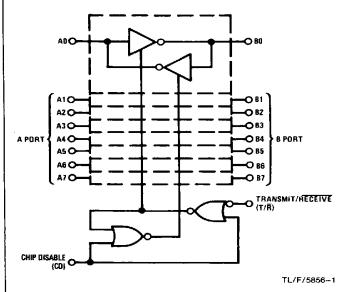
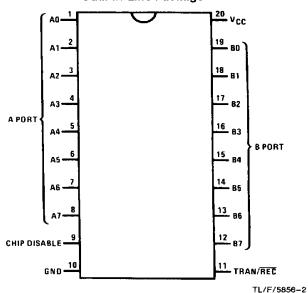



# DP8303A 8-Bit TRI-STATE® Bidirectional Transceiver (Inverting)

#### **General Description**


This family of high speed Schottky 8-bit TRI-STATE bidirectional transceivers are designed to provide bidirectional drive for bus oriented microprocessor and digital communications systems. They are all capable of sinking 16 mA on the A ports and 48 mA on the B ports (bus ports). PNP inputs for low input current and an increased output high (VOH) level allow compatibility with MOS, CMOS, and other technologies that have a higher threshold and less drive capabilities. In addition, they all feature glitch-free power up/down on the B port preventing erroneous glitches on the system bus in power up or down.

DP8303A and DP7304B/DP8304B are featured with Transmit/Receive (T/R) and Chip Disable (CD) inputs to simplify control logic. For greater design flexibility, DP8307A and DP7308/DP8308 are featured with Transmit (T) and Receive (R) control inputs.


#### **Features**

- 8-bit directional data flow reduces system package count
- Bidirectional TRI-STATE inputs/outputs interface with bus oriented systems
- PNP inputs reduce input loading
- Output high voltage interfaces with TTL, MOS, and CMOS
- 48 mA/300 pF bus drive capability
- Pinouts simplify system interconnections
- Transmit/Receive and chip disable simplify control logic
- Compact 20-pin dual-in-line package
- Bus port glitch free power up/down

#### Logic and Connection Diagrams



#### Dual-In-Line Package



See NS Package Number N20A

Top View
Order Number DP8303AN

#### **Logic Table**

|              | inputs           | Resulting Conditions |           |  |  |
|--------------|------------------|----------------------|-----------|--|--|
| Chip Disable | Transmit/Receive | A Port               | B Port    |  |  |
| 0            | 0                | OUT                  | IN        |  |  |
| 0            | 1                | IN                   | OUT       |  |  |
| 1            | х                | TRI-STATE            | TRI-STATE |  |  |

X = Don't care

http://www.national.com

11-3

6501126 0074077 946 **1** 

#### **Absolute Maximum Ratings** (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage 7V
Input Voltage 5.5V
Output Voltage 5.5V
Maximum Power Dissipation\* at 25°C
Cavity Package 1667 mW

Molded Package 1832 mW \*Derate cavity package 11.1 mW/°C above 25°C; derate molded package 14.7 mW/°C.

Storage Temperature  $-65^{\circ}\text{C}$  to  $+150^{\circ}\text{C}$  Lead Temperature (soldering, 4 seconds) 260°C

### Recommended Operating Conditions

|                                   | Min  | Max  | Units |
|-----------------------------------|------|------|-------|
| Supply Voltage (V <sub>CC</sub> ) |      |      |       |
| DP8303A                           | 4.75 | 5.25 | V     |
| Temperature (T <sub>A</sub> )     |      |      |       |
| DP8303A                           | 0    | 70   | °C    |

