yes, return without bumping
go to next?

yes:, bump then loop

go back one byte?

no: exit memory command
decrement low byte

check for underflow

no underflow

Sep £ 15:10 1981 14480562 ROM Monitor Listing Page &

GF1F 3a 1i dee get+l
o721 20 3 bra mema
#
#* convenient transfer point back to monit
:
G723 o Oa 22 xmonit Jmp monit return to monit
*
* utilities
*
* pick —-- get byte from anywhere in memory
#* this is a horrible routine (not merely
#* galf-modifying, but self-creating)
*
#* get+1%2 point to address to read.
#* byte is returned in A
X is unchanged at exit \ﬁ
% :
Q724 LF 15 pick stx xtemp save X
G728 ae d& ldx #5D6 D&é=1da 2—-byte in
072a 20 04 bra common -
*
* :
* drop ——- put byte to any location.
% has the same v ble properties
* as pick .
! # A has byte to store, get+1%2 points
#* to location to sto
#*
*
"072c bE 15 drop
0722 ae d7 :
: *
0730 b 1C common ‘ put opcode in place
0732 ae B1 81 8i=rts
0724 b I3 get+3 now the return
0736 S+ P we want zero offset
G737 bd 1C . : execute this mess
0739 be 13 xtemp restore X
073b 81 S and exit
) *
bump ——- add one to current memory pointer

A and X unchanged

inc get+2 increment low byte

bne ‘bump2 Non—-zero means no carrty
inc .get+l = increment high nybble
rts

out4hs —-- print word pointed to as an address, bump pointer
X is unchanged at exit

bsr pick get high nybble
and #E1F mask high bits

Sep B8 15:10 1981 14680562 ROM Monitor Listing Page 7

aray
0749

7 4b
G744
Q74¢
0730
0751
0752
0753
a755
07s7
0739
073h
G754

075e
0760
0761
G742
Q763
0764
0766
0768
076a

074b
O76d
O76%
0771
0773
0775
Q777
077a
Q77¢

ad
ad

d%
1G

14
10
12
el

2

16

e

03
10
01

bsr putbyt and print it
bsr bump go to next address
#*
#* outzZhs -—- print byte pointed to, then a space. bump pointer
X is unchanged at exit
#*
outZ2hs bsr pick get the byte
sta get save A
lsra
-lsra
lsra
lsra shift high to low
bsr putnyb
lda get
bsr putnyb
bar bump go to next
bsr puts finish up with a blank
Tts ‘ -
*
#* putbyt ~—- print A in hex
* A and X unchanged
*
putbyt sta get save A
"~ lsra
lsra
lsra
lsra
bsr putnyb
lda get
bsr putnyb ow nybblse
rts
#*
3* putnyb ~-- pr lower nybble of A in hex
4 unchanged, high nybble
#* ignored.
* W
putnyb save A in yet another temp

mask aff high nybble
add ascii zero

check for A-F

putny2

#'A~'9~1 adjustment for hex A~F
o1 putc
get+3 restore A
crlf ——- print carriage return, line feed

