ARM7TDMI-S

(Rev 4)

Technical Reference Manual

ARM

Copyright © 2001 ARM Limited. All rights reserved.
ARM DDI 0234A

ARM7TDMI-S
Technical Reference Manual

Copyright © 2001 ARM Limited. All rights reserved.
Release Information

Change history

Date Issue Change

28 September 2001 A First release of ARM7TDMI-S (Rev 4) processor

Proprietary Notice

Words and logos marked with ® or ™ are registered trademarks or trademarks owned by ARM Limited. Other
brands and names mentioned herein may be the trademarks of their respective owners.

Neither the whole nor any part of the information contained in, or the product described in, this document
may be adapted or reproduced in any materia form except with the prior written permission of the copyright
hol der.

The product described in this document is subject to continuous devel opments and improvements. All
particulars of the product and its use contained in this document are given by ARM in good faith. However,
all warrantiesimplied or expressed, including but not limited to implied warranties of merchantability, or
fitness for purpose, are excluded.

Thisdocument isintended only to assist the reader in the use of the product. ARM Limited shall not beliable
for any loss or damage arising from the use of any information in this document, or any error or omission in
such information, or any incorrect use of the product.

Figure 5-8 on page 5-26 reprinted with permission |EEE Std. 1149.1-1990. | EEE Standard Test Access Port
and Boundary Scan Architecture Copyright 2001, by IEEE. The |EEE disclaims any responsibility or liability
resulting from the placement and use in the described manner.

Confidentiality Status

This document is Open Access. This document has no restriction on distribution.
Product Status

The information in this document is final (information on a developed product).
Web Address

http://www.arm.com

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0234A

Contents
ARM7TDMI-S Technical Reference Manual

Preface
About this document
FEEADACK ..ot

Chapter 1 Introduction

11 About the ARM7TDMI-S PrOCESSONeceiuuiieiitiieeieeriiiee e sie e e eeennie e 1-2

1.2 ARMT7TDMI-S Archit@CIUIEcccviiiiiie ittt 1-4

13 ARM7TDMI-S block, core and functional diagramscccceevveriiereenieennne 1-6

1.4 ARMT7TDMI-S iNStruction SEt SUMMAIYcocuiriireeriiiieenieee e seeeeniieeens 19

15 Differences between Rev3aand ReV 4cccccoviiiiiiiiiiiic e 1-22
Chapter 2 Programmer’s Model

21 About the programmer’s model

2.2 Processor operating states

2.3 Memory formats

2.4 Instruction length

25 Data typescccceveeeenne

2.6 Operating modes

2.7 REQISIErS ..ooiiiiieiiii e

2.8 The program Status reQISIEISiicviviiiiie et

2.9 EXCEPUONS .ottt ettt

2.10 INEITUPL TALENCIES ..ot

ARM DDI 0234A Copyright © 2001 ARM Limited. All rights reserved. iii

Contents

Chapter 3

Chapter 4

Chapter 5

2.11

Memory Interface

3.1
3.2
3.3
3.4
3.5
3.6

About the memory INtErface ... 3-2
Bus interface signals .
BUS CYCIE tYPES .ttt
Addressing SIgNAISuviiiiiiiie e

Data timed SIGNAIScoovviiiiiieiitiie et
Using CLKEN to control buS CYCIESccoiiiiiiiiiiiiiieccieiece e 3-17

Coprocessor Interface

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

ADOUL COPIOCESSOIS ..vuieitiiatie ettt stte ettt e stee ettt s st ebae e e st beenneenne e
Coprocessor interface signals
Pipeline-following signalscccccevvviennnee. .

Coprocessor interface handshakingcccoceeiiiiiiii e 4-6
CONNECHING COPIOCESSOIS ...euviiiiitieaieieateeaee ettt estaeeeee bt aesaeesneeenbeessaeaneeans 4-11
Not using an external COPrOCESSONcoiueieiriieriee et

Undefined instructions
Privileged instructions

Debugging Your System

51
5.2
5.3
54
55
5.6
5.7
5.8
5.9
5.10
511
5.12
5.13
5.14
5.15
5.16
5.17
5.18
5.19
5.20
5.21
5.22
5.23
5.24
5.25

About debugging YOUr SYSIEMccoiiiiiiiiiiiii et
Controlling deBUGQINGvveiieiie it
Entry iNt0 debug SEALEcooiiiiiiiie e
DebUQ INLEITACE ..o e e s
ARM7TDMI-S core clock domains
The EmbeddedICE-RT macrocell
Disabling EMbeddedICE-RTccooiiiiiiiiiiiie et
EmbeddedICE-RT register mapc..ccec.....

Monitor mode debuggingccocovvveenniiennnen.

The debug communications channel
Scan chains and the JTAG interface
The TAP CONIOIET ..ot e e ee e
Public JTAG instructions
Test data registers
SCAN TIMING <ot
Examining the core and the system in debug state
EXit from debug Statecveiiiiiei e
The program counter during debug
Priorities and eXCePLIONScoviiiiiiiriiiie et
WatChpoint UNIt FEQISLEISoiiiiieiiieiee it
Programming breakpointscccuiiiiiiiiie e
Programming watChpointsccceuiiiiiiiiiie e
Abort status register
Debug CONIol FEGISLETvi it e e
Debug StatUS FEGISTETiiiieiiiiiiie et

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0234A

Chapter 6

Chapter 7

Chapter 8

Appendix A

Appendix B

Contents

5.26 Coupling breakpoints and watChpointscccveviieiiiiiiie e 5-62
5.27 EmbeddedICE-RT tiMINGcooiiiiiiieeiiee et 5-65

ETM Interface

6.1 About the ETM INterfaceccoouviiiieiiiiiesiie e 6-2
6.2 Enabling and disabling the ETM7 interfacecccooovveiiiiiiniiiicccieee 6-3
6.3 ETM7 to ARM7TDMI-S (ReV 4) CONNECHIONSccovvviiiiieiiiiie e 6-4
6.4 CIOCKS BNA FESELS ...iieieieiitie ettt ettt s 6-6
6.5 DebUQ rEQUEST WIKING ..eeeiviiiiieieeitie ettt ettt eeenn e 6-7

Instruction Cycle Timings

7.1 About the instruction cycle timiNgsccveiiin i 7-3
7.2 Instruction cycle COUNt SUMMANYc.cuiiiiiiiriiie e 7-5
7.3 Branch and ARM branch with inkccccciiiii e 7-7
7.4 Thumb branch With INK ..o

7.5 Branch and exchangeccccccevvineee.

7.6 Data operationsc.ccceevvveecieveniinnnnn

7.7 Multiply, and multiply accumulate

7.8 (oo To = To 1) (=] S TSP UPPPPPPPI

7.9 S (0] (ol (=T o 1] (=] SO P U PRSP PSP PPPPPRPPP

7.10 Load MUILIPIE TEGISTENSvviiiiiiiiiieeee sttt

7.11 Store MUILIPIE rEQISTEISviiieiiie et e

7.12 Data swapcccccveiiiiiiiiieiceee

7.13 Software interrupt, and exception entry
7.14 Coprocessor data processing operation
7.15 Load coprocessor register (from memory to coprocessor)
7.16 Store coprocessor register (from coprocessor to memory)
7.17 Coprocessor register transfer (move from coprocessor to ARM register) . 7-27
7.18 Coprocessor register transfer (move from ARM register to coprocessor) . 7-28
7.19 Undefined instructions and coprocessor absentccccceevvviricenecnnnen. 7-29
7.20 Unexecuted INSITUCTIONSoiiiiirieiiiiiiiee et tiee ettt e e ee e 7-30

AC Parameters
8.1 TIMING IAGIAMS ittt e e e re e 8-2
8.2 AC timing parameter definitionNSccoiiiiiin i 8-8

Signal Descriptions
Al SIGNAI AESCHIPLONS ...eieiee ettt e A-2

Differences Between the ARM7TDMI-S and the ARM7TDMI

B.1 INErfaCe SIGNAISoeiiiie it

B.2 ATPG scan interface

B.3 Timing parameterscccccveeveenieeenns .

B.4 ARMT7TDMI-S design CONSIAEIatioNScccvirereeriiieenniee e esiieeeans B-8

ARM DDI 0234A

Copyright © 2001 ARM Limited. All rights reserved. \Y

Contents

Vi

Copyright © 2001 ARM Limited. All rights reserved.

ARM DDI 0234A

List of Tables
ARM7TDMI-S Technical Reference Manual

Table 1-1
Table 1-2
Table 1-3
Table 1-4
Table 1-5
Table 1-6
Table 1-7
Table 1-8
Table 1-9
Table 1-10
Table 1-11
Table 1-12
Table 2-1
Table 2-2
Table 2-3
Table 2-4
Table 3-1
Table 3-2
Table 3-3
Table 3-4
Table 3-5
Table 3-6

ChANGE NISTOTY ..ttt et n bt sn e nn s ii
KEY 10 tADIES ... s 19
ARM INSLIUCHION SUMMEAIYeiiitiiieitie ettt ettt et ee s an e n e 1-10
AdAresSiNg MOAE 2 ...couiiiiiiii ettt et 1-13
Addressing mode 2 (PrivIleged)oioiiiiiiie e 1-14
AdAressing MOAE 3 ...iiiii ittt 1-14
Addressing Mode 4 (10Ad)oueeiiiiiii e 1-15
Addressing MOAE 4 (SOM)viiirreiiiiiieiiiee ettt e 1-15
AdAressing MOAE 5 ...coviiiiiiii et 1-15
(0] 01T = 1 [0 12 PSP OO PP RS TPPPPRPPPPPPRRN 1-16
FIEIAS . et et e 1-16
COoNAIION fIEIASveieeeii e e e 1-17
Thumb INSrUCLION SUMMAIY ...eeeiiiiie et 1-17
Register mode Identifierscooiiiiiiieiie e e 2-10
PSR MOAE DIt VAIUES ...t 2-17
EXCEPLioN ENtry and ©XItcc.viiiiiiieieiee e e 2-19
EXCEPLION VECIOTS .. .eiiiiiiie ettt ettt et e e e e 2-24
CYCIB TYPES ettt ettt ettt E e n e e 3-4
BUISTLYPES it 3-7
Transfer WIS ..o e e 3-11
PROTI[L:0] €NCOTING ..vtiiieeeeitiie ettt et et e e ee s ar e ene e snne e s nreeeens 3-11
Transfer Size NCOUINGvviiiiie e 3-14
Significant addreSS DItScooiiie i s 3-14

ARM DDI 0234A

Copyright © 2001 ARM Limited. All rights reserved. vii

List of Tables

Table 3-7
Table 3-8
Table 3-9
Table 4-1
Table 4-2
Table 4-3
Table 4-4
Table 5-1
Table 5-2
Table 5-3
Table 5-4
Table 5-5
Table 5-6
Table 5-7
Table 5-8
Table 6-1
Table 7-1
Table 7-2
Table 7-3
Table 7-4
Table 7-5
Table 7-6
Table 7-7
Table 7-8
Table 7-10
Table 7-9
Table 7-11
Table 7-12
Table 7-13
Table 7-14
Table 7-15
Table 7-16
Table 7-17
Table 7-18
Table 7-19
Table 7-20
Table 7-21
Table 7-22
Table 7-23
Table 8-1
Table A-1
Table B-1
Table B-2

WOTT GBCCESSES ..uvtiiiuitieiitieeee ettt ettt e a bttt e ettt e ettt e e b e e e ettt e ene e s ane e s
HAIFWOITD QCCESSES ...ttt ettt ettt et e e n
BYLE BCCESSES ...ttt ettt ettt ettt ettt et ettt bkttt ettt et en et be e ente s
Coprocessor availability

Handshaking signals

Handshake signal connections ..

CPNTRANS Signal MEANINGS ...coeiiiiie ettt ettt e e e eeneee e
Function and mapping of EmbeddedICE-RT registersccccccovviiiirieeiiiinieeains 5-17
DCC control register bit aSSIGNMENTScooiiiiiiiiei e
PUDIC INSIIUCHIONS ..ottt et e s
Scan chain NUMbEr allOCALIONoeiiiiiiiiiee e
SCAN ChAIN L CEIIS ...oiiiiiie et e nn e
SIZE[1:0] signal encodingcccccovvvieiiineeiiiieeniece

Debug control register bit assignments

Interrupt signal CoNtrolcccceeriieeeniiie e

ETM7 and ARM7TDMI-S (Rev 4) pin connections

TraNSACLION TYPES . .eeeeiiiiiie ettt et e et e st e et e an e nr e e
INSErUCLION CYCIE COUNTS ...ttt
Branch instruction CYcle OPErationscccoeooiviriieieeiieee e
Thumb long branch with linkcccoceiiiiii

Branch and exchange instruction cycle operations ...

Data operation instruction cycle operations

Multiply instruction Cycle OPerationsccceveiieiiiiiin e
Multiply-accumulate instruction Cycle OpPerationscccocveeecrveriieeennee e
Multiply-accumulate long instruction cycle operationscccccveeviiieeeeeriiiennennn 7-13
Multiply long instruction cycle OPerationsccccveiieeeeriiieiiies e
Load register instruction cycle operations

Store register instruction cycle operations

Load multiple registers instruction cycle operations ...
Store multiple registers instruction cycle operations
Data swap instruction CYCle OPErationsScceeiriiriieeeriiie e
Software interrupt instruction cycle Operationsc.cccevveeeiiieen e
Coprocessor data operation instruction cycle operationscccecveeriieeeenneennnn 7-22
Load coprocessor register instruction cycle operations
Store coprocessor register instruction cycle operations
Coprocessor register transfer (MRC)cccovveivenerinnen.
Coprocessor register transfer (MCR)oovviiiiiieii e
Undefined instruction cycle Operationsc.ocvveviviiieieenii e
Unexecuted instruction cycle OPerationscccceveiieieeniieeiieies e e
Provisional AC PAraMELEISccoiiiiiiieer e erae e er et esr e re st e e s snee s asne e s e ee e
SIGNAI ESCIIPLIONS ..ottt ee e er e en e e nn s
ARM7TDMI-S processor signals and ARM7TDMI hard macrocell equivalents B-2
Unimplemented ARM7TDMI proCessor SIgNAISceviiureeriieeiiireenieee e ee e B-9

viii

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0234A

List of Figures
ARM7TDMI-S Technical Reference Manual

Figure 1-1
Figure 1-2
Figure 1-3
Figure 1-4
Figure 2-1
Figure 2-2
Figure 2-3
Figure 2-4
Figure 2-5
Figure 2-6
Figure 3-1
Figure 3-2
Figure 3-3
Figure 3-4
Figure 3-5
Figure 3-6
Figure 3-7
Figure 4-1
Figure 4-2
Figure 4-3
Figure 4-4
Figure 4-5

Key to timing diagram CONVENLIONSoiiiveiiiiie et Xiv
The instruction pipelinecccccoieviiiiinnnen.

ARM7TDMI-S block diagram
ARMT7TDMI-S COreooovviiiiiiiiiieiiiieieeen s
ARMT7TDMI-S functional didgramccceeiiieeeiniie et
Big-endian addresses of bytes Within Wordscccccoiiviiiiie i
Little-endian addresses of bytes within WOrdscccoovviiiieeeiiin e
Register organization in ARM Statecccuiiiiioiiiiiiie e
Register organization in Thumb stateccccooviiiiiiiiiiienee e,

Mapping of Thumb state registers onto ARM state registers
Program status register formatcccoccve e
SIMPIE MEMOIY CYCIE .ot
Nonsequential MEMOIY CYCIEoiiiiiiiiiiie e
Back to back MEMOIY CYCIESuuiiiiiiiiiie e s
Sequential ACCESS CYCIES ...coouiii it e e
Merged I-S cycle
Data replication ...
Use Of CLKENoooiiiiiieieeeee e
COoprocessor BUSY-Walt SEQUENCEccciiiiiieieiiieee ettt e
Coprocessor register transfer SEQUENCEcc.uvviiieeeriiiees e e
Coprocessor data OPeration SEQUENCEceccvrvirireerntieeeireessieeessreeeerneesseeeesrneeenns
Coprocessor 10ad SEUENCEcuiiiiiiiiie ettt ee et ee e e neeeee e e e
COProOCESSOr CONNECHIONS ...iuviiuiiiitiiieie ettt sttt sttt ettt ettt e bt e s b esbeeseae e e e e

ARM DDI 0234A

Copyright © 2001 ARM Limited. All rights reserved. ix

List of Figures

Figure 5-1
Figure 5-2
Figure 5-3
Figure 5-4
Figure 5-5
Figure 5-6
Figure 5-7
Figure 5-8
Figure 5-9
Figure 5-10
Figure 5-11
Figure 5-12
Figure 5-13
Figure 5-14
Figure 5-15
Figure 5-16
Figure 5-17
Figure 8-1
Figure 8-2
Figure 8-3
Figure 8-4
Figure 8-5

Typical deDUQG SYSEM ..ot e 5-3
ARMT7TDMI-S DIOCK GIAGIAM ..ottt 5-5
DEDUQ SEAE ENIY ..ot ettt e e 5-8
ClOCK SYNCRIONIZALION ...veieieii ettt ee s 5-11
The ARM7TDMI-S core, TAP controller, and EmbeddedICE-RT macrocell 5-14
DCC CONIOI FEUISLET ..ttt ettt et ab e ennee e 5-20
ARMT7TDMI-S scan chain arrangementscccoooeeeeiieieeniiieies e 5-24
Test access port controller state tranSitioNScoovvieiieeriiie e 5-26
ID cOde regiSter FOrMALiiieiiiiie ettt et e s

SCAN TIMING ettt ettt ettt e st e e et san e e s abeeeenne e e e
DebUQG EXIt SEQUENCE ..ottt et e e en
EmbeddedICE-RT bIock diagramccooceviiiiiiiiiieiee e
Watchpoint control value, and mask format
Debug abort status registerccccoveveiiieneeriieeeens

Debug control register formatcccccceviivieeiiinees

Debug status register fOrmMat ..o s
Debug control and status register structure
Timing parameters for data ACCESSESuviiiiriiiiiie e
COPrOCESSON TIMING .eeiitiie ettt ettt e st e e sr e e s are e enneennne e s
Exception and configuration input timing
Debug timing

S Yot= 1o R 1140113 T PRSP IURRTSPURPTN

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0234A

Preface

This preface introducesthe ARM7TDMI-S processor and its reference documentation.
It contains the following sections:

. About this document on page xii
. Feedback on page xvi.

ARM DDI 0234A

Copyright © 2001 ARM Limited. All rights reserved. Xi

Preface

About this document

Intended audience

Organization

This document is areference manual for the ARM7TDMI-S processor.

This document has been written for experienced hardware and software engineers who
might or might not have experience of ARM products.

This document is organized into the following chapters:

Chapter 1 Introduction
Read this chapter for an introduction to the ARM7TDMI-S processor.

Chapter 2 Programmer’s Model
Read this chapter for a description of the 32-bit ARM and 16-bit Thumb
instruction sets.

Chapter 3 Memory Interface
Read this chapter for a description of the nonsequentia, sequential,
internal, and coprocessor register transfer memory cycles.

Chapter 4 Coprocessor Interface
Read this chapter for information about implementing specialized
additional instructions for use with coprocessors.

Chapter 5 Debugging Your System
Read this chapter for a description of the ARM7TDMI-S processor
hardware extensions for advanced debugging.

Chapter 6 ETM Interface
Read this chapter for information about connecting an ETM7 to an
ARM7TDMI-S processor.

Chapter 7 Instruction Cycle Timings
Read this chapter for adescription of theinstruction cycletimingsfor the
ARM7TDMI-S processor.

Chapter 8 AC Parameters
Read this chapter for the AC parameters timing diagrams and definitions.

Xii

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0234A

Preface

Appendix A Signal Descriptions
Read this chapter for alist of all ARM7TDMI-S processor signals.

Appendix B Differences Between the ARM7TDMI-S and the ARM7TDMI

Read this chapter for a description of the differences between the
ARM7TDMI-S processor and the ARM7TDMI hard macrocell with
reference to interface signals, scan interface signal's, timing parameters,
and design considerations.

Typographical conventions

The following typographical conventions are used in this document:

bold HighlightsARM processor signal nameswithintext, and interface
elements such as menu names. Can also be used for emphasisin
descriptive lists where appropriate.

italic Highlights special terminology, cross-references and citations.

monospace Denotes text that can be entered at the keyboard, such as
commands, file names and program names, and source code.

monospace Denotes a permitted abbreviation for acommand or option. The
underlined text can be entered instead of the full command or
option name.

monospace italic ~ Denotesargumentsto commandsor functionswherethe argument
isto be replaced by a specific value.

monospace bold Denotes language keywords when used outside example code.

Timing diagram conventions

Thismanua contains several timing diagrams. The following key explains the
components used inthese diagrams. Any variationsare clearly |abeled when they occur.
Therefore, no additional meaning must be attached unless specifically stated.

ARM DDI 0234A Copyright © 2001 ARM Limited. All rights reserved. Xiii

Preface

Further reading

Clock

HIGH to LOW

Transient

HIGH/LOW to HIGH

Bus stable

Bus to high impedance

Bus change

High impedance to stable bus

AT,

Heavy line indicates region of interest

Key to timing diagram conventions

Shaded bus and signal areas are undefined, so the bus or signal can assume any value
within the shaded area at that time. The actual level is unimportant and does not affect
normal operation.

This section lists publications by ARM Limited, and by third parties.

If you would like further information on ARM products, or if you have questions not
answered by this document, please contact info@arm.com or visit our web site at
http://www.arm.com.

ARM publications

This document contains information that is specific to the ARM7TDMI-S processor.
Refer to the following documents for other relevant information:

. ARM Architecture Reference Manual (ARM DDI 0100)
. ARM7TDMI Technical Reference Manual (ARM DDI 0029)
. ETM7 (Rev 1) Technical Reference Manual (ARM DDI 0158).

Xiv

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0234A

Preface

Other publications

This section lists relevant documents published by third parties.

. |EEE Std. 1149.1-1990, Standard Test Access Port and Boundary-Scan
Architecture.

ARM DDI 0234A Copyright © 2001 ARM Limited. All rights reserved. XV

Preface

Feedback

ARM Limited welcomes feedback both on the ARM7TDMI-S processor, and on the
documentation.

Feedback on this document

If you have any comments on this document, please send email to errata@arm. com
giving:

the document title

the document number

the page number(s) to which your comments refer
a concise explanation of your comments.

General suggestions for additions and improvements are also welcome.

Feedback on the ARM7TDMI-S processor

If you have any problems with the ARM7TDMI-S processor, please contact your
supplier giving:

the product name

details of the platform you are running on, including the hardware platform,
operating system type and version

asmall standalone sample of code that reproduces the problem

a clear explanation of what you expected to happen, and what actually happened
the commands you used, including any command-line options

sample code output illustrating the problem.

XVi

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0234A

Chapter 1
Introduction

This chapter introduces the ARM7TDMI-S processor. It contains the following
sections:

About the ARM7TDMI-S processor on page 1-2
ARM7TDMI-Sarchitecture on page 1-4

ARM7TDMI-Sblock, core and functional diagrams on page 1-6
ARM7TDMI-Sinstruction set summary on page 1-9
Differences between Rev 3a and Rev 4 on page 1-22.

ARM DDI 0234A

Copyright © 2001 ARM Limited. All rights reserved. 1-1

Introduction

1.1 About the ARM7TDMI-S processor

The ARM7TDMI-S processor is amember of the ARM family of general-purpose
32-bit microprocessors. The ARM family offers high performance for very low-power
consumption and gate count.

The ARM architecture is based on Reduced Instruction Set Computer (RISC)
principles. The RISC instruction set, and related decode mechanism are much simpler
than those of Complex Instruction Set Computer (CISC) designs. This simplicity gives:

. a high instruction throughput
. an excellent real-time interrupt response
. asmall, cost-effective, processor macrocell.

1.1.1 Theinstruction pipeline

The ARM7TDMI-S processor uses a pipeline to increase the speed of the flow of
instructions to the processor. This enables severa operations to take place
simultaneously, and the processing, and memory systems to operate continuously.

A three-stage pipeline is used, so instructions are executed in three stages:
. Fetch

. Decode

. Execute.

The three-stage pipelineis shown in Figure 1-1.

ARM Thumb

PC PC Fetch The instruction is fetched from memory

PC-4 PC-2 Decode The registers used in the instruction are decoded

v

The registers are read from the register bank

PC-8 PC-4 Execute The shift and ALU operations are performed

The registers are written back to the register bank

Figure 1-1 The instruction pipeline

1-2

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0234A

Introduction

Note

The Program Counter (PC) points to the instruction being fetched rather than to the
instruction being executed.

During normal operation, while oneinstruction isbeing executed, its successor isbeing
decoded, and athird instruction is being fetched from memory.

1.1.2 Memory access

The ARM7TDMI-S processor has aVon Neumann architecture, with a single 32-bit
databus carrying both instructions and data. Only load, store, and swap instructions can
access datafrom memory.

Data can be 8-hit bytes, 16-bit halfwords, or 32-bit words. Words must be aligned to
4-byte boundaries. Halfwords must be aligned to 2-byte boundaries.

1.1.3 Memory interface

The memory interface of the ARM7TDMI-S processor enables performance potential
to berealized, while minimizing the use of memory. Speed-critica control signals are
pipelined to allow system control functions to be implemented in standard low-power
logic. These control signals facilitate the exploitation of the fast-burst access modes
supported by many on-chip and off-chip memory technol ogies.

The ARM7TDMI-S processor has four basic types of memory cycle:
. internal cycle

. nonsequential cycle

. sequential cycle

. coprocessor register transfer cycle.

ARM DDI 0234A Copyright © 2001 ARM Limited. All rights reserved. 1-3

Introduction

1.2 ARM7TDMI-S architecture

The ARM7TDMI-S processor has two instruction sets:
. the 32-bit ARM instruction set
. the 16-bit Thumb instruction set.

The ARM7TDMI-S processor is an implementation of the ARM architecture v4T. For
full details of both the ARM and Thumb instruction sets, see the ARM Architecture
Reference Manual.

121 Instruction compression

Microprocessor architecturestraditionally had the same width for instructions and data
Therefore, 32-bit architectures had higher performance manipulating 32-bit data and
could address a large address space much more efficiently than 16-bit architectures.

16-bit architectures typically had higher code density than 32-bit architectures, and
greater than half the performance.

Thumb implements a 16-bit instruction set on a 32-bit architecture to provide:
. higher performance than a 16-bit architecture
. higher code density than a 32-bit architecture.

1.2.2 The Thumb instruction set

The Thumb instruction set is a subset of the most commonly used 32-bit ARM
instructions. Thumb instructions are each 16 bits long, and have a corresponding 32-bit
ARM instruction that has the same effect on the processor model.

Thumb instructions operate with the standard ARM register configuration, allowing
excellent interoperability between ARM and Thumb states.

On execution, 16-bit Thumb instructions are transparently decompressed to full 32-bit
ARM instructions in real time, without performance loss.

Thumb has al the advantages of a 32-bit core:

. 32-hit address space

. 32-hit registers

. 32-hit shifter and Arithmetic Logic Unit (ALU)
. 32-bit memory transfer.

Thumb therefore offersalong branch range, powerful arithmetic operations, and alarge
address space.

1-4

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0234A

Introduction

Thumb code is typically 65% of the size of the ARM code and provides 160% of the
performance of ARM code when running on a processor connected to a 16-bit memory
system. Thumb, therefore, makes the ARM7TDMI-S processor ideally suited to
embedded applications with restricted memory bandwidth, where code density is
important.

The availability of both 16-bit Thumb and 32-bit ARM instruction sets gives designers
the flexibility to emphasize performance, or code size on asubroutine level, according
to the requirements of their applications. For example, critical loops for applications
such asfast interrupts and DSP a gorithms can be coded using the full ARM instruction
set and linked with Thumb code.

ARM DDI 0234A

Copyright © 2001 ARM Limited. All rights reserved. 1-5

Introduction

1.3 ARM7TDMI-S block, core and functional diagrams

The ARM7TDMI-S processor architecture, core, and functional diagrams are
illustrated in the following figures:

. the ARM7TDMI-S block diagram is shown in Figure 1-2
. the ARM7TDMI-S coreis shown in Figure 1-3 on page 1-7
. the ARM7TDMI-S functiona diagram is shown in Figure 1-4 on page 1-8.

DBGRNG(0) «—
DBGRNG(1) «—— EmbeddedICE-RT
DBGEXT(0) —| macrocell

DBGEXT(1) —»

Scan chain 2

LOCK
WRITE
SIZE[1:0] <
PROT[1:0]
TRANSI[1:0]

CPU |e——p Coprocessor
ADDR[31:0] « interface signals

WDATA[31:0] €—

Data bus_l

RDATA[31:0] —

Scan chain 1 |

h 4

EmbeddedICE-RT
TAP controller

T A A A
DBGTCKEN
DBGTMS
DBGnTRST
DBGTDI
DBGTDO «

Figure 1-2 ARM7TDMI-S block diagram

Note

There are no bidirectional paths on the data bus. These are shown in Figure 1-2 for
simplicity.

1-6 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0234A

ALU bus

ADDR[31:0]

v T 4

Address register

v
Address
incrementer

PC bus

Register bank

31 x 32-bit registers |«
(6 status registers)

32x 8 P o
e multiplier | v
E
o)
< >
Barrel shifter
v v

\ 32-bit ALU /

\ 4

Introduction

Incrementer bus

Scan debug
control

Instruction
decoder and
control logic

B bus

— CLK
««—— CLKEN

¢—— CFGBIGEND
l.«—— nIRQ

<«—— nFIQ

'«—— nRESET
‘¢—— ABORT
—>» LOCK
——» WRITE

— SIZE[1:0]
— PROT[1:0]
— TRANS[1:0]

—» DBG outputs
¢—— DBG inputs

— CP control

‘—— CP handshake

Write data register

Instruction pipeline
Read data register
Thumb instruction decoder

!

WDATA[31:0]

!

RDATA[31:0]

Figure 1-3 ARM7TDMI-S core

ARM DDI 0234A

Copyright © 2001 ARM Limited. All rights reserved.

1-7

Introduction

Clock

Interrupts

Bus control

Arbitration

Debug

CLK
CLKEN

nIRQ
R
nFIQ

nRESET

CFGBIGEND
e

DMORE

LOCK

DEGINSTRVALID

DBGRQ
DBGBREAK
DBGACK
DBGnEXEC
DBGEXT[1]
DBGEXTI[0]
DBGEN
DBGRNGI1]
DBGRNGI0]
DBGCOMMRX
DBGCOMMTX

ARM7TDMI-S
processor

DBGTCKEN

DBGTMS
-«

DBGTD
-~

DBGNnTRST

DBGTDO
e A

DBGNnTDOEN
—

ADDR[31:0]
e

WDATA[31 :Oh

RDATA[31:0]
<—

ABORT

WRITE
L

SIZE[1:0
PROT[1:0

TRANS[1:0] >

CPnTRANS
—

CPnOPC
L

CPnMREQ
-

CPSEQ)

CPTBIT
—

CPnl
>

CPA
-~

CPB
-~

—

Synchronized
EmbeddedICE-RT
scan debug
Access port

Memory
interface

Memory
management
interface

Coprocessor
interface

Figure 1-4 ARM7TDMI-S functional diagram

1-8

Copyright © 2001 ARM Limited. All rights reserved.

ARM DDI 0234A

Introduction

1.4 ARM7TDMI-S instruction set summary

This section provides a summary of the ARM and Thumb instruction sets:
. ARM instruction summary on page 1-10
. Thumb instruction summary on page 1-17.

A key to the instruction set tables is given in Table 1-1.

The ARM7TDMI-S processor is an implementation of the ARMVAT architecture. For
a complete description of both instruction sets, see the ARM Architecture Reference

Manual.

Table 1-1 Key to tables

Instruction

Description

{cond}

See Table 1-11 on page 1-17.

<Oprnd2>

See Table 1-9 on page 1-16.

{field}

See Table 1-10 on page 1-16.

S

Sets condition codes (optional).

B

Byte operation (optional).

H

Halfword operation (optional).

T

Forces address translation. Cannot be used with
pre-indexed addresses.

<a_mode2>

See Table 1-3 on page 1-13.

<a_mode2P>

See Table 1-4 on page 1-14.

<a_mode3>

See Table 1-5 on page 1-14.

<a_mode4L>

See Table 1-6 on page 1-15.

<a_mode4S>

See Table 1-7 on page 1-15.

<a_mode5>

See Table 1-8 on page 1-15.

#32bit_Imm

A 32-bit constant, formed by right-rotating an 8-bit
value by an even number of bits.

<reglist>

A comma-separated list of registers, enclosed in
braces({ and}).

ARM DDI 0234A Copyright © 2001 ARM Limited. All rights reserved. 1-9

Introduction

1.4.1 ARMinstruction summary
The ARM instruction set summary is shown in Table 1-2.
Table 1-2 ARM instruction summary

Operation Description Assembler

Move Move MOV{cond}{S} Rd, <Oprnd2>
Move NOT MVN{cond}{S} Rd, <Oprnd2>
Move SPSR to register MRS{cond} Rd, SPSR
Move CPSR toregister ~ MRS{cond} Rd, CPSR
Move register to SPSR MSR{cond} SPSR{field}, Rm
Move register to CPSR MSR{cond} CPSR{field}, Rm
Move immediate to MSR{cond} SPSR_f, #32bit_Imm
SPSR flags
Move immediate to MSR{cond} CPSR_f, #32bit_Imm
CPSR flags

Arithmetic Add ADD{cond}{S} Rd, Rn, <Oprnd2>
Add with carry ADC{cond}{S} Rd, Rn, <Oprnd2>
Subtract SUB{cond}{S} Rd, Rn, <Oprnd2>
Subtract with carry SBC{cond}{S} Rd, Rn, <Oprnd2>
Subtract reverse subtract RSB{cond}{S} Rd, Rn, <Oprnd2>
Subtract reverse subtract RSC{cond}{S} Rd, Rn, <Oprnd2>
with carry
Multiply MUL{cond}{S} Rd, Rm, Rs
Multiply accumulate MLA{cond}{S} Rd, Rm, Rs, Rn
Multiply unsigned long ~ UMULL{cond}{S} RdLo, RdHi, Rm, Rs
Multiply unsigned UMLAL{cond}{S} RdLo, RdHi, Rm, Rs
accumulate long
Multiply signed long SMULL{cond}{S} RdLo, RdHi, Rm, Rs
Multiply signed SMLAL{cond}{S} RdLo, RdHi, Rm, Rs
accumulate long
Compare CMP{cond} Rd, <Oprnd2>

1-10 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0234A

Introduction

Table 1-2 ARM instruction summary (continued)

Operation Description Assembler
Compare negative CMN{cond} Rd, <Oprnd2>
Logical Test TST{cond} Rn, <Oprnd2>
Test equivalence TEQ{cond} Rn, <Oprnd2>
AND AND{cond}{S} Rd, Rn, <Oprnd2>
EOR EOR{cond}{S} Rd, Rn, <Oprnd2>
ORR ORR{cond}{S} Rd, Rn, <Oprnd2>
Bit clear BIC{cond}{S} Rd, Rn, <Oprnd2>
Branch Branch B{cond} Tabel
Branch with link BL{cond} label
Branch and exchange BX{cond} Rn
instruction set
L oad Word LDR{cond} Rd, <a_mode2>
Word with user-mode LDR{cond}T Rd, <a_mode2P>
privilege
Byte LDR{cond}B Rd, <a_mode2>
Byte with user-mode LDR{cond}BT Rd, <a_mode2P>
privilege
Byte signed LDR{cond}SB Rd, <a_mode3>
Halfword LDR{cond}H Rd, <a_mode3>
Halfword signed LDR{cond}SH Rd, <a_mode3>
Multiple block Increment before LDM{cond}IB Rd{!}, <reglist>{A}

data operations

Increment after

LDM{cond}IA Rd{!}, <reglist>{A}

Decrement before

LDM{cond}DB Rd{!}, <reglist>{A}

Decrement after

LDM{cond}DA Rd{!}, <reglist>{A}

Stack operations

LDM{cond}<a_mode4L> Rd{!'}, <reglist>

Stack operations and
restore CPSR

LDM{cond}<a_mode4L> Rd{!}, <reglist+pc>A

ARM DDI 0234A

Copyright © 2001 ARM Limited. All rights reserved. 1-11

Introduction

Table 1-2 ARM instruction summary (continued)

Operation Description Assembler
User registers LDM{cond}<a_mode4lL> Rd{!}, <reglist>A

Store Word STR{cond} Rd, <a_mode2>
Word with User-mode STR{cond}T Rd, <a_mode2P>
privilege
Byte STR{cond}B Rd, <a_mode2>
Byte with User-mode STR{cond}BT Rd, <a_mode2P>
privilege
Halfword STR{cond}H Rd, <a_mode3>
Multiple -

Block data operations -

Increment before STM{cond}IB Rd{!}, <reglist>{A}

Increment after STM{cond}IA Rd{!}, <reglist>{A}

Decrement before STM{cond}DB Rd{!}, <reglist>{A}

Decrement after STM{cond}DA Rd{!}, <reglist>{A}

Stack operations STM{cond}<a_mode4S> Rd{!}, <reglist>

User registers STM{cond}<a_mode4S> Rd{!}, <reglist>A
Swap Word SWP{cond} Rd, Rm, [Rn]

Byte SWP{cond}B Rd, Rm, [Rn]

Coprocessors Data operations CDP{cond} p<cpnum>, <opl>, CRd, CRn, CRm, <op2>
Moveto ARM register MRC{cond} p<cpnum>, <opl>, Rd, CRn, CRm, <op2>
from coprocessor
Move to coprocessor MCR{cond} p<cpnum>, <opl>, Rd, CRn, CRm, <op2>
from ARM register
Load LDC{cond} p<cpnum>, CRd, <a_mode5>
Store STC{cond} p<cpnum>, CRd, <a_mode5>

Software SWI 24bit_Imm

Interrupt

1-12

Copyright © 2001 ARM Limited. All rights reserved.