#### DC Electrical Characteristics (Notes 2 and 3)

| Symbol                       | Parameter                                 | Conditions                                                                  |                            | Min                    | Тур                   | Max      | Unit |
|------------------------------|-------------------------------------------|-----------------------------------------------------------------------------|----------------------------|------------------------|-----------------------|----------|------|
| A PORT                       | (A0-A7)                                   |                                                                             |                            | -                      |                       | <u> </u> |      |
| V <sub>IH</sub>              | Logical "1" Input Voltage                 | $CD = V_{IL}, T/\overline{R} = 2.0V$                                        |                            | 2.0                    |                       |          | V    |
| V <sub>IL</sub>              | Logical "0" Input Voltage                 | $CD = V_{IL}, T/\overline{R} = 2.0V$                                        |                            |                        |                       | 0.7      | v    |
| VOH                          | Logical "1" Output Voltage                | CD = T/R = VIL                                                              | $I_{OH} = -0.4 \text{ mA}$ | V <sub>CC</sub> - 1.15 | V <sub>CC</sub> - 0.7 |          | V    |
|                              | <u> </u>                                  | V <sub>IL</sub> = 0.5V                                                      | $I_{OH} = -3 \text{ mA}$   | 2.7                    | 3.95                  |          | V    |
| VOL                          | Logical "0" Output Voltage                | $CD = T/\overline{R} = V_{IL}$                                              | I <sub>OL</sub> = 16 mA    |                        | 0.35                  | 0.5      | V    |
|                              |                                           | $V_{IL} = 0.5V$                                                             | I <sub>OL</sub> = 8 mA     |                        | 0.3                   | 0.4      | V    |
| los                          | Output Short Circuit<br>Current           | $CD = V_{ L}, T/\overline{R} = V_{ L}, V_{0}$<br>$V_{CC} = Max, (Note 4)$   | O = 0V,                    | 10                     | -38                   | -75      | mA   |
| l <sub>IH</sub>              | Logical "1" Input Current                 | $CD = V_{IL}, T/\overline{R} = 2.0V, V$                                     | V <sub>IH</sub> = 2.7V     |                        | 0.1                   | 80       | μΑ   |
| l <sub>l</sub>               | Input Current at Maximum Input Voltage    | CD = 2.0V, V <sub>CC</sub> = Max, V <sub>IH</sub> = 5.25V                   |                            |                        |                       | 1        | mA   |
| I <sub>IL</sub>              | Logical "0" Input Current                 | $CD = V_{IL}, T/\overline{R} = 2.0V, V_{IN} = 0.4V$                         |                            |                        | -70                   | -200     | μΑ   |
| VCLAMP                       | Input Clamp Voltage                       | $CD = 2.0V, I_{IN} = -12 \text{ mA}$                                        |                            |                        | -0.7                  | -1.5     | V    |
| I <sub>OD</sub> Output/Input |                                           | CD = 2.0V                                                                   | $V_{IN} = 0.4V$            |                        | <del></del>           | -200     | μΑ   |
|                              | TRI-STATE Current                         |                                                                             | $V_{IN} = 4.0V$            |                        |                       | 80       | μΑ   |
| B PORT (                     | (B0-B7)                                   | ·                                                                           |                            |                        |                       | <u> </u> |      |
| ViH                          | Logical "1" Input Voltage                 | $CD = V_{IL}, T/\overline{R} = V_{IL}$                                      |                            | 2.0                    |                       |          | V    |
| V <sub>IL</sub>              | Logical "0" Input Voltage                 | $CD = V_{IL}, T/\overline{R} = V_{IL}$                                      |                            |                        |                       | 0.7      | V    |
| V <sub>OH</sub>              | Logical "1" Output Voltage                | $CD = V_{IL}, T/\overline{R} = 2.0V$                                        | $I_{OH} = -0.4  \text{mA}$ | V <sub>CC</sub> - 1.15 | V <sub>CC</sub> -0.8  |          | V    |
|                              |                                           | $V_{IL} = 0.5V$                                                             | $I_{OH} = -5 \text{ mA}$   | 2.7                    | 3.9                   |          | ٧    |
|                              |                                           |                                                                             | $I_{OH} = -10 \text{ mA}$  | 2.4                    | 3.6                   |          | ٧    |
| VOL                          | Logical "0" Output Voltage                | $CD = V_{IL}, T/\overline{R} = 2.0V$                                        | I <sub>OL</sub> = 20 mA    |                        | 0.3                   | 0.4      | ٧    |
|                              |                                           |                                                                             | $I_{OL} = 48 \text{ mA}$   |                        | 0.4                   | 0.5      | V    |
| los                          | Output Short Circuit<br>Current           | $CD = V_{IL}, T/\overline{R} = 2.0V, V_O = 0V,$<br>$V_{CC} = Max, (Note 4)$ |                            | -25                    | -50                   | - 150    | mA   |
| l <sub>IH</sub>              | Logical "1" Input Current                 | $CD = V_{IL}, T/\overline{R} = V_{IL}, V_{IH} = 2.7V$                       |                            |                        | 0.1                   | 80       | μА   |
| l <sub>1</sub>               | Input Current at Maximum<br>Input Voltage | $CD = 2.0V, V_{CC} = Max, V_{IH} = 5.25V$                                   |                            |                        |                       | 1        | mA   |
| l <sub>IL</sub>              | Logical "0" Input Current                 | $CD = V_{IL}, T/\overline{R} = V_{IL}, V_{IN} = 0.4V$                       |                            |                        | -70                   | -200     | μΑ   |
| VCLAMP                       | Input Clamp Voltage                       | $CD = 2.0V, I_{IN} = -12 \text{ mA}$                                        |                            |                        | -0.7                  | -1.5     | V    |
| DOD                          | Output/input                              | CD = 2.0V                                                                   | V <sub>IN</sub> = 0.4V     |                        |                       | -200     | μА   |
| _                            | TRI-STATE Current                         |                                                                             | $V_{\text{IN}} = 0.4V$     |                        |                       | +200     | μΑ   |