A and X wunchanged

sta get save
Ida #CR

Jsr pute

lda #LF

bsr putc

lda - get restore
rts

10

Sep 8 15:10 1981 14680562 ROM Monitor lListing Page 8

#* .
puts —-— print a blank (space)
* . A and. X unchanged
#*
L Q78b b7 10 puts sta Coget -savae
Q784 a4 20 lda - #BL
Q78+ ad 7O bsr putc
Q791 bh 10 : lda get - restore |
G793 21 : : rts .
B -3 .
#* getbyt ——- get a hex byte from terminal
#®
#* A gets the byte typed if it was a vali. number,
* - otherwise A gets the last character typed e c~bit is
3 set on non-hex characters; cleare eTwise. X
urichanged in any case.
2 :
0794 ad OF getbyt ‘bsr getnyb build byte from 2
G794 25 Qc - bcs nobyt bad character i
0798 48 ° e . asla
Q799 48 asla
07%a 48 ' .. asla
0796 48 asla
07%¢ b7 10 Lo sta . get -
0798 ad ©5 ‘ bsr getnyb
07a0 25 @2 } B bcs nobyt
G7a2 bbb 10 . ’ - -add coget
07a4 B1 . nobyt Tts
* .
#* getnyb —-—=- g nybble from terminal
w .
* & gets the e typed if it was in the range O-F,
otherwise ets the character typed. The c-bit is set
#® i—h characters; cleared otherwise. X is
L3
-3
07a% ad ic g getc get the character
G7a7 a4 7¢f #41111111 mask parity
07a% b7 13 get+3 save it Just in case
07ab aG 30 #°0 . subtract ascii zero
07ad 2b 1O nothex was less than ‘0
07af al 09 #9
0761 .23 0a gotit
G763 a0 O7 #'4~9-1 funny adjustment
0785 al Qf #5F toe big?
G707 22 O& nothex was greater than ‘F’
0769 al 09 #9 check between 9 and A
nothex)

gotit c=0 means good hex char

nothex: . lda get+3 get saved character
sec :
rts ‘return with error
: .
* Searial 170 Rowutines
*

"

Sep 8 15:10 1981 14480562 ROM Monitor Listing Page 9

* These subroutines are modifications of the original NMOS
* version. Differences ars due to the variation in cycle
* time of CMOUS instructions vs. NMOS.
#
* Since the INT and TIMER interrupt vectors are used in the
* bicycle odometer, the I-bit shouvld always be set when
#* running the monitor. Hence, the code that fiddles wit
#* the I-bit has been eliminated..
*
#*
#* Definition of serial I/0 lines
3*
#* Note: changing ‘in‘ or ‘cut’ will necessitate,
* way ‘put’ is setup during reset.
#*
07¢3 GO G2 put equ portc serial I/0 port
07¢3 00 02 in equ 2 serial input line#
07¢3 00 03 out equ 3 serial output line#
s
#* getc ——-—- get a character from the 4
* :
#* A gets the character typed, X hanged
® .
G7c¢3 bf 15 getc stx xtemp save X
G7c¢5 ab 0B lda #8 ~ number of o read
07¢7 b7 17 sta count
07c? G4 G2 +d getcd brset in, put, getcd u or hilo transition
. #*
%* delay 1/2 bit time
*
07ce bé& G2 lda put
Q07ce a4 O3 and #7411 current baud rate
07d0 97 tax
07d1 de 08 4b x get loop constant
07d4 aé6 04 getcld
07d4 Fd getca
07d7 4a
07de 26 fc¢
07da Sd loop padding
07db 14 02 in,put ditte
07dd 14 G2 in, put CMDS ditto
O7d+ Sa
0780 26 £2 geteld ma jor loop test

now we should be in the middle of the start bit

brset in/put, getcd false start bit test
tst ' X more timing delays

tst + X

tst ' X

main loop for getc
bsr delay (&) common delay routine

breclr in, put,getcs (5) test input and set c-~bit
tst ' X (4) timing equalizer

12

Sep € 15:1C 1981 14480562 ROM Monitor Listing Page 10

O72e 9d . . nop (2) CMDS equalization

Q7ef Fd nop (2) CMOS equalization

07#0 %d C nop (2) CMOS equalization

07¢f1 9d : nop (2) CMDS equalization

o7f2 . 9d nop (2) CMOS equalization

Q73 9d ! nop (2) CMOS equalization

O7F4 36 14 : S - ror char (3) add this bit to the byte

O7+6 3a 17 dec count (3)

078 2& ee bne getc?7 (3) still more bits to get(see?)
% .