ARM DDI 0234A

Introduction

Addressing mode 2, <a_mode2>, is shown in Table 1-3.

Table 1-3 Addressing mode 2

Operation Assembler

Immediate offset [Rn, #+/-12bit_Offset]

Register offset [Rn, +/-Rm]

Scaled register offset [Rn, +/-Rm, LSL #5bit_shift_imm]

[Rn, +/-Rm, LSR #5bit_shift_imm]

[Rn, +/-Rm, ASR #5bit_shift_imm]

[Rn, +/-Rm, ROR #5bit_shift_imm]

[Rn, +/-Rm, RRX]

Pre-indexed immediate offset [Rn, #+/-12bit_Offset]!

Pre-indexed register offset [Rn, +/-Rm]!

Pre-indexed scaled register offset [Rn, +/-Rm, LSL #5bit_shift_imm]!

[Rn, +/-Rm, LSR #5bit_shift_imm]!

[Rn, +/-Rm, ASR #5bit_shift_imm]!

[Rn, +/-Rm, ROR #5bit_shift_imm]!

[Rn, +/-Rm, RRX]!

Post-indexed immediate offset [Rn], #+/-12bit_Offset

Post-indexed register offset [Rn], +/-Rm

Post-indexed scaled register offset ~ [Rn], +/-Rm, LSL #5bit_shift_imm

[Rn], +/-Rm, LSR #5bit_shift_imm

[Rn], +/-Rm, ASR #5bit_shift_imm

[Rn], +/-Rm, ROR #5bit_shift_imm

[Rn, +/-Rm, RRX]

ARM DDI 0234A Copyright © 2001 ARM Limited. All rights reserved. 1-13

Introduction

Addressing mode 2 (privileged), <a_mode2P>, is shown in Table 1-4.

Table 1-4 Addressing mode 2 (privileged)

Operation Assembler

Immediate offset [Rn, #+/-12bit_Offset]

Register offset [Rn, +/-Rm]

Scaled register offset [Rn, +/-Rm, LSL #5bit_shift_imm]

[Rn, +/-Rm, LSR #5bit_shift_imm]

[Rn, +/-Rm, ASR #5bit_shift_imm]

[Rn, +/-Rm, ROR #5bit_shift_imm]

[Rn, +/-Rm, RRX]

Post-indexed immediate [Rn], #+/-12bit_Offset
offset

Post-indexed register offset ~ [Rn], +/-Rm

Post-indexed scaled register [Rn], +/-Rm, LSL #5bit_shift_imm
offset

[Rn], +/-Rm, LSR #5bit_shift_imm

[Rn], +/-Rm, ASR #5bit_shift_imm

[Rn], +/-Rm, ROR #5bit_shift_imm

[Rn, +/-Rm, RRX]

Addressing mode 3 (signed byte, and halfword data transfer), <a_mode3>, is shownin
Table 1-5.

Table 1-5 Addressing mode 3

Operation Assembler

Immediate offset [Rn, #+/-8bit_Offset]

Pre-indexed [Rn, #+/-8bit_Offset]!

Post-indexed [Rn], #+/-8bit_Offset

1-14 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0234A

Introduction

Table 1-5 Addressing mode 3

Operation Assembler
Register [Rn, +/-Rm]
Pre-indexed [Rn, +/-Rm]!
Post-indexed [Rn], +/-Rm

Addressing mode 4 (load), <a_mode4L>, is shown in Table 1-6.

Table 1-6 Addressing mode 4 (load)

Addressing mode

Stack type

1A Increment after

FD Full descending

1B Increment before

ED Empty descending

DA Decrement after

FA Full ascending

DB Decrement before

EA Empty ascending

Addressing mode 4 (store), <a_mode4S>, is shown in Table 1-7.

Table 1-7 Addressing mode 4 (store)

Addressing mode

Stack type

1A Increment after

EA Empty ascending

IB Increment before

FA Full ascending

DA Decrement after

ED Empty descending

DB Decrement before

FD Full descending

Addressing mode 5 (coprocessor data transfer), <a_mode5>, is shown in Table 1-8.

Table 1-8 Addressing mode 5

Operation

Assembler

Immediate offset

[Rn, #+/-(8bit_Offset«4)]

Pre-indexed

[Rn, #+/-(8bit_Offset«4)]!

Post-indexed

[Rn], #+/-(8bit_Offsetx4)

ARM DDI 0234A

Copyright © 2001 ARM Limited. All rights reserved.

1-15

Introduction

Operand 2, <0prnd2>, is shown in Table 1-9.

Table 1-9 Operand 2

Operation Assembler
Immediate value #32bit_Imm
Logical shift left Rm LSL #5bit_Imm
Logical shift right Rm LSR #5bit_Imm
Arithmetic shift right Rm ASR #5bit_Imm
Rotate right Rm ROR #5bit_Imm
Register Rm

Logical shift left Rm LSL Rs
Logical shift right Rm LSR Rs
Arithmetic shift right Rm ASR Rs

Rotate right Rm ROR Rs
Rotate right extended Rm RRX

Fields, {field}, are shown in Table 1-10.

Table 1-10 Fields

Suffix Sets

_C Control field mask bit (bit 3)
f Flags field mask bit (bit 0)

_S Status field mask bit (bit 1)

X Extension field mask bit (bit 2)

1-16 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0234A

Introduction

Condition fields, {cond}, are shown in Table 1-11.

Table 1-11 Condition fields

Suffix Description

EQ Equa

NE Not equal

csS Unsigned higher, or same
cC Unsigned lower

MI Negative

PL Positive, or zero

VS Overflow

VC No overflow

HI Unsigned higher

LS Unsigned lower, or same
GE Greater, or equal

LT Less than

GT Greater than

LE Less than, or equal

AL Always

1.4.2 Thumb instruction summary
The Thumb instruction set summary is shown in Table 1-12.

Table 1-12 Thumb instruction summary

Operation Assembler
Move Immediate MOV Rd, #8bit_Imm
Highto Low MOV Rd, Hs
Low to High MOV Hd, Rs
High to High MOV Hd, Hs

ARM DDI 0234A Copyright © 2001 ARM Limited. All rights reserved. 1-17

Introduction

Table 1-12 Thumb instruction summary (continued)

Operation Assembler
Arithmetic Add ADD Rd, Rs, #3bit_Imm
Add Low and Low ADD Rd, Rs, Rn
Add Highto Low ADD Rd, Hs
Add Low to High ADD Hd, Rs
Add High to High ADD Hd, Hs
Add Immediate ADD Rd, #8bit_Imm
Add Valueto SP ADD SP, #7bit_Imm ADD SP, #-7bit_Imm
Add with carry ADC Rd, Rs
Subtract SUB Rd, Rs, Rn SUB Rd, Rs, #3bit_Imm
Subtract Immediate SUB Rd, #8bit_Imm
Subtract with carry SBC Rd, Rs
Negate NEG Rd, Rs
Multiply MUL Rd, Rs
Compare Low and Low CMP Rd, Rs
Compare Low and High CMP Rd, Hs
CompareHighand Low CMP Hd, Rs
Compare High and High CMP Hd, Hs
Compare Negative CMN Rd, Rs
Compare Immediate CMP Rd, #8bit_Imm

1-18 Copyright © 2001 ARM Limited. All rights reserved.

ARM DDI 0234A

Introduction

Table 1-12 Thumb instruction summary (continued)

Operation Assembler

Logical AND AND Rd, Rs
EOR EOR Rd, Rs
OR ORR Rd, Rs
Bit clear BIC Rd, Rs
Move NOT MVN Rd, Rs
Test bits TST Rd, Rs

Shift/Rotate

Logical shift left

LSL Rd, Rs, #5bit_shift_imm LSL Rd, Rs

Logical shift right

LSR Rd, Rs, #5bit_shift_imm LSR Rd, Rs

Arithmetic shift right

ASR Rd, Rs, #5bit_shift_imm ASR Rd, Rs

Rotate right ROR Rd, Rs
Branch Conditional

If Z set BEQ label
If Z clear BNE Tabel
If Cset BCS Tabel
If C clear BCC Tabel
If N set BMI label
If N clear BPL Tabel
If V set BVS label
If V clear BVC label
If Csetand Z clear BHI Tabel
If C clear and Z set BLS Tabel
If N setand V set, or BGE label
if N clear and V clear

If Nsetand V clear, or BLT Tabel

if N clear and V set

ARM DDI 0234A

Copyright © 2001 ARM Limited. All rights reserved.

1-19

Introduction

Table 1-12 Thumb instruction summary (continued)

Operation Assembler

If Zclear andN or V set, BGT Tabel
or

if Z clear, and N or V

clear

If Z set, or BLE Tabel
N set and V clear, or
N clear and V set

Unconditional B label

Long branch with link BL Tabel

Optiond state change -

ToaddressheldinLoreg BX Rs

To addressheldinHireg BX Hs

L oad With immediate offset
Word LDR Rd, [Rb, #7bit_offset]
Halfword LDRH Rd, [Rb, #6bit_offset]
Byte LDRB Rd, [Rb, #5bit_offset]
With register offset
Word LDR Rd, [Rb, Ro]
Halfword LDRH Rd, [Rb, Ro]
Signed halfword LDRSH Rd, [Rb, Rol]
Byte LDRB Rd, [Rb, Ro]
Signed byte LDRSB Rd, [Rb, Ro]
PC-relative LDR Rd, [PC, #10bit_Offset]
SP-relative LDR Rd, [SP, #10bit_Offset]
Address
Using PC ADD Rd, PC, #10bit_Offset
Using SP ADD Rd, SP, #10bit_Offset
Multiple LDMIA Rb!, <reglist>

1-20 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0234A

Introduction

Table 1-12 Thumb instruction summary (continued)

Operation Assembler
Store With immediate offset
Word STR Rd, [Rb, #7bit_offset]
Halfword STRH Rd, [Rb, #6bit_offset]
Byte STRB Rd, [Rb, #5bit_offset]
With register offset
Word STR Rd, [Rb, Ro]
Halfword STRH Rd, [Rb, Ro]
Byte STRB Rd, [Rb, Ro]
SP-relative STR Rd, [SP, #10bit_offset]
Multiple STMIA Rb!, <reglist>
Push/Pop Push registers onto stack PUSH <reglist>
Push LR and registers PUSH <reglist, LR>
onto stack
Pop registersfrom stack POP <reglist>
Pop registers and PC POP <reglist, PG
from stack
Software SWI 8bit_Imm
Interrupt

ARM DDI 0234A

Copyright © 2001 ARM Limited. All rights reserved.

1-21

Introduction

1.5 Differences between Rev 3a and Rev 4

The changes incorporated in the ARM7TDMI-S (Rev 4) processor are summarized in
the following sections:

. Addition of Embeddedl CE-RT logic

. Improved Debug Communications Channel (DCC) bandwidth on page 1-23
. Access to DCC through JTAG on page 1-23

. TAP controller ID register on page 1-23

. More efficient multiple transfers on page 1-24.

1.5.1 Addition of EmbeddedICE-RT logic

Embedded| CE-RT is an enhanced implementation of the EmbeddedI CE logic that was
part of the ARM7TDMI-S (Rev 3) processor. Embedded! CE-RT enables you to
perform debuggingin monitor mode. In monitor mode, the core takes an exception upon
abreakpoint or watchpoint, rather than entering debug state as it does in halt mode.

If the core does not enter debug state when it encounters a watchpoint or breakpoint, it
can continue to service hardware interrupt requests as normal. Debugging in monitor
mode is extremely useful if the core forms part of the feedback loop of a mechanical
system, where stopping the core can potentially lead to system failure.

For more details, see Chapter 5 Debugging Your System.

Power saving

When DBGEN istied LOW, much of the EmbeddedlI CE-RT logic is disabled to keep
power consumption to a minimum.

Changes to the programmer’s model
The changes to the programmer’s model are as follows:

Debug control register
Two new bits have been added:
Bit 4 Monitor mode enable. Use this to control how the
device reacts on a breakpoint or watchpoint:

. When set, the core takes the instruction or data
abort exception.
. When clear, the core enters debug state.

1-22 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0234A

Introduction

Bit 5 Embedded| CE-RT disable. Use this when changing
watchpoints and breakpoints:

. When set, this bit disables breakpoints and
watchpoints, enabling the breakpoint or
watchpoint registersto be programmed with new
values.

. When clear, the new breakpoint or watchpoint
values become operational .

For more information, see Debug control register on page 5-57.

Coprocessor register map
A new register (R2) in the coprocessor register map indicates
whether the processor entered the Prefetch or Data Abort
exception because of areal abort, or because of a breakpoint or
watchpoint. For more details, see Abort status register on
page 5-56.
15.2 Improved Debug Communications Channel (DCC) bandwidth

Inthe ARM7TDMI-S (Rev 3) processor, two accesses to scan chain 2 were required to
read the DCC data. The first accessed the status bit, and the second accessed the data
itself.

To increase DCC bandwidth, only one access is required to read both the data and the
status bitin the ARM7TDMI-S (Rev 4) processor. The status bit is now included in the
least significant bit of the address field that is read from the scan chain.

The status bit in the DCC control register is left unchanged to ensure backwards
compatibility.

For more information, see The debug communications channel on page 5-20.

1.5.3 Access to DCC through JTAG

The DCC control register can be controlled from the JTAG interfacein ARM7TDMI-S
Rev 4. A processor write clears bit 0, the data read control bit.

For more information, see The debug communications channel on page 5-20.

1.5.4 TAP controller ID register

The TAP controller ID register value is now 0x7F1FQFQF.

ARM DDI 0234A Copyright © 2001 ARM Limited. All rights reserved. 1-23

Introduction

For more information, see ARM7TDMI-Sdevice identification (ID) code register on
page 5-31.

155 More efficient multiple transfers

The ARM7TDMI-S (Rev 4) core provides an extraoutput signal, DMORE. Thissignal
improves the efficiency of LDM and STM instructions. DM ORE is HIGH when the next
data memory access is followed by a sequentia data memory access.

For afull list of ARM7TDMI-S (Rev 4) signds, see Appendix A Signal Descriptions.

1-24 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0234A

Chapter 2

Programmer’s Model

About the programmer’s model on page 2-2
Processor operating states on page 2-3
Memory formats on page 2-4

Instruction length on page 2-6

Data types on page 2-7

Operating modes on page 2-8

Registers on page 2-9

The program status registers on page 2-16
Exceptions on page 2-19

Interrupt latencies on page 2-26

Reset on page 2-27.

This chapter describes the programmer’s model for the ARM7TDMI-S processor. It
contains the following sections:

ARM DDI 0234A

Copyright © 2001 ARM Limited. All rights reserved.

2-1

Programmer’s Model

2.1 About the programmer’s model

The ARM7TDMI-S processor core implements ARM architecture vAT, which includes
the 32-bit ARM instruction set and the 16-bit Thumb instruction set. The programmer’s
model is described fully in the ARM Architecture Reference Manual.

2-2 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0234A

Programmer’s Model

2.2 Processor operating states

The ARM7TDMI-S processor has two operating states:
ARM state 32-hit, word-aligned ARM instructions are executed in this state.
Thumb state 16-bit, halfword-aligned Thumb instructions.

In Thumb state, the Program Counter (PC) uses bit 1 to select between alternate
halfwords.

Note

Transition between ARM and Thumb states does not affect the processor mode or the
register contents.

2.2.1 Switching state

You can switch the operating state of the ARM7TDMI-S core between ARM state and
Thumb state using the BX instruction. Thisis described fully in the ARM Architecture
Reference Manual.

All exception handling is performed in ARM state. If an exception occursin Thumb
state, the processor revertsto ARM state. The transition back to Thumb state occurs
automatically on return.

ARM DDI 0234A

Copyright © 2001 ARM Limited. All rights reserved. 2-3

Programmer’s Model

2.3 Memory formats
The ARM7TDMI-S processor views memory as a linear collection of bytes numbered
in ascending order from zero:
. bytes 0 to 3 hold the first stored word
. bytes 4 to 7 hold the second stored word
. bytes 8 to 11 hold the third stored word.
The ARM7TDMI-S processor can treat words in memory as being stored in one of:
. Big-endian format
. Little-endian format.
2.3.1 Big-endian format
In big-endian format, the ARM7TDMI-S processor stores the most significant byte of
aword at the lowest-numbered byte, and the least significant byte at the
highest-numbered byte. So byte 0 of the memory system connectsto datalines 31 to 24.
Thisisshown in Figure 2-1.
31 24 23 16 15 8 7 Word
address
Higher address 8 9 10 11 8
4 5 6 7 4
Lower address 0 1 2 3 0
Figure 2-1 Big-endian addresses of bytes within words
2.3.2 Little-endian format
In little-endian format, the lowest-numbered byte in aword is considered the
|east-significant byte of theword, and the highest-numbered byteisthe most significant.
So byte 0 of the memory system connects to datalines 7 to 0. Thisis shown in
Figure 2-2 on page 2-5.
2-4 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0234A

Programmer’s Model

31 2423 16 15 8 7 Word

address
Higher address 11 10 9 8 8
7 6 5 4 4
Lower address 3 2 1 0 0

Figure 2-2 Little-endian addresses of bytes within words

ARM DDI 0234A

Copyright © 2001 ARM Limited. All rights reserved. 2-5

Programmer’s Model

2.4 Instruction length

Instructions are either:
. 32 bitslong (in ARM state)
. 16 bitslong (in Thumb state).

2-6 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0234A

Programmer’s Model

2.5 Datatypes

The ARM7TDMI-S processor supports the following data types:
. word (32-bit)

. halfword (16-bit)

. byte (8-hit).

You must align these as follows:

. word quantities must be aligned to four-byte boundaries

. halfword quantities must be aligned to two-byte boundaries
. byte quantities can be placed on any byte boundary.

ARM DDI 0234A Copyright © 2001 ARM Limited. All rights reserved. 2-7

Programmer’s Model

2.6

Operating modes

The ARM7TDMI-S processor has seven operating modes:

User mode isthe usual ARM program execution state, and is used for executing
most application programs.

Fast interrupt (FIQ) mode supports a data transfer or channel process.
Interrupt (IRQ) mode is used for generd-purpose interrupt handling.
Supervisor mode is a protected mode for the operating system.

Abort mode is entered after a data or instruction prefetch abort.
System mode is a privileged user mode for the operating system.

Undefined mode is entered when an undefined instruction is executed.

Modes other than User mode are collectively known as privileged modes. Privileged
modes are used to service interrupts, exceptions, or access protected resources.

2-8

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0234A

2.7 Registers

Programmer’s Model

The ARM7TDMI-S processor has atotal of 37 registers:
. 31 general-purpose 32-bit registers
. 6 status registers.

Theseregistersarenot all accessible at the sametime. The processor state and operating
mode determine which registers are available to the programmer.

2.7.1 The ARM state register set

In ARM state, 16 general registers, and one or two status registers are accessible at any
onetime. In privileged modes, mode-specific banked registers become available.
Figure 2-3 on page 2-11 shows which registers are available in each mode.

The ARM state register set contains 16 directly-accessible registers, r0 to r15. An
additional register, the Current Program Status Register (CPSR), contains condition
code flags, and the current mode bits. Registers r0 to r13 are general-purpose registers
used to hold either data or address values. Registers r14 and r15 have the following
special functions:

Link register Register 14 is used as the subroutine Link Register (LR).

ri14 receives a copy of r15 when aBranch with Link (BL)
instruction is executed.

At all other times you can treat r14 as a genera-purpose register.
The corresponding banked registersri4 svc, r14 irq, r14 fiq,
ri4 abt, and r14_und are similarly used to hold the return values
of r15 when interrupts and exceptions arise, or when BL
instructions are executed within interrupt or exception routines.

Program counter Register 15 holds the Program Counter (PC).

In ARM state, bits[1:0] of r15 arezero. Bits[31:2] contain the PC.
In Thumb state, bit [0] is zero. Bits[31:1] contain the PC.

In privileged modes, another register, the Saved Program Status Register (SPSR), is
accessible. This contains the condition code flags, and the mode bits saved as a result
of the exception that caused entry to the current mode.

See The program status registers on page 2-16 for a description of the program status
registers.

ARM DDI 0234A

Copyright © 2001 ARM Limited. All rights reserved. 2-9

Programmer’s Model

Banked registers have amodeidentifier that showsto which User moderegister they are
mapped. These mode identifiers are shown in Table 2-1.

Table 2-1 Register mode identifiers

Mode Mode identifier
User usr

Fast interrupt fiq

Interrupt irq

Supervisor sve

Abort abt

System sys

Undefined und

FIQ mode has seven banked registers mapped to r8—r14 (r8_fig—r14 fiq).
In ARM state, most of the FIQ handlers do not have to save any registers.

TheUser, IRQ, Supervisor, Abort, and undefined modes each have two banked registers
mapped to r13 and r14, alowing a private stack pointer and LR for each mode

Figure 2-3 on page 2-11 showsthe ARM state registers.

2-10 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0234A

ARM state general registers and program counter

Programmer’s Model

System and User FlQ Supervisor Abort IRQ Undefined
r0 r0 r0 r0 r0 r0
r1 r1 r1 r1 r1 r1
r2 r2 r2 r2 r2 r2
r3 r3 r3 r3 r3 r3
r4 r4 r4 r4 r4 r4
r5 r5 5 r5 r5 5
ré ré ré ré r6 r6
r7 r7 r7 r7 r7 r7
r8 r8_fiq r8 r8 r8 r8
r9 r9_fiq r9 r9 r9 r9
r10 r10_fiq r10 r10 r10 r10
r11 r11_fiq r11 r11 r11 r11
r12 r12_fiq r12 r12 r12 r12
r13 r13_fiq r13_svc r13_abt r13_irq r13_und
r14 r14_fiq r14_svc r14_abt r14_irq r14_und
r15 (PC) r15 (PC) r15 (PC) r15 (PC) r15 (PC) r15 (PC)

ARM state program status registers
| cPsR CPSR CPSR CPSR CPSR CPSR
SPSR_fiq SPSR_svc SPSR_abt SPSR_irq SPSR_und

Il = banked register

Figure 2-3 Register organization in ARM state

ARM DDI 0234A

Copyright © 2001 ARM Limited. All rights reserved.

2-11

Programmer’s Model

2.7.2 The Thumb state register set

The Thumb state register set isa subset of the ARM state set. The programmer has
direct access to:

. eight general registers, r0—7
. the PC

. a Stack Pointer (SP)

. alLink Register (LR)

. the CPSR.

There are banked SPs, LRs, and SPSRs for each privileged mode. Thisregister set is
shown in Figure 2-4 on page 2-13.

2-12 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0234A

Programmer’s Model

Thumb state general registers and program counter

System and User FlQ Supervisor Abort IRQ Undefined
r0 r0 r0 r0 r0 r0
r1 r1 r1 r1 r1 r1
r2 r2 r2 r2 r2 r2
r3 r3 r3 r3 r3 r3
r4 r4 r4 r4 r4 r4
r5 r5 r5 r5 r5 r5
r6 r6 r6 r6 r6 r6
r7 r7 r7 r7 r7 r7
SP SP_fiq SP_svc SP_abt SP_irq SP_und
LR LR_fiq LR_svc LR_abt LR_irq LR _und
pPC pPC PC PC pPC PC
Thumb state program status registers
CPSR CPSR CPSR CPSR CPSR CPSR
SPSR_fiq SPSR_svc SPSR_abt SPSR _irq SPSR_und

Il = banked register

Figure 2-4 Register organization in Thumb state

2.7.3 Therelationship between ARM state and Thumb state registers

The Thumb stete registersrelate to the ARM state registersin the following way:

Thumb state rO-r7, and ARM state rO—7 are identical

Thumb state CPSR and SPSRs, and ARM state CPSR and SPSRs are identical
Thumb state SP maps onto ARM state r13

Thumb state LR maps onto ARM state r14

The Thumb state PC maps onto the ARM state PC (r15).

These relationships are shown in Figure 2-5 on page 2-14.

ARM DDI 0234A

Copyright © 2001 ARM Limited. All rights reserved. 2-13

Programmer’s Model

Thumb state ARM state

r0 > ro
r1 > r1
r2 > r2
r3 > r3
r4 > r4
r5 > r5
ré > ré
r7 > r7

r8

r9

r10

r11

r12

Stack pointer (PC) > Stack pointer (r13)
Link register (LR) > Link register (r14)
Program counter (PC) > Program counter (r15)
Current program status register Current program status register
(CPSR) d (CPSR)
Saved program status register Saved program status register
(SPSR) d (SPSR)

Figure 2-5 Mapping of Thumb state registers onto ARM state registers

Note

RegistersrO—r7 are known as the low registers. Registers r8-r15 are known as the high
registers.

2.7.4 Accessing high registers in Thumb state

In Thumb state, the high registers (r8—15) are not part of the standard register set. The
assembly language programmer has limited access to them, but can use them for fast
temporary storage.

2-14 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0234A

Programmer’s Model

You can use special variants of theMov instruction to transfer avalue from alow register
(intheranger0—7) to ahigh register, and from a high register to alow register. The (MP
instruction enables you to compare high register values with low register values. The
ADD instruction enables you to add high register valuesto low register values. For more
details, see the ARM Architecture Reference Manual.

ARM DDI 0234A Copyright © 2001 ARM Limited. All rights reserved. 2-15

Programmer’s Model

2.8 The program status registers

The ARM7TDMI-S core contains a CPSR and five SPSRs for exception handlers to
use. The program status registers:

. hold the condition code flags
. control the enabling and disabling of interrupts
. set the processor operating mode.

The arrangement of bitsis shown in Figure 2-6.

Condition
code flags Reserved Control bits

31 30 29 28 27 26 25 24 23 8 7 6 5 4 3 2 10
IN[Z[ClV e|e]e]e]" « | 1| F| T |m4m3[m2/m1 /M0
Overflow Mode bits
——— Carry or borrow or extend ——— State bit
Zero FIQ disable
———— Negative or less than IRQ disable

Figure 2-6 Program status register format

Note

To maintain compatibility with future ARM processors, and as good practice, you are
strongly advised to use a read-write-modify strategy when changing the CPSR.

2.8.1 The condition code flags

TheN, Z, C, and V bitsarethe condition codeflags, You can set these bits by arithmetic
and logica operations. The flags can also be set by MSR and LDM instructions. The
ARMT7TDMI-S processor tests these flags to determine whether to execute an
instruction.

All instructions can execute conditionally in ARM state. In Thumb state, only the
Branch instruction can be executed conditionally. For more information about
conditional execution, see the ARM Architecture Reference Manual.

2-16

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0234A

Programmer’s Model

2.8.2 The control bits

The bottom eight bits of a PSR are known collectively as the control bits. They arethe:

. Interrupt disable bits
. T hit
. Mode bits.

The control bits change when an exception occurs. When the processor is operating in
aprivileged mode, software can manipulate these bits.

Interrupt disable bits

The | and F bits are the interrupt disable bits:
. when the | bit is set, IRQ interrupts are disabled
. when the F bit is set, FIQ interrupts are disabled.

T bit

The T bit reflects the operating state:
. when the T bit is set, the processor is executing in Thumb state
. when the T bit is clear, the processor executing in ARM state.

The operating state is reflected by the CPTBIT external signal.

—— Caution

Never use an MSR instruction to force achange to the state of the T bit in the CPSR. If
you do this, the processor enters an unpredictable state.

Mode bits

TheM4,M3,M2, M1, and MO bits (M[4:0]) arethe mode bits. These bitsdeterminethe
processor operating mode as shown in Table 2-2. Not all combinations of the mode bits
define avalid processor mode, so take care to use only the bit combinations shown.

Table 2-2 PSR mode bit values

M[4:0] Mode Visible Thumb state registers Visible ARM state registers

10000 User ro—7, SP LR, PC, CPSR ro—r14, PC, CPSR

10001 FIQ ro—7, SP_fig, LR_fig PC, CPSR, SPSR_fiq ro—7, r8_fig—+r14 fiq, PC, CPSR, SPSR_fiq
10010 IRQ r0—7, SP_irg, LR_irg, PC, CPSR, SPSR_irq r0—r12,r13 irq, r14 _irq, PC, CPSR, SPSR_irq

ARM DDI 0234A

Copyright © 2001 ARM Limited. All rights reserved. 2-17

Programmer’s Model

Table 2-2 PSR mode bit values (continued)

M[4:0]

Mode Visible Thumb state registers

Visible ARM state registers

10011

Supervisor r0—7, SP_svc, LR_svc, PC, CPSR,

r0—12, r13 svc, r14_svc, PC, CPSR,

SPSR_svc SPSR_svc
10111 Abort r0—r7, SP_abt, LR_abt, PC, CPSR, SPSR_abt r0—12, r13 aht, r14_abt, PC, CPSR,
SPSR_abt
11011 Undefined r0—r7, SP_und, LR_und, PC, CPSR, r0—r12, r13_und, r14_und, PC, CPSR,
SPSR_und SPSR_und
11111 System ro—+7, SP LR, PC, CPSR r0—r14, PC, CPSR
Note
If you program an illegal valueinto M[4:0], the processor enters an unrecoverabl e state.
2.8.3 Reserved bits
The remaining bitsin the PSRs are unused but are reserved. When changing a PSR flag
or control bits make sure that these reserved bits are not altered. Also, make sure that
your program does not rely on reserved bits containing specific values because future
processors might have these bits set to one or zero.
2-18 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0234A

Programmer’s Model

2.9 Exceptions

Exceptions arise whenever the normal flow of aprogram has to be halted temporarily,
for example to service an interrupt from a peripheral. Before attempting to handle an
exception, the ARM7TDMI-S core preserves the current processor state so that the
original program can resume when the handler routine has finished.

If two or more exceptions arise simultaneously, the exceptionsare dealt with in the fixed
order given in Exception priorities on page 2-24.

This section provides details of the exception handling on the ARM7TDMI-S
processor:

. Exception entry/exit summary
. Entering an exception on page 2-20
. Leaving an exception on page 2-21.

2.9.1 Exception entry/exit summary

Table 2-3 shows the PC value preserved in the relevant r14 on exception entry and the
recommended instruction for exiting the exception handler.

Table 2-3 Exception entry and exit

Exception

Return instruction Previous state Notes
or entry
ARMr14_x Thumbri4 x

BL MOV PC, R14 PC+4 PC+2
Swi MOVS PC, R14_svc PC + 4 PC+2 .

Where the PC is the address of the BL,
Undefined MOVS PC, R14_und PC+4 PC+2 SWI, undefined instruction Fetch, or
instruction instruction that had the Prefetch Abort.
Prefetch SUBS PC, R14_abt, #4 PC+4 PC+4
Abort

ARM DDI 0234A

Copyright © 2001 ARM Limited. All rights reserved. 2-19

Programmer’s Model

Table 2-3 Exception entry and exit (continued)

Exception Return instruction Previous state Notes
or entry
ARMr14_x Thumb ri4 x
FIQ SUBS PC, R14_fig, #4 PC+4 PC+4 Where the PC is the address of the
X instruction that was not executed

IRQ SUBS PC, R14_irq, #4 PC+4 PC+4 because the FIQ or IRQ took priority.

DataAbort SUBS PC, R14_abt, #8 PC+38 PC+38 Wherethe PC isthe address of the L oad
or Store instruction that generated the
Data Abort.

RESET Not applicable - - Thevauesaved inrl4_svconresetis
UNPREDICTABLE.

2.9.2 Entering an exception
When handling an exception the ARM7TDMI-S core:
1. Preservesthe address of the next instruction in the appropriate LR. When the
exception entry is from:

. ARM state, the ARM7TDMI-S copies the address of the next instruction
into the LR (current PC + 4, or PC + 8 depending on the exception)

. Thumb state, the ARM7TDMI-S writes the value of the PC into the LR,
offset by avalue (current PC + 4, or PC + 8 depending on the exception).

The exception handler does not have to determine the state when entering an
exception. For example, in the case of a SWI, MOVS PC, rl4_svc always returnsto
the next instruction regardless of whether the SWI was executed in ARM or
Thumb state.

2. Copiesthe CPSR into the appropriate SPSR.
3. Forcesthe CPSR mode hits to a value which depends on the exception.
4. Forcesthe PC to fetch the next instruction from the relevant exception vector.

The ARM7TDMI-S core a so sets the interrupt disable flags on interrupt exceptions to
prevent otherwise unmanageable nestings of exceptions.

2-20 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0234A

Programmer’s Model

Note

Exceptionsare awayshandled in ARM state. When the processor isin Thumb state and
an exception occurs, the switch to ARM state takes place automatically when the
exception vector address is |oaded into the PC.

2.9.3 Leaving an exception

When an exception is completed, the exception handler must:

1. Movethe LR, minusan offset to the PC. The offset varies according to the type
of exception, as shown in Table 2-3 on page 2-19.

2. Copy the SPSR back to the CPSR.

3. Clear theinterrupt disable flags that were set on entry.

Note

The action of restoring the CPSR from the SPSR automatically restoresthe T, F, and |
bits to whatever value they held immediately prior to the exception.

