TACHOMETER TACHYMETRE ### GENERAL DESCRIPTION PRELIMINARY DATA NOTICE PRELIMINAIRE The monolithic integrated circuit ESM 707 is a high performance monostable with Schmitt Trigger input. It is ideally suited for driving a moving coil instrument. | | | | ises | | |-----|------|-----|------|--| | Iτι | :0!1 | ועו | 1505 | | - An internal regulated voltage rail - A Schmitt Trigger input - A monostable flip-flop - A constant current output pulse #### DESCRIPTION GENERALE Le circuit intégré monolithique ESM 707 est un monostable de haute performance précédé d'un Trigger de Schmitt. Il est plus particulièrement utilisé pour commander un galvonomètre. #### #comprend: - Un régulateur de tension interne - Un Trigger de Schmitt - Un monostable - Un générateur de courant # PIN CONFIGURATION BROCHAGE | Case : MP-48 (CB-98) Boîtier | 1 | Ground
<i>Masse</i> | |------------------------------|---|---| | | 2 | Input
Entrée | | Top view
Vue de dessus | 3 | Timing capacitor C _T Condensateur C _T | | 8 7 6 5 | 4 | Monostable input
Entrée monostable | | | 5 | Output
Sortie | | 1 2 3 4 | 6 | Pre-set current resistor R _m
Résistance de réglage R _m | | | 7 | Regulated voltage V _R
Tension régulée V _R | | | 8 | Regulator resistor R _C
Résistance du régulateur R _C | # LIMITING VALUES VALEURS LIMITES ABSOLUES | | SYMBOLS
SYMBOLES | PIN
BROCHE | MIN. | TYP. | MAX. | UNITS
UNITES | |---|---------------------|---------------|------|------|------------------------------|-----------------| | Supply voltage
Tension d'alimentation | v _{cc} | | | | No limit
Pas de
limite | | | Package power dissipation
Puissance dissipée maximum | P _{tot} | | | | 500 | mW | | Input voltage
Tension d'entrée | V ₁ | 2 | | | 12 | ٧ | | Operating temperature range
Gamme de température de fonctionnement | ^t oper | | 0 | | + 70 | °C | | Storage temperature range
Gamme de température de stockage | t _{stg} | | -55 | | + 150 | °c | # BLOCK DIAGRAM SCHEMA SYNOPTIQUE ## APPLICATION SCHEMA SCHEMA D'APPLICATION ### TACHOMETER TACHYMETRE | ELECTRICAL CHARACTERIST | S and | = 25°C | | (Sauf indications | s contraire: | |---|---|------------------------------------|---------------|-----------------------------------|--------------| | | Test conditions
Conditions de mesure | | Pin
Broche | Min. Typ. Max. | | | Input voltage for triggering occurs
Tension d'entrée de déclenchement | | V ₁ | 2 | 0,5 | \ | | Output current | | ¹o | 5 | -60 | mA | | Courant de sortie | | l _O | 6 | 60 | mA | | Dynamic impedance of regulator
Impédance dynamique du régulateur | | ∆V _R
∆I _R | 7 | 3 | Ω | | Supply current
Courant d'alimentation | | ^l cc | 7 | 7 | mA | | Pulse width temperature coefficient
Coefficient de température sur la largeur
du monostable | | | | -0,03 | %/°C | | Pulse amplitude temperature
coefficient
Coefficient de température sur l'ampli-
tude de sortie | | | | +0,03 | %/°C | | Output pulse width
Largeur de l'impulsion de sortie | | ^t p | | 0,7 R _T C _T | S | # CHOICE OF EXTERNAL COMPONENTS CALCUL DES ELEMENTS EXTERIEURS #### 1-RESISTOR VALUES FOR SHUNT REGULATOR 1 - CALCUL DES RESISTANCES DU REGULATEUR $$\begin{split} R_{S} &= \frac{V_{Smin} - 8.2}{12 + I_{max}} \\ R_{C} &= \frac{R_{S} \times 6.5}{V_{Smax} - 7.5} \end{split}$$ $$R_C = \frac{R_S \times 6.5}{V_{Smax} - 7.5}$$ R_S : : Serie resistor R_C : Parallel resistor Imax : Maximum output current V_{Smin}: Minimum supply voltage R : Résistance série R_C : Résistance parallèle I_{max} : Courant crête de sortie V_{Smin}: Tension d'alimentation minimum V_{Smax}: Maximum supply voltage V .: Tension d'alimentation maximum Pd = 100 x 3,7 $$I_m G_m + \frac{16}{R_C}$$ $R_{Cmin} = \frac{16}{400 - 3.7 I_m \times G_m}$: Maximum power dissipation : Maximum mark/space ratio P_d : Puissance dissipée maximum ς Rapport cyclique maximum #### 2-OUTPUT CURRENT $$I_{m} = \frac{V_{ref}}{R_{M}} \longrightarrow R_{M} = \frac{V_{ref}}{I_{m}} = \frac{2.26}{I_{m}}$$ V_{ref} : Reference voltage R_M : Preset resistor V ref : Tension de référence R_M : Résistance de réglage de l_m $$R_{M min} = \frac{V_{ref max}}{I_{max}} = \frac{2,44}{60} = 41 \Omega$$ #### 3-TIMING COMPONENTS 3 - CONSTANTE DE TEMPS 15 k $$\Omega < R_{\mathrm{T}} <$$ 40 k Ω t = 0,69 R_T C_T $5 \,\mu s < t < 50 \,ms$ R_T R_T : Timing resistor Ст : Timing capacitor Capacité du monostable : Résistance du monostable