Q7fa ad 34 bsr delay wait out the 2th bit

O7fc b6 1d& lda char get assembled byte

07fe be 15 ldx xtemp restore x i
*

08GO 1 Tts and return

.
#* pute ———= print a on the terminal
*
#* X and A unchanged
% .
0801 b7 14 putc sta char
0803 b7 14 sta atemp save it in
0805 bf 1S stx xtemp don‘t for bout X
0807 a&: 0% lda - #9 going to out
0809 b7 17 . sta count ? bits time
080h S¢ clirx for verp sScuTe Teasons
0BOc 98 cle thi the start bit
0B8Gd 20 02 bra : in the middle of things
#
main
*
80+ 36 14 putecS Tror get next bit from memory
08i1 24 C4 putc2 bece now set or clear port bit
6813 146 02 bset
0815 20 G4 bra
0817 17 G2 out,put ()
oBig 206 GO > putcd (3) equalize timing again

08ib dd QB 30 delay, x (7) must be 2-byte indexed st

this is why X must be zero

081le 43 - (3) CMDS. equalization
081+ 43 (3} CMOS equalization
0820 43 . (3) CMOS equalization
0821 3a 17 count (S)

0823 26 ea puted (3) still more bits
0825 14 02 in;put 7 cycle delay

0827 1& 02 out,put send stop bit

bst delay delay for the stop bit

ldx . xtemp Testore X and
lda atemp of course A
rts
*
delay —-~"precise delay for getc/putc
#*
delay lda put first, find out

13

Sep 8 16:10 1981

146B05G2 ROM Monitor Listing Page 11

0B322 a4 03 and #%11 what the baud rate is
0834 97 tax -
0835 de 08 4b ldx delays, x loop constant from table
0838 a4 8 : lda H#EF8 funny adjustment for subroutine overhead
083a ab 09 del3 add #$09 .
083c¢ del2
083c 9d nop CMOS equalization
082d 4a deca
083e 26 fc bne del2
0840 54 tstx loop padding
0841 14 @2 bset in,put ditto
0843 14 02 bset in,put’ CMOS ditto
08453 Sa)) decx
oB4s 26 £2 " bne del3 main loap
0g48 w4 nop CHMOS equalization
0849 9d nop CMOS equalization
084a 81 rts with X still equal to ze
#*)
* -delays for baud rate calculation
*
* This table must not be put on pa
* the accessing must take & cycl
#
©84h 20 : delays fcb 32 300 baud
084c 08 . fcb 8 1200 baud
084d 02 fcbh 2 4800 ba
084e 01 : fcb 1
3
#*
#*
#* Based on a port
% . :
084+ resat
084+ Oe 02 03 brset
0852 cc 01 54 Jmp
%
#* run t
*
0855 other « :)
0855 a& 08 #71000 setup port for serial io
0857 b7 02 put set output to mark level
0859 b7 0&

put+ddr set ddr to have one output

rint sign-on message

clrx
lda msg, x get next character
cmp #EOS last char?
bagq mstart yes, start monitor
Jsr putc and print it
incx advance to next char
bra babble more message

mstart
swi push machine state and go to monitor routine
bra reset loop around

#*

14

Sep B 15:10 1981 14680562 ROM Monitor Listing Page 12

#* msg ——-— power up message
L3 .
0B&c. Od Qa - o . msg fcb - CR,LF
0B&e 31 34 246 38 30 285 ‘ fec /1446805627
4732
0874 00 B ; ‘fcb EOS
=)
#* L
R e R et
* e
#* : interrupt vectors
#*
1£+6 ‘ . arg MEMSIZ~10 start of vectors
1f£f4 01 0 : : fdb onemil exit wait state \ ‘ '
1£+8 01 oC . fdb onemil timer interrupt i-.odometer vectors
1#fa 02 44 . R £db wheel external infterrupt
1ffc 0& 92 fdb monit swi to main entry
1#fe 0B 4+] : fdb reset power on vector ¢

Motorola reserves the right to make changes to any products herein toimprove reliability, function or désign. Motorola does not assume any liability arising
out of the application or. use of any product or circuit.described herein; neither does it.convey any license under its patent rights nor the rights of others.

15

@ MOTOROLA Semiconductor Products Inc.

3501 ED BLUESTEIN BLVD., AUSTIN, TEXAS 78721 A SUBSIDIARY OF MOTOROLA INC.

A14957 PRINTED IN USA 11-81 IMPERIAL LITHD C0I419 18,000 AN B52

