
PSDsoft™

PSDabel-HDLTM Reference Manual

WSI, Inc.
PSDabel-HDL Reference i

July 1998

WSI, Inc. has made every attempt to ensure that the information in this document is
accurate and complete. However, WSI assumes no liability for errors, or for any damages
that result from use of this document or the equipment which it accompanies.

WSI, Inc.
47280 Kato Road
Fremont, CA 94538
(510) 656-5400 - Telephone
(510) 657-8495 - FAX

Acknowledgments:

MagicPro, PSDsilosIII, PSDsoft, PSDcontrol, PSDabel, and PSDabel-HDL are trademarks of WSI, Inc.
ABEL, ABEL-HDL, and ABEL-PLA are trademarks of Data I/O Corporation.
Data I/O is a registered trademark of Data I/O Corporation.
SIMUCAD and SILOS III are trademarks of SIMUCAD, Inc.

© 1998 WSI, Inc.
All rights reserved
Printed In U.S.A.
ii PSDabel-HDL Reference

Contents

Chapter 1:
Introduction

Chapter 2:
Language Structure

Summary . 2-1

Introduction to PSDabel-HDL . 2-2

Basic Syntax . 2-2

Supported ASCII Characters . 2-3
Identifiers . 2-3
Constants . 2-5
Blocks . 2-6
Comments . 2-7
Numbers . 2-8
Strings . 2-9
Operators, Expressions, and Equations . 2-10
Sets . 2-17
Arguments and Argument Substitution . 2-23

Basic Structure . 2-25

Header . 2-27

Module . 2-27
Interface . 2-27
Title . 2-27

Declarations . 2-28

Declarations Keyword . 2-28
Device Declaration (not supported in PSDsoft) 2-28
Hierarchy Declarations . 2-28
Signal Declarations . 2-30
Constant Declarations . 2-32
Symbolic State Declarations . 2-32
Macro Declarations . 2-33
Library Declaration . 2-33

Logic Description . 2-33

Dot Extensions . 2-34
Equations. 2-35
Truth Tables . 2-35
State Descriptions . 2-36
Fuse Declarations (not supported in PSDsoft) 2-36
XOR Factors . 2-36
PSDabel-HDL Reference iii

Test Vectors Section . 2-37

Test Vectors . 2-37
Trace Statement . 2-37

End Statement . 2-37

Other Elements . 2-38

Directives . 2-38

Chapter 3:
Design Considerations

Hierarchy in PSDabel-HDL . 3-1

Instantiating a Lower-level Module in an PSDabel-HDL Source . . 3-2
Hierarchy and Retargeting and Fitting . 3-3
Hierarchy and Test Vectors
(PLD JEDEC Simulation - not supported in PSDsoft) 3-4

 Node Collapsing . 3-4

Selective Collapsing . 3-4
Pin-to-pin Language Features . 3-5

Device-independence Vs. Architecture-independence 3-5
Signal Attributes . 3-5
Signal Dot Extensions . 3-6

Pin-to-pin vs. Detailed Descriptions for Registered Designs 3-6

Using := for Pin-to-pin Descriptions . 3-6
Detailed Circuit Descriptions . 3-7
Examples of Pin-to-pin and Detailed Descriptions. 3-9
Detailed Module with Inverted Outputs . 3-10
When to Use Detailed Descriptions . 3-11
Using := for Alternative Flip-flop Types . 3-11

Using Active-low Declarations . 3-12

Polarity Control . 3-13

Polarity Control with Istype . 3-14

Flip-flop Equations . 3-15

Feedback Considerations — Using Dot Extensions 3-15

Dot Extensions and Architecture-Independence 3-16
Dot Extensions and Detail Design Descriptions 3-18

Using Don’t Care Optimization . 3-19

Exclusive OR Equations . 3-21

Optimizing XOR Devices . 3-21
Using XOR Operators in Equations . 3-22
Using Implied XORs in Equations . 3-22
Using XORs for Flip-flop Emulation . 3-23

State Machines . 3-24

Use Identifiers Rather Than Numbers for States 3-24
Powerup Register States . 3-27
Unsatisfied Transition Conditions . 3-27
Precautions for Using Don’t Care Optimization 3-28
Number Adjacent States for One-bit Change 3-31
iv PSDabel-HDL Reference

Use State Register Outputs to Identify States 3-31
Using Symbolic State Descriptions . 3-32

Using Complement Arrays . 3-34

Chapter 4:
Source File Examples

Equations . 4-1

Memory Address Decoder . 4-1
12-to-4 Multiplexer . 4-3
4-Bit Universal Counter . 4-6
Bidirectional Three-state Buffer . 4-10
4-Bit Comparator . 4-11

Truth Table Examples . 4-14

Seven-segment Display Decoder . 4-14
State Diagram Examples . 4-17

Three-state Sequencer . 4-17

Combined Logic Descriptions . 4-19

Hierarchy Examples . 4-31

PSDabel and Synario Projects . 4-36

Lower-level Sources . 4-37

Chapter 5:
Language Reference

. ext — Dot Extensions . 5-2

= — Constant Declarations . 5-12

attr' — Signal Attributes . 5-15

@directive — Directives . 5-16

@Alternate — Alternate Operator Set . 5-17
@Carry — Maximum Bit-width for Arithmetic Functions 5-18
@Const — Constant Declarations . 5-19
@Dcset — Don’t Care Set . 5-20
@Dcstate — State Output Don’t Cares . 5-21
@Exit — Exit Directive . 5-22
@Expr — Expression Directive . 5-23
@If — If Directive . 5-24
@Ifb — If Blank Directive . 5-25
@Ifdef — If Defined Directive . 5-26
@Ifiden — If Identical Directive . 5-27
@Ifnb — If Not Blank Directive . 5-28
@Ifndef — If Not Defined Directive . 5-29
@Ifniden — If Not Identical Directive . 5-30
@Include — Include Directive . 5-31
@Irp — Indefinite Repeat Directive . 5-32
@Irpc — Indefinite Repeat, Character Directive 5-33
@Message — Message Directive . 5-34
PSDabel-HDL Reference v

@Onset — No Don’t Care’s . 5-35
@Page — Page Directive . 5-36
@Radix — Default Base Numbering Directive 5-37
@Repeat — Repeat Directive . 5-38
@Setsize — Set Indexing . 5-39
@Standard — Standard Operators Directive 5-40

Async_reset and Sync_reset . 5-41

Case . 5-42

Constant Declarations . 5-44

Declarations . 5-45

Device (not supported in PSDsoft) . 5-46

End . 5-47

Equations . 5-48

Functional_block . 5-49

Fuses (not supported in PSDsoft) . 5-52

Goto . 5-53

If-Then-Else . 5-54

Interface (top-level) . 5-57

Interface (lower-level) . 5-59

Istype _ Attribute Declarations . 5-62

Library . 5-67

Macro . 5-68

Module . 5-71

Node . 5-72

Pin . 5-74

Property . 5-75

State (Declaration) . 5-76

State (in State_diagram) . 5-77

State_diagram . 5-78

State_register . 5-82

Sync_reset . 5-83

Test_vectors . 5-84

Title . 5-86

Trace . 5-87

Truth_table . 5-88

When-Then-Else . 5-91
vi PSDabel-HDL Reference

With . 5-93

XOR_Factors . 5-94

Index
PSDabel-HDL Reference vii

viii PSDabel-HDL Reference

PSDabel-HDL Reference
Chapter 1:
Introduction

PSDabel-HDL is a hierarchical logic description language. PSDabel-HDL
design descriptions are contained in an ASCII text file in the PSDabel
Hardware Description Language, PSDabel-HDL. The requirements for
PSDabel-HDL are described in the following chapters.