11-4

http://www.national.com

6501126 0074078 882 📟

#### DC Electrical Characteristics (Notes 2 and 3) (Continued)

| Symbol          | Parameter                 | Conditions                                                                                 |     | Min | Тур   | Max   | Units |
|-----------------|---------------------------|--------------------------------------------------------------------------------------------|-----|-----|-------|-------|-------|
| CONTRO          | L INPUTS CD, T/R          |                                                                                            |     |     | •     |       |       |
| V <sub>IH</sub> | Logical "1" Input Voltage |                                                                                            |     | 2.0 |       |       | ٧     |
| V <sub>IL</sub> | Logical "0" Input Voltage |                                                                                            |     |     |       | 0.7   | >     |
| lн              | Logical "1" Input Current | V <sub>IH</sub> = 2.7V                                                                     |     | 0.5 | 20    | μΑ    |       |
| l <sub>l</sub>  | Maximum Input Current     | V <sub>CC</sub> = Max, V <sub>IH</sub> = 5.25V                                             |     |     | 1.0   | mA    |       |
| I <sub>IL</sub> | Logical "0" Input Current | $V_{IL} = 0.4V$                                                                            | T/R |     | -0.1  | -0.25 | mA    |
|                 |                           |                                                                                            | CD  |     | -0.25 | -0.5  | mA    |
| VCLAMP          | Input Clamp Voltage       | $I_{IN} = -12 \text{mA}$                                                                   |     |     | -0.8  | -1.5  | V     |
| POWER S         | SUPPLY CURRENT            |                                                                                            |     | •   |       |       |       |
| loc             | Power Supply Current      | $CD = 2.0V, V_{IN}, V_{CC} = Max$ $CD = 0.4V, V_{INA} = T/\overline{R} = 2V, V_{CC} = Max$ |     |     | 70    | 100   | mA    |
|                 |                           |                                                                                            |     |     | 100   | 150   | mA    |