2.9.4 Fastinterrupt request

The Fast Interrupt Request (FI1Q) exception supports data transfers or channel
processes. In ARM state, FIQ mode has eight private registers to remove the need for
register saving (this minimizes the overhead of context switching).

An FIQ is externally generated by taking the nFIQ signal input LOW.

I rrespective of whether exception entry isfrom ARM state, or from Thumb state, an FIQ
handler returns from the interrupt by executing:

SUBS PC,R14_fiq,#4

You can disable FIQ exceptions within a privileged mode by setting the CPSR F flag.
When the F flag is clear, the ARM7TDMI-S checks for a LOW level on the output of
the FIQ synchronizer at the end of each instruction.

295 Interrupt request

The Interrupt Request (IRQ) exception isanormal interrupt caused by aL OW level on
the nIRQ input. IRQ has a lower priority than FIQ, and is masked on entry to an FIQ
sequence. You can disable IRQ at any time, by setting the | bit in the CPSR from a
privileged mode.

ARM DDI 0234A

Copyright © 2001 ARM Limited. All rights reserved. 2-21

Programmer’s Model

Irrespective of whether exception entry is from ARM state, or Thumb state, an IRQ
handler returns from the interrupt by executing:

SUBS PC,R14_irq,#4

2.9.6 Abort

An abort indicates that the current memory access cannot be completed. It is signaled
by the external ABORT input. The ARM7TDMI-S checks for the abort exception at the
end of memory access cycles.

There are two types of abort:
. aPrefetch Abort occurs during an instruction prefetch
. aData Abort occurs during a data access.

Prefetch Abort

When a Prefetch Abort occurs, the ARM7TDMI-S core marks the prefetched
instruction as invalid, but does not take the exception until the instruction reaches the
execute stage of the pipeline. If the instruction is not executed because a branch occurs
whileitisin the pipeline, the abort does not take place.

After dealing with the reason for the abort, the handler executes the following
instruction irrespective of the processor operating state:

SUBS PC,R14_abt,#4

This action restores both the PC and the CPSR and retries the aborted instruction.

Data Abort
When a Data Abort occurs, the action taken depends on the instruction type:

. Singledatatransfer instructions (LDR, STR) write back modified baseregisters. The
abort handler must be aware of this.

. The swap instruction (SwP) aborts as though it had not been executed. (The abort
must occur on the read access of the SWP instruction.)

. Block data transfer instructions (LDM, STM) complete. When write-back is set, the
base is updated. If the instruction would have overwritten the base with data
(when it hasthe base register in the transfer list), the ARM7TDMI-S prevents the
overwriting.

2-22 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0234A

Programmer’s Model

The ARM7TDMI-S core prevents all register overwriting after an abort is
indicated. Thismeansthat the ARM7TDMI-S core aways preservesrl5 (always
the last register to be transferred) in an aborted LDM instruction.

The abort mechanism enables the implementation of a demand-paged virtual memory
system. In such asystem, the processor isallowed to generate arbitrary addresses. When
the data at an addressis unavailable, the Memory Management Unit (MMU) signalsan
abort. The abort handler must then work out the cause of the abort, make the requested
data avail able, and retry the aborted instruction. The application program does not have
to know the amount of memory available to it, nor isits state in any way affected by the
abort.

After fixing the reason for the abort, the handler must execute the following return
instruction irrespective of the processor operating state at the point of entry:

SUBS PC,R14_abt,#8

This action restores both the PC, and the CPSR, and retries the aborted instruction.

2.9.7 Software interrupt instruction

The Software Interrupt (SWI) is used to enter Supervisor mode, usually to request a
particular supervisor function. A SWI handler returns by executing the following
irrespective of the processor operating state:

MOVS PC, R14_svc

Thisaction restoresthe PC and CPSR, and returnsto the instruction following the SWI.
The SWI handler reads the opcode to extract the SWI function number.

2.9.8 Undefined instruction

When the ARM7TDMI-S processor encounters an instruction that neither it nor any
coprocessor in the system can handle, the ARM7TDMI-S core takes the undefined
instruction trap. Software can use this mechanism to extend the ARM instruction set by
emulating undefined coprocessor instructions.

Note

The ARM7TDMI-S processor is fully compliant with the ARM architecture v4T, and
traps all instruction bit patterns that are classified as undefined.

After emulating the failed instruction, the trap handler executes the following
irrespective of the processor operating state:

MOVS PC,R14_und

ARM DDI 0234A

Copyright © 2001 ARM Limited. All rights reserved. 2-23

Programmer’s Model

2.9.9

This action restores the CPSR and returns to the next instruction after the undefined

instruction.

For moreinformation about undefined instructions, seethe ARM Architecture Reference

Manual.

Exception vectors

Table 2-4 shows the exception vector addresses. In the table, | and F represent the

previous value.

Table 2-4 Exception vectors

Address Exception Mode on entry Litt?;e on Znsttri\/teon
0x00000000 Reset Supervisor Disabled Disabled
0x00000004 Undefined instruction Undefined | F
0x00000008 Software interrupt Supervisor Disabled F
0x0000000C Abort (Prefetch) Abort I F
0x00000010 Abort (Data) Abort I F
0x00000014 Reserved Reserved - -
0x00000018 IRQ IRQ Disabled F
0x0000001C FIQ FIQ Disabled Disabled

2.9.10 Exception priorities

When multiple exceptions arise at the sametime, afixed priority system determinesthe
order in which they are handled:

No ogkrwdPE

Reset (highest priority).
Data Abort.

FIQ.

IRQ.

Prefetch Abort.
Undefined instruction.
SWI (lowest priority).

2-24

Copyright © 2001 ARM Limited. All rights reserved.

ARM DDI 0234A

Programmer’s Model

Some exceptions cannot occur together:

. The Undefined Instruction and SWI exceptions are mutually exclusive. Each
correspondsto a particular (non-overlapping) decoding of the current instruction.

. When FIQs are enabled and a Data Abort occurs at the same time as an FIQ, the
ARM7TDMI-S core enters the Data Abort handler and proceeds immediately to
the FIQ vector.

A normal return from the FIQ causes the Data Abort handler to resume execution.

Data Aborts must have higher priority than FIQs to ensure that the transfer error
does not escape detection. You must add the time for this exception entry to the
worst-case FIQ latency calculations in a system that uses aborts.

ARM DDI 0234A Copyright © 2001 ARM Limited. All rights reserved. 2-25

Programmer’s Model

2.10 Interrupt latencies

Interrupt latencies are described in:
. Maximum interrupt latencies
. Minimum interrupt latencies.

2.10.1 Maximum interrupt latencies
When FIQs are enabled, the worst-case latency for FIQ comprises a combination of:

. Tsyncmax: the longest time the request can take to pass through the synchronizer.
Tsyncmax IS two processor cycles.

. Tiam, the time for the longest instruction to complete. (The longest instruction is
an LDM that loads all theregistersincludingthe PC.) Tigmis20 cyclesin azero wait
state system.

. Texc, thetime for the Data Abort entry. Tec isthree cycles.
. Tig, the time for FIQ entry. T istwo cycles.

Thetotal latency istherefore 27 processor cycles, slightly lessthan 0.7 microsecondsin
a system that uses a continuous 40MHz processor clock. At the end of thistime, the
ARM7TDMI-S executes the instruction at ox1c.

The maximum IRQ latency calculation is similar, but must allow for the fact that FIQ,
having higher priority, might delay entry into the IRQ handling routine for an arbitrary
length of time.

2.10.2 Minimum interrupt latencies

The minimum latency for FIQ or IRQ is the shortest time the request can take through
the synchronizer, Tsyncmin PIUs Triq (four processor cycles).

2-26 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0234A

2.11 Reset

Programmer’s Model

When the nRESET signal goes LOW, the ARM7TDMI-S processor abandons the
executing instruction.

When nRESET goes HIGH again the ARM7TDMI-S processor:
Forces M[4:0] to b10011 (Supervisor mode).

Setsthe | and F bitsin the CPSR.

Clearsthe CPSR T bit.

Forces the PC to fetch the next instruction from address 0x00.

a c W bdp R

Revertsto ARM state and resumes execution.

After reset, all register values except the PC and CPSR are indeterminate.

ARM DDI 0234A

Copyright © 2001 ARM Limited. All rights reserved. 2-27

Programmer’s Model

2-28 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0234A

Chapter 3
Memory Interface

This chapter describes the memory interface on the ARM7TDMI-S processor. It
contains the following sections:

. About the memory interface on page 3-2

. Bus interface signals on page 3-3

. Bus cycle types on page 3-4

. Addressing signals on page 3-10

. Data timed signals on page 3-13

. Using CLKEN to control bus cycles on page 3-17.

ARM DDI 0234A Copyright © 2001 ARM Limited. All rights reserved.

3-1

Memory Interface

3.1

About the memory interface

The ARM7TDMI-S processor has a Von Neumann architecture, with a single 32-bit
databus carrying both instructions and data. Only load, store, and swap instructions can
access data from memory.

The ARM7TDMI-S processor supports four basic types of memory cycle:

nonsequential

sequential

internal

coprocessor register transfer.

3-2

Copyright © 2001 ARM Limited. All rights reserved.

ARM DDI 0234A

Memory Interface

3.2 Bus interface signals

The signalsin the ARM7TDMI-S processor bus interface can be grouped into four
categories:

. clocking and clock control

. address class signals

. memory request signals

. datatimed signals.

The clocking and clock control signals are:

. CLK
. CLKEN
. NRESET.

The address class signals are:
« ADDRJ[31:0]

- WRITE
. SIZE[L0]
- PROT[LO]
- LOCK.

The memory request signals are:
« TRANS[1:0].

The datatimed signals are:
« WDATA[31:0]

« RDATA[31:0]

. ABORT.

Each of these signal groups shares a common timing relationship to the bus interface
cycle. All signalsin the ARM7TDMI-S processor bus interface are generated from or
sampled by therising edge of CLK.

Buscycles can be extended usingthe CLKEN signal. Thissignal isintroduced in Using
CLKEN to control bus cycles on page 3-17. All other sections of this chapter describe a
simple system in which CLKEN is permanently HIGH.

ARM DDI 0234A Copyright © 2001 ARM Limited. All rights reserved. 3-3

Memory Interface

3.3 Bus cycle types

The ARM7TDMI-S processor bus interface is pipelined, and so the address class
signals, and the memory request signals are broadcast in the bus cycle ahead of the bus
cycleto which they refer. This gives the maximum time for amemory cycle to decode
the address, and respond to the access request.

A single memory cycle is shown in Figure 3-1.

CLK | |

Address-class signals (4 Address ||
(/
TRANSI[1:0] ~* Cycle type/)
WDATA[31:0] .
(write) \DX Write data X
RDATA[31:0] Y
(read) Read data
< Bus cycle=

Figure 3-1 Simple memory cycle

The ARM7TDMI-S processor businterface can perform four different typesof memory
cycle. These areindicated by the state of the TRANS[1: 0] signals. Memory cycletypes
are encoded on the TRANS[1:0] signas as shown in Table 3-1.

Table 3-1 Cycle types

TRANS[1:0] Cycle type Description

00 I cycle Internal cycle

01 Ccycle Coprocessor register transfer cycle
10 N cycle Nonsequential cycle

11 Scycle Sequential cycle

A memory controller for the ARM7TDMI-S processor commits to a memory access
only onan N cycleor an S cycle.

3-4

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0234A

Memory Interface

The ARM7TDMI-S processor has four basic types of memory cycle:

Nonsequential cycle

During thiscycle, the ARM7TDMI-S core requests atransfer to,
or from an address which is unrelated to the address used in the
preceding cycle.

Sequential cycle During this cycle, the ARM7TDMI-S core requests atransfer to
or from an addressthat is either one word or one halfword greater
than the address used in the preceding cycle.

Internal cycle During thiscycle, the ARM7TDMI-S core does not require a
transfer becauseit isperforming an internal function and no useful
prefetching can be performed at the same time.

Coprocessor register transfer cycle

During this cycle, the ARM7TDMI-S core uses the data bus to
communicate with a coprocessor but does not require any action
by the memory system.

3.3.1 Nonsequential cycles

A nonsequential cycleisthe simplest form of an ARM7TDMI-S processor bus cycle,
and occurswhen the ARM7TDMI-S processor requests atransfer to or from an address
that isunrelated to the address used in the preceding cycle. The memory controller must
initiate a memory access to satisfy this request.

The address class signals, and the TRANS[1:0] = N cycle are broadcast on the bus. At
the end of the next bus cycle the datais transferred between the CPU, and the memory.
Thisisillustrated in Figure 3-2 on page 3-6.

ARM DDI 0234A Copyright © 2001 ARM Limited. All rights reserved. 3-5

Memory Interface

CLK | |
Address-class signals X Address X
TRANS[1:0] X Ncycle X
WDATA[31:0 :
(writé) | X Write data X
RDATA[31:0] X X
(read) Read data
“N cycle

Figure 3-2 Nonsequential memory cycle

The ARM7TDMI-S processor can perform back to back nonsequential memory cycles.
Thishappens, for example, when an STR instruction isexecuted, asshown in Figure 3-3.
If you are designing a memory controller for the ARM7TDMI-S processor, and your
memory system is unable to cope with this case, you must use the CLKEN signal to
extend the bus cycle to alow sufficient cycles for the memory system. See Using
CLKEN to control bus cycles on page 3-17.

CLK | | | L

Address-class signals X X X
Write address Read address

WRITE] \ A

TRANS[1:0] f Ncycle | Nocycle)
WDATA[31:0] } Write data ¥
(write)
RDATA[31:0] Y
(read) Read data
) Write h Read
cycle cycle

Figure 3-3 Back to back memory cycles

3-6

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0234A

Memory Interface

3.3.2 Sequential cycles

Sequentid cycles perform burst transfers on the bus. You can use this information to
optimize the design of amemory controller interfacing to a burst memory device, such
asaDRAM.

During a sequential cycle, the ARM7TDMI-S processor requests a memory location
that is part of asequential burst. If thisisthefirst cyclein the burst, the address can be
the same as the previous internal cycle. Otherwise the addressis incremented from the
previous cycle:

. for a burst of word accesses, the address is incremented by 4 bytes
. for aburst of halfword accesses, the address is incremented by 2 bytes.

Bursts of byte accesses are not possible.

A burst always starts with an N cycle or a merged I-S cycle (see Merged |-Scycleson
page 3-8), and continues with S cycles. A burst comprises transfers of the same type.

The ADDR([31:0] signal increments during the burst. The other address class signals

remain the same throughout the burst.

The types of burst are shown in Table 3-2.

Table 3-2 Burst types

Burst type Address increment Cause

Word read 4 bytes ARMT7TDMI-S code fetches, or LDM ingtruction
Word write 4 bytes STM instruction
Halfwordread 2 bytes Thumb code fetches

All accesses in a burst are of the same width, direction, and protection type. For more
details, see Addressing signals on page 3-10.

An example of aburst access is shown in Figure 3-4 on page 3-8.

ARM DDI 0234A Copyright © 2001 ARM Limited. All rights reserved. 3-7

Memory Interface

CLK | | | L
Address-class signals X Address XAddress+4 X
TRANS[1:0] [Ncycle | Scycle |
WD?WTr 951 0] \Write datal \Write data2
RDATA[31:0] X X X X
(read)

Read data1 Read data2

< [»

" Ncycle Scycle

Figure 3-4 Sequential access cycles

3.3.3 Internal cycles

During an internal cycle, the ARM7TDMI-S processor does not require a memory
access, as an internal function is being performed, and no useful prefetching can be
performed at the same time.

Where possible the ARM7TDMI-S processor broadcasts the address for the next
access, so that decode can start, but the memory controller must not commit to a
memory access. Thisis described in Merged [-Scycles.

3.3.4 Merged I-S cycles

Where possible, the ARM7TDMI-S processor performs an optimization on the bus to
allow extratime for memory decode. When this happens, the address of the next
memory cycleis broadcast during an internal cycle on this bus. This enablesthe
memory controller to decode the address, but it must not initiate a memory access
during this cycle. In amerged I-S cycle, the next cycleisasequential cycleto the same
memory location. This commits to the access, and the memory controller must initiate
the memory access. Thisis shown in Figure 3-5 on page 3-9.

3-8 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0234A

CLK

Address-class signals

TRANSI[1:0]

RDATA[31:0]
(read)

Note

Memory Interface

| | L
X Address | Address+2)
Y lcycle) Scycle)} Scycle X
Lo X
Read datal Read data1
< I cycle 0 Merged >< S cycle >

S cycle

Figure 3-5 Merged I-S cycle

When designing a memory controller, make sure that the design & so works when an |
cycleisfollowed by an N cycleto adifferent address. This sequence might occur during
exceptions, or during writes to the PC. It is essential that the memory controller does

not commit to the memory cycle during an | cycle.

3.3.5 Coprocessor register transfer cycles

During acoprocessor register transfer cycle, the ARM7TDMI-S processor usesthe data
buses to transfer data to or from a coprocessor. A memory cycleis not required and the
memory controller does not initiate a transaction.

The coprocessor interface is described in Chapter 4 Coprocessor Interface.

ARM DDI 0234A

Copyright © 2001 ARM Limited. All rights reserved.

3-9

Memory Interface

3.4 Addressing signals
The address class signals are described in the following sections:
« ADDR[31:0]]
. WRITE
« SIZE[1:0]
. PROT[1:0] on page 3-11
. LOCK on page 3-12
. CPTBIT on page 3-12.
34.1 ADDRJ[31:0]
ADDR[31:0] is the 32-bit address bus which specifies the address for the transfer. All
addresses are byte addresses, so aburst of word accesses results in the address bus
incrementing by four for each cycle.
The address bus provides 4GB of linear addressing space. When aword accessis
signaled, the memory system must ignore the bottom two bits, ADDR[1:0], and when
ahalfword accessis signaled the memory system must ignorethe bottom bit, ADDRJ[Q].
3.4.2 WRITE
WRITE specifiesthe direction of the transfer. WRITE indicatesan ARM7TDMI-S
core write cycle when HIGH, and an ARM7TDMI-S core read cycle when LOW. A
burst of S cyclesis aways either aread burst or awrite burst. The direction cannot be
changed in the middle of a burst.
3.4.3 SIZE[1:0]
The SIZE[1:0] bus encodes the size of the transfer. The ARM7TDMI-S processor can
transfer word, halfword, and byte quantities. Thisisencoded on SIZE[1:0] asshownin
Table 3-3 on page 3-11.
3-10 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0234A

3.4.4 PROT[L0]

Memory Interface

Table 3-3 Transfer widths

SIZE[1:0] Transfer width
00 Byte

01 Halfword

10 Word

11 Reserved

The size of transfer does not change during a burst of S cycles.

Note

A writable memory system for the ARM7TDMI-S processor must have individual byte
write enables. Both the C Compiler and the ARM debug tool chain (for example,
Multi-1CE) assume that arbitrary bytesin the memory can be written. If individual byte
write capability is not provided, it might not be possible to use either of these tools.

The PROT[1:0] bus encodesinformation about the transfer. A memory management
unit uses this signal to determine whether an access is from a privileged mode, and
whether it isan opcode or a datafetch. This can therefore be used to implement an
access permission scheme. The encoding of PROT[1:0] is shown in Table 3-4.

Table 3-4 PROT[1:0] encoding

PROT[1:0] Mode Opcode or data
00 User Opcode

01 User Data

10 Privileged Opcode

11 Privileged Data

ARM DDI 0234A

Copyright © 2001 ARM Limited. All rights reserved. 3-11

Memory Interface

3.45 LOCK

L OCK indicates to an arbiter that an atomic operation is being performed on the bus.
LOCK isnormally LOW, but isset HIGH to indicate that a SWP or SWPB instruction is
being performed. Theseinstructions perform an atomic read/write operation and can be
used to implement semaphores.

3.4.6 CPTBIT

CPTBIT indicates the operating state of the ARM7TDMI-S processor:
. in ARM state, the CPTBIT signal isLOW
. in Thumb state, the CPTBIT signal is HIGH.

3-12 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0234A

Memory Interface

3.5 Data timed signals

The data timed signals are described in the following sections:
« WDATA[31:0]

« RDATA[31:0]

. ABORT.

351 WDATA[31:0]

WDATA[31:0] isthe write data bus. All datawritten out from the ARM7TDMI-S
processor is broadcast on this bus. Data transfers from the ARM7TDMI-S core to a
coprocessor also use this bus during C-cycles. In norma circumstances, a memory
system must sample the WDATA[31:0] bus on the rising edge of CLK at the end of a
write bus cycle. The WDATA[31:0] valueisvalid only during write cycles.

352 RDATA[3LO]

RDATA[31:0] istheread databus, and is used by the ARM7TDMI-S coreto fetch both
opcodes and data. The RDATA[31:0] signd is sampled on the rising edge of CLK at
the end of the bus cycle. RDATA[31:0] is also used during C-cyclesto transfer data
from a coprocessor to the ARM7TDMI-S core.

3.5.3 ABORT

ABORT indicates that a memory transaction failed to complete successfully. ABORT
is sampled at the end of the bus cycle during active memory cycles (S-cycles and
N-cycles).

If ABORT is asserted on adata access, it causes the ARM7TDM I-S processor to take
the Data Abort trap. If it isasserted on an opcode fetch, the abort is tracked down the
pipeline, and the Prefetch Abort trap is taken if the instruction is executed.

ABORT can be used by a memory management system to implement, for example, a
basic memory protection scheme or a demand-paged virtual memory system.

For more details about aborts, see Abort on page 2-22.

ARM DDI 0234A Copyright © 2001 ARM Limited. All rights reserved. 3-13

Memory Interface

3.5.4 Byte and halfword accesses

The ARM7TDMI-S processor indicates the size of atransfer using the SI ZE[1:0]
signals. These are encoded as shown in Table 3-5.

Table 3-5 Transfer size encoding

SIZE[1:0] Transfer width
00 Byte

01 Halfword

10 Word

11 Reserved

All writablememory inan ARM7TDMI-S processor-based system supportsthewriting
of individual bytesto allow the use of the C Compiler and the ARM debug tool chain
(for example, Multi-1CE).

The address produced by the ARM7TDMI-S processor is always a byte address.
However, the memory system ignores the insignificant bits of the address. The
significant address bits are shown in Table 3-6.

Table 3-6 Significant address bits

SIZE[1:0] Width Significant address bits
00 Byte ADDR[31:0]
01 Halfword ADDR[31:1]
10 Word ADDR[31:2]

When a hafword or byte read is performed, a 32-bit memory system can return the
complete 32-bit word, and the ARM7TDMI-S processor extracts the valid halfword or
bytefield from it. The fields extracted depend on the state of the CFGBIGEND signal,
which determines the endianness of the system (see Memory formats on page 2-4).

3-14 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0234A

Memory Interface

The fields extracted by the ARM7TDMI-S processor are shown in Table 3-7.

Table 3-7 Word accesses

)) Little-endian Big-endian
SIZE[1:0] ADDRI[1:0] CFGBIGEND =0 CFGBIGEND =1
10 XX RDATA[31:0] RDATA[31:0]

When connecting 8-bit to 16-bit memory systemsto the ARM7TDMI-S processor,
make sure that the data is presented to the correct byte lanes on the ARM7TDMI-S
processor as shown in Table 3-8 and Table 3-9.

Table 3-8 Halfword accesses

)) Little-endian Big-endian
SIZE[1:0] ADDRI[1:0] CFGBIGEND =0 CFGBIGEND =1
01 0X RDATA[15:0] RDATA[31:16]

01 1X RDATA[31:16] RDATA[15:0]
Table 3-9 Byte accesses

)) Little-endian Big-endian
SIZE[1:0] ADDRIL:0] CFGBIGEND =0 CFGBIGEND =1
00 00 RDATA[7:0] RDATA[31:24]
00 01 RDATA[15:8] RDATA[23:16]

00 10 RDATA[23:16] RDATA[15:8]
00 11 RDATA[31:24] RDATA[7:0]
Writes

When the ARM7TDMI-S processor performs a byte or halfword write, the data being
written is replicated across the bus, asillustrated in Figure 3-6 on page 3-16. The
memory system can use the most convenient copy of the data. A writable memory
system must be capabl e of performing awrite to any single bytein the memory system.
This capahility isrequired by the ARM C Compiler and the Debug tool chain.

ARM DDI 0234A Copyright © 2001 ARM Limited. All rights reserved. 3-15

Memory Interface

Memory interface

—> g WDATA[31:24]

—> g WDATA[23:16]

ARM7TDMI-S processor > A WDATA[M5:8
byte write B re:el

, . A A WDATA[7:0
Register[7:0] B —_—] B [7:0]

Memory interface

ARM7TDMI-S processor

A 0
halfword write —> g WDATA[31:16]

Register[15:0] g‘ _ g WDATA[15:0]

Figure 3-6 Data replication

3-16 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0234A

Memory Interface

3.6 Using CLKEN to control bus cycles

The pipelined nature of the ARM7TDMI-S processor businterface meansthat thereis
adistinction between clock cycles and bus cycles. CLK EN can be used to stretch abus
cycle, so that it lasts for many clock cycles. The CLK EN input extends the timing of
bus cyclesin increments of complete CLK cycles:

. when CLKEN isHIGH on the rising edge of CLK, abus cycle completes

. when CLKEN issampled LOW, the bus cycle is extended.

In the pipeline, the address class signals and the memory request signals are ahead of
the datatransfer by onebuscycle. Inasystem using CLK EN this can be morethan one
CLK cycle. Thisisillustrated in Figure 3-7, which shows CLK EN being used to extend
anonseguentia cycle. In the example, thefirst N cycle isfollowed by another N cycle
to an unrelated address, and the address for the second access is broadcast before the
first access completes.

CLK | | | | | L
CLKEN \ _ / \ / \ /
Address-class signals ::X Address 1) Address 2 X Next address X
TRANSJ[1:0] ::X N cycle X N cycle X Next cycle type X
RDATA[31:0]
(read) X X X X
Read data1 Read data2
) First bus cycle o Second bus cycle !
Figure 3-7 Use of CLKEN
Note

When designing amemory controller, you are strongly advised to sample the val ues of
TRANS[1:0] and the address class signals only when CLKEN isHIGH. This ensures
that the state of the memory controller is not accidentally updated during a bus cycle.

ARM DDI 0234A

Copyright © 2001 ARM Limited. All rights reserved. 3-17

Memory Interface

3-18 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0234A

Chapter 4

Coprocessor Interface

This chapter describes the ARM7TDMI-S coprocessor interface. It contains the
following sections:

. About coprocessors on page 4-2

. Coprocessor interface signals on page 4-4

. Pipeline-following signals on page 4-5

. Coprocessor interface handshaking on page 4-6
. Connecting coprocessors on page 4-11

. Not using an external coprocessor on page 4-14
. Undefined instructions on page 4-15

. Privileged instructions on page 4-16.

ARM DDI 0234A

Copyright © 2001 ARM Limited. All rights reserved.

4-1

Coprocessor Interface

4.1 About coprocessors

The ARM7TDMI-S processor instruction set enables you to implement specialized
additional instructions using coprocessors. These are separate processing units that are
tightly coupled to the ARM7TDMI-S core. A typical coprocessor contains:

. an instruction pipeline

. instruction decoding logic

. handshake logic

. aregister bank

. specia processing logic, with its own data path.

A coprocessor is connected to the same data bus asthe ARM 7TDMI-S processor in the
system, and tracks the pipeline in the ARM7TDMI-S core. This means that the
coprocessor can decodetheinstructionsin theinstruction stream, and execute those that
it supports. Each instruction progresses down both the ARM7TDMI-S processor
pipeline and the coprocessor pipeline at the sametime.

The execution of instructions is shared between the ARM7TDMI-S core and the
COProcessor.

The ARM7TDMI-S core:

1. Evaluatesthe condition codes to determine whether the instruction must be
executed by the coprocessor, then signals this to any coprocessors in the system
(using CPnl).

2. Generates any addresses that are required by the instruction, including
prefetching the next instruction to refill the pipeline.

3. Takesthe undefined instruction trap if no coprocessor accepts the instruction.
The coprocessor:

1. Decodes instructions to determine whether it can accept the instruction.

2. Indicates whether it can accept the instruction (by signaling on CPA and CPB).
3. Fetchesany valuesrequired from its own register bank.

4. Performs the operation required by the instruction.

If a coprocessor cannot execute an instruction, the instruction takes the undefined
instruction trap. You can choose whether to emulate coprocessor functionsin software,
or to design a dedicated coprocessor.

4-2

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0234A

Coprocessor Interface

4.1.1 Coprocessor availability

You can connect up to 16 coprocessors into a system, each with a unique coprocessor
ID number to identify it. The ARM7TDMI-S processor contains two internal
COProcessors:

. CP14 is the communications channel coprocessor
. CP15 is the system control coprocessor for cache and MMU functions.

Therefore, you cannot assign external coprocessors to coprocessor numbers 14 and 15.
Other coprocessor numbers have a so been reserved by ARM. Coprocessor availability
isshownin Table 4-1.

Table 4-1 Coprocessor availability

Slj)rp:]rl;):ressor Allocation

15 System control
14 Debug controller
13:8 Reserved

74 Available to users
3:0 Reserved

If you intend to design acoprocessor send an E-mail with coprocessor inthe subject line
to info@arm.com for up to date information on coprocessor numbers that have already
been allocated.

ARM DDI 0234A Copyright © 2001 ARM Limited. All rights reserved. 4-3

Coprocessor Interface

4.2 Coprocessor interface signals

The signalsused to interface the ARM7TDMI-S coreto acoprocessor are grouped into
four categories.

The clock and clock control signalsare:

CLK
CLKEN
NRESET.

The pipeline-following signas are:

CPNMREQ
CPSEQ
CPNnTRANS
CPnOPC
CPTBIT.

The handshake signals are:

CPnl
CPA
CPB.

The datasignals are:

WDATA[31:0]

RDATA[3L0].

These signals and their use are described in:

Pipeline-following signals on page 4-5
Coprocessor interface handshaking on page 4-6
Connecting coprocessors on page 4-11

Not using an external coprocessor on page 4-14
Undefined instructions on page 4-15

Privileged instructions on page 4-16.

4-4

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0234A

Coprocessor Interface

4.3 Pipeline-following signals

Every coprocessor in the system must contain a pipeline follower to track the
instructions executing in the ARM7TDM I-S core pipeline. The coprocessors connect to
the ARM7TDMI-S processor input data bus, RDATA[31:0], over which instructions
are fetched, and to CLK and CLKEN.

Itisessential that the two pipelinesremain in step at all times. When designing a
pipeline follower for a coprocessor, the following rules must be observed:

. Atreset (nRESET LOW), the pipeline must either be marked asinvalid, or filled
with instructions that do not decode to valid instructions for that coprocessor.

. The coprocessor state must only change when CLKEN isHIGH (except for
reset).

. An instruction must be loaded into the pipeline on the rising edge of CLK, and
only when CPnOPC, CPnMREQ, and CPTBIT were all LOW in the previous
bus cycle.

These conditions indicate that this cycle isan ARM state opcode Fetch, so the
new opcode must be sampled into the pipeline.

. The pipeline must be advanced on the rising edge of CLK when CPnOPC,
CPNnMREQ, and CPTBIT areall LOW in the current bus cycle.

These conditions indicate that the current instruction is about to complete
execution, because the first action of any instruction performing an instruction
fetch isto refill the pipeline.

Any instructions that are flushed from the ARM7TDMI-S processor pipeline never
signal on CPnl that they have entered Execute, and so they are automatically flushed
from the coprocessor pipeline by the prefetches required to refill the pipeline.

Thereare no coprocessor instructionsin the Thumb instruction set, and so coprocessors
must monitor the state of the CPTBIT signal to ensure that they do not try to decode
pairs of Thumb instructions as ARM instructions.

ARM DDI 0234A Copyright © 2001 ARM Limited. All rights reserved. 4-5

Coprocessor Interface

4.4 Coprocessor interface handshaking

The ARM7TDMI-S core and any coprocessors in the system perform a handshake
using the signals shown in Table 4-2.

Table 4-2 Handshaking signals

Signal Direction Meaning

CPnl ARM7TDMI-Sto coprocessor ~ Not coprocessor instruction
CPA Coprocessor to ARM7TDMI-S Coprocessor absent

CPB Coprocessor to ARM7TDMI-S Coprocessor busy

These signals are explained in more detail in Coprocessor signaling on page 4-7.

44.1 The coprocessor

The coprocessor decodes the instruction currently in the Decode stage of its pipeline
and checks whether that instruction is a coprocessor instruction. A coprocessor
instruction has a coprocessor number that matches the coprocessor 1D of the
COproCcessor.

If the instruction currently in the Decode stage is a coprocessor instruction:
1. The coprocessor attempts to execute the instruction.

2. Thecoprocessor signals back to the ARM7TDMI-S core using CPA and CPB.

442 The ARM7TDMI-S core

Coprocessor instructions progress down the ARM7TDMI-S processor pipelinein step
with the coprocessor pipeline. A coprocessor instruction is executed if thefollowing are
true:

1. The coprocessor instruction has reached the Execute stage of the pipeline. (It
might not if it was preceded by abranch.)

2. Theinstruction has passed its conditional execution tests.

3. A coprocessor inthe system has signaled on CPA and CPB that it isableto accept
the instruction.

If all theserequirementsare met, the ARM7TDMI-S core signalsby taking CPnl LOW,
committing the coprocessor to the execution of the coprocessor instruction.

4-6 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0234A

Coprocessor Interface

443 Coprocessor signaling
The coprocessor signals as follows:

Coprocessor absent
If acoprocessor cannot accept the instruction currently in Decode
it must leave CPA and CPB both HIGH.

Coprocessor present
If a coprocessor can accept an instruction, and can start that
instruction immediately, it must signa this by driving both CPA
and CPB LOW.

Coprocessor busy (busy-wait)

If acoprocessor can accept an instruction, but is currently unable
to processthat request, it can stall the ARM7TDMI-S core by
asserting busy-wait. Thisissignaled by driving CPA LOW, but
leaving CPB HIGH. When the coprocessor is ready to start
executing theinstruction it signalsthisby driving CPB LOW. This
isshown in Figure 4-1.

c [L L

Fetchstage) ADD) suB | cPDO) TsT SWINE X \ L

Decode stage | \ ADD) sus Y.cppo) TST ' SWINE L
_ \
Execute stage |)(\ ADD Y SuB) CPDO [TST JswiNEY
CPnl (from core) < SLV\

CPA (fi (

coproc(e;%rgr) \A\ /

CPB (fi

coproc(eg%rgr) \—J

RDATA[31:0] } | Fetch) 1 Fetch) | Fetch X | Fetch) I Fetch) X) {1 Fetch)1 Fetch)

(ADD) (SUB) (CPDO) (TST) (SWINE)
) coprocessor busy-waiting -

Figure 4-1 Coprocessor busy-wait sequence

ARM DDI 0234A Copyright © 2001 ARM Limited. All rights reserved. 4-7

Coprocessor Interface

4.4.4 Consequences of busy-waiting

A busy-waited coprocessor instruction can beinterrupted. If avalid FIQ or IRQ occurs
(the appropriate bit is cleared in the CSPR), the ARM7TDMI-S core abandons the
coprocessor instruction, and signals this by taking CPnl HIGH. A coprocessor that is
capable of busy-waiting must monitor CPnl to detect this condition. When the
ARM7TDMI-S coreabandons acoprocessor instruction, the coprocessor also abandons
the instruction and continues tracking the ARM7TDMI-S processor pipeline.