• Chapter 2, “Language Structure”— provides the basic syntax and
structure of a PSDabel-HDL design description. For information on
specific elements, refer to Chapter 5, “Language Reference.”

• Chapter 3, “Design Considerations”— discusses issues to consider
when creating an PSDabel-HDL module, such as architecture-
independent language features, active low declarations, flip-flop
equations, feedback considerations, and polarity control.

• Chapter 4, “Source File Examples”— contains PSDabel-HDL module
examples. These examples are representative of programmable logic
applications and illustrate significant PSDabel features. They also help
you create your own source files.

• Chapter 5, “Language Reference”— gives detailed information about
PSDabel-HDL language elements. This chapter assumes you are
familiar with the basic syntax discussed in Chapter 2, “Language
Structure.”
PSDabel-HDL Reference 1-1

Introduction
1-2 PSDabel-HDL Reference

Language Structure
Chapter 2:
Language Structure

This chapter provides the basic syntax and structure of a design
description in PSDabel-HDL. For information on specific elements, refer
to Chapter 5, “Language Reference.” You can write a source file using any
editor that produces ASCII files.

Summary
This chapter contains the following sections:

Introduction to PSDabel-HDL and to the idea of architecture-
independent and architecture-specific logic descriptions.

Basic syntax of a source file, including

• Supported ASCII characters

• Identifiers and keywords

• Constants

• Blocks

• Comments

• Numbers

• Strings

• Operators, expressions and equations

• Logical operators

• Arithmetic operators

• Relational operators

• Assignment operators

• Expressions

• Equations

• Sets and set operation

• Arguments and argument substitution

Basic Structure of a design description, including

• Header

• Module

• Interface (lower-level)

• Title
PSDabel-HDL Reference 2-1

Language Structure
• Declarations

• Declarations keyword

• Interface and Functional_block declarations

• Constant declarations

• Signal declarations

• Device declarations (not supported in PSDsoft)

• Logic description

• Equations

• Truth tables

• State descriptions

• Fuses (not supported in PSDsoft)

• XOR factors

• Test vectors (for PLD simulation only)

• End

Introduction to PSDabel-HDL
PSDabel-HDL is a hardware description language that supports a variety
of behavioral input forms, including high-level equations, state diagrams,
and truth tables. The PSDabel and Synario versions of the ABEL-HDL
compiler (and supporting software) functionally verify ABEL-HDL
designs through simulation. The compilers then implement the designs in
PLDs or FPGAs. PSDabel-HDL designs can also be transferred to other
design environments through standard-format design transfer files.

You can enter designs in PSDabel-HDL and verify them with little or no
concern for the architecture of the target device.

Architecture-independent design descriptions (those that do not include
device declarations and pin number declarations) require more
comprehensive descriptions than their architecture-specific counterparts.
Assumptions that can be made when a particular device is specified are
not possible when no device is specified. See the section “Architecture-
independent Language Features” in Chapter 3, “Design Considerations.”

Basic Syntax
Each line in an PSDabel-HDL source file must conform to the following
syntax rules and restrictions:

• A line can be up to 150 characters long.

• Lines are ended by a line feed (hex 0A), by a vertical tab (hex 0B), or by
a form feed (hex 0C). Carriage returns in a line are ignored, so common
end-of-line sequences, such as carriage return/line feed, are
interpreted as line feeds. In most cases, you can end a line by pressing
Return.
2-2 PSDabel-HDL Reference

Language Structure
• Keywords, identifiers, and numbers must be separated by at least one
space. Exceptions to this rule are lists of identifiers separated by
commas, expressions where identifiers or numbers are separated by
operators, or where parentheses provide the separation.

• Neither spaces nor periods can be embedded in the middle of
keywords, numbers, operators, or identifiers. Spaces can appear in
strings, comments, blocks, and actual arguments. For example, if the
keyword MODULE is entered as MOD ULE, it is interpreted as two
identifiers, MOD and ULE. Similarly, if you enter 102 05 (instead of
10205), it is interpreted as two numbers, 102 and 5.

• Keywords can be uppercase, lowercase or mixed-case.

• Identifiers (user-supplied names and labels) can be uppercase,
lowercase or mixed-case, but are case sensitive: the identifier, output,
typed in all lowercase letters, is not the same as the identifier, Output.

Supported ASCII Characters

All uppercase and lowercase alphabetic characters and most other
characters on common keyboards are supported. Valid characters are
listed or shown below.

a - z (lowercase alphabet)
A - Z (uppercase alphabet)
0 - 9 (digits)
<space>
<tab>
! @ # $? + & * () -

_ = + [] { } ; : ’ "

‘ \ | , < > . / ^ %

Identifiers

Identifiers are names that identify the following items:

• devices

• device pins or nodes

• functional blocks

• sets

• input or output signals

• constants

• macros

• dummy arguments

All of these items are discussed later in this chapter. The rules and
restrictions for identifiers are the same regardless of what the identifier
describes.

The rules governing identifiers are listed below:

• Identifiers can be up to 31 characters. Longer names are flagged as
an error.

• Identifiers must begin with an alphabetic character or with an
underscore.
PSDabel-HDL Reference 2-3

Language Structure
• Other than the first character, identifiers can contain upper- and
lowercase characters, digits, tildes (~), and underscores.

• You cannot use spaces in an identifier. Use underscores or uppercase
letters to separate words.

• Except for Reserved Identifiers (Keywords), identifiers are case
sensitive: uppercase letters and lowercase letters are not the same.

• You cannot use periods in an identifier, except with a supported dot
extension.

Some supported identifiers are listed below:

HELLO
hello
_K5input
P_h
This_is_a_long_identifier
AnotherLongIdentifier

Some unsupported identifiers are listed below:

7_ Does not begin with a letter or underscore
$4 Does not begin with a letter or underscore
HEL.LO Contains a period (.LO is not a valid dot extension)
b6 kj Contains a space

The last of these identifiers is interpreted as two identifiers, b6 and kj.

Reserved Identifiers (Keywords)

The keywords listed below are reserved identifiers. Keywords cannot be
used to name devices, pins, nodes, constants, sets, macros, or signals. If a
keyword is used in the wrong context, an error is flagged.

Choosing Identifiers

Choosing the right identifiers can make a source file easy to read and
understand. The following suggestions can help make your logic
descriptions self-explanatory, eliminating the need for extensive
documentation.

• Choose identifiers that match their function. For example, the pin
you’re going to use as the carry-in on an adder could be named
Carry_In. For a simple OR gate, the two input pins might be given the
identifiers IN1 and IN2, and the output might be named OR.

async_reset
case
declarations
device
else
enable (obsolete)
end
endcase
endwith
equations
external
flag (obsolete)
functional_block

fuses
goto
if
in
interface
istype
library
macro
module
node
options
pin

property
state
state_diagram
state_register
sync_reset
test_vectors
then
title
trace
truth_table
when
with
2-4 PSDabel-HDL Reference

Language Structure
• Avoid large numbers of similar identifiers. For example, do not name
the outputs of a 16 bit adder: ADDER_OUTPUT_BIT_1
ADDER_OUTPUT_BIT_2 and so on.