### AC Electrical Characteristics $V_{CC} = 5V$ , $T_A = 25^{\circ}C$

| Symbol             | Parameter                                                           | Conditions                                                                                                                                  | Min | Тур      | Max      | Units    |
|--------------------|---------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-----|----------|----------|----------|
| A PORT E           | DATA/MODE SPECIFICATIONS                                            |                                                                                                                                             |     |          |          |          |
| <sup>t</sup> PDHLA | Propagation Delay to a Logical "0" from B Port to A Port            | CD = 0.4V, T/ $\hat{R}$ = 0.4V (Figure A)<br>R1 = 1k, R2 = 5k, C1 = 30 pF                                                                   |     | 8        | 12       | пѕ       |
| <sup>t</sup> PDLHA | Propagation Delay to a Logical "1" from B Port to A Port            | CD = 0.4V, $T/\overline{R}$ = 0.4V (Figure A)<br>R1 = 1k, R2 = 5k, C1 = 30 pF                                                               |     | 11       | 16       | ns       |
| <sup>t</sup> PLZA  | Propagation Delay from a Logical "0" to TRI-STATE from CD to A Port | B0 to B7 = 2.4V, $T/\overline{R}$ = 0.4V (Figure C)<br>S3 = 1, R5 = 1k, C4 = 15 pF                                                          |     | 10       | 15       | ns       |
| <sup>t</sup> PHZA  | Propagation Delay from a Logical "1" to TRI-STATE from CD to A Port | B0 to B7 = 0.4V, $T/\overline{R}$ = 0.4V (Figure C)<br>S3 = 0, R5 = 1k, C4 = 15 pF                                                          |     | 8        | 15       | пѕ       |
| t <sub>PZLA</sub>  | Propagation Delay from TRI-STATE to a Logical "0" from CD to A Port | B0 to B7 = 2.4V, $T/\overline{R}$ = 0.4V (Figure C)<br>S3 = 1, R5 = 1k, C4 = 30 pF                                                          |     | 20       | 30       | ns       |
| <sup>t</sup> PZHA  | Propagation Delay from TRI-STATE to a Logical "1" from CD to A Port | B0 to B7 = 0.4V, $T/\overline{R}$ = 0.4V (Figure C)<br>S3 = 0, R5 = 5k, C4 = 30 pF                                                          |     | 19       | 30       | ns       |
| B PORT             | DATA/MODE SPECIFICATIONS                                            |                                                                                                                                             |     |          |          |          |
| <sup>t</sup> PDHLB | Propagation Delay to a Logical "0" from A Port to B Port            | CD = 0.4V, $T/\overline{R}$ = 2.4V (Figure A)<br>R1 = 100 $\Omega$ , R2 = 1k, C1 = 300 pF<br>R1 = 667 $\Omega$ , R2 = 5k, C1 = 45 pF        |     | 12<br>7  | 18<br>12 | ns<br>ns |
| t <sub>PDLHB</sub> | Propagation Delay to a Logical "1" from A Port to B Port            | CD = 0.4V, T/ $\overrightarrow{R}$ = 2.4V (Figure A)<br>R1 = 100 $\Omega$ , R2 = 1k, C1 = 300 pF<br>R1 = 667 $\Omega$ , R2 = 5k, C1 = 45 pF |     | 15<br>9  | 20<br>14 | ns<br>ns |
| t <sub>PLZB</sub>  | Propagation Delay from a Logical "0" to TRI-STATE from CD to B Port | A0 to A7 = 2.4V, $T/\overline{R}$ = 2.4V (Figure C)<br>S3 = 1, R5 = 1k, C4 = 15 pF                                                          |     | 13       | 18       | ns       |
| t <sub>PHZB</sub>  | Propagation Delay from a Logical "1" to TRI-STATE from CD to B Port | A0 to A7 = 0.4V, $T/\overline{R}$ = 2.4V (Figure C)<br>S3 = 0, R5 = 1k, C4 = 15 pF                                                          |     | 8        | 15       | ns       |
| <sup>t</sup> PLZB  | Propagation Delay from TRI-STATE to a Logical "0" from CD to B Port | A0 to A7 = 2.4V, $T/\overline{R}$ = 2.4V (Figure C)<br>S3 = 1, R5 = 100 $\Omega$ , C4 = 300 pF<br>S3 = 1, R5 = 667 $\Omega$ , C4 = 45 pF    |     | 25<br>16 | 35<br>25 | ns<br>ns |
| tрzнв              | Propagation Delay from TRI-STATE to a Logical "1" from CD to B Port | A0 to A7 = 0.4V, $T/\overline{R}$ = 2.4V (Figure C)<br>S3 = 0, R5 = 1k, C4 = 300 pF<br>S3 = 0, R5 = 5k $\Omega$ , C4 = 45 pF                |     | 22<br>14 | 35<br>25 | ns       |

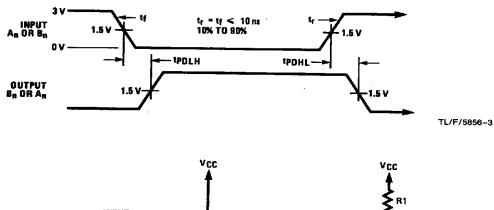
http://www.national.com

11-5

■ 650112b 0074079 719 **■** 

### AC Electrical Characteristics $V_{CC} = 5V$ , $T_A = 25^{\circ}C$ (Continued)

| Symbol           | Parameter                                                                       | Conditions                                                                                                       | Min         | Тур | Max | Units |
|------------------|---------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-------------|-----|-----|-------|
| TRANSM           | IT/RECEIVE MODE SPECIFICATIONS                                                  |                                                                                                                  | <del></del> |     |     |       |
| t <sub>TRL</sub> | Propagation Delay from Transmit Mode to<br>Receive a Logical "0", T/R to A Port | CD = 0.4V (Figure B)<br>S1 = 1, R4 = 100Ω, C3 = 5 pF<br>S2 = 1, R3 = 1k, C2 = 30 pF                              |             | 23  | 35  | ns    |
| <sup>t</sup> TRH | Propagation Delay from Transmit Mode to<br>Receive a Logical "1", T/R to A Port | CD = 0.4V (Figure B)<br>S1 = 0, R4 = 100 $\Omega$ , C3 = 5 pF<br>S2 = 0, R3 = 5k, C2 = 30 pF                     |             | 23  | 35  | ns    |
| t <sub>RTL</sub> | Propagation Delay from Receive Mode to Transmit a Logical "0", T/R to B Port    | CD = 0.4V (Figure B)<br>S1 = 1, R4 = $100\Omega$ , C3 = $300 \text{ pF}$<br>S2 = 1, R3 = $300\Omega$ , C2 = 5 pF |             | 23  | 35  | ns    |
| <sup>t</sup> RTH | Propagation Delay from Receive Mode to Transmit a Logical "1", T/R to B Port    | CD = 0.4V ( <i>Figure B</i> )<br>S1 = 0, R4 = 1k, C3 = 300 pF<br>S2 = 0, R3 = 300Ω, C2 = 5 pF                    |             | 27  | 35  | ns    |


Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The tables of "Electrical Characteristics" provide conditions for actual device operation.