—— Caution

It is essential that any action taken by the coprocessor whileiit is busy-waiting is
idempotent. The actions taken by the coprocessor must not corrupt the state of the
coprocessor, and must be repeatable with identical results. The coprocessor can only
change its own state after the instruction has been executed.

445 Coprocessor register transfer instructions

The coprocessor register transfer instructions, MCR and MRC, transfer data between a
register in the ARM7TDMI-S processor register bank and a register in the coprocessor
register bank. An example sequence for a coprocessor register transfer is shown in
Figure 4-2.

ew L LI LT L L L LTL
Fetchstage | ADD | suB | MCR | TST J| swiNE X L
Decode stage | \ AabD) suB X MCR) TST \ SWINE) L
Execute stage | \ \ADD X/\SUB N MCR \ TST (swiNEY
(from core) < é__/
coprocesson S
coprocssson) -
RDATA[31:0] \ I Fetch | I Fetch) | Fetch) I Fetch f I Fetch) Y I Fetch X
(ADD) (SUB) (MCR) (TST) (SWINE)
WDATA[31:0] Y oTx X
A—>C

Figure 4-2 Coprocessor register transfer sequence

4-8

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0234A

4.4.6 Coprocessor data operations

Coprocessor Interface

Coprocessor data operations, CDP instructions, perform processing operations on the
data held in the coprocessor register bank. No information is transferred between the
ARM7TDMI-S core and the coprocessor as aresult of this operation. An example

sequence is shown in Figure 4-3.

CLK

Fetch stage
Decode stage

Execute stage

CPnl
(from core)
CPA (from
coprocessor)
CPB (from
Coprocessor)

RDATA[31:0]

[I A I A B
__J ApD) suB) cPDO) TST)SWINEY \ U
::)(Y ADD) sSuB K.CPDO J TST)SWINE)(:
— \
B X \ apD Y 5uB Y.cPDO | TST JSWINE)
/
(Z_J
i
v
\ I Fetch) I Fetch) I Fetch) | Fetch X | Fetch) | Fetch X
(ADD) ~ (SUB) (CPDO) (TST) (SWINE)

Figure 4-3 Coprocessor data operation sequence

ARM DDI 0234A Copyright © 2001 ARM Limited. All rights reserved.

4-9

Coprocessor Interface

447 Coprocessor load and store operations

The coprocessor load and store instructions are used to transfer data between a
coprocessor and memory. They can be used to transfer either asingle word of dataor a
number of the coprocessor registers. Thereis no limit to the number of words of data
that can be transferred by asingle LDC or STC instruction, but by convention a
coprocessor must not transfer more than 16 words of datain asingle instruction. An
example sequence is shown in Figure 4-4.

Note

If you transfer more than 16 words of datain a single instruction, the worst case
interrupt latency of the ARM7TDMI-S core increases.

cw L LT L L

]

Fetch —)JADD)_sus) Lbc) TsT) SWINE \ \ -
n=4
Destiggg | \ ADD) suB X\\LDC)(TST (SWINE) L
Execute
ecute D X | ADD)(//sus)> LDC (TST JswiNE)
CPnl
(from core)
CPA
(from coprocessor) ¥Q\ /
CPB \ /
(from coprocessor)

J I Fetch) I Fetch) | Fetch Y | Fetch) | Fetch) CP data) CP data) CP data) CP data | Fetch)
RDATA[31:0] (ADD) (SUB) (CPDO) (TST) (SWINE)

Figure 4-4 Coprocessor load sequence

4-10 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0234A

Coprocessor Interface

45 Connecting coprocessors

A coprocessor in an ARM7TDMI-S processor-based system must have 32-bit
connections to:

. transfer data from memory (instruction stream and LDC)
. write data from the ARM7TDMI-S (MCR)
. read data to the ARM7TDMI-S (MRC).

45.1 Connecting a single coprocessor

An example of how to connect a coprocessor into an ARM7TDMI-S processor-based
system is shown in Figure 4-5.

asel

1 |«
RDATA
ARM 0 < Memory
system
WDATA > 1
» 0
A A
csel ﬂ 0/
- bsel
z]
=) a
o o
) o
A
Coprocessor

Figure 4-5 Coprocessor connections

ARM DDI 0234A Copyright © 2001 ARM Limited. All rights reserved. 4-11

Coprocessor Interface

The fragments of Verilog that describe the register logic to derive asel, bsel, and csel
from the relevant ARM7TDMI-S processor or ARM7TDMI processor pins are
described in this section.

Thelogic for asel, bsel, and csel isasfollows:

assign asel = ~(cprt | (cpdt & nRW_r));
assign bsel = ~cpdt;
assign csel = cprt;

assign cpdt = ~nMREQ_r & ~CPA_r2 & nOPC_r;
assign cprt = nMREQ_r & SEQ_r;

Note
cpdt shows that the current cycleisaload or store cycle duetoan LDC or STC
instruction.
cprt shows that the current cycle isa coprocessor register transfer cycle.

The other signals used to drive these terms are as follows:

always @(posedge CLK)
if (CLKEN)
begin
NMREQ_r <= CPnMREQ; // Output from ARM7TDMI-S
SEQ_r <= CPSEQ; // Output from ARM7TDMI-S

nOPC_r <= CPnOPC; // Output from ARM7TDMI-S
nRW_r <= WRITE; // Output from ARM7TDMI-S
CPA_r <= CPA; // Input to ARM7TDMI-S
CPA_r2 <= CPA_r;

end

Note

If you are building a system with an ETM and an ARM7TDMI-S processor, you must
directly connect the ETM7 RDATA[31:0] and WDATA[31:0] to the ARM7TDMI-S
RDATA[31:0] and WDATA[31:0] buses. This enablesthe ETM to correctly trace
Coprocessor instructions.

4-12

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0234A

Coprocessor Interface

4.5.2 Connecting multiple coprocessors

If you have multiple coprocessors in your system, connect the handshake signals as
shown in Table 4-3.

Table 4-3 Handshake signal connections

Signal Connection

CPnl Connect this signal to all coprocessors present in the system

CPAandCPB Theindividua CPA and CPB outputs from each coprocessor must be
ANDed together, and connected to the CPA and CPB inputs on the
ARM7TDMI-S processor

You must aso multiplex the output data from the coprocessors.

ARM DDI 0234A Copyright © 2001 ARM Limited. All rights reserved. 4-13

Coprocessor Interface

4.6 Not using an external coprocessor

If you are implementing a system that does not include any external coprocessors, you
must tie both CPA and CPB HIGH. Thisindicates that no external coprocessors are
present in the system. If any coprocessor instructions are received, they take the
undefined instruction trap so that they can be emulated in software if required.

The coprocessor-specific outputs from the ARM7TDMI-S processor must be left

unconnected:

« CPnMREQ
. CPSEQ

. CPNnTRANS
. CPnOPC

. CPnl

. CPTBIT.

4-14 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0234A

Coprocessor Interface

4.7 Undefined instructions

The ARM7TDMI-S processor implements full ARM architecture vAT undefined
instruction handling. This means that any instruction defined in the ARM Architecture
Reference Manual as UNDEFINED, automatically causesthe ARM7TDMI-S processor to
take the undefined instruction trap. Any coprocessor instructions that are not accepted
by a coprocessor also result in the ARM7TDMI-S processor taking the undefined
instruction trap.

ARM DDI 0234A Copyright © 2001 ARM Limited. All rights reserved. 4-15

Coprocessor Interface

4.8 Privileged instructions

The output signal CPnTRANS enables the implementation of coprocessors, or
coprocessor instructions, that can only be accessed from privileged modes. The signa
meanings are shown in Table 4-4.

Table 4-4 CPnTRANS signal meanings

CPnTRANS Meaning
LOW User mode instruction
HIGH Privileged mode instruction

The CPNTRANS signal is sampled at the same time as the instruction, and is factored
into the coprocessor pipeline Decode stage.

Note

If a User mode process (CPNTRANS LOW) tries to access a coprocessor instruction
that can only be executed in aprivileged mode, the coprocessor must respond with CPA
and CPB HIGH. This causes the ARM7TDMI-S processor to take the undefined
instruction trap.

4-16

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0234A

Chapter 5

Debugging Your System

This chapter describes the debug features of the ARM7TDMI-S processor. It contains
the following sections:

. About debugging your system on page 5-3

. Controlling debugging on page 5-5

. Entry into debug state on page 5-7

. Debug interface on page 5-12

. ARM7TDMI-S core clock domains on page 5-13

. The EmbeddedI CE-RT macrocell on page 5-14

. Disabling Embedded| CE-RT on page 5-16

. The debug communi cations channel on page 5-20
. Scan chains and the JTAG interface on page 5-24
. Resetting the TAP controller on page 5-27

. Public JTAG instructions on page 5-28

. Test data registers on page 5-31

. Scan timing on page 5-36

. Examining the core and the system in debug state on page 5-39
. The program counter during debug on page 5-44
. Priorities and exceptions on page 5-47

ARM DDI 0234A

Copyright © 2001 ARM Limited. All rights reserved. 5-1

Debugging Your System

Watchpoint unit registers on page 5-48
Programming breakpoints on page 5-53
Programming watchpoints on page 5-55

Abort status register on page 5-56

Debug control register on page 5-57

Debug status register on page 5-60

Coupling breakpoints and watchpoints on page 5-62
Embedded! CE-RT timing on page 5-65.

5-2

Copyright © 2001 ARM Limited. All rights reserved.

ARM DDI 0234A

5.1 About debugging your system

The advanced debugging features of the ARM7TDMI-S (Rev 4) processor make it
easier to develop application software, operating systems, and the hardware itself.

5.1.1 A typical debug system

Debugging Your System

The ARM7TDMI-S processor forms one component of a debug system that interfaces
from the high-level debugging that you perform to the low-level interface supported by
the ARM7TDMI-S processor. Figure 5-1 shows atypica debug system.

A debug system usually has three parts:

Debug host

Protocol converter

Debug host
(host compiler
running ARM or
third party toolkit)

A 4

Protocol converter
(for example Multi-
ICE)

4

Debug target
(development
system containing
ARM7TDMI-S
processor)

Figure 5-1 Typical debug system

A computer that isrunning a software debugger such asthe ARM
Debugger for Windows (ADW). The debug host enables you to
issue high-level commands such as setting breakpoints or
examining the contents of memory.

This interfaces between the high-level commands issued by the
debug host and the low-level commands of the ARM7TDMI-S
processor JTAG interface. Typically it interfaces to the host

through an interface such as an enhanced parallel port.

ARM DDI 0234A Copyright © 2001 ARM Limited. All rights reserved.

5-3

Debugging Your System

Debug tar get The ARM7TDMI-S processor has hardware extensions that ease
debugging at the lowest level. These extensions enable you to:

. halt program execution
. examine and modify the internal state of the core
. examine the state of the memory system

. execute abort exceptions, allowing real-time monitoring of
the core

. resume program execution.

The debug host and the protocol converter are system-dependent.

5-4 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0234A

Debugging Your System

5.2 Controlling debugging

The major blocks of the ARM7TDMI-S processor are:

ARM CPU core This has hardware support for debug.
Embeddedl CE-RT macrocell

A set of registers and comparators that you use to generate debug
exceptions (such as breakpoints). Thisunit is described in The
EmbeddedI CE-RT macrocell on page 5-14.
TAP controller Controlsthe action of the scan chainsusing a JTAG serial
interface. For more details, see The TAP controller on page 5-26.

These blocks are shown in Figure 5-2.

ARM7TDMI-S
EmbedddedICE-RT

CPU core

‘ Scan chain 2 }7
?

Scan chain 1

v

ARM7TDMI-S
TAP controller

Figure 5-2 ARM7TDMI-S block diagram

5.2.1 Debug modes

You can perform debugging in either of the following modes:

Halt mode When the systemisin halt mode, the core enters debug state when

it encountersabreakpoint or awatchpoint. In debug state, the core
is stopped and isolated from the rest of the system. When debug

has completed, the debug host restores the core and system state,
and program execution resumes.

ARM DDI 0234A Copyright © 2001 ARM Limited. All rights reserved. 5-5

Debugging Your System

For more information, see Entry into debug state on page 5-7.

Monitor mode When the system is in monitor mode, the core does not enter
debug state on a breakpoint or watchpoint. Instead, an Instruction
Abort or Data Abort isgenerated and the core continuesto receive
and service interrupts as normal. You can use the abort status
register to establish whether the exception was dueto abreakpoint
or watchpoint, or to a genuine memory abort.

For moreinformation, seeMonitor mode debugging on page 5-18.

5.2.2 Examining system state during debugging

In both halt mode and monitor mode, the JTAG-style serial interface enables you to
examinetheinternal state of the core and the external state of the system while system
activity continues.

In halt mode, this enables instructions to be inserted serialy into the core pipeline
without using the external data bus. For example, when in debug state, a Store Multiple
(ST™) can be inserted into the instruction pipeline to export the contents of the
ARMT7TDMI-S processor registers. This data can be serially shifted out without
affecting the rest of the system. For more information, see Examining the core and the
system in debug state on page 5-39.

In monitor mode, the JTAG interfaceis used to transfer data between the debugger and
asimple monitor program running on the ARM7TDMI-S core.

For detailed information about the scan chains and the JTAG interface, see Scan chains
and the JTAG interface on page 5-24.

5-6

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0234A

5.3

Debugging Your System

Entry into debug state

If the system isin halt mode, any of the following types of interrupt force the processor
into debug state:

. abreakpoint (a given instruction fetch)
. awatchpoint (a data access)
. an external debug request.

Note

In monitor mode, the processor continues to execute instructionsin real time, and will
take an abort exception. The abort status register enables you to establish whether the
exception was due to a breakpoint or watchpoint, or to a genuine memory abort.

You can use the Embeddedl CE-RT logic to program the conditions under which a
breakpoint or watchpoint can occur. Alternatively, you can usethe DBGBREAK signal
to enable external logic to flag breakpoints or watchpoints and monitor the following:
. address bus

. data bus

. control signals.

Thetiming isthesamefor externally-generated breakpoi nts and watchpoints. Datamust
always be valid around the rising edge of CL K. When this datais an instruction to be
breakpointed, the DBGBREAK signal must be HIGH around therising edge of CLK.
Similarly, when the dataisfor aload or store, asserting DBGBREAK around therising
edge of CLK marks the data as watchpointed.

When a breakpoint or watchpoint is generated, there might be a delay before the
ARM7TDMI-S core enters debug state. When it enters debug state, the DBGACK
signal is asserted. The timing for an externally-generated breakpoint is shown in
Figure 5-3 on page 5-8.

ARM DDI 0234A

Copyright © 2001 ARM Limited. All rights reserved. 5-7

Debugging Your System

531

o [| | L, | L
ADDR[31:0]) X \
DATA[31:0] () ()) ff
DBGBREAK [\ y
DBGACK y /
TRANSI[1:0] Memory cycles :::: X Internal cycles

Figure 5-3 Debug state entry

Entry into debug state on breakpoint

The ARM7TDMI-S processor marks instructions as being breakpointed as they enter
the instruction pipeline, but the core does not enter debug state until the instruction
reaches the Execute stage.

Breakpointed instructions are not executed. Instead, the ARM7TDMI-S core enters
debug state. When you examine the internal state, you see the state before the
breakpointed instruction. When your examination is complete, remove the breakpoint.
Program execution restarts from the previously-breakpointed instruction.

When a breakpointed conditional instruction reaches the Execute stage of the pipeline,
the breakpoint is always taken if the system isin halt mode. The ARM7TDMI-S core
enters debug state regardless of whether the instruction condition is met.

A breakpointed instruction does not cause the ARM7TDMI-S core to enter debug state
when:

. A branch or awrite to the PC precedes the breakpointed instruction. In this case,
when the branch is executed, the ARM7TDM I -S processor flushestheinstruction
pipeline, so canceling the breakpoint.

. An exception occurs, causing the ARM7TDMI-S processor to flush the
instruction pipeline, and cancel the breakpoint. In normal circumstances, on
exiting from an exception, the ARM7TDMI-S core branches back to the
instruction that would have been executed next before the exception occurred. In
this case, the pipelineisrefilled and the breakpoint is reflagged.

5-8

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0234A

Debugging Your System

5.3.2 Entry into debug state on watchpoint

Watchpoints occur on data accesses. In halt mode, the core processing stops. |n monitor
mode, an abort exception is executed (see Abort on page 2-22). A watchpoint isalways
taken, but a core in halt mode might not enter debug state immediately because the
current instruction always completes. If the current instruction is a multiword load or
store (an LDM or STM), many cycles can elapse before the watchpoint is taken.

On awatchpoint, the following sequence occurs:

1. Thecurrent instruction completes.

2. All changesto the core state are made.

3. Load datais written into the destination registers.
4 Base write-back is performed.

Note

Watchpoints are similar to Data Aborts. The difference isthat when a Data Abort
occurs, although the instruction compl etes, the ARM7TDMI-S core prevents all
subsequent changesto the ARM7TDMI-S processor state. Thisaction enablesthe abort
handler to cure the cause of the abort, so the instruction can be re-executed.

If awatchpoint occurs when an exception is pending, the core enters debug state in the
same mode as the exception.

5.3.3 Entry into debug state on debug request

An ARM7TDMI-S core in halt mode can be forced into debug state on debug request
in either of the following ways:

. through Embedded| CE-RT programming (see Programming breakpoints on
page 5-53, and Programming watchpoints on page 5-55.)

. by asserting the DBGRQ pin.

When the DBGRQ pin has been asserted, the core normally enters debug state at the
end of the current instruction. However, when the current instruction is a busy-waiting
access to a coprocessor, the instruction terminates, and the ARM7TDMI-S core enters
debug state immediately. Thisis similar to the action of nIRQ and nFIQ.

5.3.4 Action of the ARM7TDMI-S in debug state

Whenthe ARM7TDMI-S processor enters debug state, the coreforces TRANS[1:0] to
indicateinternal cycles. Thisaction enablestherest of the memory system to ignore the
ARM7TDMI-Scoreand to function asnormal . Because therest of the system continues
to operate, the ARM7TDMI-S core isforced to ignore aborts and interrupts.

ARM DDI 0234A

Copyright © 2001 ARM Limited. All rights reserved. 5-9

Debugging Your System

535

Clocks

—— Caution
Do not reset the core while debugging, otherwise the debugger loses track of the core.

Note

The system must not change the CFGBI GEND signal during debug. From the point of
view of the programmer, if CFGBIGEND changes, the ARM7TDMI-S processor
changes, with the debugger unaware that the core has reset. You must also ensure that
NRESET isheld stable during debug. When the system applies reset to the
ARMT7TDMI-S processor (that is, NRESET isdriven LOW), the ARM7TDMI-S
processor state changes with the debugger unaware that the core has reset.

The system and test clocks must be synchronized externally to the macrocell. The ARM
Multi-1CE debug agent directly supports one or more cores within an ASIC design.
Synchronizing off-chip debug clocking with the ARM7TDMI-S macrocell requires a
three-stage synchronizer. The off-chip device (for example, Multi-ICE) issuesa TCK
signal and waitsfor the RTCK (Returned T CK) signal to come back. Synchronization
is maintai ned because the off-chip device does not progressto the next TCK until after
RTCK isreceived.

Figure 5-4 on page 5-11 shows this synchronization.

5-10

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0234A

Debugging Your System

nTRST | o DBGnTRST
| » Reset circuit »
TDO DBGTDO
DBGTCKEN
RTCK) >
Y
TCK synchronizer
TCK |
| D Q D Q D QH
CLK F
T™MS b ENg DBGTMS=
CLK
TDI EN G DBGTDI
CLK
Input sample
and hold
Multi_ICE interface pads
CLK

Note

All the D-types shown in Figure 5-4 are reset by DBGNTRST .

ARM7TDMI-S macrocell

Figure 5-4 Clock synchronization

ARM DDI 0234A Copyright © 2001 ARM Limited. All rights reserved.

5-11

Debugging Your System

5.4 Debug interface

The ARM7TDMI-S processor debug interface is based on |EEE Std. 1149.1- 1990,
Sandard Test Access Port and Boundary-Scan Architecture. Refer to this standard for
an explanation of the terms used in this chapter, and for adescription of the TAP
controller states.

5.4.1 Debug interface signals

There are three primary external signals associated with the debug interface:

. DBGBREAK and DBGRQ are system requests for the ARM7TDMI-S core to
enter debug state

. DBGACK isused by the ARM7TDMI-S coreto flag back to the systemthat it is
in debug state.

5-12 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0234A

Debugging Your System

55 ARM7TDMI-S core clock domains

The ARM7TDMI-S processor has asingle clock, CLK, that is qualified by two clock
enables:

. CLKEN controls access to the memory system

. DBGTCKEN controls debug operations.

During normal operation, CL KEN conditions CLK to clock the core. When the
ARMT7TDMI-S processor isin debug state, DBGTCKEN conditionsCLK to clock the
core.

ARM DDI 0234A Copyright © 2001 ARM Limited. All rights reserved. 5-13

Debugging Your System

5.6 The EmbeddedICE-RT macrocell

The ARM7TDMI-S processor EmbeddedI CE-RT macrocell module provides
integrated on-chip debug support for the ARM7TDMI-S core.

Embedded| CE-RT is programmed serially using the ARM7TDMI-S processor TAP
controller. Figure 5-5 illustrates the relationship between the core, Embeddedl CE-RT,
and the TAP contraller, showing only the signalsthat are pertinent to

Embedded| CE-RT.

€¢— DBGEXT[1:0]—

——DBGCOMMRX—p
——DBGCOMMTX—p

ARM7TDMI-S EmbeddedICE-RT

——DBGRNG[1:0]—p>
core macrocell [:0]

DBGACK—»
¢—DBGBREAK——
¢——DBGRQ

¢——DBGEN

¢—DBGTCKEN——
¢——DBGTMS
«¢——DBGTDI
DBGTDO—p»

——DBGNTRST—> TAP

Figure 5-5 The ARM7TDMI-S core, TAP controller, and EmbeddedICE-RT macrocell

5-14 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0234A

Debugging Your System

The Embedded| CE-RT logic comprises the following:

Two real-time watchpoint units

You can program one or both watchpoint units to halt the
execution of instructions by the core. Execution halts when the
values programmed into Embedded| CE-RT match the values
currently appearing on the address bus, data bus, and various
control signals. You can mask any bit so that its value does not
affect the comparison.

You can configure each watchpoint unit to be either awatchpoint
(monitoring dataaccesses) or abreakpoint (monitoring instruction
fetches). Watchpoints and breakpoints can be data-dependent.

For more details, see Watchpoint unit registers on page 5-48.

Abort statusregister

This register identifies the cause of an abort exception entry. For
more information, see Abort status register on page 5-56.

Debug Communications Channel (DCC)

The DCC passes information between the target and the host
debugger. For more information, see The debug communications
channel on page 5-20.

In addition, two independent registers provide overall control of Embeddedl CE-RT
operation. These are described in the following sections:

. Debug control register on page 5-57
. Debug status register on page 5-60.

Thelocationsof the Embeddedl CE-RT registersare given in Embedded| CE-RT register
map on page 5-17.

ARM DDI 0234A Copyright © 2001 ARM Limited. All rights reserved. 5-15

Debugging Your System

5.7 Disabling EmbeddedICE-RT
You can disable Embedded| CE-RT in two ways:

Permanently By wiring the DBGEN input LOW.
When DBGEN is LOW:
. DBGBREAK and DBGRQ areignored by the core
. DBGACK isforced LOW by the ARM7TDMI-S core
. interrupts pass through to the processor uninhibited
. the EmbeddedI CE-RT logic enters low-power mode.

—— Caution

Hard-wiring theDBGEN input LOW permanently disables debug
access. However, you must not rely on thisfor system security.

Temporarily By setting bit 5 in the debug control register (described in Debug
control register on page 5-57). Bit 5 is aso known asthe
Embedded| CE-RT disable bit.

You must set bit 5 before doing either of the following:
. programming breakpoint or watchpoint registers
. changing bit 4 of the debug control register.

5-16 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0234A

5.8 EmbeddedICE-RT register map

Debugging Your System

The locations of the Embedded| CE-RT registers are shown in Table 5-1.

Table 5-1 Function and mapping of EmbeddedICE-RT registers

Address Width Function

b00000 6 Debug control

b00001 5 Debug status

b00100 32 Debug Communications Channel (DCC) control
register

b00101 32 Debug Communications Channel (DCC) data register

b01000 32 Watchpoint 0 address value

b01001 32 Watchpoint 0 address mask

b01010 32 Watchpoint 0 data value

b01011 32 Watchpoint O data mask

b01100 9 Watchpoint 0 control value

b01101 8 Watchpoint O control mask

b10000 32 Watchpoint laddress value

b10001 32 Watchpoint 1 address mask

b10010 32 Watchpoint 1 data value

b10011 32 Watchpoint 1 data mask

b10100 9 Watchpoint 1 control value

b10101 8 Watchpoint 1 control mask

ARM DDI 0234A

Copyright © 2001 ARM Limited. All rights reserved.

5-17

Debugging Your System

5.9 Monitor mode debugging

The ARM7TDMI-S (Rev 4) processor containslogic that enables the debugging of a
system without stopping the core entirely. This means that critical interrupt routines
continue to be serviced while the coreis being interrogated by the debugger.

5.9.1 Enabling monitor mode

The debugging mode is controlled by bit 4 of the debug control register (described in
Debug control register on page 5-57). Bit 4 of this register is aso known as the monitor
mode enable bit:

Bit 4 set

Bit 4 clear

Enables the monitor mode features of the ARM 7TDMI-S processor.
When this bit is set, the EmbeddedI CE-RT logic is configured so that a
breakpoint or watchpoint causes the ARM7TDMI-S core to enter abort
mode, taking the Prefetch or Data Abort vectors respectively.

Monitor mode debugging is disabled and the system is placed into halt
mode. In halt mode, the core enters debug state when it encounters a
breakpoint or watchpoint.

5.9.2 Restrictions on monitor-mode debugging

There are severd restrictions you must be aware of when the ARM core is configured
for monitor-mode debugging:

. Breakpoints and watchpoints cannot be data-dependent in monitor mode. No
support is provided for use of the range functionality. Breakpoints and
watchpoints can only be based on the following:

instruction or data addresses

external watchpoint conditioner (DBGEXT[0] or DBGEXTI[1])
User or privileged mode access (CPNTRANS)

read/write access for watchpoints (WRITE)

access size (watchpoints SIZE[1:0]).

. External breakpoints or watchpoints are not supported.

. No support is provided to mix halt mode and monitor mode functionality.

The fact that an abort has been generated by the monitor mode is recorded in the abort
status register in coprocessor 14 (see Abort status register on page 5-56).

5-18 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0234A

Debugging Your System

The monitor mode enable bit does not put the ARM7TDMI-S processor into debug
state. For this reason, it is necessary to change the contents of the watchpoint registers
while external memory accesses are taking place, rather than changing them when in
debug state where the core is halted.

If there is a possibility of false matches occurring during changes to the watchpoint

registers (caused by old datain some registers and new data in others) you must:

1. Disablethe watchpoint unit by setting bit 5 in the debug control register (also
known as the EmbeddedI CE-RT disable bit).

2. Poll the debug control register until the Embeddedl CE-RT disablebit isread back
as set.

3. Changethe other registers.

4. Re-enablethewatchpoint unit by clearing the Embeddedl CE-RT disablebit inthe
debug control register.

ARM DDI 0234A Copyright © 2001 ARM Limited. All rights reserved. 5-19

Debugging Your System

5.10 The debug communications channel

The ARM7TDMI-S (Rev 4) EmbeddedI CE-RT contains a Debug Communication
Channel (DCC) for passing information between the target and the host debugger. This
isimplemented as coprocessor 14.

The DCC comprisestwo registers, asfollows:

DCC control register

A 32-bit register, used for synchronized handshaking between the
processor and the asynchronous debugger. For more details, see
DCC control register.

DCC data register

A 32-bit register, used for datatransfers between the debugger and
the processor. For more details, see Communications through the
DCC on page 5-22.

Theseregistersoccupy fixed locationsin the Embedded CE-RT memory map, as shown
in Table 5-1 on page 5-17. They are accessed from the processor using MCR and MRC
instructions to coprocessor 14.

The registers are accessed as follows:
By thedebugger Through scan chain 2 in the usual way.

By theprocessor Through coprocessor register transfer instructions.

5.10.1 DCC control register

The DCC control register is read-only and enables synchronized handshaking between
the processor and the debugger. The register format is shown in Figure 5-6.

313029 28 27 26 25 24 23 22 2120 19 18 17 16 1514 13 12 11 10 09 08 07 06 05 04 03 02 01 00

0/0|0|1 W|R

Figure 5-6 DCC control register

5-20 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0234A

Debugging Your System

The DCC control register bit assignments are shown in Table 5-2.

Table 5-2 DCC control register bit assignments

Bit Function

31:28 Contain afixed pattern that denotes the
EmbeddedI CE-RT version number, in this case
b0001.

27:2 Reserved.

1 The write control bit.

If thisbit isclear, the DCC data write register isready
to accept data from the processor.

If this bit is set, there is datain the DCC data write
register and the debugger can scan it out.

0 Theread contral bit.
If this bit isclear, the DCC dataread register is ready
to accept data from the debugger.
If this bit is set, the DCC data read register contains
new data that has not been read by the processor, and
the debugger must wait.

Note

If execution is halted, bit 0 might remain asserted. The debugger can clear it by writing
to the DCC control register.

Writing to thisregister is rarely necessary, because in normal operation the processor
clearsbit O after reading it.

Instructions
The following instructions must be used:

MRC CP14, 0, Rd, (0, CO
Returns the value from the DCC control register into the
destination register Rd.

MCR CP14, @, Rn, C1, CO

Writes the value in the source register Rn to the DCC datawrite
register.

ARM DDI 0234A Copyright © 2001 ARM Limited. All rights reserved. 5-21

Debugging Your System

MRC CP14, 0, Rd, (1, (O

Returns the value from the DCC data read register into the
destination register Rd.

Note

The Thumb instruction set does not contain coprocessor instructions, soitis
recommended that these are accessed using SWI instructions when in Thumb state.

5.10.2 Communications through the DCC

M essages can be sent and received through the DCC.

Sending a message to the debugger

When the processor wishes to send a message to the debugger, it must check that the
DCC data write register is free for use by finding out whether the W bit of the DCC
control register is clear.

The processor reads the DCC control register to check the status of the W bit:
. If W bit isclear, the DCC datawrite register is clear.

. If the W bit is set, previously written data has not been read by the debugger. The
processor must continue to poll the control register until the W bit is clear.

When the W bit is clear, amessage is written by aregister transfer to coprocessor 14.
Asthe data transfer occurs from the processor to the DCC datawrite register, the W bit
isset in the DCC control register.

The debugger sees both the R and W bitswhen it pollsthe DCC control register through
the JTAG interface. When the debugger sees that the W bit is set, it can read the comms
data write register and scan the data out. The action of reading this data register clears
the debug comms control register W bit. At this point the communications process can

begin again.

Receiving a message from the debugger

Transferring a message from the debugger to the processor is similar to sending a
message to the debugger. In this case, the debugger polls the R bit of the debug comms
control register:

. If the R bit isLOW, the comms data read register is free, and data can be placed
there for the processor to read.

5-22

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0234A

Debugging Your System

. If the R bit is set, previously deposited data has not yet been collected, so the
debugger must wait.

When the comms data read register is free, data is written there using the JTAG
interface. The action of this write sets the R bit in the debug comms control register.

The processor polls the debug comms control register. If the R bit is set, there is data
that can be read using an MRC instruction to coprocessor 14. The action of thisload
clearsthe R bit in the debug comms control register. When the debugger polls this
register and seesthat the R bit is clear, the data has been taken, and the process can now
be repeated.

ARM DDI 0234A

Copyright © 2001 ARM Limited. All rights reserved. 5-23

Debugging Your System

5.11 Scan chains and the JTAG interface

Therearetwo JTAG-style scan chainswithintheARM7TDMI-S processor. Theseallow
debugging and EmbeddedlI CE-RT programming.

A JTAG-style Test Access Port (TAP) controller controls the scan chains. For more

details of the JTAG specification, see IEEE Standard 1149.1 - 1990 Sandard Test
Access Port and Boundary-Scan Architecture.

5.11.1 Scan chain implementation

The two scan paths are referred to as scan chain 1 and scan chain 2. They are shown in
Figure 5-7. Scan chain 0 is not implemented on the ARM7TDMI-S processor.

ARM7TDMI-S
EmbedddedICE-RT
CPU core

‘ Scan chain 2 }7
?

Scan chain 1

v

ARM7TDMI-S
TAP controller

Figure 5-7 ARM7TDMI-S scan chain arrangements

Scan chain 1

Scan chain 1 provides seria access to the core data bus RDATA/WDATA and the
DBGBREAK signal.

There are 33 bitsin this scan chain, the order being (from serial datain to out):
. data bus bits 0 through 31

. the DBGBREAK bit (the first to be shifted out).

5-24 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0234A

Debugging Your System

Scan chain 2

Scan chain 2 enables access to the Embedded| CE-RT registers. See Test data registers
on page 5-31 for details.

5.11.2 Controlling the JTAG interface

The JTAG interfaceis driven by the currently-loaded instruction in the instruction
register (described in Instruction register on page 5-32). The loading of instructionsis
controlled by the Test Access Port (TAP) controller.

For more information about the TAP controller, see The TAP controller on page 5-26.

ARM DDI 0234A

Copyright © 2001 ARM Limited. All rights reserved. 5-25

Debugging Your System

5.12 The TAP controller

The TAP controller is a state machine that determines the state of the ARM7TDMI-S
boundary-scan test signals DBGTDI and DBGTDO. Figure 5-8shows the state
transitions that occur in the TAP controller.

Test-Logic Reset \ 4
OxF -

tms=1

n ~ Select-DR-Scan \ims=1 ~ Select-IR-Scan tms=1
i 0x7 v Ox4

0xC

tms=0 A tms=0

= Capture-DR
0x6

Pause-IR
0xB
tms=0

tms=1

Figure 5-8 Test access port controller state transitions

From |EEE Std 1149.1-1990. Copyright 2001 IEEE. All rights reserved.

5-26 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0234A

Debugging Your System

5.12.1 Resetting the TAP controller

To forcethe TAP controller into the correct state after power-up, you must apply areset
pulse to the DBGnTRST signal:

. When the boundary-scan interface isto be used, DBGNTRST must be driven
LOW and then HIGH again.

. When the boundary-scan interface is not to be used, you can tiethe DBGNTRST
input LOW.

Note
A clock on CLK with DBGTCKEN HIGH is not necessary to reset the device.

The action of reset is as follows:

1. Systemmodeisselected. Thismeansthat the boundary-scan cells do not intercept
any of the signals passing between the external system and the core.

2. ThelDCODE instruction is selected.

Whenthe TAP controller isputinto the SHIFT-DR stateand CLK ispulsed while
enabled by DBGTCK EN, the contents of the ID register are clocked out of
DBGTDO.

ARM DDI 0234A

Copyright © 2001 ARM Limited. All rights reserved. 5-27

Debugging Your System

5.13 Public JTAG instructions
Table 5-3 shows the public JTAG instructions.

Table 5-3 Public instructions

Instruction Binary code
SCAN_N 0010
INTEST 1100
IDCODE 1110
BYPASS 1111
RESTART 0100

In the following descriptions, the ARM7TDMI-S processor samplesDBGTDI and
DBGTMS on therising edge of CLK with DBGTCKEN HIGH. The TAP controller
states are shown in Figure 5-8 on page 5-26.