• Use underscores or mixed-case characters to separate words in your
identifier.

THIS_IS_AN_IDENTIFIER
ThisIsAnIdentifier

is much easier to read than

THISISANIDENTIFIER

Constants

You can use constant values in assignment statements, truth tables, and
test vectors. You can assign a constant to an identifier, and then use the
identifier to specify that value throughout a module (see “Declarations”
and “Module” later in this chapter). Constant values can be either numeric
or one of the non-numeric special constant values. The special constant
values are listed in Table 2-1.

When you use a special constant, it must be entered as shown in
Table 2-1. Without the periods, .C. is an identifier named C. You can enter
special constants in upper- or lowercase.

Table 2-1
Special Constants

Constant Description

.C. Clocked input (low-high-low transition)

.D Clock down edge (high-low transition)

.F. Floating input or output signal

.K. Clocked input (high-low-high transition)

.P. Register preload

.Svn. n = 2 through 9. Drive the input to super voltage 2 through 9.

.U. Clock up edge (low-high transition)

.X. Don’t care condition.

.Z. Tristate value
PSDabel-HDL Reference 2-5

Language Structure
Blocks

Blocks are sections of text enclosed in braces, { and }. Blocks are used in
equations, state diagrams, macros, and directives. The text in a block can
be on one line or it can span many lines. Some examples of blocks are
shown below:

{ this is a block }
{ this is also a block, and it
spans more than one line. }

{ A = B # C;
D = [0, 1] + [1, 0];
}

Blocks can be nested within other blocks, as shown below, where the block
{ D = A } is nested within a larger block:

{ A = B $ C;
 { D = A; }
 E = C; }

Blocks and nested blocks can be useful in macros and when used with
directives. (See “Macro Declarations” later in this chapter and in Chapter
5, “Language Reference.”)

If you need a brace as a character in a block, precede it with a backslash.
For example, to specify a block containing the characters { }, write

{ \{ \} }

Using Blocks in Logic Descriptions

Using blocks can simplify the description of output logic in equations and
state diagrams and allow more-complex functions than possible without
blocks. Blocks can improve the readability of your design.

Blocks are supported anywhere a single equation is supported. You can
use blocks in simple equations, When-then-else, If-then-else, Case, and
With statements

When you use equation blocks within a conditional expression (such as If-
then, Case, or When-then), the logic functions are logically ANDed with
the conditional expression.

Blocks in Equations

The following expressions, written without blocks, are limited by the
inability to specify more than one output in a When-then expression
without using set notation:

Without Blocks:

WHEN (Mode == S_Data) THEN Out_data := S_in;
ELSE WHEN (Mode == T_Data) THEN Out_data := T_in;
WHEN (Mode == S_Data) THEN S_Valid := 1;
ELSE WHEN (Mode == T_Data) THEN T_Valid := 1;

With blocks (delimited with braces { }), the syntax above can be simplified.
The logic specified for Out_data is logically ANDed with the WHEN
clause:
2-6 PSDabel-HDL Reference

Language Structure
With Blocks:

WHEN (Mode == S_Data) THEN { Out_data := S_in;
 S_Valid := 1; }
ELSE WHEN (Mode == T_Data) THEN { Out_data := T_in;

T_Valid := 1; }

Blocks in State Diagrams

Blocks also provide a simpler way to write state diagram output
equations. For example, the following two state transition statements are
equivalent:

Without Blocks:

IF (Hold) THEN State1 WITH o1 := o1.fb; o2 := o2.fb;
 ENDWITH

ELSE State2;

With Blocks:

IF (Hold) THEN State1 WITH {o1 := o1.fb; o2 := o2.fb;}
ELSE State2;

Using Blocks for State Diagram Transitions

Blocks can be used to nest IF-THEN and IF-THEN-ELSE statements in
state diagram descriptions, simplifying the description of complex
transition logic.

Blocks for Transition Logic

Without Blocks:

IF (Hold & !Reset) THEN State1;
If (Hold & Error) THEN State2;
If (!Hold) THEN State3;

With Blocks:

If (Hold) THEN
{ IF (!Reset) THEN State1;
 IF (Error) THEN State2; }
ELSE State3;

Comments

Comments are another way to make a source file easy to understand.
Comments explain what is not readily apparent from the source code
itself, and do not affect the code. Comments cannot be embedded within
keywords.

You can enter comments two ways:

• Begin with a double quotation mark (") and end with either another
double quotation mark or the end of line.

• Begin with a double forward slash (//) and end with the end of the
line. This is useful for commenting out lines of PSDabel source that
contain quote-delineated comments.
PSDabel-HDL Reference 2-7

Language Structure
Examples of comments are shown in boldface below:

MODULE Basic_Logic; "gives the module a name
TITLE ’PSDabel-HDL design example: simple gates’; "title

"declaration section"
IC4 device ’P10L8’; "declare IC4 to be a P10L8
IC5 "decoder PAL" device ’P10H8’;

//IC5 "decoder PAL" device ’p10h8’;

The information inside single quotation marks (apostrophes) are required
strings, not comments, and are part of the statement.

Numbers

All numeric operations in PSDabel-HDL are performed to 128-bit
accuracy, which means the supported numeric values are in the range 0 to
2128 minus 1. Numbers are represented in any of five forms. The four most
common forms represent numbers in different bases. The fifth form uses
alphabetic characters to represent a numeric value.

When one of the four bases other than the default base is chosen to
represent a number, the base used is indicated by a symbol preceding the
number. Table 2-2 lists the four bases supported by PSDabel-HDL and
their accompanying symbols. The base symbols can be upper- or
lowercase.

When a number is specified and is not preceded by a base symbol, it is
assumed to be in the default base numbering system. The normal default
base is base 10. Therefore, numbers are represented in decimal form unless
they are preceded by a symbol indicating that another base is to be used.

Table 2-2
Number Representation in Different Bases

Base Name Base Symbol

Binary 2 ^b

Octal 8 ^o

Decimal 10 ^d (default)

Hexadecimal 16 ^h
2-8 PSDabel-HDL Reference

Language Structure
You can change the default number base. See @Radix — Default Base
Numbering Directive in Chapter 5, “Language Reference,” for more
information. Examples of supported number specifications are shown
below. The default base is base ten (decimal).

Note:

The carat (^) is a keyboard character. It is not part of a control-key sequence.

You can also specify numbers by strings of one or more alphabetic
characters, using the numeric ASCII code of the letter as the value. For
example, the character “a” is decimal 97 and hexadecimal 61 in ASCII
coding. The decimal value 97 is used if “a” is specified as a number.

Sequences of alphabetic characters are first converted to their binary
ASCII values and then concatenated to form numbers. Some examples are
shown below:

Strings

Strings are series of ASCII characters, including spaces, enclosed by
apostrophes. Strings are used in the TITLE, MODULE, and OPTIONS
statements, and in pin, node, and attribute declarations, as shown below:

’Hello’
’ Text with a space in front’
’ ’
’The preceding line is an empty string’
’Punctuation? is allowed !!’

You can include a single quote in a string by preceding the quote with a
backslash, (\).

’It\’s easy to use PSDabel and Synario’

You can include backslashes in a string by using two of them in succession.

’He\\she can use backslashes in a string’

Specification Decimal Value

T4 = 75 75

^h75 117

^b101 5

^o17 15

^h0F 15

Specification Hex Value Decimal Value

a ^h61 97

b ^h62 98

abc ^h616263 6382203
PSDabel-HDL Reference 2-9

Language Structure
Note:

The grave accent (‘) is also accepted as a string delimiter and can be used
interchangeably with the apostrophe (’).