Note 2: Unless otherwise specified, min/max limits apply across the supply and temperature range listed in the table of Recommended Operating Conditions. All typical values given are for  $V_{CC} = 5V$  and  $T_A = 25^{\circ}C$ .

Note 3: All currents into device pins are positive; all currents out of device pins are negative. All voltages are referenced to ground unless otherwise specified.

Note 4: Only one output at a time should be shorted.

#### **Switching Time Waveforms and AC Test Circuits**



PULSE GEMERATOR

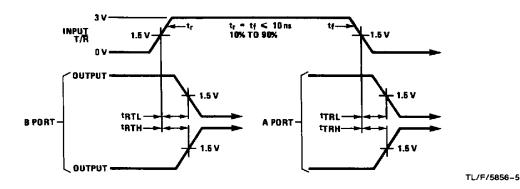
DEVICE UNDER TEST

TEST

R2

Note: C1 includes test fixture capacitance.

FIGURE A. Propagation Delay from A Port to B Port or from B Port to A Port

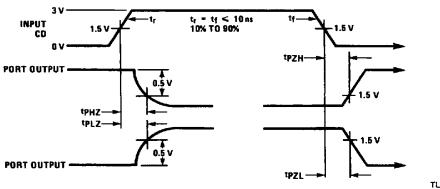

11-6

6501126 0074080 430

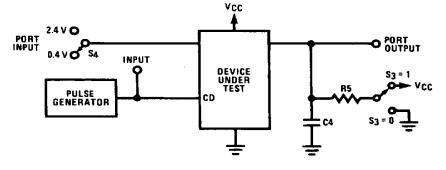
http://www.national.com

TL/F/5856-4

#### Switching Time Waveforms and AC Test Circuits (Continued)




A PORT OF S2-1


VCC S3-1-1

TL/F/5856-6

Note: C2 ad C3 include test fixture capacitance. FIGURE B. Propagation Delay from  $T/\overline{R}$  to A Port or B Port



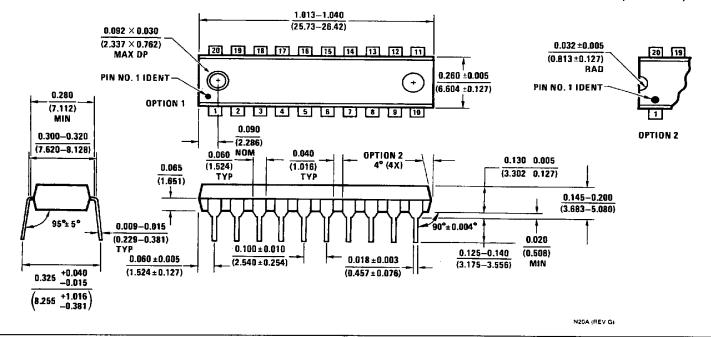
TL/F/5856-7



TL/F/5856-8

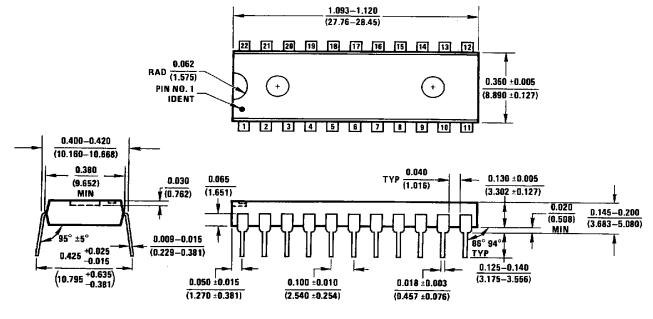
Note: C4 includes test fixture capacitance. Port input is in a fixed logical condition. See AC table.

FIGURE C. Propagation Delay to/from TRI-STATE from CD to A Port or B Port


http://www.national.com

11-7

6501126 0074081 377 🚥


## 20 Lead (0.300" Wide) Molded Dual-in-Line Package NS Package Number N20A

All dimensions are in inches (millimeters)



## 22 Lead (0.300" Wide) Molded Dual-in-Line Package NS Package Number N22A

All dimensions are in inches (millimeters)



N22A (REV D)

17-58

http://www.national.com

■ 6501126 0074566 675 **■**