5.13.1 SCAN_N (0010)

The SCAN_N instruction connects the scan path sel ect register between DBGTDI and
DBGTDO:

. In the CAPTURE-DR state, the fixed value 1000 is loaded into the register.

. Inthe SHIFT-DR state, the ID number of the desired scan path is shifted into the
scan path select register.

. Inthe UPDATE-DR state, the scan register of the selected scan chain is connected
between DBGTDI and DBGTDO, and remains connected until a subsequent
SCAN_N instruction isissued.

. On reset, scan chain O is selected by default.
The scan path select register is 4 bits long in thisimplementation, although no finite
length is specified.
5.13.2 INTEST (1100)
The INTEST instruction places the selected scan chain in test mode:

. The INTEST instruction connects the sel ected scan chain between DBGTDI and
DBGTDO.

5-28 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0234A

Debugging Your System

. When the INTEST instruction is loaded into the instruction register, all the scan
cells are placed in their test mode of operation.

. In the CAPTURE-DR state, the value of the data applied from the core logic to
the output scan cells, and the value of the data applied from the system logic to
the input scan cellsis captured.

. Inthe SHIFT-DR state, the previoudly-captured test datais shifted out of the scan
chain through the DBGTDO pin, while new test datais shifted in through the
DBGTDI pin.

Single-step operation of the coreis possible using the INTEST instruction.

5.13.3 IDCODE (1110)

The IDCODE instruction connects the device identification code register (or

ID register) between DBGTDI and DBGTDO. The ID register is a 32-hit register that
enables the manufacturer, part number, and version of a component to be read through
the TAP. See ARM7TDMI-Sdeviceidentification (ID) coderegister on page 5-31for the
details of the ID register format.

When the IDCODE instruction is loaded into the instruction register, al the scan cells
are placed in their normal (system) mode of operation:

. Inthe CAPTURE-DR state, the device identification codeis captured by the ID
register.

. In the SHIFT-DR state, the previously captured device identification codeis
shifted out of the ID register through the DBGTDO pin, while datais shifted into
the ID register through the DBGTDI pin.

. In the UPDATE-DR state, the ID register is unaffected.

5.13.4 BYPASS (1111)

The BY PASS instruction connects a 1-bit shift register (the bypass register) between
DBGTDI and DBGTDO.

When the BY PASS instruction is loaded into the instruction register, al the scan cells
assumetheir norma (system) mode of operation. The BY PASSinstruction hasno effect
on the system pins:

. Inthe CAPTURE-DR state, alogic 0 is captured the bypass register.

. Inthe SHIFT-DR state, test data is shifted into the bypass register through
DBGTDI and shifted out on DBGTDO after adelay of one CLK cycle. Thefirst
bit to shift out isa zero.

ARM DDI 0234A

Copyright © 2001 ARM Limited. All rights reserved. 5-29

Debugging Your System

. The bypass register is not affected in the UPDATE-DR state.
All unused instruction codes default to the BY PASS instruction.

5.13.5 RESTART (0100)

The RESTART instruction restarts the processor on exit from debug state. The
RESTART instruction connects the bypass register between DBGTDI and DBGTDO.
The TAP controller behaves as if the BY PASS instruction had been loaded.

The processor exits debug state when the RUN-TEST/IDLE stateis entered.

For more information, see Exit from debug state on page 5-42.

5-30 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0234A

Debugging Your System

5.14 Test dataregisters

The six test data registers that can connect between DBGTDI and DBGTDO are
described in the following sections:

. Bypass register

. ARM7TDMI-Sdevice identification (ID) code register
. Instruction register on page 5-32

. Scan path select register on page 5-32

. Scan chain 1 on page 5-34

. Scan chain 2 on page 5-34.

In the following descriptions, datais shifted during every CLK cycle when
DBGTCKEN enableis HIGH.

5.14.1 Bypass register

Purpose Bypasses the device during scan testing by providing a path
between DBGTDI and DBGTDO.

Length 1 bit.

Operatingmode When the BY PASS instruction is the current instruction in the
instruction register, serial datais transferred from DBGTDI to
DBGTDO inthe SHIFT-DR state with adelay of one CLK cycle
enabled by DBGTCKEN.
Thereis no parallel output from the bypass register.
A logic Oisloaded from the parallel input of the bypassregister in
the CAPTURE-DR state.

5.14.2 ARM7TDMI-S device identification (ID) code register

Purpose Reads the 32-bit device identification code. No programmable
supplementary identification code is provided.
Length 32 bits. Theformat of the ID code register is as shown in
Figure 5-9.
31 28 27 12 1 10
Version Part number Manufacturer identity |1

Figure 5-9 ID code register format

ARM DDI 0234A Copyright © 2001 ARM Limited. All rights reserved. 5-31

Debugging Your System

The default device identification code is 0x7f1fofof.

Operating mode

5.14.3 Instruction register
Purpose
Length

Operating mode

5.14.4 Scan path select register
Purpose
Length

Operating mode

When the IDCODE instruction is current, the ID register is
selected as the serial path between DBGTDI and DBGTDO.

Thereis no parallel output from the ID register.

The 32-bit deviceidentification code isloaded into the I D register
from its parallel inputs during the CAPTURE-DR state.

Changes the current TAP instruction.
4 hits.

In the SHIFT-IR state, the instruction register is selected as the
serial path between DBGTDI, and DBGTDO.

During the CAPTURE-IR state, the binary value 0001 is loaded
into thisregister. Thisvaueis shifted out during SHIFT-IR (least
significant bit first), while a new instruction is shifted in (least
significant bit first).

During the UPDATE-IR state, the vaue in theinstruction register
becomes the current instruction.

On reset, IDCODE becomes the current instruction.
Thereis no parity bit.

Changes the current active scan chain.
4 hits.

SCAN_N asthecurrent instructionin the SHIFT-DR state selects
the scan path select register asthe seria path between DBGTDI,
and DBGTDO.

During the CAPTURE-DR state, the value 1000 binary isloaded
into thisregister. Thisvalueisloaded out during SHIFT-DR (least
significant bit first), while anew value isloaded in (least
significant bit first). During the UPDATE-DR state, the valuein
the register selects a scan chain to become the currently active
scan chain. All additional instructions, such as INTEST, then
apply to that scan chain.

5-32 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0234A

Debugging Your System

The currently-selected scan chain changes only when aSCAN_N
instruction is executed, or when areset occurs. On reset, scan
chain 0 is selected as the active scan chain.

Table 5-4 shows the scan chain number all ocation.

Table 5-4 Scan chain number allocation

Scan chain number Function

0 Reserveda

1 Debug

2 EmbeddedI CE-RT
programming

3 Reserveda

4 Reserveda

8 Reserveda

a. When selected, dl reserved scan chains scan
out zeros.

5.145 Scan chains 1 and 2

The scan chains allow serial access to the core logic, and to the Embeddedl CE-RT
hardware for programming purposes. Each scan chain cell issimple and comprises a
serial register and a multiplexor.

The scan cells perform three basic functions:

. capture
. shift
. update.

For input cells, the capture stage involves copying the value of the system input to the
coreinto the serial register. During shift, thisvalueis output serially. The value applied
to the core from an input cell is either the system input, or the contents of the parallel
register (loads from the shift register after UPDATE-DR state) under multiplexor
control.

For output cells, capture involves placing the value of a core output into the serial
register. During shift, this value is serially output as before. The value applied to the
system from an output cell is either the core output, or the contents of the serial register.

ARM DDI 0234A

Copyright © 2001 ARM Limited. All rights reserved. 5-33

Debugging Your System

All the control signals for the scan cells are generated internally by the TAP controller.
The action of the TAP controller is determined by current instruction and the state of the

TAP state machine.

Scan chain 1

Purpose

Length

Scan chain order

Scan chain 1 is used for communication between the debugger,
andthe ARM7TDMI-S core. It isused to read and write data, and
to scan instructions into the pipeline. The SCAN_N TAP
instruction can be used to select scan chain 1.

33 hits, 32 bits afor the data value and 1 bit for the scan cell on
the DBGBREAK coreinput.

From DBGTDI to DBGTDO, the ARM7TDMI-S processor data
bits, bits 0 to 31, then the 33rd bit, the DBGBREAK scan cell.

Scan chain 1, bit 33 serves three purposes:

. Under normal INTEST test conditions, it enables a known value to be scanned
into the DBGBREAK input.

. While debugging, the value placed in the 33rd bit determines whether the
ARM7TDMI-S core synchronizes back to system speed before executing the
instruction. See System speed access on page 5-46 for more details.

. After the ARM7TDMI-S core has entered debug state, the value of the 33rd bit
onthefirst occasion that it is captured, and scanned out tellsthe debugger whether
the core entered debug state from a breakpoint (bit 33 LOW), or from a
watchpoint (bit 33 HIGH).

Scan chain 2

Purpose

Length

Scan chain order

Scan chain 2 provides access to the Embedded| CE-RT registers.
To dothis, scan chain 2 must be selected using the SCAN_N TAP
controller instruction, and then the TAP controller must be put in
INTEST mode.

38 hits.

From DBGTDI to DBGTDO, the read/write bit, the register
address bits, bits 4 to 0, then the data bits, bits 0 to 31.

No action occurs during CAPTURE-DR.

During SHIFT-DR, a datavalue is shifted into the seria register. Bits 32 to 36 specify
the address of the Embedded| CE-RT register to be accessed.

5-34

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0234A

Debugging Your System

During UPDATE-DR, this register is either read or written depending on the value of
bit 37 (0 = read, 1 = write). See Figure 5-12 on page 5-49 for more details.

ARM DDI 0234A Copyright © 2001 ARM Limited. All rights reserved. 5-35

Debugging Your System

5.15 Scan timing

Figure 5-10 provides general scan timing information.

CLK

DBGTCKEN

DBGTMS
DBGTDI

DBGTDO

5.15.1 Scan chain 1 cells

t —» <+
istcken

—> <
tihtcken

t —» <+
istctl

—>
tihtctl

\ \

—»
ovtdo

—> <—
tohtdo

Figure 5-10 Scan timing

The ARM7TDMI-S processor provides data for scan chain 1 cells as shown in

Table 5-5.

Table 5-5 Scan chain 1 cells

Number Signal Type

1 DATAIQ] Input/output
2 DATA[1] Input/output
3 DATA[2] Input/output
4 DATA[3] Input/output
5 DATA[4] Input/output
6 DATA[5] Input/output
7 DATA[6] Input/output

5-36

Copyright © 2001 ARM Limited. All rights reserved.

ARM DDI 0234A

Debugging Your System

Table 5-5 Scan chain 1 cells (continued)

Number Signal Type

8 DATA[7] Input/output
9 DATA[8] Input/output
10 DATA[9] Input/output
11 DATA[10] Input/output
12 DATA[11] Input/output
13 DATA[12] Input/output
14 DATA[13] Input/output
15 DATA[14] Input/output
16 DATA[15] Input/output
17 DATA[16] Input/output
18 DATA[17] Input/output
19 DATA[18] Input/output
20 DATA[19] Input/output
21 DATA[20] Input/output
22 DATA[21] Input/output
23 DATA[22] Input/output
24 DATA[23] Input/output
25 DATA[24] Input/output
26 DATA[25] Input/output
27 DATA[26] Input/output
28 DATA[27] Input/output
29 DATA[28] Input/output
30 DATA[29] Input/output

ARM DDI 0234A

Copyright © 2001 ARM Limited. All rights reserved.

5-37

Debugging Your System

Table 5-5 Scan chain 1 cells (continued)

Number Signal Type
31 DATA[30] Input/output
32 DATA[31] Input/output
33 DBGBREAK Input

5-38 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0234A

Debugging Your System

5.16 Examining the core and the system in debug state

When the ARM7TDMI-S processor is in debug state, you can examine the core and
system state by forcing the load and store multiples into the instruction pipeline.

Before you can examine the core and system state, the debugger must determine
whether the processor entered debug state from Thumb state or ARM state, by
examining bit 4 of the EmbeddedI CE-RT debug status register, as follows:

Bit 4 HIGH The core has entered debug from Thumb state.
Bit 4LOW The core has entered debug from ARM state.

5.16.1 Determining the core state

When the processor has entered debug state from Thumb state, the simplest course of
actionisfor the debugger to force the core back into ARM state. The debugger can then
execute the same sequence of instructions to determine the processor state.

To force the processor into ARM state, execute the following sequence of Thumb
instructions on the core:

STR RO, [RO]; Save RO before use
MOV R@, PC ; Copy PC into RO

STR RO, [RO]; Now save the PC in RO
BX PC ; Jump into ARM state
MOV R8, R8 ; NOP

MOV R8, R8 ; NOP

—— Note

Because all Thumb instructions are only 16 bits long, you can repeat the instruction
when shifting scan chain 1. For example, the encoding for BX RO is 0x4700, so when
0x47004700 shiftsinto scan chain 1, the debugger does not have to keep track of the half
of the bus on which the processor expects to read the data.

You can use the sequences of ARM instructions below to determine the state of the
processor.

With the processor in the ARM state, the first instruction to execute is typically:
STM R@, {RO-R15}

Thisinstruction causes the contents of the registers to appear on the data bus. You can
then sample and shift out these values.

ARM DDI 0234A

Copyright © 2001 ARM Limited. All rights reserved. 5-39

Debugging Your System

5.16.2 Determining

Note

The use of r0 asthe base register for the STM isonly for illustration, any register can
be used.

After you have determined the values in the current bank of registers, you might wish
to access the banked registers. To do this, you must change mode. Normally, amode
change can occur only if the coreisalready in aprivileged mode. However, whilein
debug state, a mode change from one mode into any other mode can occur.

The debugger must restore the original mode before exiting debug state. For example,
if the debugger was requested to return the state of the User mode registers, and FIQ
mode registers, and debug state was entered in Supervisor mode, the instruction
sequence might be:

STM RO, {RO-R15}; Save current registers

MRS RO, CPSR

STR RO, RO; Save CPSR to determine current mode

BIC RO, Ox1F; Clear mode bits

ORR RO, 0x10; Select user mode

MSR CPSR, R@; Enter USER mode

STM RO, {R13,R14}; Save register not previously visible
ORR RO, 0x01; Select FIQ mode

MSR CPSR, RO; Enter FIQ mode

STM RO, {R8-R14}; Save banked FIQ registers

All theseinstructions execute at debug speed. Debug speed is much slower than system
speed. This is because between each core clock, 33 clocks occur in order to shift in an
instruction, or shift out data. Executing instructions this slowly is acceptable for
accessing the core state because the ARM7TDMI-S processor is fully static. However,
you cannot use this method for determining the state of the rest of the system.

Whilein debug state, only the following instructions can be scanned into the instruction
pipeline for execution:

. all data processing operations
. all load, store, load multiple, and store multiple instructions
. MSR and MRS.

system state

To meet the dynamic timing requirements of the memory system, any attempt to access
system state must occur with the clock qualified by CLKEN. To perform a memory
access, CLKEN must be used to force the ARM7TDMI-S processor to run in normal
operating mode. Thisis controlled by bit 33 of scan chain 1.

5-40

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0234A

Debugging Your System

Aninstruction placed in scan chain 1 with bit 33, the DBGBREAK bit, LOW executes
at debug speed. To execute an instruction at system speed, theinstruction prior to it must
be scanned into scan chain 1 with bit 33 set HIGH.

After the system speed instruction has scanned into the data bus and clocked into the
pipeline, the RESTART instruction must be loaded into the TAP controller. RESTART
causes the ARM7TDMI-S processor to:

1. Switch automatically to CLKEN control.
2. Executetheinstruction at system speed.
3. Reenter debug state.

When the instruction has completed, DBGACK is HIGH and the core revertsto
DBGTCKEN control. It is now possible to select INTEST in the TAP controller and
resume debugging.

The debugger must ook at both DBGACK and TRANS[1:0] to determine whether a
system speed instruction has completed. To access memory, the ARM7TDMI-S core
drives both bits of TRANS[1:0] LOW &fter it has synchronized back to system speed.
Thistransitionisused by thememory controller to arbitrate whether the ARM7TDMI-S
core can have the bus in the next cycle. If the bus is not available, the ARM7TDMI-S
processor might have its clock stalled indefinitely. The only way to determine whether
the memory access has completed is to examine the state of both TRANS[1:0] and
DBGACK. When both are HIGH, the access has compl eted.

The debugger usually uses EmbeddedI CE-RT to control debugging, and so the state of
TRANS[1:0] and DBGACK can be determined by reading the Embeddedl CE-RT
status register. See Debug status register on page 5-60 for more details.

The state of the system memory can befed back to the debug host by using system speed
load multiples and debug speed store multiples.

There are restrictions on which instructions can have bit 33 set. The valid instructions
on which to set thisbit are:

. loads
. stores
. load multiple

. store multiple.
See also Exit from debug state on page 5-42.

When the ARM7TDMI-S processor returns to debug state after a system speed access,
bit 33 of scan chain 1 is set HIGH. The state of bit 33 gives the debugger information
about why the core entered debug state the first time this scan chain is read.

ARM DDI 0234A

Copyright © 2001 ARM Limited. All rights reserved. 5-41

Debugging Your System

5.17 Exit from debug state

L eaving debug state involves:

. restoring the ARM7TDMI-S processor internal state

. causing the execution of a branch to the next instruction
. returning to normal operation.

After restoring the internal state, a branch instruction must be loaded into the pipeline.
See The program counter during debug on page 5-44 for details on calculating the
branch.

Bit 33 of scan chain 1 forces the ARM7TDMI-S processor to resynchronize back to
CLKEN, clock enable. The penultimate instruction of the debug sequenceis scanned
inwith bit 33 set HIGH. Thefinal instruction of the debug sequenceisthe branch, which
is scanned in with bit 33 LOW. The core isthen clocked to load the branch instruction
into the pipeline, and the RESTART instruction is selected in the TAP controller.

When the state machine enters the RUN-TEST/IDLE state, the scan chain reverts back
to System mode. The ARM7TDMI-S processor then resumes normal operation,
fetching instructions from memory. This delay, until the state machineisin the
RUN-TEST/IDLE state, enables conditions to be set up in other devicesin a
multiprocessor system without taking immediate effect. When the state machine enters
the RUN-TEST/IDLE state, al the processors resume operation simultaneously.

DBGACK informsthe rest of the system when the ARM7TDMI-S processor isin
debug state. This information can be used to inhibit peripherals, such as watchdog
timers, that have real-time characteristics. DBGACK can also mask out memory
accesses caused by the debugging process.

For example, when the ARM7TDMI-S processor enters debug state after a breakpoint,
theinstruction pipeline contai nsthe breakpointed i nstruction, and two other instructions
that have been prefetched. On entry to debug state the pipelineisflushed. On exit from
debug state the pipeline must therefore revert to its previous state.

Because of the debugging process, more memory accesses occur than are expected
normally. DBGACK can inhibit any system peripheral that might be sensitive to the
number of memory accesses. For example, a peripheral that counts the number of
memory cycles must return the same answer after a program has been run with and
without debugging. Figure 5-11 on page 5-43 showsthebehavior of the ARM7TDMI-S
processor on exit from the debug state.

5-42

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0234A

Debugging Your System

oK] gigigipipipil
TRANS Internal cycles K NYsYs)X X X
ADDR([31:0] \ Ab JAb+4fAb+s) X
DATA[31:0] () —
DBGACK \

Figure 5-11 Debug exit sequence

Figure 5-3 on page 5-8 shows that the final memory access occurs in the cycle after
DBGACK goes HIGH. Thisis the point at which the cycle counter must be disabled.
Figure 5-11 showsthat thefirst memory accessthat the cycle counter has not previously
seen occursin the cycle after DBGACK goes LOW. Thisis the point at which to
re-enable the counter.

Note

When a system speed access from debug state occurs, the ARM7TDMI-S processor
temporarily drops out of debug state, so DBGACK can go LOW. If there are peripherals
that are sensitive to the number of memory accesses, they must be led to believe that the
ARM7TDMI-S processor is still in debug state. You can do this by programming the
Embedded| CE-RT control register to force the value on DBGACK to be HIGH. See
Debug status register on page 5-60 for more details.

ARM DDI 0234A

Copyright © 2001 ARM Limited. All rights reserved. 5-43

Debugging Your System

5.18 The program counter during debug

5.18.1 Breakpoints

5.18.2 Watchpoints

The debugger must keep track of what happensto the PC, so that the ARM7TDMI-S
core can be forced to branch back to the place at which program flow was interrupted
by debug. Program flow can be interrupted by any of the following:

. Breakpoints

. Watchpoints

. Watchpoint with another exception on page 5-45

. Debug request on page 5-45

. System speed access on page 5-46.

Entry into debug state from abreakpoint advancesthe PC by four addressesor 16 bytes.
Each instruction executed in debug state advances the PC by one address or 4 bytes.

The usual way to exit from debug state after a breakpoint is to remove the breakpoint
and branch back to the previously-breakpointed address.

For example, if the ARM7TDMI-S processor entered debug state from a breakpoint set
on agiven address, and two debug speed instructions were executed, a branch of —7
addresses must occur (4 for debug entry, plus 2 for the instructions, plus 1 for the fina
branch).

The following sequence shows the data scanned into scan chain 1, most significant bit
first. The value of thefirst digit goesto the DBGBREAK bit, and then the instruction
data into the remainder of scan chain 1:

0 E0802000; ADD R2, RO, RO
1 E1826001; ORR R6, R2, R1
0 EAFFFFF9; B -7 (2’s complement)

After the ARM7TDMI-S processor enters debug state, it must execute a minimum of
two instructions before the branch, although these can both be NOPs (MOv Ro, R0). For
small branches, you can replace the final branch with a subtract, with the PC asthe
destination (SUB PC, PC, #28 inthe above example).

Thereturn to program execution after entry to debug state from awatchpointismadein
the same way as the procedure described in Breakpoints.

Debug entry adds four addressesto the PC, and every instruction adds one address. The
difference from breakpoint is that the instruction that caused the watchpoint has
executed, and the program must return to the next instruction.

5-44

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0234A

Debugging Your System

5.18.3 Watchpoint with another exception

If awatchpointed access simultaneously causes a Data Abort, the ARM7TDMI-S
processor enters debug state in abort mode. Entry into debug is held off until the core
changes into abort mode and has fetched the instruction from the abort vector.

A similar sequence follows when an interrupt, or any other exception, occurs during a
watchpointed memory access. The ARM7TDMI-S processor enters debug state in the
mode of the exception. The debugger must check to see whether an exception has
occurred by examining the current and previous mode (in the CPSR, and SPSR), and
the value of the PC. When an exception has taken place, you are given the choice of
servicing the exception before debugging.

Entry to debug state when an exception has occurred causes the PC to be incremented
by three instructions rather than four, and this must be considered in return branch
calculation when exiting debug state. For example, suppose that an abort occurs on a
watchpointed access, and ten instructions have been executed to determine this
eventuality. You can use the following sequence to return to program execution.

0 E1A00000; MOV RO, RO
1 E1A00000; MOV R@, RO
0 EAFFFFFO; B -16

This code forces abranch back to the abort vector, causing the instruction at that
location to be refetched and executed.

Note

After the abort service routine, the instruction that caused the abort, and watchpoint is
refetched and executed. This triggers the watchpoint again and the ARM7TDMI-S
processor reenters debug state.

5.18.4 Debug request

Entry into debug state using a debug request is similar to abreakpoint. However, unlike
abreskpoint, the last instruction has completed execution and so must not be refetched
on exit from debug state. Therefore, you can assume that entry to debug state addsthree
addresses to the PC and every instruction executed in debug state adds one address.

For example, suppose you have invoked a debug request, and decide to return to
program execution straight away. You could use the following sequence:

0 E1A00000; MOV RO, RO
1 E1A00000; MOV R@, RO
0 EAFFFFFA; B -6

This code restores the PC and restarts the program from the next instruction.

ARM DDI 0234A

Copyright © 2001 ARM Limited. All rights reserved. 5-45

Debugging Your System

5.18.5 System speed access

When a system speed access is performed during debug state, the value of the PC
increases by three addresses. System speed instructions access the memory system and
so it ispossible for aborts to take place. If an abort occurs during a system speed
memory access, the ARM7TDMI-S processor enters abort mode before returning to
debug state.

This scenario issimilar to an aborted watchpoint, but the problem is much harder to fix
because the abort was not caused by an instruction in the main program, and so the PC
does not point to theinstruction that caused the abort. An abort handler usually looks at
the PC to determine the instruction that caused the abort and & so the abort address. In
this case, the value of the PC isinvalid, but because the debugger can determine which
location was being accessed, the debugger can be written to help the abort handler fix
the memory system.

5.18.6 Summary of return address calculations
The caculation of the branch return address is as follows:

. for normal breakpoint and watchpoint, the branch is:
- (4 +N+3S)

. for entry through debug request (DBGRQ) or watchpoint with exception, the
branch is:
- (3+N+39)

where N isthe number of debug speed i nstructions executed (including the final branch)
and Sisthe number of system speed instructions executed.

5-46 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0234A

Debugging Your System

5.19 Priorities and exceptions

When a breakpoint, or a debug request occurs, the normal flow of the programis
interrupted. Therefore, debug can be treated as another type of exception. The
interaction of the debugger with other exceptions is described in The program counter
during debug on page 5-44. This section covers the following priorities:

. Breakpoint with Prefetch Abort

. Interrupts

. Data Aborts.

5.19.1 Breakpoint with Prefetch Abort

5.19.2 Interrupts

5.19.3 Data Aborts

When a breakpointed instruction fetch causes a Prefetch Abort, the abort is taken, and
the breakpoint is disregarded. Normally, Prefetch Aborts occur when, for example, an
access is made to a virtual address that does not physically exist, and the returned data
isthereforeinvalid. In such acase, the normal action of the operating system isto swap
in the page of memory, and to return to the previously-invalid address. Thistime, when
the instruction is fetched, and providing the breakpoint is activated (it can be
data-dependent), the ARM7TDMI-S processor enters debug state.

The Prefetch Abort, therefore, takes higher priority than the breakpoint.

When the ARM7TDMI-S processor enters debug state, interrupts are automatically
disabled.

If aninterrupt is pending during the instruction prior to entering debug state, the
ARM7TDMI-S processor enters debug state in the mode of the interrupt. On entry to
debug state, the debugger cannot assume that the ARM7TDMI-S processor isin the
mode expected by the program of the user. The ARM7TDM I-S core must check the PC,
the CPSR, and the SPSR to determine accurately the reason for the exception.

Debug, therefore, takes higher priority than the interrupt, but the ARM7TDMI-S
processor does remember that an interrupt has occurred.

When a Data Abort occurs on awatchpointed access, the ARM7TDMI-S processor
entersdebug state in abort mode. The watchpoint, therefore, has higher priority than the
abort, but the ARM7TDMI-S processor remembers that the abort happened.

ARM DDI 0234A

Copyright © 2001 ARM Limited. All rights reserved. 5-47

Debugging Your System

5.20 Watchpoint unit registers

The two watchpoint units, known as Watchpoint 0 and Watchpoint 1, each contain three
pairs of registers:

. address value and address mask
. data value and data mask
. control value and control mask.

Each register isindependently programmable and has a unique address. The function
and mapping of the resistersis shown in Table 5-1 on page 5-17.

5.20.1 Programming and reading watchpoint registers

A watchpoint register is programmed by shifting data into the Embedded| CE-RT scan
chain (scan chain 2). The scan chain is a 38-bit shift register comprising:

. a 32-bit datafield

. a5-bit addressfield

. aread/write bit.

This setup is shown in Figure 5-12 on page 5-49.

5-48

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0234A

Debugging Your System

i u

read/write
4
Address ﬁL Address decoder
0
31
32 >
Value | Mask Comparator ——| + —
Data Bi
o

ADDR[31:0] —>

DATA[31:0] —P>

Control —»

Watchpoint registers and comparators

— po

Figure 5-12 EmbeddedICE-RT block diagram

The data to be written is shifted into the 32-bit datafield, the address of the register is
shifted into the 5-bit address field, and the read/write bit is set.

ARM DDI 0234A Copyright © 2001 ARM Limited. All rights reserved. 5-49

Debugging Your System

A register isread by shifting its address into the address field, and by shifting a0 into
the read/write bit. The 32-bit data field isignored.

The register addresses are shown in Table 5-1 on page 5-17.

Note

A read or write actually takes place when the TAP controller enters the UPDATE-DR
state.

5.20.2 Using the data, and address mask registers

For each value register in aregister pair, there is amask register of the same format.
Setting a bit to 1 in the mask register has the effect of making the corresponding bit in
the value register disregarded in the comparison.

For example, when awatchpoint is required on a particular memory location, but the
datavaueisirrelevant, the datamask register can be programmed to oxffffff (all bits
set to 1) to ignore the entire data bus field.

Note

The mask isan XNOR mask rather than a conventional AND mask. When amask bitis
set to 1, the comparator for that bit position always matches, irrespective of the value
register or the input value.

Setting the mask bit to 0 means that the comparator matches only if the input value
matches the value programmed into the value register.

5.20.3 The control registers

The control value and control mask registers are mapped identically in the lower eight
bits, as shown in Figure 5-13.

8

7 6 5 4 3 2 1 0

ENABLE

RANGE | CHAIN | DBGEXT | PROT[1] | PROT[0] | SIZE[1] | SIZE[0] | WRITE

Figure 5-13 Watchpoint control value, and mask format

Bit 8 of the control value register isthe ENABLE bit and cannot be masked.

5-50

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0234A

Debugging Your System

The bits have the following functions:

WRITE

SIZE[1:0]

PROTI0]

PROTI[1]

DBGEXT[L:0]

CHAIN

Compares against the write signal from the corein order to detect
the direction of bus activity. WRITE is O for aread cycle, and 1
for awrite cycle.

Compares against the SI ZE[1:0] signal from the corein order to
detect the size of bus activity.

The encoding is shown in Table 5-6.

Table 5-6 SIZE[1:0] signal encoding

bit 1 bit 0 Data size
0 0 Byte

0 1 Halfword
1 0 Word

1 1 (Reserved)

Is used to detect whether the current cycleis an instruction fetch
(PROTI0] = 0), or adata access (PROT[0] = 1).

Isused to compare against the not translate signal fromthe corein
order to distinguish between user mode (PROT[1] = 0), and
non-User mode (PROT[1] = 1) accesses.

Is an external input to Embedded| CE-RT logic that enables the
watchpoint to be dependent on some external condition.

The DBGEXT input for Watchpoint O is labeled DBGEXT(O0].
The DBGEXT input for Watchpoint 1 is labeled DBGEXT[1].

Can be connected to the chain output of another watchpoint in
order to implement, for example, debugger requests of the form
breakpoint on address YYY only when in process XXX.

Inthe ARM 7TDM -S processor Embedded| CE-RT macrocell, the
CHAINOUT output of Watchpoint 1 is connected to the CHAIN
input of Watchpoint O.

The CHAINOUT output is derived from aregister. The
address/control field comparator drives the write enable for the
register. The input to the register isthe value of the data field
comparator.

ARM DDI 0234A

Copyright © 2001 ARM Limited. All rights reserved. 5-51

Debugging Your System

The CHAINOUT register is cleared when the control value
register iswritten, or when DBGNTRST isLOW.

RANGE Inthe ARM7TDMI-S processor Embedded| CE-RT logic, the
RANGEOUT output of Watchpoint 1 is connected to the
RANGE input of Watchpoint 0. Connection enables the two
watchpoints to be coupled for detecting conditions that occur
simultaneously, such as for range checking.

ENABLE When awatchpoint match occurs, the internal DBGBREAK
signal isasserted only whenthe ENABLE hitisset. Thishit exists
only in the value register. It cannot be masked.

For each of the bits[7:0] in the control value register, thereisacorresponding bit in the
control mask register. These bits remove the dependency on particular signals.

5-52 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0234A

Debugging Your System

5.21 Programming breakpoints

Breakpoints are classified as hardware breakpoints or software breakpoints:

Hardware breakpoints typically monitor the address value and can be set in any
code, even in code that isin ROM or code that is self-modifying. See Hardware
breakpoints for more details.

Software breakpoints monitor a particular bit pattern being fetched from any
address. One Embedded| CE-RT watchpoint can therefore be used to support any
number of software breakpoints. See Software breakpoints on page 5-54 for more
details.

Software breakpoints can normally be set only in RAM because a specia bit
pattern chosen to cause a software breakpoint hasto replace the instruction.

5.21.1 Hardware breakpoints

To make awatchpoint unit cause hardware breakpoints (on instruction fetches):

1.

Program its address val ue register with the address of the instruction to be
breakpointed.

For an ARM-state breakpoint, program bits [1:0] of the address mask register to
11. For abreakpoint in Thumb state, program bits[1:0] of the address mask
register to 01.

Program the data value register only when you require a data-dependent
breakpoint, that is only when you have to match the actual instruction code
fetched aswell asthe address. If the datavalueis not required, program the data
mask register to oxfffffff (al bitsto 1). Otherwise program it to 0x00000000.

Program the control value register with PROT[0] = 0.
Program the control mask register with PROT[0]= 0.

When you have to make the distinction between User and non-User mode
instruction fetches, program the PROT[1] value and mask bits appropriately.

If required, program the DBGEXT, RANGE, and CHAIN bitsin the same way.

Program the mask bits for al unused control valuesto 1.

ARM DDI 0234A

Copyright © 2001 ARM Limited. All rights reserved. 5-53

Debugging Your System

5.21.2 Software breakpoints

To make awatchpoint unit cause software breakpoints (on instruction fetches of a
particular bit pattern):

1. Program its address mask register to oxffffffff (al bits set to 1) so that the
addressis disregarded.

2. Programthe dataval ue register with the particular bit pattern that has been chosen
to represent a software breakpoint.

If you are programming a Thumb software breakpoint, repeat the 16-bit pattern
in both halves of the data value register. For example, if the bit pattern is oxdfff,
program oxdfffdfff. When a 16-bit instruction is fetched, Embeddedl CE-RT
compares only the valid half of the data bus against the contents of the data value
register. In thisway, you can use a single watchpoint register to catch software
breakpoints on both the upper and lower halves of the data bus.

Program the data mask register to 0x00000000.
Program the control value register with PROT[0] = 0.
Program the control mask register with PROT[0] = 0 and all other bitsto 1.

o 0 &~ w

If you want to make the distinction between User and non-User mode instruction
fetches, program the PROT(1] bit in the control value, and control mask registers
accordingly.

7. If required, program the DBGEXT, RANGE, and CHAIN bitsin the same way.

Note
You do not have to program the address val ue register.

Setting the breakpoint
To set the software breakpoint:
1. Readtheinstruction at the desired address and storeiit.

2. Writethe special hit pattern representing a software breakpoint at the address.

Clearing the breakpoint

To clear the software breakpoint, restore the instruction to the address.

5-54

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0234A

Debugging Your System

5.22 Programming watchpoints

To make awatchpoint unit cause watchpoints (on data accesses):

1.

Program its address val ue register with the address of the data access to be
watchpointed.

Program the address mask register to 0x00000000.

Program the data value register only if you require a data-dependent watchpoint,
that is, only if you have to match the actual data value read or written aswell as
the address. If the data value is irrelevant, program the data mask register to
oxfFFFFfff (all bits set to 1). Otherwise program the data mask register to
0x00000000.

Program the control value register with PROT[0]= 1, WRITE= 0 for aread, or
WRITE = 1for awrite, SIZE[1:0] with the value corresponding to the
appropriate data size.

Program the control mask register with PROT[0] =0, WRITE =0, SIZE[1:0]=
0, and all other bitsto 1. You can set WRITE, or SIZE[1:0]to 1 when both reads
and writes, or data size accesses are to be watchpointed respectively.