Operators, Expressions, and Equations

Items such as constants and signal names can be brought together in
expressions. Expressions combine, compare, or perform operations on the
items they include to produce a single result. The operations to be
performed (addition and logical AND are two examples) are indicated by
operators within the expression.

You can use the set operator (..) in expressions and equations.

PSDabel-HDL operators are divided into four basic types: logical,
arithmetic, relational, and assignment. Each of these types are discussed
separately below, followed by a description of how they are combined into
expressions. Following the descriptions is a summary of all the operators
and the rules governing them and an explanation of how equations use
expressions.

Logical Operators

Logical operators are used in expressions. PSDabel-HDL incorporates the
standard logical operators listed in Table 2-3. Logical operations are
performed bit by bit. For alternate operators, refer to the @Alternate —
Alternate Operator Set in Chapter 5, “Language Reference.”

Arithmetic Operators

Arithmetic operators define arithmetic relationships between items in an
expression. The shift operators are included in this class because each left
shift of one bit is equivalent to multiplication by 2 and a right shift of one
bit is the same as division by 2. Table 2-4 lists the arithmetic operators.

Table 2-3
Logical Operators

Operator Description

! NOT: ones complement

& AND

OR

$ XOR: exclusive OR

!$ XNOR: exclusive NOR
2-10 PSDabel-HDL Reference

Language Structure
Note:

A minus sign has a different significance, depending on its usage. When used
with one operand, it indicates that the twos complement of the operand is to be
formed. When the minus sign is found between two operands, the twos
complements of the second operand are added to the first.

Division is unsigned integer division: the result of division is a positive
integer. Use the modulus operator (%) to get the remainder of a division.
The shift operators perform logical unsigned shifts. Zeros are shifted in
from the left during right shifts and in from the right during left shifts.

Relational Operators

Relational operators compare two items in an expression. Expressions
formed with relational operators produce a Boolean true or false value.
Table 2-5 lists the relational operators.

Table 2-4
Arithmetic Operators

Operator Example Description

- -A twos complement (negation)

- A-B subtraction

+ A+B addition

Not Supported for Sets:

* A*B multiplication

/ A/B unsigned integer division

% A%B modulus: remainder from /

<< A<<B shift A left by B bits

>> A>>B shift A right by B bits
PSDabel-HDL Reference 2-11

Language Structure
All relational operations are unsigned. For example, the expression !0 > 4
is true since the complement of !0 is 1111 (assuming 4 bits of data), which
is 15 in unsigned binary, and 15 is greater than 4. In this example, a four-
bit representation was assumed; in actual use, !0, the complement of 0, is
128 bits all set to 1.

Some examples of relational operators in expressions are listed below:

The logical values true and false are represented by numbers. Logical true
is -1 in twos complement, so all 128 bits are set to 1. Logical false is 0 in
twos complement, so all 128 bits are set to 0. This means that an expression
producing a true or false value (a relational expression) can be used
anywhere a number or numeric expression could be used and -1 or 0 will
be substituted in the expression depending on the logical result.

For example,

A = D $ (B == C);

means that

• A equals the complement of D if B equals C

• A equals D if B does not equal C.

When using relational operators, always use parentheses to ensure the
expression is evaluated in the order you expect. The logical operators &
and # have a higher priority than the relational operators (see the priority
table later in this chapter).

Table 2-5
Relational Operators

Operator Description

== equal

!= not equal

< less than

<= less than or equal

> greater than

>= greater than or equal

Expression Value

2 == 3 False

2 != 3 True

3 < 5 True

-1 > 2 True

False
2-12 PSDabel-HDL Reference

Language Structure
The following equation

Select = [A15..A0] == ^hD000 # [A15..A0] == ^h1000;

needs parentheses to obtain the desired result:

Select = ([A15..A0] == ^hD000) # ([A15..A0]
== ^h1000);

Without the parentheses, the equation would have the default grouping

Select = [A15..A0] == (^hD000 # [A15..A0]) == ^h1000;

which is not the intended equation.

Assignment Operators

Assignment operators are used in equations rather than in expressions.
Equations assign the value of an expression to output signals. For more
information, see the “Equations” section later in this chapter.

There are four assignment operators (two combinational and two
registered). Combinational or immediate assignment occurs, without any
delay, as soon as the equation is evaluated. Registered assignment occurs
at the next clock pulse from the clock associated with the output. Refer to
Chapter 3, “Design Considerations.” Table 2-6 shows the assignment
operators.

Caution:

The := and ?:= assignment operators are used only when writing pin-to-pin
registered equations. Use the = and ?= assignment operators for registered
equations using detailed dot extensions.

These assignment operators allow you to fully specify outputs in
equations. For example, in the following truth table, the output F is fully
specified:

TRUTH_TABLE ([A,B]->[F]);
 [1,1]-> 0 ; "off-set
 [1,0]-> 1 ; "on-set
 [0,1]-> 1 ; "on-set

Table 2-6
Assignment Operators

Operator Set Description

= ON (1) Combinational or detailed assignment

:= ON (1) Implied registered assignment

?= DC (X) Combinational or detailed assignment

?:= DC (X) Implied registered assignment
PSDabel-HDL Reference 2-13

Language Structure
The equivalent functionality can be expressed in equations:

@DCSET
F = A & !B # !A & B; "on-set
F ?= !A & !B; "dc-set

Note:

Specifying both the on-set and the don’t-care set conditions enhances
optimization.

Caution:

With equations, @DCSET or ISTYPE 'dc' must be specified or the ?= equations
are ignored.

Expressions

Expressions are combinations of identifiers and operators that produce
one result when evaluated. Any logical, arithmetic, or relational operators
may be used in expressions.

Expressions are evaluated according to the particular operators involved.
Some operators take precedence over others, and their operation is
performed first. Each operator has been assigned a priority that
determines the order of evaluation. Priority 1 is the highest priority, and
priority 4 is the lowest. Table 2-7 summarizes the logical, arithmetic and
relational operators, presented in groups according to their priority.

Table 2-7
Operator Priority

Priority Operator Description

1 - negate

1 ! NOT

2 & AND

2 << shift left

2 >> shift right

2 * multiply

2 / unsigned division

2 % modulus

3 ++ add
2-14 PSDabel-HDL Reference

Language Structure
Operations of the same priority are performed from left to right. Use
parentheses to change the order in which operations are performed. The
operation in the innermost set of parentheses is performed first. The
following examples of supported expressions show how the order of
operations and the use of parentheses affect the evaluated result.

Equations

Equations assign the value of an expression to a signal or set of signals in
a logic description. The identifier and expression must follow the rules for
those elements.

Equations use the assignment operators =, ?= (combinational) and := ?:=,
(registered) described above.

3 - subtract

3 # OR

3 $ XOR: exclusive OR

3 !$ XNOR: exclusive NOR

4 == equal

4 != not equal

4 < less than

4 < = less than or equal

4 > greater than

4 > = greater than or equal

Expression Result Comments

2 * 3/2 3 operators with same priority

2 * 3 / 2 3 spaces are OK

2 * (3/2) 2 fraction is truncated

2 + 3 * 4 14 multiply first

(2 + 3) * 4 20 add first

2#4$2 4 OR first

2#(4$2) 6 XOR first

2 == ^hA 0

14 == ^hE -1

Table 2-7
Operator Priority (Continued)

Priority Operator Description
PSDabel-HDL Reference 2-15

Language Structure
You can use the complement operator (!) to express negative logic. The
complement operator precedes the signal name and implies that the
expression on the right of the equation is to be complemented before it is
assigned to the signal. Use of the complement operator on the left side of
equations is provided as an option; equations for negative logic parts can
just as easily be expressed by complementing the expression on the right
side of the equation.