If you have to make the distinction between User and non-User mode data
accesses, program the PROT([1] bit in the control value and control mask registers
accordingly.

If required, program the DBGEXT, RANGE, and CHAIN bitsin the same way.

Note

The above are examples of how to program the watchpoint register to generate
breakpoints and watchpoints. Many other ways of programming the registers are
possible. For example, you can provide simpl e range breakpoints by setting one or more
of the address mask bits.

ARM DDI 0234A

Copyright © 2001 ARM Limited. All rights reserved. 5-55

Debugging Your System

5.23 Abort status register

Only bit 0 of this 32 bit read/write register is used. It determines whether an abort
exception entry was caused by abreakpoint, awatchpoint, or area abort. Theformat is
shown in Figure 5-14.

31:1 0
SBZ/RAZ DbgAbt

Figure 5-14 Debug abort status register

Thisbit is set when the ARM7TDMI-S core takes a Prefetch or Data Abort as a result
of abreakpoint or watchpoint. If, on a particular instruction or data fetch, both the
Debug Abort and the external Abort signal are asserted, the external Abort takes
priority, and the DbgAbt bit is not set. Once set, DbgAbt remains set until reset by the
user. The register is accessed by MRC and MCR instructions.

5-56

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0234A

Debugging Your System

5.24 Debug control register

The debug control register is six bitswide. Writes to the debug control register occur
when awatchpoint unit register is written. Reads of the debug control register occur
when awatchpoint unit register isread. See Watchpoint unit registers on page 5-48 for
more information.

Figure 5-15 shows the function of each bit in the debug control register.

5

4 3 2 1 0

EmbeddedICE-RT Monitor mode
disable enable

SBZ/RAZ INTDIS DBGRQ DBGACK

Figure 5-15 Debug control register format

The debug control register bit assignments are shown in Table 5-7.

Table 5-7 Debug control register bit assignments

Bit

Function

Used to disable the Embedded| CE-RT comparator outputs while the watchpoint and
breakpoint registers are being programmed. This bit can be read and written through
JTAG.

Set bit 5 when:
. programming breakpoint or watchpoint registers
. changing bit 4 of the debug control register.

You must clear bit 5 after you have made the changes, to re-enable the
EmbeddedI CE-RT logic and make the new breakpoints and watchpoints operational.

Used to determine the behavior of the core when breakpoints or watchpoints are
reached:

. If clear, the core enters debug state when a breakpoint or watchpoint is reached.
. If set, the core performs an abort exception when a breakpoint or watchpoint is
reached.

This bit can be read and written from JTAG.

This bit must be clear.

ARM DDI 0234A

Copyright © 2001 ARM Limited. All rights reserved. 5-57

Debugging Your System

Table 5-7 Debug control register bit assignments (continued)

Bit Function
2 Used to disable interrupts:
. If set, the interrupt enable signal of the core (IFEN) isforced LOW. The IFEN
signal is driven as shown in Table 5-8.
. If clear, interrupts are enabled.
1 Used to force the value on DBGRQ.
0 Used to force the value on DBGACK.

5.24.1 Disabling interrupts

IRQs and FIQs are disabled under the following conditions:
. during debugging (DBGACK HIGH)
. when the INTDI S bit isHIGH.

The IFEN signal isdriven as shown in Table 5-8.

Table 5-8 Interrupt signal control

DBGACK INTDIS IFEN Interrupts
0 0 1 Permitted
1 X 0 Inhibited
X 1 0 Inhibited

5.24.2 Forcing DBGRQ

Figure 5-17 on page 5-61 shows that the value stored in bit 1 of the debug control
register issynchronized and then ORed with the external DBGRQ before being applied
tothe processor. Theoutput of this OR gateisthe signal DBGRQI whichisbrought out
externally from the macrocell.

The synchronization between debug control register bit 1 and DBGRQI assistsin
multiprocessor environments. The synchronization latch only opens when the TAP
controller state machineisin the RUN-TEST-IDLE state. This enables an enter-debug
condition to be set up in all the processorsin the system while they are still running.
When the condition is set up in al the processors, it can be applied to them
simultaneously by entering the RUN-TEST-IDLE state.

5-58

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0234A

Debugging Your System

5.24.3 Forcing DBGACK

Figure 5-17 on page 5-61 shows that the value of the internal signal DBGACKI from
the core is ORed with the value held in bit O of the debug control register, to generate
the external value of DBGACK seen at the periphery of the ARM7TDMI-S core. This
enables the debug system to signal to the rest of the system that the core is still being
debugged even when system-speed accesses are being performed (when the internal
DBGACK signal from the coreis LOW).

ARM DDI 0234A Copyright © 2001 ARM Limited. All rights reserved. 5-59

Debugging Your System

5.25 Debug status register

The debug status register is 5 bitswide. If it isaccessed for awrite (with the read/write
bit set), the status bits are written. If it is accessed for aread (with the read/write bit
clear), the status bits are read. The format of the debug status register is shown in
Figure 5-16.

4 3 2 1 0
TBIT TRANS[1] IFEN DBGRQ DBGACK

Figure 5-16 Debug status register format
The function of each bit in this register is as follows:

Bit 4 Enables TBIT to beread. This enablesthe debugger to determine
the processor state and therefore which instructions to execute.

Bit 3 Enablesthestate of the TRANS[1] signal from the coreto beread.
This enablesthe debugger to determine whether amemory access
from the debug state has compl eted.

Bit 2 Enables the state of the core interrupt enable signal (IFEN) to be
read.
Bits[1:0] Enable the val ues on the synchronized versions of DBGRQ and

DBGACK to beread.

The structure of the debug control and status registersis shown in Figure 5-17 on
page 5-61.

5-60

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0234A

Debugging Your System

Debug Debug

control status

register register
TBIT » Bit4

(from core)

TRANS[1] Bit 3
(from core)
DBGACKI g . Interrupt mask enable
(from core) > + " (to core)
Bit 2 >
O—— » Bit2
>+
Bit 1 N
» DBGRAQI
+ (to core)
DNGRQ Bit 1
(from ARM7TDMI-S input)
Bit 0 N
» DBGACK
r + (to ARM7TDMI-S output)
DBGACKI Bit 0

(from core)

Figure 5-17 Debug control and status register structure

ARM DDI 0234A

Copyright © 2001 ARM Limited. All rights reserved. 5-61

Debugging Your System

5.26 Coupling breakpoints and watchpoints

You can couple watchpoint units 1 and O together using the CHAIN and RANGE
inputs. The use of CHAIN enables Watchpoint O to be triggered only if Watchpoint 1
has previously matched. The use of RANGE enables simple range checking to be
performed by combining the outputs of both watchpoints.

5.26.1 Breakpoint and watchpoint coupling example

Let:

Av[31:0] Be the value in the address value register

Am[31:0] Be the value in the address mask register

A[31:0] Be the address bus from the ARM7TDMI-S processor
Dv[31:0] Be the value in the data val ue register

Dm[31:0] Be the value in the data mask register

D[31:0] Be the data bus from the ARM7TDMI-S processor

Cv[8:0] Be the value in the control value register

(m[7:0] Be the value in the control mask register

C[9:0] Be the combined control bus from the ARM7TDMI-S core, other

watchpoint registers, and the DBGEXT signal.

CHAINOUT signal
The CHAINOUT signal is derived asfollows:

WHEN (({Av[31:0],Cv[4:0]} XNOR {A[31:0],C[4:0]}) OR {Am[31:0],Cm[4:0]} == OxFFFFFFFFF)
CHAINOUT = ((({Dv[31:0],Cv[6:4]} XNOR {D[31:0],C[7:5]}) OR {Dm[31:0],Cm[7:5]}) == Ox7FFFFFFFF)

The CHAINOUT output of watchpoint register 1 providesthe CHAIN input to
Watchpoint 0. This CHAIN input enables you to use quite complicated configurations
of breakpoints and watchpoints.

Note
Thereisno CHAIN input to Watchpoint 1 and no CHAIN output from Watchpoint O.

Take, for example, the request by adebugger to breakpoint on theinstruction at location
YYY when running process XXX in amultiprocess system. If the current process ID is
stored in memory, you can implement the above function with a watchpoint and

5-62

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0234A

Debugging Your System

breakpoint chained together. The watchpoint address pointsto a known memory
location containing the current process ID, the watchpoint data points to the required
process ID and the ENABLE bit is cleared.

The address comparator output of the watchpoint is used to drive the write enable for
the CHAINOUT latch. Theinput to the latch isthe output of the data comparator from
the same watchpoint. The output of the latch drivesthe CHAIN input of the breakpoint
comparator. The address YY'Y is stored in the breakpoint register, and when the
CHAIN input is asserted, the breakpoint address matches and the breakpoint triggers
correctly.

5.26.2 DBGRNG signal

The DBGRNG signal isderived as follows:

DBGRNG = ((({Av[31:0],Cv[4:0]} XNOR {A[31:0],C[4:0]}) OR {Am[31:0],Cm[4:0]}) == OXFFFFFFFFF) AND
((({Dv[31:0],Cv[7:5]} XNOR {D[31:0],C[7:5]}) OR
Dm[31:0],Cm[7:5]}) == OX7FFFFFFFF)

The DBGRNG output of watchpoint register 1 provides the RANGE input to
watchpoint register 0. This RANGE input enables you to couple two breakpoints
together to form range breakpoints.

Selectable ranges are restricted to being powers of 2. For example, if abreakpoint isto
occur when the addressisin the first 256 bytes of memory, but not in the first 32 bytes,
program the watchpoint registers as follows:

For Watchpoint 1:

1. Program Watchpoint 1 with an address value of 9x00000000 and an address mask
of 0x0000001f.

2. Clear the ENABLE bit.

3. Program al other Watchpoint 1 registers as normal for a breakpoint.

An address within the first 32 bytes causes the RANGE output to go HIGH but
does not trigger the breakpoint.

For Watchpoint O:

1. Program Watchpoint O with an address value of 0x00000000, and an address mask
of 0x000000ff.

2. Set the ENABLE hit.
3. Program the RANGE bit to match a 0.

4. Program all other Watchpoint O registers as normal for a breakpoint.

ARM DDI 0234A

Copyright © 2001 ARM Limited. All rights reserved. 5-63

Debugging Your System

If Watchpoint O matches but Watchpoint 1 does not (that isthe RANGE input to
Watchpoint 0 is 0), the breakpoint is triggered.

5-64 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0234A

Debugging Your System

5.27 EmbeddedICE-RT timing

Embedded| CE-RT samples the DBGEXT[1] and DBGEXT[0] inputs on the rising
edge of CLK.

See Chapter 8 AC Parameters for details of the required setup and hold times for these
signals.

ARM DDI 0234A Copyright © 2001 ARM Limited. All rights reserved. 5-65

Debugging Your System

5-66 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0234A

Chapter 6
ETM Interface

This chapter describes the ETM interface that is provided on the ARM7TDMI-S
processor. It contains the following sections:

. About the ETM interface on page 6-2

. Enabling and disabling the ETM7 interface on page 6-3
. ETM7 to ARM7TDMI-S (Rev 4) connections on page 6-4
. Clocks and resets on page 6-6

. Debug request wiring on page 6-7.

ARM DDI 0234A Copyright © 2001 ARM Limited. All rights reserved.

6-1

ETM Interface

6.1 About the ETM interface

You can connect an external Embedded Trace Macrocell (ETM) to the ARM7TDMI-S
processor, so that you can perform real-time tracing of the code that the processor is
executing.

Note

If you have more than one ARM processor in your system, each processor must haveits
own dedicated ETM.

In general, little or no gluelogicisrequired to connect the ETM7 to the ARM7TDMI-S
(Rev 4) processor. You program the ETM through aJTAG interface. The interfaceisan
extension of the ARM TAP controller, and is assigned scan chain 6.

Note

Seethe ETM7 (Rev 1) Technical Reference Manual for detailed information about
integrating an ETM7 with an ARM7TDM -S processor.

6-2 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0234A

ETM Interface

6.2 Enabling and disabling the ETM7 interface

Under the control of the ARM debug toals, the ETM7 PWRDOWN output is used to
enable and disablethe ETM. When PWRDOWN is HIGH, thisindicates that the ETM
isnot currently enabled, so you can stop the CLK input and hold the other ETM signals
stable. This enables you to reduce power consumption when you are not performing
tracing.

WhenaTAPreset (DBGNTRST) occurs, PIWRDOWN isforced HIGH until theETM7
control register has been programmed (see the Embedded Trace Macrocell
Specification for details of this register).

PWRDOWN is automatically cleared at the start of a debug session.

ARM DDI 0234A

Copyright © 2001 ARM Limited. All rights reserved. 6-3

ETM Interface

6.3 ETM7 to ARM7TDMI-S (Rev 4) connections

The ETM7 interface port names are amixture of those from the ARM7TDMI and the
ARM7TDMI-S macrocells. Table 6-1 shows the connections that you must make
between the ARM7TDMI-S processor and ETM7.

Table 6-1 ETM7 and ARM7TDMI-S (Rev 4) pin connections

ETM7 signal name ARM7TDMI-S (Rev 4)

signal name

A[31:0] ADDR[31:0]
ABORT ABORT
ARMTDO DBGTDO
BIGEND CFGBIGEND
CLKa CLKa
CLKEN CLKEN
CPA CPA

CPB CPB
DBGACK DBGACK
DBGRQP DBGRQP
NMREQ CPnMREQ
SEQ CPSEQ
MAS[1:0] SIZE[1:0]
nCPI CPnl
nEXEC DBGnEXEC
nOPC CPnOPC
NRESET NRESET
nRW WRITE
nTRST?2 DBGNTRST2
PROCID[31:0]¢ -
PROCIDWR¢ -

Copyright © 2001 ARM Limited. All rights reserved.

ARM DDI 0234A

ETM Interface

Table 6-1 ETM7 and ARM7TDMI-S (Rev 4) pin connections (continued)

ETM7 signal name

ARM7TDMI-S (Rev 4)

signal name
RANGEOUTI[0] DBGRNGI0]
RANGEOUTI[1] DBGRNGJ1]

RDATA[3L:0]

RDATA[3L:0]

TBIT CPTBIT
TCKa CLK2
TCKEN DBGTCKEN
TDI DBGTDI
TDO DBGTDO
T™MS DBGTMS
WDATA[3L:0] WDATA[31:0]

INSTRVALID

DBGINSTRVALID

a See Clocks and resets on page 6-6.

b. See Debug request wiring on page 6-7.

¢. The ARM7TDMI-S processor does not provide
the PROCID[31:0] or PROCIDWR signals. You
must tie these ETM inputs LOW.

ARM DDI 0234A

Copyright © 2001 ARM Limited. All rights reserved.

ETM Interface

6.4

Clocks and resets

The ARM7TDMI-S (Rev 4) processor uses asingle clock, CLK, asboth the main
system clock and the JTAG clock. You must connect the processor clock to both CLK
and TCK on the ETM. You can then use TCKEN to control the JTAG interface.

To trace through a warm reset of the ARM7TDMI-S processor, use the TAP reset
(connect nTRST to DBGNTRST) to reset the ETM7 state.

For moreinformation about ETM 7 clocks and resets, seethe ETM7 Technical Reference
Manual.

6-6

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0234A

ETM Interface

6.5 Debug request wiring

It is recommended that you connect together the DBGRQ output of the ETM7 to the
DBGRQ input of the ARM7TDMI-S processor. If thisinput is already in use, you can
OR the DBGRQ inputs together. See the ETM7 Technical Reference Manual for more
details.

ARM DDI 0234A

Copyright © 2001 ARM Limited. All rights reserved. 6-7

ETM Interface

6-8 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0234A

Chapter 7

Instruction Cycle Timings

This chapter givesthe ARM7TDMI-S processor instruction cycle timings. It contains
the following sections:

. About the instruction cycle timings on page 7-3

. Instruction cycle count summary on page 7-5

. Branch and ARM branch with link on page 7-7

. Thumb branch with link on page 7-8

. Branch and exchange on page 7-9

. Data operations on page 7-10

. Multiply, and multiply accumulate on page 7-12

. Load register on page 7-14

. Soreregister on page 7-16

. Load multiple registers on page 7-17

. Store multiple registers on page 7-19

. Data swap on page 7-20

. Software interrupt, and exception entry on page 7-21

. Coprocessor data processing operation on page 7-22

. Load coprocessor register (from memory to coprocessor) on page 7-23
. Store coprocessor register (from coprocessor to memory) on page 7-25

ARM DDI 0234A

Copyright © 2001 ARM Limited. All rights reserved. 7-1

Instruction Cycle Timings

Coprocessor register transfer (move from coprocessor to ARM register) on
page 7-27

Coprocessor register transfer (move from ARM register to coprocessor) on
page 7-28

Undefined instructions and coprocessor absent on page 7-29

Unexecuted instructions on page 7-30.

7-2

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0234A

Instruction Cycle Timings

7.1 About the instruction cycle timings

The TRANS[1:0] signals predict the type of the next cycle. These signals are pipelined
in the cycle before the one to which they apply and are shown like thisin the tablesin
this section.

Inthetablesin this chapter, the following signal s (which al so appear ahead of the cycle)
are registered in the cycle to which they apply:

. Addressis ADDR[31:0]

. Lock isLOCK

. Sizeis SIZE[1:0]

. WriteisWRITE

. Protl and Prot0 are PROT[1:0]

. ThitisCPTBIT.

The addressis incremented for prefetching instructions in most cases. The increment
varies with the instruction length:

. 4 bytesin ARM state
. 2 bytesin Thumb state.

Note
The letter i isused to indicate the instruction lengths.

Size indicates the width of the transfer:

. w (word) represents a 32-bit data access or ARM opcode fetch

. h (halfword) represents a 16-bit data access or Thumb opcode fetch
. b (byte) represents an 8-bit data access.

CPA and CPB are pipelined inputs and are shown as sampled by the ARM7TDMI-S
processor. They are therefore shown in the tables the cycle after they have been driven
by the coprocessor.

Transaction types are shown in Table 7-1 on page 7-4.

ARM DDI 0234A Copyright © 2001 ARM Limited. All rights reserved. 7-3

Instruction Cycle Timings

Table 7-1 Transaction types

TRANS[1:0] Transaction type

Description

00 | cycle Internal (address-only) next cycle

01 Ccycle Coprocessor transfer next cycle

10 N cycle Memory access to next address is nonsequential
11 Scycle Memory access to next address is sequential

Note

All cycle countsin this chapter assume zero-wait-state memory access. In a system
where CLKEN is used to add wait states, you must adjust the cycle counts accordingly.

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0234A

7.2 Instruction cycle count summary

Instruction Cycle Timings

In the pipelined architecture of the ARM7TDMI-S core, while oneinstruction is being
fetched, the previousinstruction is being decoded, and the one prior to that is being
executed. Table 7-2 shows the number of cycles required by an instruction, when that
instruction reaches the Execute stage.

You can cal culate the number of cyclesfor aroutinefrom thefiguresin Table 7-2. These
figures assume execution of the instruction. Unexecuted instructions take one cycle.

In Table 7-2:
n Is the number of words transferred.
m Is 1if bits[32:8] of the multiplier operand are all zero or one.
Is2if bits[32:16] of the multiplier operand are all zero or one.
Is 3if bits[31:24] of the multiplier operand are al zero or one.
Is 4 otherwise.
b I's the number of cycles spent in the coprocessor busy-wait loop (which

can be zero or more).

When the condition is not met, al the instructions take one S-cycle.

Table 7-2 Instruction cycle counts

Instruction Qualifier Cycle count
Any unexecuted Condition codesfail +S

Data processing Single-cycle +S

Data processing Regi ster-specified shift +1 +S

Data processing R15 destination +N +2S

Data processing R15, register-specified shift +1 +N +2S
MUL - +(m)l +S

MLA - +l +(m)l +S
MULL - +(m)l +1 +S
MLAL - + +(m)l +1 +S
B, BL - +N +2S

LDR Non-R15 destination +N +l +S

LDR R15 destination +N +l +N +2S

ARM DDI 0234A

Copyright © 2001 ARM Limited. All rights reserved.

7-5

Instruction Cycle Timings

Table 7-2 Instruction cycle counts (continued)

Instruction Qualifier Cycle count

STR - +N +N

Swp - +N +N +I +S

LDM Non-R15 destination +N +(n-1)S +1 +S

LDM R15 destination +N +(n-1)S +1 +N +2S
ST™ - +N +(n-1)S +1 +N
MSR, MRS - +S

SWI, trap - +N +2S

cop - +(b)l +S

MCR - +(b)l +C +N

MRC - +(b)l +C +l +S

LDC, STC - +(b)l +N +(n—1)S+N

ThecycletypesN, S, |, and C are defined in Table 7-1 on page 7-4.

7-6 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0234A

Instruction Cycle Timings

7.3 Branch and ARM branch with link

Any ARM or Thumb branch, and an ARM branch with link operation takes three
cycles:

1. Duringthefirst cycle, abranch instruction calcul ates the branch destination while
performing a prefetch from the current PC. This prefetch isdonein al cases
because, by thetime the decision to take the branch has been reached, itisalready
too late to prevent the prefetch.

2. During the second cycle, the ARM7TDMI-S core performs a Fetch from the
branch destination. The return addressis stored in r14 if the link bit is set.

3. During the third cycle, the ARM7TDMI-S core performs a Fetch from the
destination + i, refilling the instruction pipeline. When the instruction isa branch
withlink, r14ismodified (4 issubtracted fromit) to simplify returntoMov PC,R14.
This modification ensures subroutines of the type STM. . {R14} LDM. .{PC} work
correctly.

Table 7-3 showsthe cycle timings, where:

pc I's the address of the branch instruction.
pc’ Is an address calculated by the ARM7TDMI-S core.
(pc’) Are the contents of that address.

Table 7-3 Branch instruction cycle operations

Cycle Address Size Write Data TRANS[1:0] Prot0

1 pc+2i w/h 0 (pc + 2i) N cycle 0

2 pc’ w'/h’ 0 (pc’) Scycle 0

3 pc’ +i w'/h’ 0 (pc’ +1i) Scycle 0

pc’ +2i w'/h’ - - - -
Note

This data applies only to branchesin ARM and Thumb states, and to branch with link
in ARM state.

ARM DDI 0234A Copyright © 2001 ARM Limited. All rights reserved. 7-7

Instruction Cycle Timings

7.4 Thumb branch with link

A Thumb Branch with Link (BL) operation comprises two consecutive Thumb
instructions and takes four cycles:

1. Thefirst instruction acts as a simple data operation. It takes a single cycle to add
the PC to the upper part of the offset and stores the result in r14 (LR).
2. Thesecond instruction acts similar to the ARM BL instruction over three cycles:

. During thefirst cycle, the ARM7TDMI-S core cal culates the final branch
destination while performing a prefetch from the current PC.

. During the second cycle, the ARM7TDMI-S core performs a Fetch from
the branch destination. The return addressis stored in r14.

. During the third cycle, the ARM7TDMI-S core performs a Fetch from the
destination +2, refillstheinstruction pipeline, and modifiesri4 (subtracting
2) to simplify thereturn toMov PC, R14. Thismodification ensures that
subroutines of the type PUSH {..,LR} ; POP {..,PC} work correctly.

Table 7-4 shows the cycle timings of the complete operation.

Table 7-4 Thumb long branch with link

Cycle Address Size Write Data TRANS[1:0] Prot0
1 pc+4 h 0 (pc +4) Scycle 0
2 pc+6 h 0 (pc + 6) N cycle 0
3 pc’ h 0 (pc’) Scycle 0
4 pc +2 h 0 (pc’ +2) Scycle 0
pc +4 - - - -
Note

PC isthe address of the first instruction of the operation.

Thumb BL operationsare explained in detail inthe ARM Architecture Reference Manual.

7-8 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0234A

Instruction Cycle Timings

7.5 Branch and exchange

A Branch and eXchange (BX) operation takes three cycles, it is similar to a Branch:

1.

During the first cycle, the ARM7TDMI-S core extracts the branch destination,
and the new core state from the register source, while performing aprefetch from
the current PC. This prefetch is performed in all cases, because by the time the
decision to take the branch has been reached, it is already too late to prevent the
prefetch.

During the second cycle, the ARM7TDMI-S core performs a Fetch from the
branch destination using the new instruction width, dependent on the state that has
been selected.

During the third cycle, the ARM7TDMI-S core performs a Fetch from the
destination +2 or +4 dependent on the new specified state, refilling the instruction
pipeline.

Table 7-5 shows the cycle timings.

Table 7-5 Branch and exchange instruction cycle operations

Cycle Address Size Write Data

TRANS[1:0] Prot0 Thit

pc+2i w/h 0 (pc + 2i) N cycle 0 t

pc’ w/h 0 (pc’) Scycle 0 t

pc'+i’ w/h 0 (pc'+i") Scycle 0 t

pc + 20’ - - - - - -
Note

i and i’ represent the instruction widths before and after the BX respectively.

In ARM state, Sizeis 2, and in Thumb state Size is 1. When changing from Thumb to
ARM state, i equals 1, and i’ equals 2.

t, and t' represent the states of the T bit before and after the BX respectively. In ARM
state, Thitis0, andin Thumb state Thitis 1. When changing from ARM to Thumb state,
tequals 0, and t’ equals 1.

ARM DDI 0234A

Copyright © 2001 ARM Limited. All rights reserved. 7-9

Instruction Cycle Timings

7.6 Data operations

A data operation executes in a single data path cycle except where the shift is
determined by the contents of aregister. The ARM7TDMI-S core reads afirst register
onto the A bus, and a second register or the immediate field onto the B bus.

The ALU combinesthe A bus source and the shifted B bus source according to the
operation specified in the instruction. The ARM7TDMI-S core writes the result (when
required) into the destination register. (Compares and tests do not produce results. Only
the ALU status flags are affected.)

An instruction prefetch occurs at the same time as the data operation, and the PC is
incremented.

When a register specifies the shift length, an additional data path cycle occurs before
the data operation to copy the bottom 8 bits of that register into a holding latch in the
barrel shifter. Theinstruction prefetch occursduring thisfirst cycle. The operation cycle
isinternal (it does not request memory). Because the address remains stable through
both cycles, the memory manager can merge this internal cycle with the following
sequential access.

The PC can be one or more of the register operands. When the PC is the destination,
external bus activity can be affected. When the ARM7TDMI-S core writes the result to
the PC, the contents of the instruction pipeline areinvalidated, and the ARM7TDMI-S
core takes the address for the next instruction prefetch from the ALU rather than the
address incrementer. The ARM7TDMI-S processor refills the instruction pipeline
before any more execution takes place. During this time exceptions are locked out.

PSR transfer operations exhibit the same timing characteristics as the data operations
except that the PC is never used as a source or destination register.

The data operation timing cycles are shown in Table 7-6.

Table 7-6 Data operation instruction cycle operations

Cycle Address Size Write Data TRANS[1:0] Prot0
normal 1 pc+2i w/h 0 (pc+2i) Scycle 0
pc+3i - - - - -
dest=pc 1 pct+2i w/h 0 (pc+2i) N cycle 0
2 pc w/h 0 (pc’) Scycle 0
3 pc'+ w/h 0 (pc’ +i) Scycle 0
pc’ +2i - - - - -

7-10

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0234A

Instruction Cycle Timings

Table 7-6 Data operation instruction cycle operations (continued)

Cycle Address Size Write Data TRANS[1:0] Prot0
shift(Rs) 1 pct+2i w/h 0 (pc+2i) | cycle 0
2 pct3i w/h 0 - Scycle 1
pc+3i - - - -
shift(Rs) 1 pct+8 w 0 (pc+8) I cycle 0
dest=pc 2 pctl2 w 0 - N cycle 1
3 pc w 0 (pc’) Scycle 0
4 pc'+4 w 0 (pc'+4) Scycle 0
pc’+8 - - - - -
Note
Shifted register with destination equals PC is not possible in Thumb state.
ARM DDI 0234A Copyright © 2001 ARM Limited. All rights reserved. 7-11

Instruction Cycle Timings

7.7 Multiply, and multiply accumulate

The multiply instructions use special hardware that implements integer multiplication
with early termination. All cycles except the first are internal.

The cycletimings are shown in Table 7-7 to Table 7-10 on page 7-13, in which misthe
number of cycles required by the multiplication al gorithm (see Instruction cycle count
summary on page 7-5).

Table 7-7 Multiply instruction cycle operations

Cycle Address Write Size Data TRANS[1:0] Prot0

1 pc+2i 0 w/h (pc+2i) I cycle 0

2 pc+3i 0 w/h - I cycle 1

. pc+3i 0 w/h - I cycle 1

m pc+3i 0 w/h - I cycle 1

m+1 pc+3i 0 w/h - Scycle 1
pc+3i - - - - -

Table 7-8 Multiply-accumulate instruction cycle operations

Cycle Address Write Size Data TRANS[1:0] Prot0

1 pc+2i 0 w/h (pc+2i) I cycle 0

2 pc+2i 0 w/h - I cycle 1

. pc+3i 0 w/h - | cycle 1

m pc+3i 0 w/h - I cycle 1

m+1 pc+3i 0 w/h - I cycle 1

m+2 pc+3i 0 w/h - Scycle 1
pc+3i - - - - -

7-12 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0234A

Instruction Cycle Timings

Table 7-9 Multiply long instruction cycle operations

Cycle Address Write Size Data TRANS[1:0] Prot0

1 pc+8 0 w (pc+8) I cycle 0

2 pc+12 0 w - | cycle 1

. pc+12 0 w - | cycle 1

m pc+12 0 w - | cycle 1

m+1 pc+12 0 w - | cycle 1

m+2 pc+12 0 w - Scycle 1
pc+12 - - - .

Note

Multiply long is available only in ARM state.

Table 7-10 Multiply-accumulate long instruction cycle operations

Cycle Address Write Size Data TRANS[1:0] Prot0

1 pc+8 0 w (pc+8) I cycle 0

2 pc+8 0 w - I cycle 1

. pc+12 0 w - I cycle 1

m pc+12 0 w - | cycle 1

m+1 pc+12 0 w - | cycle 1

m+2 pc+12 0 w - | cycle 1

m+3 pc+12 0 w - Scycle 1
pc+12 - - - -

Note
Multiply-accumulate long is available only in ARM state.
ARM DDI 0234A Copyright © 2001 ARM Limited. All rights reserved. 7-13

Instruction Cycle Timings

7.8 Load register

A load register instruction takes a variable number of cycles:

1. Duringthefirst cycle, the ARM7TDMI-S processor cal culates the address to be
loaded.

2. During the second cycle, the ARM7TDMI-S processor fetches the data from
memory and performs the base register modification (if required).

3. During the third cycle, the ARM7TDMI-S processor transfers the data to the
destination register. (External memory isnot used.) Normally, the ARM7TDMI-S
core merges this third cycle with the next prefetch to form one memory N-cycle.

The load register cycle timings are shown in Table 7-11, where:

b, h,and w Are byte, halfword and word as defined in Table 5-6 on page 5-51.

S Represents current supervisor-mode-dependent value.

u Is either 0, when the force trand ation bit is specified in the instruction

(LDRT), or sat al other times.
Table 7-11 Load register instruction cycle operations
Cycle Address Size Write Data TRANS[1:0] Prot0 Protl
normal 1 pc+2i w/h 0 (pct+2i) N cycle 0 S
2 pc w/h/b 0 (pc’) I cycle 1 u/s
3 pct3i w/h 0 - Scycle 1 S
pc+3i - - - - - -
dest=pc 1 pc+8 w 0 (pc+8) N cycle 0 S
2 da w/h/b 0 pc’ I cycle 1 u/s
3 pctl2 w 0 - N cycle 1 S
4 pc w 0 (pc’) Scycle 0 S
5 pc+4 w 0 (pc'+4) Scycle 0 S
pc’+8 - - - - - -

Either the base or the destination (or both) can be the PC. The prefetch sequence

changes when the PC is affected by the instruction. If the Data Fetch aborts, the

ARMT7TDMI-S processor prevents modification of the destination register.

7-14 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0234A

Instruction Cycle Timings

Note
Destination equals PC is not possible in Thumb state.

ARM DDI 0234A Copyright © 2001 ARM Limited. All rights reserved. 7-15

Instruction Cycle Timings

7.9 Store register
A store register hastwo cycles:
1. Duringthefirst cycle, the ARM7TDMI-S core calculates the addressto be stored.

2. Duringthesecond cycle, the ARM 7TDMI-S core performsthe base modification,
and writes the data to memory (if required).

The store register cycle timings are shown in Table 7-12, where:

S Represents current mode-dependent value.
t Iseither 0, when the T bit is specified in the instruction (STRT) or ¢ at all
other times.

Table 7-12 Store register instruction cycle operations

Cycle Address Size Write Data TRANS[1:0] Prot0 Protl

1 pc+2i w/h 0 (pct+2i) Ncycle 0 S
2 da bhiw 1 Rd N cycle 1 t
pc+3i - - - - - -

7-16 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0234A

Instruction Cycle Timings

7.10 Load multiple registers

A LoaD Multiple (LDM) takes four cycles:

1. Duringthefirst cycle, the ARM7TDMI-S core calculates the address of the first
word to be transferred, while performing a prefetch from memory.

2. During the second cycle, the ARM7TDMI-S core fetches the first word and
performs the base modification.

3. During the third cycle, the ARM7TDMI-S core moves the first word to the
appropriate destination register and fetches the second word from memory. The
ARM7TDMI-S latchesthe modified baseinternaly, in caseit isrequired after an
abort. Thethird cycle isrepeated for subsequent fetches until the last data word
has been accessed.

4. During the fourth and final (internal) cycle, the ARM7TDMI-S core moves the
last word to its destination register. The last cycle can be merged with the next
instruction prefetch to form a single memory N-cycle.

When an abort occurs, the instruction continues to completion. The ARM7TDMI-S
core prevents all register writing after the abort. The ARM7TDMI-S core changes the
final cycleto restore the modified base register (which the load activity before the abort
occurred might have overwritten).

When the PCisinthelist of registersto be loaded, the ARM7TDMI-S core invalidates
the current instruction pipeline. The PC isalwaysthe last register to load, so an abort at
any point prevents the PC from being overwritten.

Note

LDM with destination = PC cannot be executed in Thumb state. However, POP{R1ist,PC}
equates to an LDM with destination = PC.

The LDM cycle timings are shown in Table 7-13.

Table 7-13 Load multiple registers instruction cycle operations

Cycle Address Size Write Data TRANS[1:0] ProtO
1register 1 pc+2i w/h 0 (pct+2i) Ncycle 0
2 da w 0 da I cycle 1
3 pc+3i w/h 0 - Scycle 1
pc+3i - - - - -

ARM DDI 0234A

Copyright © 2001 ARM Limited. All rights reserved. 7-17

Instruction Cycle Timings

Table 7-13 Load multiple registers instruction cycle operations (continued)

Cycle Address Size Write Data TRANS[1:0] Prot0
1register 1 pc+2i w/h 0 (pct+2i) Ncycle 0
dest=pc 2 da w 0 pc’ I cycle 1
3 pc+3i w/h 0 - N cycle 1
4 pc’ w/h 0 (pc’) Scycle 0
5 pc’ +i w/h 0 (pc' +i) Scycle 0
pc’'+2i - - - - -
nregisters 1 pc+2i w/h 0 (pct+2i) Ncycle 0
(n>1) 2 da w 0 da Scycle 1
. dat++ w 0 (dat++) Scycle 1
n dat++ w 0 (dat++) Scycle 1
n+l dat+ w 0 (dat++) I cycle 1
n+2 pc+3i w/h 0 - Scycle 1
pc+3i - - - - -
nregisters 1 pc+2i w/h 0 (pct2i) Ncycle 0
(n>1) 2 da w 0 da Scycle 1
incl pc . dat++ w 0 (dat++) Scycle 1
n dat++ w 0 (dat++) Scycle 1
n+l dat+ w 0 pc’ I cycle 1
n+2 pc+3i w/h 0 - N cycle 1
n+3 pc w/h 0 (pc’) Scycle 0
n+4 pc+i w/h 0 (pc' +i) Scycle 0
pc’'+2i - - - -

7-18

Copyright © 2001 ARM Limited. All rights reserved.