See Also “Equations” and “When-Then-Else” in Chapter 5, “Language Reference.”

Equation Blocks

Equation blocks let you specify more complex functions and improve the
readability of your equations. An equation block is enclosed in braces { },
and is supported wherever a single equation is supported. When used
within a conditional expression, such as IF-THEN, CASE, or WHEN-
THEN, the logic functions are logically ANDed with the conditional
expression that is in effect.

See Also If-Then-Else, When-Then-Else, and Case in Chapter 5, “Language
Reference.”

Multiple Assignments to the Same Identifier

When an identifier appears on the left side of more than one equation, the
expressions assigned to the identifier are first ORed together, and then the
assignment is made. If the identifier on the left side of the equation is
complemented, the complement is performed after all the expressions
have been ORed.

Equations Found Equivalent Equation

A = B;
A = C; A = B # C;

A = B;
A = C & D; A = B # (C & D);

A = !B;
A = !C; A = !B # !C;

!A = B;
!A = C; A = !(B # C);

!A = B;
A = !C; A = !C #!B;

!A = B;
!A = C;
A = !D;
A = !E;

A = !D # !E # !(B # C);
2-16 PSDabel-HDL Reference

Language Structure
Note:

When the complement operator appears on the left side of multiple assignment
equations, the right sides are ORed first, and then the complement is applied.

Sets

A set is a collection of signals and constants. Any operation applied to a
set is applied to each element in the set. Sets simplify PSDabel-HDL logic
descriptions and test vectors by allowing groups of signals to be
referenced with one name.

For example, you could collect the outputs (B0-B7) of an eight-bit
multiplexer into a set named MULTOUT, and the three selection lines into
a set named SELECT. You could then define the multiplexer in terms of
MULTOUT and SELECT rather than individual input and output bits.

A set is represented by a list of constants and signals separated by commas
or the range operator (..) and surrounded by brackets. The sets MULTOUT
and SELECT would be defined as follows:

MULTOUT = [B0,B1,B2,B3,B4,B5,B6,B7]
SELECT = [S2,S1,S0]

The above sets could also be expressed by using the range operator; for
example,

MULTOUT = [B0..B7]
SELECT = [S2..S0]

Identifiers used to delimit a range must have compatible names: they must
begin with the same alphabetical prefix and have a numerical suffix.
Range identifiers can also delimit a decrementing range or a range which
appears as one element of a larger set as shown below:

[A7..A0] "decrementing range
[Q1,Q2,.X.,A10..A7] "range within a larger set

The brackets are required to delimit the set. PSDabel-HDL source file sets
are not mathematical sets.

Set Indexing

Set indexing allows you to access elements within a set. The following
example uses set indexing to assign four elements of a 16-bit set to a
smaller set.

declarations
 Set1 = [f15..f0];
 Set2 = [q3..q0];

equations
Set2 := Set1[7..4];

The numeric values used for defining a set index refer to the bit positions
of the set, with 0 being the least significant (left-most) element in the set.
So Set1[7..4] is Set1, values f8 to f11.
PSDabel-HDL Reference 2-17

Language Structure
If you are indexing into a set to access a single element, then you can use
the following syntax:

declarations
 out1 pin istype ’com’;
 Set1 = [f15..f0];

equations
out1 = Set1[4] == 1;

In this example, a comparator operator (==) was used to convert the
single-element set (Set1[4]) into a bit value (equivalent to f4).

See multiply.abl for more examples of set indexing. See also the @Setsize
directive.

Set Operations

Most operators can be applied to sets, with the operation performed on
each element of the set, sometimes individually and sometimes according
to the rules of Boolean algebra. Table 2-8 lists the operators you can use
with sets. “Set Operations,” found later in this chapter, describes how
these operators are applied to sets.

Two-set Operations

For operations involving two or more sets, the sets must have the same
number of elements. The expression “[a,b]+[c,d,e]” is not supported
because the sets have different numbers of elements.

For example, the Boolean equation

Chip_Sel = A15 & !A14 & A13;

represents an address decoder where A15, A14 and A13 are the three high-
order bits of a 16-bit address. The decoder can easily be implemented with
set operations. First, a constant set that holds the address lines is defined
so the set can be referenced by name. This definition is done in the constant
declaration section of a module.

The declaration is

Addr = [A15,A14,A13];

which declares the constant set Addr. The equation

Chip_Sel = Addr == [1,0,1];

is functionally equivalent to

Chip_Sel = A15 & !A14 & A13;

If Addr is equal to [1,0,1], meaning that A15 = 1, A14 = 0 and A13 = 1, then
Chip_Sel is set to true. The set equation could also have been written as

Chip_Sel = Addr == 5;

because 101 binary equals 5 decimal.

In the example above, a special set with the high-order bits of the 16-bit
address was declared and used in the set operation. The full address could
be used and the same function arrived at in other ways, as shown below:
2-18 PSDabel-HDL Reference

Language Structure
Example 1

" declare some constants in declaration section
Addr = [a15..a0];
X = .X.; "simplify notation for don’t care constant
Chip_Sel = Addr == [1,0,1,X,X,X,X,X,X,X,X,X,X,X,X];

Example 2

" declare some constants in declaration section
Addr = [a15..a0];
X =.X.;
Chip_Sel = (Addr >= ^HA000) & (Addr <= ^HBFFF);

Both solutions presented in these two examples are functionally
equivalent to the original Boolean equation and to the first solution in
which only the high order bits are specified as elements of the set
(Addr = [a15, a14, a13]).

Set Assignment and Comparison

Values and sets of values can be assigned and compared to a set.
Supported set operations are given in Table 2-8. For example,

sigset = [1,1,0] & [0,1,1];

results in sigset being assigned the value, [0,1,0]. The set assignment

[a,b] = c & d;

is the same as the two assignments

a = c & d;
b = c & d;

Numbers in any representation can be assigned or compared to a set.
The preceding set equation could have been written as

sigset = 6 & 3;

When numbers are used for set assignment or comparison, the number is
converted to its binary representation and the following rules apply:

• If the number of significant bits in the binary representation of a
number is greater than the number of elements in a set, the bits are
truncated on the left.

• If the number of significant bits in the binary representation of a
number is less than the number of elements in a set, the number is
padded on the left with leading zeroes.

Thus, the following two assignments are equivalent:

[a,b] = ^B101011; "bits truncated to the left
[a,b] = ^B11;

And so are these two:

[d,c] = ^B01;
[d,c] = ^B1; "compiler will add leading zero
PSDabel-HDL Reference 2-19

Language Structure
Set Evaluation

How an operator is performed with a set may depend on the types of
arguments the operator uses. When a set is written [a , b , c , d], a is the
MOST significant bit and d is the LEAST significant bit.

The result, when most operators are applied to a set, is another set. The
result of the relational operators (==, !=, >, >=, <, <=) is a value: TRUE (all
ones) or FALSE (all zeros), which is truncated or padded to as many bits
as needed. The width of the result is determined by the context of the
relational operator, not by the width of the arguments.