ARM DDI 0234A

7.11 Store multiple registers

Instruction Cycle Timings

STore Multiple (STM) proceeds very much as LDM, although without the final cycle. There

are therefore two cycles:

1. Duringthefirst cycle, the ARM7TDMI-S core calculates the address of the first

word to be stored.

2. Duringthesecond cycle, the ARM 7TDMI-Score performs the base modification,
and writes the data to memory.

Restart is straightforward because there is no general overwriting of registers.

The STM cycle timings are shown in Table 7-14.

Table 7-14 Store multiple registers instruction cycle operations

Cycle Address Size Write Data TRANS[1:0] ProtO
1register 1 pc+2i w/h 0 (pct+2i) Ncycle 0
2 da w 1 R N cycle 1
pc+3i
nregisters 1 pc+8 w/h 0 (pct+2i) Ncycle 0
(n>1) 2 da w 1 R Scycle 1
. da++ w 1 R’ Scycle 1
n da++ w 1 R” Scycle 1
n+l dat+ w 1 R™ N cycle 1
pc+12
ARM DDI 0234A Copyright © 2001 ARM Limited. All rights reserved. 7-19

Instruction Cycle Timings

7.12 Dataswap

Data swap is similar to the load and store register instructions, although the swap takes
placein cycles 2 and 3. The datais fetched from external memory in the second cycle,
and in the third cycle the contents of the source register are written to the external

memory. In the fourth cycle the data read during cycle 2 is written into the destination

register.

The data swapped can be a byte or word quantity (b/w).

The ARM7TDMI-S core might abort the swap operation in either the read or write
cycle. The swap operation (read or write) does not affect the destination register.

The data swap cycle timings are shown in Table 7-15, where b and w are byte and word

as defined in Table 5-6 on page 5-51.

Table 7-15 Data swap instruction cycle operations

Cycle Address Size Write Data TRANS[1:0] Prot0 Lock
1 pc+8 w 0 (pc+8) N cycle 0 0
2 Rn w/b 0 (Rn) N cycle 1 1
3 Rn w/b 1 Rm | cycle 1 1
4 pc+12 w 0 - Scycle 1 0
pc+12
Note

Data swap cannot be executed in Thumb state.

The LOCK output of the ARM7TDMI-S processor is driven HIGH for both load and
store data cycles to indicate to the memory controller that thisis an atomic operation.

7-20 Copyright © 2001 ARM Limited. All rights reserved.

ARM DDI 0234A

Instruction Cycle Timings

7.13 Software interrupt, and exception entry

Exceptions, and Soft\Ware Interrupts (SW1s) force the PC to a specific value, and refill
the instruction pipeline from this address:

1

During thefirst cycle, the ARM7TDMI-S core constructs the forced address, and
amode change might take place. The ARM7TDMI-S core moves the return
address to r14 and moves the CPSR to SPSR_svc.

During the second cycle, the ARM7TDMI-S core modifies the return address to
facilitate return (although this modification is less useful than in the case of
branch with link).

The third cycleis required only to complete the refilling of the instruction
pipeline.

The SWI cycletimings are shown in Table 7-16, where:

S Represents the current supervisor mode dependent value.
t Represents the current Thumb state value.
pc Is, for software interrupts, the address of the SWI instruction.
For exceptions, thisisthe address of theinstruction following thelast one
to be executed before entering the exception.
For Prefetch Aborts, thisis the address of the aborting instruction.
For Data Aborts, this is the address of the instruction following the one
that attempted the aborted data transfer.
Xn I's the appropriate trap address.
Table 7-16 Software interrupt instruction cycle operations
Cycle Address Size Write Data TRANS[1:0] Prot0 Protl Mode Thit
1 pc+2i w/h 0 (pc+2i) N cycle 0 S old mode t
2 Xn w’ 0 (Xn) Scycle 0 1 exception 0
mode
3 Xn+4 w’ 0 (Xn+4) Scycle 0 1 exception 0
mode
Xn+8

ARM DDI 0234A

Copyright © 2001 ARM Limited. All rights reserved. 7-21

Instruction Cycle Timings

7.14 Coprocessor data processing operation

A Coprocessor Data Processing (CDP) operation is arequest from the ARM7TDMI-S
corefor the coprocessor toinitiate some action. Thereisno need to complete the action
immediately, but the coprocessor must commit to completion before driving CPB LOW.

If the coprocessor cannot perform the requested task, it leaves CPA and CPB HIGH.
When the coprocessor is able to perform the task, but cannot commit immediately, the
coprocessor drives CPA LOW, but leaves CPB HIGH until able to commit. The
ARMT7TDMI-S processor busy-waits until CPB goes LOW. However, an interrupt
might causethe ARM 7TDMI-S core to abandon abusy-waiting coprocessor instruction
(see Consequences of busy-waiting on page 4-8).

The coprocessor data operations cycle timings are shown in Table 7-17.

Table 7-17 Coprocessor data operation instruction cycle operations

Cycle Address Write Size Data TRANS[1:0] Prot0 CPnl CPA CPB
ready 1 pct+8 0 w (pc+8) N cycle 0 0 0 0
pc+12
not ready 1 pct+8 0 w (pc+8) | cycle 0 0 0 1
2 pc+8 0 w - I cycle 1 0 0 1
e pct8 0 w - I cycle 1 0 0 1
n pc+8 0 w - N cycle 1 0 0 0
pc+12
Note

Coprocessor operations are available only in ARM state.

7-22 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0234A

Instruction Cycle Timings

7.15 Load coprocessor register (from memory to coprocessor)

The LoaD Coprocessor (LDC) operation transfers one or more words of data from
memory to coprocessor registers.

The coprocessor commits to the transfer only when it is ready to accept the data. The

WRITE lineis driven LOW during the transfer cycle. When CPB goes L OW, the

ARM7TDMI-S core produces addresses, and expects the coprocessor to take the data
at sequential cycle rates. The coprocessor isresponsible for determining the number of
words to be transferred. An interrupt can cause the ARM7TDMI-S core to abandon a
busy-waiting coprocessor instruction (see Consequences of busy-waiting on page 4-8).

Thefirst cycle (and any busy-wait cycles) generates the transfer address. The second
cycle performs the write-back of the address base. The coprocessor indicates the last
transfer cycle by driving CPA and CPB HIGH.

The load coprocessor register cycle timings are shown in Table 7-18.

Table 7-18 Load coprocessor register instruction cycle operations

Cycle Address Size Write Data TRANS[1:0] Prot0 CPnl CPA CPB
1register 1 pc+8 w 0 (pc+8) N cycle 0 0 0 0
ready
2 da w 0 (da) N cycle 1 1 1 1
pc+12
1register 1 pc+8 w 0 (pc+8) I cycle 0 0 0 1
ot ready 2 pc+8 w 0 - I cycle 1 0 0 1
. pc+8 w 0 - I cycle 1 0 0 1
n pc+8 w 0 - N cycle 1 0 0 0
n+1 da w 0 (da) N cycle 1 1 1 1
pc+12
m registers 1 pc+8 w 0 (pc+8) N cycle 0 0 0 0
Sa;)l/) 2 da w 0 (da) Scycle 1 1 0 0
. dat++ w 0 (dat+) Scycle 1 1 0 0
m dat++ w 0 (dat+) Scycle 1 1 0 0
m+1 dat++ w 0 (dat+) Ncycle 1 1 1 1
pc+12
ARM DDI 0234A Copyright © 2001 ARM Limited. All rights reserved. 7-23

Instruction Cycle Timings

Table 7-18 Load coprocessor register instruction cycle operations (continued)

Cycle Address Size Write Data TRANS[1:0] Prot0 CPnl CPA CPB
m registers 1 pc+8 w 0 (pc+8) I cycle 0 0 0 1
i]r;]:rlgady 2 pc+8 w 0 - I cycle 1 0 0 1
. pc+8 w 0 - I cycle 1 0 0 1
n pc+8 w 0 - N cycle 1 0 0 0
n+1 da w 0 (da) Scycle 1 1 0 0
. dat++ 0 (dat+) Scycle 1 1 0 0
n+m dat+ w 0 (dat+) Scycle 1 1 0 0
n+tm+l dat+ w 0 (dat+) Ncycle 1 1 1 1
pc+12
Note
Coprocessor operations are available only in ARM state.
7-24 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0234A

Instruction Cycle Timings

7.16 Store coprocessor register (from coprocessor to memory)

The STore Coprocessor (STC) operation transfers one or more words of data from
COprocessor registers to memory.

The coprocessor commits to the transfer only when it is ready to write data. The

WRITE lineis driven HIGH during the transfer cycle. When CPB goes LOW, the

ARM7TDMI-S core produces addresses, and expects the coprocessor to write the data
at sequential cycle rates. The coprocessor is responsible for determining the number of
words to be transferred. An interrupt can cause the ARM7TDMI-S core to abandon a

busy-waiting coprocessor instruction (see Consequences of busy-waiting on page 4-8).

Thefirst cycle (and any busy-wait cycles) generates the transfer address. The second
cycle performs the write-back of the address base. The coprocessor indicates the last

transfer cycle by driving CPA and CPB HIGH.

The store coprocessor register cycle timings are shown in Table 7-19.

Table 7-19 Store coprocessor register instruction cycle operations

Cycle Address Size Write Data TRANS[1:0] Prot0 CPnl CPA CPB
1register 1 pc+8 w 0 (pc+8) N cycle 0 0 0 0
ready 2 da w 1 CPdata N cycle 1 1 1 1
pc+12
1register 1 pc+8 w 0 (pc+8) I cycle 0 0 0 1
ot ready 2 pc+8 w 0 - I cycle 1 0 0 1
. pc+8 w 0 - I cycle 1 0 0 1
n pc+8 w 0 - N cycle 1 0 0 0
n+1l da w 1 CPdata N cycle 1 1 1 1
pc+12
mregisters 1 pc+8 w 0 (pc+8) N cycle 0 0 0 0
gena:;) 2 da w 1 CPdata Scycle 1 1 0 0
. dat+ w 1 CPdata Scycle 1 1 0 0
m dat+ w 1 CPdata’ Scycle 1 1 0 0
m+1 dat++ w 1 CPdata™ N cycle 1 1 1 1
pc+12
ARM DDI 0234A Copyright © 2001 ARM Limited. All rights reserved. 7-25

Instruction Cycle Timings

Table 7-19 Store coprocessor register instruction cycle operations (continued)

Cycle Address Size Write Data TRANS[1:0] Prot0 CPnl CPA CPB
mregisters 1 pc+8 w 0 (pc+8) I cycle 0 0 0 1
:cTrle)ady 2 pc+8 w 0 - I cycle 1 0 0 1
. pc+8 w 0 - I cycle 1 0 0 1
n pc+8 w 0 - N cycle 1 0 0 0
n+1 da w 1 CPdata Scycle 1 1 0 0
. dat++ w 1 CPdata Scycle 1 1 0 0
n+m dat++ w 1 CPdata Scycle 1 1 0 0
n+tm+l dat+ w 1 CPdata N cycle 1 1 1 1
pc+12
Note
Coprocessor operations are available only in ARM state.
7-26 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0234A

Instruction Cycle Timings

7.17 Coprocessor register transfer (move from coprocessor to ARM register)
The Move fRom Coprocessor (MRC) operation reads asingle coprocessor register into the
specified ARM register.

Dataistransferred in the second cycle and written to the ARM register during the third
cycle of the operation.
If the coprocessor signals busy-wait by asserting CPB, an interrupt can cause the
ARM7TDMI-S core to abandon the coprocessor instruction (see Consequences of
busy-waiting on page 4-8).
Asisthe case with all ARM7TDMI-Sregister load instructions, the ARM7TDMI-S
core might merge the third cycle with the following prefetch cycle into amerged 1-S
cycle.
The MRC cycle timings are shown in Table 7-20.
Table 7-20 Coprocessor register transfer (MRC)
Cycle Address Size Write Data TRANS[1:0] Prot0 CPnl CPA CPB
ready 1 pc+8 w 0 (pc+8) Ccycle 0 0 0 0
2 pc+12 w 0 CPdata I cycle 1 1 1 1
3 pc+12 w 0 - Scycle 1 1 - -
pc+12
not ready 1 pc+8 w 0 (pc+8) | cycle 0 0 0 1
2 pc+8 w 0 - I cycle 1 0 0 1
. pc+8 w 0 - I cycle 1 0 0 1
n pc+8 w 0 - Ccycle 1 0 0 0
n+l pc+l2 w 0 CPdata | cycle 1 1 1 1
n+2 pc+12 w 0 - Scycle 1 1 - -
pc+12
Note
This operation cannot occur in Thumb state.
ARM DDI 0234A Copyright © 2001 ARM Limited. All rights reserved. 7-27

Instruction Cycle Timings

7.18 Coprocessor register transfer (move from ARM register to coprocessor)

The Move to CoprocessoR (MCR) operation transfers the contents of a single ARM
register to a specified coprocessor register.

The dataistransferred to the coprocessor during the second cycle. If the coprocessor
signals busy-wait by asserting CPB, an interrupt can cause the ARM7TDMI-S core to
abandon the coprocessor instruction (see Consequences of busy-waiting on page 4-8).

The MCR cycle timings are shown in Table 7-21.

Table 7-21 Coprocessor register transfer (MCR)

Cycle Address Size Write Data TRANS[1:0] Prot0 CPnl CPA CPB
ready 1 pc+8 w 0 (pc+8) Ccycle 0 0 0 0
2 pc+12 w 1 Rd N cycle 1 1 1 1
pc+12
not ready 1 pc+8 w 0 (pc+8) I cycle 0 0 0 1
2 pc+8 w 0 - | cycle 1 0 0 1
. pc+8 w 0 - I cycle 1 0 0 1
n pc+8 w 0 - Ccycle 1 0 0 0
n+l pc+12 w 1 Rd N cycle 1 1 1 1
pc+12
Note

Coprocessor operations are available only in ARM state.

7-28

Copyright © 2001 ARM Limited. All rights reserved.

ARM DDI 0234A

Instruction Cycle Timings

7.19 Undefined instructions and coprocessor absent

The undefined instruction trap istaken if an undefined instruction is executed. For a
definition of undefined instructions, see the ARM Architecture Reference Manual.

If no coprocessor is able to accept a coprocessor instruction, theinstruction istreated as
an undefined instruction. This enables software to emul ate coprocessor instructions
when no hardware coprocessor is present.

Note

By default CPA and CPB must be driven HIGH unless the coprocessor instruction is
being handled by a coprocessor.

Undefined instruction cycle timings are shown in Table 7-22.

Table 7-22 Undefined instruction cycle operations

CPA
Cycle Address Size Write Data TRANS[1:0] Prot0 CPnl and Protl Mode Thit
CPB
1 pc+2i w/h 0 (pc+2i) Icycle 0 0 1 s Old t
2 pc+2i w/h 0 - N cycle 0 1 1 S Old t
3 Xn w’ 0 (Xn) Scycle 0 1 1 1 00100 O
4 Xn+4 w’ 0 (Xn+4) Scycle 0 1 1 1 00100 O
Xn+8
where:
S Represents the current mode-dependent value.
t Represents the current state-dependent value.

Note
Coprocessor operations are available only in ARM state.

ARM DDI 0234A

Copyright © 2001 ARM Limited. All rights reserved. 7-29

Instruction Cycle Timings

7.20 Unexecuted instructions

When the condition code of any instruction is not met, the instruction is not executed.
An unexecuted instruction takes one cycle.

Unexecuted instruction cycle timings are shown in Table 7-23.

Table 7-23 Unexecuted instruction cycle operations

Cycle Address Size Write Data TRANS[1:0] Prot0
1 pc+2i w/h 0 (pc+2i) Scycle 0
pc+3i

7-30 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0234A

Chapter 8

AC Parameters

This chapter gives the AC timing parameters of the ARM7TDMI-S processor. It
contains the following sections:

. Timing diagrams on page 8-2
. AC timing parameter definitions on page 8-8.

ARM DDI 0234A

Copyright © 2001 ARM Limited. All rights reserved.

8-1

AC Parameters

8.1 Timing diagrams

This section contains timing diagrams, as follows:

. Timing parameters for data accesses

. Coprocessor timing on page 8-4

. Exception and configuration input timing on page 8-5
. Debug timing on page 8-6

. Scan timing on page 8-7.

8.1.1 Timing parameters for data accesses

Timing parameters for data accesses are shown in Figure 8-1 on page 8-3.

8-2 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0234A

CLK

TRANS[1:0]

ADDR[31:0]

WRITE
SIZE[1:0]
PROT[1:0]

WDATA[31:0]
(write data)

CLKEN

ABORT

RDATA[31:0]
(read data)

I

AC Parameters

—

X TRAN X)
tovtrans >
tohtrans
X Addr X
tcrvaddr —> <
tohaddr
Contro
tovctl —> <
tohctl
‘t > > <
ovwdata tohwdata
C\ \
| | E—
<>
tisclke
> 4
tihr:lken
C\ \
| | E—
<>
tisabot
—
tihabort
Data
<>
tisrdata
> <
tihrdata

Figure 8-1 Timing parameters for data accesses

ARM DDI 0234A

Copyright © 2001 ARM Limited. All rights reserved.

8-3

AC Parameters

Note

The timing for both read and write data access are superimposed in Figure 8-1 on
page 8-3. The WRITE signal conveyswhether the access usesthe RDATA or WDATA

port.

CLKEN LOW stretches the data access when the read or write transaction is unable to

complete within asingle cycle.

The data buses are used for transfer only when the transaction signals TRANS[1: 0]
indicate a valid memory cycle or a coprocessor register transfer cycle.

8.1.2 Coprocessor timing
Coprocessor timing parameters are shown in Figure 8-2.
CLK J I— |_
CPA
CPB < >
tiscpstat
4 47
tih<:pstat
cpnl x
< > —> -«
tovt:pni tohcpni
CPnMREQ —
CPSEQ —:X X
< —» b
tovcpctl tohcpctl
CPnOPC __
CPnTRANS X
CPTBIT ~ < Ty e
tovcpctl tohcpctl
Figure 8-2 Coprocessor timing
8-4 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0234A

AC Parameters

8.1.3 Exception and configuration input timing

Exception and configuration input timing parameters are shown in Figure 8-3.

CLK
nFIQ
niRQ
—» -«
isexc
> <
tihexc
nRESET
t—b <
isexc
— >
tihexc
CFGBIGEND X
4 -+
iscfg
>
tiht:fg

Figure 8-3 Exception and configuration input timing

ARM DDI 0234A

Copyright © 2001 ARM Limited. All rights reserved. 8-5

AC Parameters

8.1.4 Debug timing
Debug timing parameters are shown in Figure 8-4.
o N B D
DBGRQ
t > «—
isdbgctl —» -«—
tihdbgcll
DBGBREAK
t —> <«
isdbgctl —» <«
tihdbgctl
DBGEXT[1:0]
t —» <+
isdbgctl — -«
t
DBGACK _ ihdbgctl
DBGCOMMTX X
DBGCOMMRX -
tovdbgstat e <Thdb
ohdbgstat
DBGRNG[1:0])(
—> <«
tovdbgstat - <Thdb at
ohdbgsta
Figure 8-4 Debug timing
Note
DBGBREAK is sampled on rising clock, so external data-dependent breakpoints and
watchpoints must be matched and signaled by this edge.
8-6 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0234A

8.1.5 Scan timing

AC Parameters

Scan timing parameters are shown in Figure 8-5.

S N e I

DBGTCKEN

—>
tistr:ker

—» <«
DBGTMS tihtcken

DBGTDI

ti stctl

—» -
ti htctl

DBGTDO \
5

tovtdo » t <
ohtdo

Figure 8-5 Scan timing

ARM DDI 0234A

Copyright © 2001 ARM Limited. All rights reserved. 8-7

AC Parameters

8.2 AC timing parameter definitions
Table 8-1 shows target AC parameters. All figures are expressed as percentages of the
CLK period at maximum operating frequency. Please contact your silicon supplier for
more details.
Note
Where 0% is shown, thisindicates the hold time to clock edge plus the maximum clock
skew for internal clock buffering.
Table 8-1 Provisional AC parameters
Symbol Parameter Min Max
teye CLK cycletime 100% -
tisclken CLKEN input setup to rising CLK 40% -
tinclken CLKEN input hold from rising CLK - 0%
tisabort ABORT input setup torising CLK 15% -
tihabort ABORT input hold from rising CLK - 0%
tisrdata RDATA input setup to rising CLK 10% -
tihrdata RDATA input hold from rising CLK - 0%
tovaddr Rising CLK to ADDR valid - 90%
tohaddr ADDR hold time from rising CLK >0% -
tovetl Rising CLK to control valid - 90%
tohetl Control hold time from rising CLK >0% -
tovtrans Rising CLK to transaction type valid - 50%
tohtrans Transaction type hold time from rising CLK >0% -
tovwdata Rising CLK to WDATA valid - 40%
tohwdata WDATA hold time from rising CLK >0% -
tiscpstat CPA, CPB input setup torising CLK 20% -
tincpstat CPA, CPB input hold from rising CLK - 0%
8-8 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0234A

AC Parameters

Table 8-1 Provisional AC parameters (continued)

Symbol Parameter Min Max
tovepet Rising CLK to coprocessor control valid - 80%
tohcpetl Coprocessor control hold time from rising CLK >0% -
tovepni Rising CLK to coprocessor CPnl valid - 40%
tohepni Coprocessor CPnl hold time from rising CLK >0% -
tisexc nF1Q, nIRQ, nRESET setup torising CLK 10% -
tihexc nF1Q, nIRQ, nRESET hold fromrising CLK - 0%
tiscrg CFGBIGEND setup torising CLK 10% -
tihctg CFGBIGEND hold from risng CLK - 0%
tisdogstat Debug status inputs setup to rising CLK 10% -
tindbgstat Debug status inputs hold from rising CLK - 0%
tovdbgctl Rising CLK to debug control valid - 40%
tohdoct! Debug control hold time from rising CLK >0% -
tistcken DBGTCKEN input setup to rising CLK 40% -
tintcken DBGTCKEN input hold from risng CLK - 0%
tisttl DBGTDI, DBGTMS input setup to rising CLK 35% -
tihtetl DBGTDI, DBGTMS input hold from rising CLK - 0%
tovtdo Risng CLK to DBGTDO valid - 20%
tohtdo DBGTDO hold time from rising CLK >0% -
tovdbgstat Rising CLK to debug status valid 40% -
tohdbgstat Debug status hold time >0% -
ARM DDI 0234A Copyright © 2001 ARM Limited. All rights reserved. 8-9

AC Parameters

8-10 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0234A

Appendix A
Signal Descriptions

This appendix lists and describes al the ARM7TDM I-S processor signals. It contains
the following section:

. Signal descriptions on page A-2.

ARM DDI 0234A Copyright © 2001 ARM Limited. All rights reserved. A-1

Signal Descriptions

A.1 Signal descriptions
The signas of the ARM7TDMI-S processor are shown in Table A-1.

Table A-1 Signal descriptions

Name Type Description

ABORT Input Memory abort or bus error. Thisisan input that is used by the memory systemto signa
to the processor that a requested accessiis disallowed.

ADDR[31:0] Output Thisisthe processor address bus.

CFGBIGEND Input Big-endian configuration. When this signal is HIGH, the processor treats bytesin
memory as being in big-endian format. When the signal is LOW, memory istreated as
little-endian.

CFGBIGEND isnormaly a static configuration signal.
This signal is analogous to BIGEND on the hard macrocell.

CLK Input Clock input. This clock times all ARM7TDMI-S memory accesses and internal
operations. All outputs change from therising edge of CLK and all inputs are sampled
on therising edge of CLK.

The CLKEN input can be used with afree-running CLK to add synchronous
wait-states.

Alternatively, the clock can be stretched indefinitely in either phaseto allow accessto
slow peripherals or memory or to put the system into alow-power state. CLK isalso
used for serial scan-chain debug operation with the EmbeddedI CE-RT tool-chain. This
signal isanaogousto inverted M CLK on the hard macrocell.

CLKEN Input Wait state control. When accessing dow peripherals, the ARM7TDMI-S can be made
to wait for an integer number of CLK cycles by driving CLKENLOW. When the
CLKEN control is not used, it must be tied HIGH.

Thissignal is analogous to nWAI T on the hard macrocell.

CPA Input Coprocessor absent handshake. A coprocessor that is capable of performing the
operation that the ARM7TDMI-S isrequesting (by asserting CPnl), takes CPA LOW,
set up to the cycle edge that precedes the coprocessor access. When CPA issignaled
HIGH and the coprocessor cycleisexecuted (assignaled by CPnl signaled LOW), the
ARMT7TDMI-S aborts the coprocessor handshake and takes the undefined instruction
trap. When CPA isLOW and remains LOW, the ARM7TDMI-S busy-waits until CPB
is LOW and then compl etes the coprocessor instruction.

CPB Input Coprocessor busy handshake. A coprocessor is capable of performing the operation
requested by the ARM7TDMI-S (by asserting CPnl), but cannot commit to starting it
immediately, thisisindicated by driving CPBHIGH.

When the coprocessor is ready to start, it takes CPB LOW, with the signal being set up
before the start of the coprocessor instruction execution cycle.

A-2 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0234A

Signal Descriptions

Table A-1 Signal descriptions (continued)

Name

Type

Description

CPnli

Output

Not coprocessor instruction. When the ARM7TDMI-S executes a coprocessor
instruction, it takes this output LOW and waits for a response from the coprocessor.
The action taken depends on this response, which the coprocessor signals on the CPA
and CPB inputs.

CPNMREQ

Output

Not memory reguest. When LOW, this signal indicates that the processor requires
memory access during the next transaction.

This signal is analogous to NnMREQ on the hard macrocell.

CPnOPC

Output

Not opcode fetch. When LOW, this signal indicates that the processor is fetching an
instruction from memory. When HIGH, data (if present) is being transferred.

This signal is analogous to NOPC on the hard macrocell and to BPROT/[0O] on the
AMBA ASB.

CPSEQ

Output

Sequential address. This output signal becomes HIGH when the address of the next
memory cycleisrelated to that of the last memory access. The new addressiseither the
same as the previous one or four greater in ARM state or two greater when fetching
opcodes in Thumb state.

This signal is analogous to SEQ on the hard macrocell.

CPTBIT

Output

When HIGH, this signal indicates to a coprocessor that the processor is executing the
Thumbinstruction set. When LOW, the processor is executing the ARM instruction set.

CPnTRANS

Output

Not memory translate. When LOW, this signal indicates that the processor isin User
mode. It can be used to signal to memory management hardware when to bypass
translation of the addresses or as an indicator of privileged mode activity.

This signal is analogous to nTRANS on the hard macrocell.

DBGACK

Output

Debug acknowledge. When HIGH, this signal DBGBREAK indicates that the
ARMT7TDMI-Sisin debug state. It is enabled only when DBGEN is HIGH.

DBGBREAK

Input

Embeddedl CE-RT breakpoint/watchpoint indicator. This signal enables external
hardware to halt the execution of the processor for debug purposes.

When HIGH, this signal causes the current memory access to be breakpointed.

When the memory accessis an instruction fetch, the ARM 7TDM I-S enters debug state
if the instruction reaches the execute stage of the ARM7TDMI-S pipeline.

When the memory accessis for data, the ARM7TDMI-S enters debug state after the
current instruction completes execution. This enables extension of the internal
breakpoints provided by the Embedded| CE-RT module.

DBGBREAK isenabled only when DBGEN is HIGH.

This signal is analogous to BREAKPT on the hard macrocell.

ARM DDI 0234A

Copyright © 2001 ARM Limited. All rights reserved. A-3

Signal Descriptions

Table A-1 Signal descriptions (continued)

Name

Type

Description

DBGCOMMRX

Output

Embedded| CE-RT communi cations channel receive. When HIGH, thissignal indicates
that the comms channel receive buffer is full. DBGCOMM RX is enabled only when
DBGEN isHIGH.

Thissignal is analogous to COM MRX on the hard macrocell.

DBGCOMMTX

Output

Embeddedl CE-RT communications channel transmit. When HIGH, thissignal denotes
that the comms channel transmit buffer is empty. DBGCOMMTX is enabled only
when DBGEN isHIGH.

This signal is analogousto COMMT X on the hard macrocell.

DBGEN

Input

Debug enable. Thisinput signal enables the debug features of the ARM7TDMI-S. If
you intend to use the ARM7TDMI-S debug features, tie this signal HIGH. Drive this
signa LOW only when debugging is not required.

DBGnEXEC

Output

Not executed. When HIGH, this signal indicates that the instruction in the execution
unit isnot being executed (because, for example, it hasfailed its condition code check).

DBGEXT[1:0]

Input

Embedded| CE-RT external input O, external input 1. These are inputs to the
Embeddedl CE-RT macrocell logicinthe ARM7TDMI-Sthat all ow breakpoints and/or
watchpoints to be dependent on an external condition. The inputs are enabled only
when DBGEN isHIGH.

These signa s are analogous to EXTERN][1:0] on the hard macrocell.

DBGINSTRVALID

Output

Instruction executed signal. Goes HIGH for one cycle for each instruction committed
to the execute stage of the pipeline. Used by ETM7 to trace the ARM7TDMI-S
processor pipeline.

Thissignal is analogousto INSTRVAL ID on the hard macrocell.

DBGRNG[1:0]

Output

EmbeddedlI CE-RT rangeout. This signal indicates that EmbeddedI CE-RT watchpoint
register has matched the conditions currently present on the address, data and control
buses.

This signal isindependent of the state of the watchpoint enable control bit.
The signal is enabled only when DBGEN is HIGH.
This signal is analogous to RANGE[1:0] on the hard macrocell.

DBGRQ

Input

Debug request. Thisinternally synchronized input signal requests the processor to
enter debug state. DBGRQ is enabled only when DBGEN is HIGH.

DBGTCKEN

Input

Test clock enable. DBGTCKEN isenabled only when DBGEN isHIGH.

DBGTDI

Input

Embedded| CE-RT datain. JTAG test datainput. DBGTDI is enabled only when
DBGEN isHIGH.

DBGTDO

Output

Embedded| CE-RT data out. Output from the boundary scan logic. DBGTDO is
enabled only when DBGEN is HIGH.

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0234A

Signal Descriptions

Table A-1 Signal descriptions (continued)

Name

Type

Description

DBGNnTDOEN

Output

Not DBGTDO enable. When LOW, this signal denotes that serial datais being driven
out on the DBGTDO output. DBGNTDOEN isnormally used as an output enable for
aDBGTDO pinin apackaged part.

DBGTMS

Input

Embeddedl CE-RT mode select. JTAG test mode select. DBGTM S is enabled only
when DBGEN isHIGH.

DBGNTRST

Input

Not test reset. Thisis the active-low reset signal for the Embedded! CE-RT macrocell
internal state.

DM ORE

Output

Asserted for LDM and STM instructions (new for Rev 4). This signal has the effect of
making memory accesses more efficient.

nFIQ

Input

Active-low fast interrupt request. Thisisa high priority synchronousinterrupt request
to the processor. If the appropriate enable in the processor is active when thissignal is
taken LOW, the processor is interrupted.

This signal is level-sensitive and must be held LOW until a suitable interrupt
acknowledge response is received from the processor.

This signal is analogous to nF1Q on the hard macrocell when | SYNC isHIGH.

nlRQ

Input

Active-low interrupt request. Thisisalow priority synchronousinterrupt request to the
processor. If the appropriate enable in the processor is active when this signal istaken
LOW, the processor is interrupted.

This signal is level-sensitive and must be held LOW until a suitable interrupt
acknowledge response is received from the processor.

This signal is analogous to nIRQ on the hard macrocell when ISYNC is HIGH.

LOCK

Output

Locked transaction operation. When LOCK is HIGH, the processor is performing a
locked memory access, the arbiter must wait until LOCK goes LOW before dlowing
another device to access the memory.

PROTI[1:0]

Output

These output signals to the memory system indicate whether the output is code or data
and whether the access is User Mode or privileged access:

x0 opcode fetch

x1 data access

ox User-mode access

1x supervisor or privileged mode access.

RDATA[3L:0]

Input

Read datainput bus. Thisisthe read data bus used to transfer instructions and data
between the processor and memory. The data on this bus is sampled by the processor
at the end of the clock cycle during read accesses (that is, when WRITE isLOW).

This signal is analogous to DIN[31:0] on the hard macrocell.

ARM DDI 0234A

Copyright © 2001 ARM Limited. All rights reserved. A-5

Signal Descriptions

Table A-1 Signal descriptions (continued)

Name

Type

Description

NnRESET

Input

Not reset. Thisinput signal forcesthe processor to terminate the current instruction and
subseguently to enter thereset vector in supervisor mode. It must be asserted for at least
two cycles.

A LOW level forcesthe instruction being executed to terminate abnormally on the next
nonwait cycle and causes the processor to perform idle cycles at the bus interface.
When nRESET becomesHIGH for at | east one clock cycle, the processor restartsfrom
address 0.

SCANENABLE

Input

Scan test path enable (for automatic test pattern generation) isL OW for normal system
configuration and HIGH during scan testing.

SCANIN

Input

Scan test path serial input (for automatic test pattern generation). Serial shift register
input is active when SCANENABLE is active (HIGH).

SCANOUT

Output

Scan test path serid output (for automatic test pattern generation). Serial shift register
output is active when SCANENABLE is active (HIGH).

SIZE[1:0]

Output

Memory access width. These output signalsindicate to the externad memory system
when aword transfer or a halfword or byte length is required:

00 8-hit byte access (addressed in word by ADDR[1:0])

01 16-bit halfword access (addressed in word by ADDR[1])
10 32-bit word access (aways word-aligned)

11 (reserved)

This signal is analogous to MA S 1:0] on the hard macrocell.

TRANS[L:0]

Output

Next transaction type. TRANS indicates the next transaction type:
00 address-only (internal operation cycle)

01 coprocessor

10 memory access at nonsequential address

11 memory access a sequentia burst address.

The TRANS[1] signad is analogous to inverted nM REQ and the TRANS[O] signal is
analogous to SEQ on the hard macrocell. TRANS is analogous to BTRAN on the
AMBA system bus.

Vbbp

Power supply to the device.

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0234A

Signal Descriptions

Table A-1 Signal descriptions (continued)

Name Type Description

Vss Ground reference for all signals.

WDATA[31:0] Output Write data output bus. Thisis the write data bus, used to transfer data from the
processor to the memory or coprocessor system.
Write datais set up to the end of the cycle of store accesses (that is, when WRITE is
HIGH) and remains vaid throughout wait states.
This signal is analogous to DOUT[31:0] on the hard macrocell.

WRITE Output Write/read access. When HIGH, WRITE indicates a processor write cycle, when

LOW, it indicates a processor read cycle.
This signal is analogous to NnRW on the hard macrocell.