The different contexts of the AND (&) operator and the semantics of each
usage are described below.

Table 2-8
Supported Set Operations

Operator Example Description

= A = 5 combinational assignment

:= A := [1,0,1] registered assignment

! !A NOT: ones complement

& A & B AND

A # B OR

$ A $ B XOR: exclusive OR

!$ A!$ B XNOR: exclusive NOR

- -A negate

- A - B subtraction

++ A + B addition

== A == B equal

!= A != B not equal

< A < B less than

<= A <= B less than or equal

> A > B greater than

>= A >= B greater than or equal

signal & signal

a & b This is the most straightforward use. The
expression is TRUE if both signals are TRUE.
2-20 PSDabel-HDL Reference

Language Structure
Example Equations

select = [a15..a0] == ^H80FF

select (signal) is TRUE when the 16-bit address bus has the hex value 80FF.
Relational operators always result in a single bit.

[sel1, sel0] = [a3..a0] > 2

The width of sel and a are different, so the 2 is expanded to four bits (of
binary) to match the size of the a set. Both sel1 and sel2 are true when the
value of the four a lines (taken as a binary number) is greater than 2.

The result of the comparison is a single-bit result which is distributed to
both members of the set on the output side of the equation.

[out3..out0] = [in3..in0] & enab

If enab is TRUE, then the values on in0 through in3 are seen on the out0
through out3 outputs. If enab is FALSE, then the outputs are all FALSE.

signal & number

a & 4 The number is converted to binary and the least
significant bit is used. The expression becomes a
& 0, then is reduced to 0 (FALSE).

signal & set

a & [x, y, z] The signal is distributed over the elements of
the set to become [a & x, a & y, a & z]

set & set

[a, b] & [x, y] The sets are ANDed bit-wise resulting in: [a & x,
b & y]. An error is displayed if the set widths do
not match.

set & number

[a, b, c] & 5 The number is converted to binary and
truncated or padded with zeros to match the
width of the set. The sequence of
transformations is

[a, b, c] & [1, 0, 1]
[a & 1, b & 0, c & 1]
[a, 0, c]

number & number

9 & 5 The numbers are converted to binary, ANDed
together, then truncated or padded.
PSDabel-HDL Reference 2-21

Language Structure
Set Operation Rules

Set operations are applied according to Boolean algebra rules. Uppercase
letters are set names, and lowercase letters are elements of a set. The letters
k and n are subscripts to the elements and to the sets. A subscript
following a set name (uppercase letter) indicates how many elements the
set contains. So Ak indicates that set A contains k elements. ak-1 is the
(k-1)th element of set A. a1 is the first element of set A.

Limitations/Restrictions on Sets

If you have a set assigned to a single value, the value will be padded with
0s and then applied to the set. For example,

[A1,A2,A3] = 1

is equivalent to

A1 = 0
A2 = 0
A3 = 1

which may not be the intended result. If you want 1 assigned to each
member of the set, you’d need binary 111 or decimal 7.

Expression Is Evaluated As...

!Ak [!ak, !ak-1, ..., !a1]

-Ak !Ak + 1

Ak.OE [ak.OE, ak-1.OE, ..., a1.OE]

Ak & Bk [ak & bk, ak-1 & bk-1, ..., a1 & b1]

Ak # Bk [ak # bk, ak-1 # bk-1, ..., a1 # b1]

Ak $ Bk [ak $ bk, ak-1 $ bk-1, ..., a1 $ b1]

Ak !$ Bk [ak !$ bk, ak-1 !$ bk-1, ..., a1 !$ b1]

Ak == Bk (ak == bk) & (ak-1 == bk-1) & ... & (a1 == b1)

Ak != Bk (ak != bk) # (ak-1 != bk-1) # ... # (a1 != b1)

Ak + Bk

Dk
where:
dn is evaluated as an $ bn $ cn-1
cn is evaluated as (an $ bn) # (an & cn-1) # (bn & cn-1)
c0 is evaluated as 0

Ak - Bk Ak + (-Bk)

Ak + (-Bk)

ck
where:
cn is evaluated as (!an & (bn # cn-1) # an & bn & cn-1) != 0
c0 is evaluated as 0
2-22 PSDabel-HDL Reference

Language Structure
The results of using an operator depend on the sequence of evaluation.
Without parentheses, operations are performed from left to right.
Consider the following two equations. In the first, the constant 1 is
converted to a set; in the second, the 1 is treated as a single bit.

Equation 1:

The first operation is [a, b] & 1, so 1 is converted to a set [0, 1].

[x1, y1] = [a, b] & 1 & d
 = ([a, b] & 1) & d
 = ([a, b] & [0, 1]) & d
 = ([a & 0, b & 1]) & d
 = [0 , b] & d
 = [0 & d, b & d]
 = [0, b & d]

 x1 = 0
 y1 = b & d

Equation 2:

The first operation is 1 & d, so 1 is treated as a single bit.

[x2,y2] = 1 & d & [a, b]
= (1 & d) & [a, b]
= d & [a, b]
= [d & a, d & b]

x2 = a & d
y2 = b & d

If you are unsure about the interpretation of an equation, try the following:

• Fully parenthesize your equation. Errors can occur if you are not
familiar with the precedence rules in Table 2-7.

• Write out numbers as sets of 1s and 0s instead of as decimal numbers.
If the width is not what you expected, you will get an error message.

Arguments and Argument Substitution

Variable values can be used in macros, modules, and directives. These
values are called the arguments of the construct that uses them. In
PSDabel-HDL, a distinction must be made between two types of
arguments: actual and dummy. Their definitions are

Dummy arguments are specified in macro declarations and in the bodies
of macros, modules, and directives. The dummy argument is preceded by
a question mark in the places where an actual argument is to be
substituted. The question mark distinguishes the dummy arguments from
other PSDabel-HDL identifiers occurring in the source file.

Dummy
argument

An identifier used to indicate where an actual argument
is to be substituted in the macro, module, or directive.

Actual
argument

The argument (value) used in the macro, directive, or
module. The actual argument is substituted for the
dummy argument. An actual argument can be any text,
including identifiers, numbers, strings, operators, sets,
or any other element of PSDabel-HDL.
PSDabel-HDL Reference 2-23

Language Structure
Take for example, the following macro declaration arguments (see “Macro
Declarations” later in this chapter):

OR_EM MACRO (a,b,c) { ?a # ?b # ?c };

This defines a macro named OR_EM that is the logical OR of three
arguments. These arguments are represented in the definition of the
macro by the dummy arguments, a, b, and c. In the body of the macro,
which is surrounded by braces, the dummy arguments are preceded by
question marks to indicate that an actual argument is substituted.

The equation

D = OR_EM (x,y,z&1);

invokes the OR_EM macro with the actual arguments, x, y, and z&1. This
results in the equation:

D = x # y # z&1;

Arguments are substituted into the source file before checking syntax and
logic, so if an actual argument contains unsupported syntax or logic, the
compiler detects and reports the error only after the substitution.

Spaces in Arguments

Actual arguments are substituted exactly as they appear, so any spaces
(blanks) in actual arguments are passed to the expression. In most cases,
spaces do not affect the interpretation of the macro. The exception is in
functions that compare character strings, such as @IFIDEN and IFNIDEN.
For example, the macro

iden macro(a,b) {@ifiden(?a,?b)
{@message ’they are the same’;};};

compares the actual arguments and prints the message if they are
identical. If you enter the macro with spaces in the actual arguments:

iden(Q1, Q1);

The value is false because the space is passed to the macro.