ARM DDI 0234A

Copyright © 2001 ARM Limited. All rights reserved. A-7

Signal Descriptions

A-8

Copyright © 2001 ARM Limited. All rights reserved.

ARM DDI 0234A

Appendix B
Differences Between the ARM7TDMI-S and the

ARM/7TDMI

This appendix describes the differences between the ARM7TDMI-S and ARM7TDMI
macrocell interfaces. It contains the following sections:

Interface signals on page B-2

ATPG scan interface on page B-6

Timing parameters on page B-7

ARM7TDMI-Sdesign considerations on page B-8.

ARM DDI 0234A Copyright © 2001 ARM Limited. All rights reserved. B-1

Differences Between the ARM7TDMI-S and the ARM7TDMI

B.1 Interface signals

The signal names have prefixes that identify groups of functionally-related signals:

CFGxxx Shows configuration inputs (typically hard-wired for an embedded
application).

CPxxx Shows coprocessor expansion interface signals.

DBGxxx Shows scan-based Embedded! CE-RT debug support input or output.

Other signals provide the system designer interface, which is primarily
memory-mapped. Table B-1 shows the ARM7TDMI-S (Rev 4) processor signals with
their ARM7TDMI (Rev 4) hard macrocell equivalent signals.

Table B-1 ARM7TDMI-S processor signals and ARM7TDMI hard macrocell equivalents

ARM7TDMI-S . ARM7TDMI hard
processor Function .
. macrocell equivalent
signal
ABORT 1 = memory abort or bus error. ABORT
0 =no error.
ADDRJ[31:0] 2 32-bit address output bus, available in the cycle preceding the A[31:0]
memory cycle.
CFGBIGEND 1 = big-endian configuration. BIGEND
0 = little-endian configuration.
CLK b Master rising edge clock. All inputs are sampled on therising MCLK
edge of CLK.
All timing dependencies are from the rising edge of CLK.
CLKEN¢® System memory interface clock enable: nWAIT
1 = advance the coreon rising CLK.
0 = prevent the core advancing on rising CLK.
CPAd Coprocessor absent. Tie HIGH when no coprocessor ispresent. CPA
cpBd Coprocessor busy. Tie HIGH when no coprocessor is present. CPB
CPnl Active LOW coprocessor instruction execute qualifier. nCPI
CPnMREQ Active LOW memory request signal, pipelined in the preceding nMREQ
access. Thisis a coprocessor interface signal.
Usethe ARM7TDMI-S output TRANS[1:0] for businterface
design.
B-2 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0234A

Differences Between the ARM7TDMI-S and the ARM7TDMI

Table B-1 ARM7TDMI-S processor signals and ARM7TDMI hard macrocell equivalents (continued)

ARM7TDMI-S : ARM7TDMI hard
processor Function .
: macrocell equivalent
signal
CPnOPC Active LOW opcode fetch qualifier output, pipelined in the nOPC
preceding access. Thisis acoprocessor interface signal.
Use the ARM7TDMI-S output PROT[1:0] for businterface
design.
CPNnTRANS Active LOW supervisor mode access qualifier output. Thisisa ~ nTRANS
coprocessor interface signal.
Use the ARM7TDMI-S output PROT[1:0] for businterface
design.
CPSEQ Sequential address signal. Thisis a coprocessor interfacesignal. SEQ
Use the ARM7TDMI-S output TRANS[1:0] for businterface
design.
CPTBIT Instruction set qualifier output: TBIT
1=THUMB ingtruction set.
0= ARM instruction set.
DBGACK Debug acknowledge qualifier output: DBGACK
1 = processor in debug state (real-time stopped).
0 = normal system state.
DBGBREAK External breakpoint (tie LOW when not used). BREAKPT
DBGCOMMRX EmbeddedI CE-RT communication channel receive buffer full COMMRX
output.
DBGCOMMTX EmbeddedI CE-RT communication channel transmit buffer COMMTX
empty output.
DBGEN Debug enable. Tiethissignal HIGH to be ableto usethedebug DBGEN

features of the ARM7TDMI.

DBGEXTI[1:0]

EmbeddedI CE-RT EXTERN debug qualifiers (tie LOW when
not required).

EXTERNO, EXTERN1

DBGINSTRVALIDe Signalsinstruction execution to ETM7. INSTRVALID
DBGnEXEC Active LOW condition codes success at Execute stage. nEXEC
DBGNTDOEN f Active LOW TAP controller DBGTDO output qualifier. nTDOEN

ARM DDI 0234A

Copyright © 2001 ARM Limited. All rights reserved.

Differences Between the ARM7TDMI-S and the ARM7TDMI

Table B-1 ARM7TDMI-S processor signals and ARM7TDMI hard macrocell equivalents (continued)

ARM7TDMI-S : ARM7TDMI hard
processor Function .
: macrocell equivalent
signal
DBGNTRST f Active LOW TAP controller reset (asynchronous assertion). nTRST
Resets the ICEBreaker subsystem.
DBGRNG[1:0] EmbeddedI CE-RT rangeout qualifier outputs. RANGEOUT],
RANGEOUTO
DBGRQ Y9 External debug request (tie LOW when not required). DBGRQ
DBGTCKEN Multi-I CE clock input qualifier sampled on the rising edge of
CLK. Used to quaify CLK to enable the debug subsystem.
DBGTDI f Multi-ICE TDI test datainput. TDI
DBGTDOf EmbeddedI CE-RT TAP controller serial data output. TDO
DBGTMSf Multi-ICE TM S test mode select input. TMS
DMORE Asserted for LDM and STM instructions. No equivalent on the
ARMT7TDMI processor.
LOCK a Indicates whether the current addressis part of locked access. LOCK
This signal is generated by execution of a SWP instruction.
nFIQh Active LOW fast interrupt request input. nFlQ
nlRQh Active LOW interrupt request input. nlRQ
NnRESET Active LOW reset input (asynchronous assertion). Resets the NnRESET
processor core subsystem.
PROT[1:0] &i Protection output, indicates whether the current addressisbeing nOPC,
accessed as instruction or data, and whether it isbeing accessed [TRANS
in aprivileged mode or User mode.
RDATA[31:0] | Unidirectional 32-bit input data bus. DIN[31:0]
SIZE[1:0] Indicates the width of the bus transaction to the current address:. MAS[1:0]
00 = 8-hit
01 = 16-hit
10 = 32-hit
11 = not supported.
B-4 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0234A

Differences Between the ARM7TDMI-S and the ARM7TDMI

Table B-1 ARM7TDMI-S processor signals and ARM7TDMI hard macrocell equivalents (continued)

ARM7TDMI-S : ARM7TDMI hard
processor Function .
: macrocell equivalent

signal
TRANS[1:0] Next transaction type output bus: NMREQ, SEQ

00 = address-only/idle transaction next

01 = coprocessor register transaction next

10 = non-sequential (new address) transaction next

11 = sequential (incremental address) transaction next.
WDATA[31:0] Unidirectiona 32-bit output data bus DOUTI[31:0]
WRITE Write access indicator. nRW

a All the address-class signals (ADDR[31:0], WRITE, SIZE[1:0], PROT[1:0], and L OCK) change on the rising edge of
CLK.
In asystem with alow-frequency clock this meansthat it is possible for the signals to change in the first phase of the clock
cycle. Thisisunlike the ARM7TDMI hard macrocell where they would always change in the last phase of the cycle.
CLK isarising-edge clock. It isinverted with respect to the M CLK signal used on the ARM7TDMI hard macrocell.

. CLKEN issampled on therising edge of CLK. The nWAIT signal on the ARM7TDMI hard macrocell must be held
throughout the HIGH phase of M CLK. This means that the address-class outputs (ADDR[31:0], WRITE, SIZE[1:0],
PROT[1:0], and LOCK) might still changein a cyclein which CLKEN istaken LOW.

You must take this possibility into account when designing a memory system.

d. CPA and CPB are sampled on therising edge of CLK. They can no longer change in the first phase of the next cycle, asis
possible with the ARM7TDMI hard macrocell.

e. DBGINSTRVALID isimplemented on the ARM7TDMI-S (Rev 3) and ARM7TDMI-S (Rev 4) soft core and ARM7TDMI
(Rev 4) hard core macrocells. This siganl is not implemented on previous versions.

f. All JTAG signals are synchronous to CLK onthe ARM7TDMI-S processor. Thereis no asynchronous TCLK as on the

ARMT7TDMI hard macrocell.
You can use an external synchronizing circuit to generate TCLKEN when an asynchronous TCLK isrequired.

g. DBGRQ must be synchronized externally to the macrocell. It is not an asynchronous input as on the ARM7TDMI hard
macrocell.

h. nFIQ and nIRQ are synchronous inputs to the ARM7TDMI-S processor, and are sampled on therising edge of CLK.
Asynchronous interrupts are not supported.

i. PROTIO0] is the equivalent of nOPC, and PROT[1] isthe equivalent of NnTRANS on the ARM7TDMI hard macrocell.

j. The ARM7TDMI-S processor supports only unidirectional data buses, RDATA[31:0] and WDATA[31:0]. When a
bidirectional busis required, you must implement externa bus combining logic.

ARM DDI 0234A Copyright © 2001 ARM Limited. All rights reserved. B-5

Differences Between the ARM7TDMI-S and the ARM7TDMI

B.2 ATPG scan interface

Where automatic scan path isinserted for automatic test pattern generation, three
signals are instantiated on the macrocell interface:

. SCANENABLE isLOW for normal usage, HIGH for scan test
. SCANIN isthe seria scan path input
. SCANOUT isthe seria scan path output.

B-6 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0234A

Differences Between the ARM7TDMI-S and the ARM7TDMI

B.3 Timing parameters

The timing constraints have been adjusted to balance the external timing parameters
with the area of the synthesized core. All inputs are sampled on therising edge of CLK..
The timing diagrams associated with these timing parameters are shown in Timing
diagrams on page 8-2.

The clock enables are sampled on every rising clock edge:
. CLKEN setup time istisiken, hold timeiis tinciken
. DBGTCKEN setup timeis tigcken, hold time is tinicken-

All other inputs are sampled on therising edge of CLK when the clock enableisactive
HIGH:

. ABORT setup time s tiggport, hold time istipanort, When CLKEN isactive
. RDATA setup time is tiggaa, hold time is tinrdata, When CLKEN is active

. DBGTMS, DBGTDI setup timeistigcy, hold timeis tipcy, when DBGTCKEN
is active.

Outputs are all sampled on the rising edge of CLK with the appropriate clock enable
active:

. ADDR output hold time is tonadgr, valid time is toyaggr When CLKEN is active
. TRANS output hold time is tonrans, Valid time is toyrans When CLKEN is active

. LOCK, PROT, SIZE, WRITE control output hold time is toney, valid timeis
tovett When CLKEN isactive

. W DATA output hold timeistghwdata Valid timeistowgaa When CLK EN isactive.

Similarly, all coprocessor and debug signal expansion signals are defined with input
setup parameters of tjs... , hold parameters of tj,... , output hold parameters of tg... and
output valid parameters of ty... .

ARM DDI 0234A Copyright © 2001 ARM Limited. All rights reserved. B-7

Differences Between the ARM7TDMI-S and the ARM7TDMI

B.4 ARM7TDMI-S design considerations

When an ARM7TDMI hard macrocell design isbeing converted to the ARM7TDMI-S
soft core, the following areas require special consideration:

. Master clock

. JTAG interface timing
. TAP controller

. Interrupt timing

. Interrupt timing.

B.4.1 Master clock

The master clock to the ARM7TDMI-S processor, CLK, isinverted with respect to

MCLK used on the ARM7TDMI hard macrocell. The rising edge of the clock isthe

active edge of the clock, on which all inputs are sampled, and al outputs are causal.
B.4.2 JTAG interface timing

All JTAG signals on the ARM7TDMI-S processor are synchronous to the master clock
input, CLK. When an external TCLK is used, use an external synchronizer to the
ARM7TDMI-S processor.

B.4.3 TAP controller

The ARM7TDMI-S processor does not have a boundary scan chain. Consequently
support for some JTAG instructions have been removed.

Optiona JTAG specification instructions are:

. CLAMP
. HIGHZ
. CLAMPZ.

When scan chain 1 or scan chain 2is selected, you can not usethe EXTEST, SAMPLE,
and PREL OAD instructions because:

. unpredictable behavior occurs
. instructions are only supported for designer added scan chains.

B.4.4 Interrupt timing

Aswith al ARM7TDMI-S processor signals, theinterrupt signalsnlRQ and nFIQ are
sampled on the rising edge of CLK.

B-8 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0234A

Differences Between the ARM7TDMI-S and the ARM7TDMI

When you are converting an ARM7TDMI hard macrocell design where the ISYNC
signal is asserted LOW, add a synchronizer to the design to synchronize the interrupt
signals before they are applied to the ARM7TDMI-S processor.

B.4.5 Address-class signal timing

The address-class outputs (ADDR[31:0], WRITE, SIZE[1:0], PROT[1:0], and

L OCK) onthe ARM7TDMI-S processor al change in response to the rising edge of
CLK. Thismeansthat they can changein thefirst phase of the clock in some systems.
When exact compatibility isrequired, add |atches to the outside of the ARM7TDMI-S
processor to make sure that they can change only in the second phase of the clock.

Because the CLK EN signal is sampled only on the rising edge of the clock, the
address-class outputs still changeinacyclein which CLKEN isLOW. (Thisissimilar
to the behavior of nMREQ and SEQ in an ARM7TDMI hard macrocell system, when
await stateisinserted using NWAI T.) Make sure that the memory system design takes
thisinto account.

Also make sure that the correct addressis used for the memory cycle, even though
ADDR[31:0] might have moved on to address for the next memory cycle.

For more details, see Chapter 3 Memory Interface.

B.4.6 ARM7TDMI signals not implemented on ARM7TDMI-S processor

The following ARM7TDMI signals are not implemented on the ARM7TDMI-S
processor.

Table B-2 Unimplemented ARM7TDMI processor signals

Description Signal name
Bus enables ABE

DBE

TBE
BiDirectional data bus D

Address timing control inputs ALE
APE

Byte latch controls BL

ARM DDI 0234A Copyright © 2001 ARM Limited. All rights reserved. B-9

Differences Between the ARM7TDMI-S and the ARM7TDMI

Table B-2 Unimplemented ARM7TDMI processor signals

Description

Signal name

Data bus timing control signals

BUSDIS
BUSEN
nENIN
NnENOUT
NnENOUTI

M ode output

nM

Interrupt configuration signal

ISYNC

Debug signals

DBGRQI
ECLK

JTAG expansion signals

DRIVEBS
ECAPCLK
ECAPCLKBS
HIGHZ
ICAPCLKBS
IR

nHIGHZ
PCLKBS
RSTCLKBS
SCREG
SDINBS
SDOUTBS
SHCLKBS
SHCLK2BS
TAPSM
TCK1
TCK2

For more details on any of these signals, see the ARM7TDMI Technical Reference

Manual.

B-10 Copyright © 2001 ARM Limited. All rights reserved.

ARM DDI 0234A

Index

Theitemsin thisindex arelisted in aphabetical order, with symbols and numerics appearing at the end. The

references given are to page numbers.

A

Abort

Data 2-22,5-9, 5-45

exception 2-22

handler 2-22,5-9

holdtime B-7

mode 2-8

Prefetch 2-22, 5-47

setup time B-7

signa A-2

vector 5-45
Aborted watchpoint 5-46
AC

timing diagrams 8-2-8-7

timing parameter definitions 8-8
Address class signal

timing B-9
Address mask register 5-48, 5-50
Address valueregister 5-48
Architecture 1-4, 2-2
ARM

instruction set 1-9-7?

operating state 2-3
ARM state 1-4

register set 2-9
ATPG scan interface B-6

B

Banked registers 2-9, 5-40
Big-endian format 2-4
Boundary-scan
chaincels 5-27
interface 5-27
Breakpoint
addressmask 5-53, 5-54
data-dependent 5-53

entry into debug state 5-8

externally-generated 5-7

hardware 5-53

programming 5-53
Breakpoints

programming 5-53

software 5-53

Businterface
cycletypes 3-4
signals 3-3
BYPASS instruction 5-29
Bypass register 5-30, 5-31

C

CAPTURE-DR state 5-28
Clock

domains 5-13

maximum skew 8-8

system 5-10

test 5-10
Codedensity 1-4,1-5
Condition code flags 2-16
Control bits 2-17
Control mask 5-48, 5-50
Control mask register 5-48, 5-50
Control value

register 5-52
Control value register 5-48, 5-50

ARM DDI 0234A

Copyright © 2001 ARM Limited. All rights reserved.

Index-1

Index

Coprocessor
about 4-2
busy-waiting 4-8
connecting 4-11-4-13
data operations 4-9
data processing operation 7-22
handshaking 4-6
interface handshaking 4-6
interface signas 4-4
load and store operations 4-10
load register 7-23
notusing 4-14
register transfer 7-27
register transfer, from ARM 7-28
Store Coprocessor (STC) operation
7-25
timing 8-4
CPnCPI 4-8
CPSR 2-9
Current Program Status Register, See
CPSR
Cycle
coprocessor register transfer 1-3
idle 1-3
nonsequential 1-3
sequential 1-3

D

Data
abort 2-22, 5-9, 5-47
operations 7-10
types 2-7
Dataformats
big-endian 2-4
little-endian 2-4
Data mask register 5-48, 5-50
Data swap instruction 7-20
Datavalue register 5-48
DCC
access through JTAG 1-23
bandwidth improvements 1-23
Debug
actions 5-9
breakpoints 5-8
communications channel ??7-5-23
control register 5-57
corestate 5-39

entry into debug state from
breakpoint/watchpoint 5-44
exceptions 5-47
expansion signals B-7
host 5-3
interface 5-12
interface signals 5-12
message transfer 72-5-22
Multi-ICE 5-10
priorities 5-47
request 5-7, 5-9, 5-44, 5-45
state 5-9
state, entry from abreakpoint 5-44
state, exit from 5-43
status register 5-39, 5-60
system state 5-39
target 5-3
timing 8-6
watchpoint 5-9
Debug status
register 5-61
Decode 1-2
Design considerations B-10
Device identification code 5-29, 5-31
Disable EmbeddedICE 5-16
DMORE output 1-24

E

EmbeddedICE 5-5

breakpoints software 5-54

breakpoints, coupling with
watchpoints 5-62

breakpoints, hardware 5-53

communications channel 5-20

control register 5-43

control registers 5-50

coupling breakpoints and
watchpoints 5-62

coupling breakpoints with
watchpoints 5-62

debug status register 5-39, 5-60

disable 5-16

hardware breakpoints 5-53

overview 5-14

program 5-7

programming 5-9, 5-24

registers 5-48

software breakpoints 5-54

timing 5-65

watchpoint 5-53

watchpoint registers 5-48-5-52
EmbeddedICE-RT 1-22
Exception

abort 2-22

actiononentry 2-20

actiononleaving 2-21

ARM state 2-20

DataAbort 2-22

entry/exit summary 2-19

FIQ 2-21

IRQ 2-21

priorities 2-24

Thumb state 2-20

vectors 2-24

watchpoint 5-45
Exceptions 2-19-2-25
Execute 1-2

F

Fbit 2-17

Fetch 1-2
ingtruction 5-51

FIQ
disable bits 2-17
exception 2-21
mode 2-8
registers 2-10
See interrupts
valid 4-8

Flags
condition code 2-16

H

Halt mode 5-6, 5-7
Hardware breakpoints 5-53
High registers 2-14

I bit 2-17
ID register 5-27, 5-29, 5-31

Index-2 Copyright © 2001 ARM Limited. All rights reserved.

ARM DDI 0234A

IDCODE instruction 5-29
Identification register, See ID register
Input timing
configuration 8-5
exception 8-5
Instruction
ARM 14
compression 1-4
fetch 5-51
pipeline 1-2
register 5-29, 5-31, 5-32
st 1-9-7?
Thumb 1-4
Instruction cycle
timings 7-3
Instruction set
ARM 1-9-?7?
Thumb 1-17-?2?
Interface
ATPG scan B-6
coprocessor 4-1
debug 5-12
JTAG 5-24
memory 1-3, 3-2
signals B-2
Interrupt
mask enable 5-61
Interrupts 5-47
disable bits 2-17
latencies 2-26
INTEST
instruction 5-28
mode 5-34
IRQ
exception 2-21
mode 2-8
valid 4-8

J

JTAG
BYPASS 5-29
IDCODE 5-29, 5-32
interface 5-5, 5-24
INTEST 5-28

Link register, See LR
Little-endian format 2-4

Load coprocessor register 7-23
Low registers 2-14

LR 2-9

M

Mask enable
interrupt 5-61
Memory
access 1-3
access cycles 2-22
access from debugging state 5-40,
5-42
big-endian format 2-4
byte and halfword accesses 3-14
coprocessor register transfer cycle
1-3
formats 2-4
idlecycle 1-3
interface 1-3, 3-2
little-endian format 2-4
nonsequential cycle 1-3
sequential cycle 1-3
Memory format
big endian 2-4
Memory formats
big-endian 2-4
little-endian 2-4
Mode
abort 2-8
FIQ 2-8
IRQ 2-8
operating 2-8
privileged 2-8, 4-16
PSR 2-17
PSR bit values 2-17
Supervisor 2-8
system 2-8
undefined 2-8, 2-23
User 2-8
Mode bits 2-9, 2-17

public instructions (summary) 5-28 Monitor mode 5-6,5-18

RESTART 5-30
SCAN_N 528

Multi-ICE 5-10

Index

N

nFIQ 2-21,A-5
nlRQ 2-21, A-5
NRESET 2-27

O

Operating modes 2-8

Operating state
ARM 2-3
Thumb 2-3

Operating states
switching 2-3
transition 2-3

P

PC 1-3,2-3,2-9,2-12,2-13
Pipeline

follower 4-5

instruction 1-2
Porting considerations B-10
Prefetch Abort 2-22
Privileged instructions 4-16
Privileged modes 2-8, 2-21, 4-16
Processor

state 5-39
Program Counter, See PC
Program Status Register, See PSR
Programming EmbeddedICE 5-9
PROT 5-51
Protocol converter 5-4
PSR 2-17

control bits 2-17

format 2-16

mode bit values 2-17

reserved 2-18
Public instructions 5-28

R

Range 5-52, 5-53, 5-54, 5-55, 5-62,
5-63
Register
control value 5-52

ARM DDI 0234A

Copyright © 2001 ARM Limited. All rights reserved.

Index-3

Index

debug status 5-61
Register set 2-9
Thumb state 2-12
Register transfer coprocessor 7-27
Registers
abort mode 2-10
ARM state 2-9
banked 2-9
debug communications channel
5-20
debug control
DBGACK 5-59
DBGRQ 5-58
FIQ 2-10
general-purpose 2-9
high 2-14
instruction 5-29, 5-31, 5-32
IRQ 2-10
low 2-14
status 2-9
supervisor mode 2-10
Thumb state 2-12
undefined mode 2-10
User mode 2-10
Registers, debug
address mask 5-53, 5-54
BYPASS 5-29
bypass 5-31
control mask 5-48, 5-50
control value 5-48, 5-50
datamask 5-48
datavalue 5-48
EmbeddedICE 5-34
Embedded| CE accessing 5-25, 5-33
Embedded| CE debug status 5-39
ID 531
instruction 5-29, 5-31, 5-32
scan path select 5-31, 5-32
scan path select register 5-28
status 5-60
status register 5-39

on exit from debug 5-30
RESTART ingtruction 5-30, 5-41, 5-42
Return address calculation 5-46
Returned TCK, See RTCK
RTCK 5-10
RUN-TEST/IDLE state 5-30, 5-42

S

Saved Program Status Register, See
SPSR
Scan
input cells 5-29
interfacetiming 5-36
limitations 5-24
output cells 5-29
path 5-28
paths 5-24
Scan cells 5-29, 5-33
Scan chain
selected 5-28
Scan chain 1 5-24, 5-31, 5-34, 5-36,
5-39, 5-40, 5-41, 5-44
Scan chain 1 cells 5-36
Scan chain2 5-24, 5-31, 5-34, 5-48
Scan chains 5-24, 5-33
number alocation 5-33
Scan path select register 5-28, 5-31,
5-32
SCAN_N 5-28,5-32,5-34
SHIFT-DR 5-27, 5-28, 5-29, 5-34
SHIFT-IR 5-32
Signals compared to
hard macrocell
ARM7TDMI B-2
Single-step core operation 5-29
SIZE 3-10,5-51, A-6
Software breakpoints 5-53, 5-54
clearing 5-54
programming 5-54

processor 5-39
register set
ARM gate 2-9
SHIFT-DR 5-27,5-28, 5-29, 5-31
Thumb 1-4
UPDATE-DR 5-28, 5-29, 5-30
UPDATE-IR 5-32
Statusregisters 2-9
Store coprocessor register 7-25
Supervisor mode 2-8, 2-23
SWI 2-23
System mode 2-8
System speed
instruction 5-41, 5-46
System state
determining 5-40

T

T bit 2-17, 2-27
TAP
controller 5-5,5-14, 5-24, 5-26
controller state
transitions 5-26
instruction 5-32
state 5-34
Test Access Port, See TAP
Test dataregisters 5-31
Thumb
code 1-5
instruction set 1-4, 1-9
operating state 2-3
registers 2-12
Thumb instruction set 1-17-7?
Thumb state 1-4
Timing parameters B-7
Transitions
TAP controller state 5-26

test data 5-31 setting 5-53, 5-54 U

watchpoint address mask 5-48 Software Interrupt Instruction, See SWI

watchpoint address value 5-48 SP 2-12,2-13 Undefined instruction 2-8, 2-23
Reserved bits SPSR 2-9 handling 4-15

PSR 2-18 Stack Pointer, See SP trap 2-23, 4-2, 4-14, 4-15, 4-16,
Reset State 7-29

nRESET 2-27 ARM 1-4 Undefined mode 2-8
RESTART CAPTURE-DR 5-28, 5-29 Unexecuted ingtruction 7-30
Index-4 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0234A

Index

UPDATE-DR 5-28
UPDATE-IR 5-32
User mode 2-8

W

Watchpoint 5-7, 5-9, 5-15, 5-34, 5-44,
5-62
aborted 5-46
coupling 5-62
EmbeddedICE 5-53
externally generated 5-7
programming 5-55
register 5-48, 5-54
registers 5-48
unit 5-55
units 5-48
with exception 5-46
Watchpoint 0 5-64
Watchpointed
access 5-45, 5-47
memory access 5-45
WRITE 5-51

ARM DDI 0234A Copyright © 2001 ARM Limited. All rights reserved. Index-5

Index

Index-6 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0234A

	Contents
	List of Tables
	List of Figures
	Preface
	About this document
	Intended audience
	Organization
	Typographical conventions
	Timing diagram conventions
	Further reading
	ARM publications
	Other publications

	Feedback
	Feedback on this document
	Feedback on the ARM7TDMI�S processor

	Introduction
	1.1 About the ARM7TDMI�S processor
	1.1.1 The instruction pipeline
	1.1.2 Memory access
	1.1.3 Memory interface

	1.2 ARM7TDMI�S architecture
	1.2.1 Instruction compression
	1.2.2 The Thumb instruction set

	1.3 ARM7TDMI�S block, core and functional diagrams
	1.4 ARM7TDMI�S instruction set summary
	1.4.1 ARM instruction summary
	1.4.2 Thumb instruction summary

	1.5 Differences between Rev 3a and Rev 4
	1.5.1 Addition of EmbeddedICE-RT logic
	Power saving
	Changes to the programmer’s model

	1.5.2 Improved Debug Communications Channel (DCC) bandwidth
	1.5.3 Access to DCC through JTAG
	1.5.4 TAP controller ID register
	1.5.5 More efficient multiple transfers

	Programmer’s Model
	2.1 About the programmer’s model
	2.2 Processor operating states
	2.2.1 Switching state

	2.3 Memory formats
	2.3.1 Big-endian format
	2.3.2 Little-endian format

	2.4 Instruction length
	2.5 Data types
	2.6 Operating modes
	2.7 Registers
	2.7.1 The ARM state register set
	2.7.2 The Thumb state register set
	2.7.3 The relationship between ARM state and Thumb state registers
	2.7.4 Accessing high registers in Thumb state

	2.8 The program status registers
	2.8.1 The condition code flags
	2.8.2 The control bits
	Interrupt disable bits
	T bit
	Mode bits

	2.8.3 Reserved bits

	2.9 Exceptions
	2.9.1 Exception entry/exit summary
	2.9.2 Entering an exception
	2.9.3 Leaving an exception
	2.9.4 Fast interrupt request
	2.9.5 Interrupt request
	2.9.6 Abort
	Prefetch Abort
	Data Abort

	2.9.7 Software interrupt instruction
	2.9.8 Undefined instruction
	2.9.9 Exception vectors
	2.9.10 Exception priorities

	2.10 Interrupt latencies
	2.10.1 Maximum interrupt latencies
	2.10.2 Minimum interrupt latencies

	2.11 Reset

	Memory�Interface
	3.1 About the memory interface
	3.2 Bus interface signals
	3.3 Bus cycle types
	3.3.1 Nonsequential cycles
	3.3.2 Sequential cycles
	3.3.3 Internal cycles
	3.3.4 Merged I�S cycles
	3.3.5 Coprocessor register transfer cycles

	3.4 Addressing signals
	3.4.1 ADDR[31:0]
	3.4.2 WRITE
	3.4.3 SIZE[1:0]
	3.4.4 PROT[1:0]
	3.4.5 LOCK
	3.4.6 CPTBIT

	3.5 Data timed signals
	3.5.1 WDATA[31:0]
	3.5.2 RDATA[31:0]
	3.5.3 ABORT
	3.5.4 Byte and halfword accesses
	Writes

	3.6 Using CLKEN to control bus cycles

	Coprocessor Interface
	4.1 About coprocessors
	4.1.1 Coprocessor availability

	4.2 Coprocessor interface signals
	4.3 Pipeline-following signals
	4.4 Coprocessor interface handshaking
	4.4.1 The coprocessor
	4.4.2 The ARM7TDMI�S core
	4.4.3 Coprocessor signaling
	4.4.4 Consequences of busy�waiting
	4.4.5 Coprocessor register transfer instructions
	4.4.6 Coprocessor data operations
	4.4.7 Coprocessor load and store operations

	4.5 Connecting coprocessors
	4.5.1 Connecting a single coprocessor
	4.5.2 Connecting multiple coprocessors

	4.6 Not using an external coprocessor
	4.7 Undefined instructions
	4.8 Privileged instructions

	Debugging Your System
	5.1 About debugging your system
	5.1.1 A typical debug system

	5.2 Controlling debugging
	5.2.1 Debug modes
	5.2.2 Examining system state during debugging

	5.3 Entry into debug state
	5.3.1 Entry into debug state on breakpoint
	5.3.2 Entry into debug state on watchpoint
	5.3.3 Entry into debug state on debug request
	5.3.4 Action of the ARM7TDMI�S in debug state
	5.3.5 Clocks

	5.4 Debug interface
	5.4.1 Debug interface signals

	5.5 ARM7TDMI�S core clock domains
	5.6 The EmbeddedICE-RT macrocell
	5.7 Disabling EmbeddedICE-RT
	5.8 EmbeddedICE-RT register map
	5.9 Monitor mode debugging
	5.9.1 Enabling monitor mode
	5.9.2 Restrictions on monitor-mode debugging

	5.10 The debug communications channel
	5.10.1 DCC control register
	Instructions

	5.10.2 Communications through the DCC
	Sending a message to the debugger
	Receiving a message from the debugger

	5.11 Scan chains and the JTAG interface
	5.11.1 Scan chain implementation
	Scan chain 1
	Scan chain 2

	5.11.2 Controlling the JTAG interface

	5.12 The TAP controller
	5.12.1 Resetting the TAP controller

	5.13 Public JTAG instructions
	5.13.1 SCAN_N (0010)
	5.13.2 INTEST (1100)
	5.13.3 IDCODE (1110)
	5.13.4 BYPASS (1111)
	5.13.5 RESTART (0100)

	5.14 Test data registers
	5.14.1 Bypass register
	5.14.2 ARM7TDMI�S device identification (ID) code register
	5.14.3 Instruction register
	5.14.4 Scan path select register
	5.14.5 Scan chains 1 and 2
	Scan chain 1
	Scan chain 2

	5.15 Scan timing
	5.15.1 Scan chain 1 cells

	5.16 Examining the core and the system in debug state
	5.16.1 Determining the core state
	5.16.2 Determining system state

	5.17 Exit from debug state
	5.18 The program counter during debug
	5.18.1 Breakpoints
	5.18.2 Watchpoints
	5.18.3 Watchpoint with another exception
	5.18.4 Debug request
	5.18.5 System speed access
	5.18.6 Summary of return address calculations

	5.19 Priorities and exceptions
	5.19.1 Breakpoint with Prefetch Abort
	5.19.2 Interrupts
	5.19.3 Data Aborts

	5.20 Watchpoint unit registers
	5.20.1 Programming and reading watchpoint registers
	5.20.2 Using the data, and address mask registers
	5.20.3 The control registers

	5.21 Programming breakpoints
	5.21.1 Hardware breakpoints
	5.21.2 Software breakpoints
	Setting the breakpoint
	Clearing the breakpoint

	5.22 Programming watchpoints
	5.23 Abort status register
	5.24 Debug control register
	5.24.1 Disabling interrupts
	5.24.2 Forcing
	5.24.3 Forcing

	5.25 Debug status register
	5.26 Coupling breakpoints and watchpoints
	5.26.1 Breakpoint and watchpoint coupling example
	CHAINOUT signal

	5.26.2 DBGRNG signal

	5.27 EmbeddedICE-RT timing

	ETM Interface
	6.1 About the ETM interface
	6.2 Enabling and disabling the ETM7 interface
	6.3 ETM7 to ARM7TDMI-S (Rev 4) connections
	6.4 Clocks and resets
	6.5 Debug request wiring

	Instruction Cycle Timings
	7.1 About the instruction cycle timings
	7.2 Instruction cycle count summary
	7.3 Branch and ARM branch with link
	7.4 Thumb branch with link
	7.5 Branch and exchange
	7.6 Data operations
	7.7 Multiply, and multiply accumulate
	7.8 Load register
	7.9 Store register
	7.10 Load multiple registers
	7.11 Store multiple registers
	7.12 Data swap
	7.13 Software interrupt, and exception entry
	7.14 Coprocessor data processing operation
	7.15 Load coprocessor register (from memory to coprocessor)
	7.16 Store coprocessor register (from coprocessor to memory)
	7.17 Coprocessor register transfer (move from coprocessor to ARM register)
	7.18 Coprocessor register transfer (move from ARM register to coprocessor)
	7.19 Undefined instructions and coprocessor absent
	7.20 Unexecuted instructions

	AC Parameters
	8.1 Timing diagrams
	8.1.1 Timing parameters for data accesses
	8.1.2 Coprocessor timing
	8.1.3 Exception and configuration input timing
	8.1.4 Debug timing
	8.1.5 Scan timing

	8.2 AC timing parameter definitions

	Signal Descriptions
	A.1 Signal descriptions

	Differences Between the ARM7TDMI�S and the ARM7TDMI
	B.1 Interface signals
	B.2 ATPG scan interface
	B.3 Timing parameters
	B.4 ARM7TDMI�S design considerations
	B.4.1 Master clock
	B.4.2 JTAG interface timing
	B.4.3 TAP controller
	B.4.4 Interrupt timing
	B.4.5 Address-class signal timing
	B.4.6 ARM7TDMI signals not implemented on ARM7TDMI-S processor

	Index