Argument Guidelines

• Dummy arguments are place holders for actual arguments.

• A question mark preceding the dummy argument indicates that an
actual argument is to be substituted.

• Actual arguments replace dummy arguments before the source file is
checked for correctness.

• Spaces in actual arguments are retained.

Further discussion and examples of argument use are given in Chapter 5,
“Language Reference” under “Module,” “Macros and Declared
Equations,” and “@directive — Directives.”
2-24 PSDabel-HDL Reference

Language Structure
Basic Structure
PSDabel-HDL source files can contain independent modules. Each
module contains a complete logic description of a circuit or subcircuit.
Any number of modules can be combined into one source file and
processed at the same time.

This section covers the basic elements that make up a PSDabel-HDL
source file module. A module can be divided into five sections:

• Header

• Declarations

• Logic Description

• Test Vectors

• End

The elements of the source file are shown in the template in Figure 2-1.
There are also directives that can be included in any of the middle three
sections. The sections are presented briefly below, then each element is
introduced. You can find complete information in Chapter 5, “Language
Reference.”

The following rules apply to module structure:

• A module must contain only one header (composed of the Module
statement and optional Title and Options statements).

• All other sections of a source file can be repeated in any order.
Declarations must immediately follow either the header or the
Declarations keyword.

• No symbol (identifier) can be referenced before it is declared.

Header

The Header Section can consist of the following elements:

• Module (required)

• Interface (lower level, optional)

• Title

Declarations

A Declarations Section can consist of the following elements:

• Declarations Keyword

• Interface and Functional Block Declarations

• Signal Declarations (pin and node numbers optional)

• Constant Declarations

• Macro Declarations

• Library Declarations

• Device Declaration (one per module) (not supported in PSDsoft)
PSDabel-HDL Reference 2-25

Language Structure
Logic Description

You can use one or more of the following elements to describe your
design.

• Equations

• Truth Tables

• State Diagrams

• Fuses (not supported in PSDsoft)

• XOR Factors

Figure 2-1
PSDabel-HDL Module Structure

Header:

Module: The module statement names
the module and indicates if dummy
arguments are used. In lower-level
modules, it can be followed by an
interface declaration.

Title: The title statement can be used to
give a title or description for the module.

PSDabel-HDL Module

Module source3
Title ‘Example of a Source File’

Declarations

 in1, in2, in3, clk PIN ;
 all, none, other PIN ISTYPE ‘reg’ ;
 in = [in1..in3] ;
 out = [all,none,other] ;

Equations

 out.clk = clk ;
 all := in1 & in2 & in3 ;
 none := !in1 & !in2 & !in3 ;
 other := (!in1 # !in2 # !in3) &
 (in1 # in2 # in3)

Test_Vectors

 ([in,clk] -> [out]
 ([7, c] -> 4 ;
 ([3, C] -> 1 ;

End source3

Declarations:

Declarations declare lower-level modules,
and associate names with functional block
instances devices, pins, nodes, constants,
macros and sets. They also assign
attributes with istype.

Logic Description:

You can use Equations, a
State_diagram, or a Truth_table to
describe your logic design. This design
uses Equations.

Test Vectors:

Test_vectors are used in JEDEC
simulation for designs mapped to PLDs.

End:

The end statement ends the module.

Boldface type denotes PSDabel-HDL keywords.
2-26 PSDabel-HDL Reference

Language Structure
Test Vectors Section

Test vectors are only used for Equation Simulation. A Test Vectors section
can consist of the following elements:

• Test Vectors

• Trace Statement

• Test Script

End Statement

A module is closed with the end statement:

• End Statement

Other Elements

Directives can be placed anywhere you need them:

• Directives

Header

Module

Keyword: module

The Module statement is required. It defines the beginning of the module
and must be paired with an End statement. The Module statement also
indicates whether any module arguments are used.

Interface

Keyword: interface

The interface statement is used in lower-level sources to indicate signals
used in upper-level files. The interface statement is optional.

Title

Keyword: title

The title is optional. The title appears as a header in some output files.
PSDabel-HDL Reference 2-27

Language Structure
Declarations
The declarations section of a module specifies the names and attributes of
signals used in the design, defines constants macros and states, declares
lower-level modules and schematics, and optionally declares a device.
Each module must have at least one declarations section, and declarations
affect only the module in which they are defined. There are several types
of declaration statements:

• Constant (see =)

• Device (not supported in PSDsoft)

• Hierarchy

• Library

• Macro

• Signal (see Pin, Node and Istype)

• State

• State register

The syntax and use of each of these types is presented in Chapter 5,
“Language Reference.” Some are discussed briefly below.

Declarations Keyword

Keyword: declarations

This keyword allows declarations (such as sets or other constants) in any
part of the source file.

Device Declaration (not supported in PSDsoft)

Keyword: device

device_id DEVICE real_device ;

The Device declaration is optional, and only one can be made per module.
It associates a device identifier with a specific programmable logic device.

Hierarchy Declarations

Interface Declarations

Top-level Interface Declarations

Keyword: interface

low-level module_name INTERFACE (inputs[=value] -> outputs :>
bidirs ...)

The interface keyword declares lower-level modules that are used by the
current module. This declaration is used in conjunction with a
functional_block declaration for each instantiation of a module.
2-28 PSDabel-HDL Reference

Language Structure
When you instantiate a functional block, you must map port names to
signal names with equations. See functional_block for more information.

Lower-level Interface Declarations

Keyword: interface

MODULE module_name
INTERFACE (input/set=value . . .-> output/set :> bidir/set) ;

Use the interface declaration in lower-level modules to assign a default
port list and input values for the module when instantiated in higher-level
PSDabel-HDL sources. In the higher-level source, you must declare
signals and sets in the same order and grouping as given in the interface
statement in the instantiated module.

The -> and :> delimiters are used to indicate the direction of each port of a
functional block.

Caution:

Interface declarations cannot contain dot extensions. If you need a specific dot
extension across a source boundary (to resolve feedback ambiguities, for example),
you must introduce an intermediate signal into the lower-level module to provide
the connection to the higher-level source. All dot extension equations for a given
output signal must be located in the PSDabel-HDL module in which the signal is
defined. No references to that signal’s dot extensions can be made outside of the
PSDabel-HDL module.

Functional_block Statement

Keyword: functional_block

DECLARATIONS
instance_name FUNCTIONAL_BLOCK module_name ;

EQUATIONS
instance_name.port_name = signal_name;

Use a functional_block declaration to instantiate a declared source within
a higher-level PSDabel-HDL source. You must declare a source with an
interface declaration before instantiating it with functional_block.

Example of Functional Block Instantiation

To declare the two PSDabel-HDL sources shown in Figure 2-2 would
require the following syntax:

module FUNC ;
 mod1 INTERFACE (i1 -> o1);
 A FUNCTIONAL_BLOCK mod1;
 mod2 INTERFACE (i1 -> o1);
 B FUNCTIONAL_BLOCK mod2;
 I pin ;
 O pin istype ’com’;
PSDabel-HDL Reference 2-29

Language Structure
Equations
 O = B.o1;
 B.i1 = A.o1;
 A.i1 = I;

end Func

Note that the output of an equation must always be on the left side of the
equations.

See Also “Hierarchy in PSDabel-HDL” in Chapter 3, “Design Considerations.”

Signal Declarations

The Pin and Node declarations are made to declare signals used in the
design, and optionally to associate pin and/or node numbers with those
signals. Actual pin and node numbers do not have to be assigned until you
want to map the design into a device. Attributes can be assigned to signals
within pin and node declarations with the Istype statement. Dot
extensions can also be used in equations to precisely describe the signals;
see “Dot Extensions” under “Logic Description” later in this chapter.

Note:

Assigning pin numbers defines the particular pin-outs necessary for the design.
Pin numbers only limit the device selection to a minimum number of input and
output pins. Pin number assignments can be changed later by a fitter.

Pin Declarations

Keyword: pin

[!]pin_id [,[!]pin_id...] PIN [pin# [,pin#]]
[ISTYPE ’attributes’] ;

See “Attribute Assignment” below, and “Using Active-low Declarations”
in Chapter 3, “Design Considerations.”

Figure 2-2
Functional Block Instantiation

MODULE MOD 1 MODULE MOD 2
A B

I Oi1 i1o1 o1
2-30 PSDabel-HDL Reference

Language Structure
Node Declarations

Keyword: node

[!]node_id [, [!]node_id...] NODE [node# [,node#]]
[ISTYPE ’attributes’] ;

See “Attribute Assignment” below, and “Using Active-low Declarations”
in Chapter 3, “Design Considerations.”

Attribute Assignment

Keyword: istype

signal [,signal]... ISTYPE ’attributes’;

The ISTYPE statement defines attributes (characteristics) of signals for
devices with programmable characteristics or when no device and pin/
node number has been specified for a signal. Even when a device has been
specified, using attributes will make it more likely that the design operates
consistently if the device is changed later. ISTYPE can be used after pin or
node declarations.

Attributes may be entered in uppercase, lowercase, or mixed-case letters.
Table 2-8 summarizes the attributes. Each attribute is discussed in more
detail in Chapter 5, “Language Reference” under Istype _ Attribute
Declarations.

Table 2-9
Attributes

Dot Ext. Arch.Indep. Description

’buffer’ No Inverter in Target Device.

’collapse’ Collapse (remove) this signal. 1

’com’ ä Combinational output.

’dc’ ä Unspecified logic is don’t care. 2

'invert' Inverter in Target Device.

'keep' Do not collapse this signal from equations. 1

1 If neither ’keep’ nor ’collapse’ is specified, the optimization or fitter programs can
keep or collapse the signal, as needed, to optimize the circuit.

2 The ’dc,’ ’neg,’ and ’pos’ attributes are mutually exclusive.
3 The ’retain’ attribute only controls optimization performed by PSDabel-HDL

Compile Logic. To preserve redundant product terms, you must also specify no
reduction for the Reduce Logic and fitting (place and route) programs.
PSDabel-HDL Reference 2-31

Language Structure
Constant Declarations

Keyword: =

id [, id]... = expr [, expr]... ;

A constant is an identifier that retains a constant value in a module, and is
specified with the = sign. Constant declarations must be in a declarations
section or after a @CONST directive.

See Also “Special Constants” in this chapter.

Symbolic State Declarations

The State_register and State declarations are made to declare a symbolic
state machine name, and to declare symbolic state names.

See Also “State Descriptions” under “Logic Description” later in this chapter.

State_register Declarations

Keyword: state_register

statereg_id STATE_REGISTER [ISTYPE ’attributes’];

’neg’ ä Unspecified logic is 1. 2

’pos’ ä Unspecified logic is 0. 2

’retain’ ä
Do not minimize this output. Preserve
redundant product terms. 3

’reg’ ä Clocked Memory Element.

’reg_d’ D Flip-flop Clocked Memory Element.

’reg_g’ D Flip-flop Gated Clock Memory Element.

’reg_jk’ JK Flip-flop Clocked Memory Element.

’reg_sr’ SR Flip-flop Clocked Memory Element.

’reg_t’ T Flip-flop Clocked Memory Element.

’xor’ XOR Gate in Target Device.

Table 2-9
Attributes (Continued)

Dot Ext. Arch.Indep. Description

1 If neither ’keep’ nor ’collapse’ is specified, the optimization or fitter programs can
keep or collapse the signal, as needed, to optimize the circuit.

2 The ’dc,’ ’neg,’ and ’pos’ attributes are mutually exclusive.
3 The ’retain’ attribute only controls optimization performed by PSDabel-HDL

Compile Logic. To preserve redundant product terms, you must also specify no
reduction for the Reduce Logic and fitting (place and route) programs.
2-32 PSDabel-HDL Reference

Language Structure
State Declarations

Keyword: state

state_id [, state_id...] STATE [state_value
[, state_value...]];

Macro Declarations

Keyword: macro

macro_id MACRO [(dummy_arg [,dummy_arg]...)] {block} ;

The macro declaration statement defines a macro. Use macros to include
functions in a source file without repeating the code.

Library Declaration

Keyword: library

LIBRARY ’name’ ;

The LIBRARY statement extracts the contents of the indicated file from the
PSDabel-HDL library and inserts it into your file.

Logic Description
One or more of the following elements can be used to describe your
design.

• Equations

• Truth Tables

• State Descriptions

• Fuses (not supported in PSDsoft)

• XOR Factors

In addition, dot extensions (like ISTYPE attributes in the Declarations
section) enable you to more precisely describe the behavior of a circuit in
a logic description that may be targeted to a variety of different devices.
PSDabel-HDL Reference 2-33

Language Structure
Dot Extensions

Syntax

signal_name.ext

Dot extensions can be specific for certain devices (device-specific) or
generalized for all devices (architecture-independent). Device-specific dot
extensions are used with detailed syntax; architecture-independent dot
extensions are used with pin-to-pin syntax. Detailed and pin-to-pin syntax
is described in more detail in Chapter 3, “Design Considerations.” Dot
extensions can be applied in complex language constructs such as nested
sets or complex expressions.

The PSDabel-HDL dot extensions are listed in Table 2-10.

Table 2-10
Dot Extensions

Dot Extension Description

Pin-to-Pin Syntax, Architecture-independent

.ACLR *Asynchronous clear

.ASET *Asynchronous set

.CLK Clock input to an edge-triggered flip-flop

.CLR *Synchronous clear

.COM *Combinational feedback normalized to the pin value

.FB Register feedback

.OE Output enable

.PIN Pin feedback

.SET *Synchronous set

Detailed Syntax, Device-specific

.AP Asynchronous register preset

.AR Asynchronous register reset

.CE Clock-enable input to a gated-clock flip-flop

.D Data input to a D-type flip-flop

.FC Flip-flop mode control

.J J input to a JK-type flip-flop

.K K input to a JK-type flip-flop

* The .CLR, .ACLR, .SET, .ASET and .COM dot extensions are not recognized by
device fitters released prior to ABEL 5.0. If you are using a fitter that does not
support these reset/preset dot extensions, specify istype ’invert’ or istype ’buffer’
and the compiler converts the new dot extensions to .SP, .AP, .SR, .AR, and .D,
respectively.
2-34 PSDabel-HDL Reference

Language Structure
Equations

Keyword: equations

Equations
[WHEN condition THEN] [!] element=expression; [ELSE
equation];
 or
[WHEN condition THEN] equation; [ELSE equation];

The EQUATIONS statement defines the beginning of a group of equations
that specify the logic functions of a device. See “Operators, Expressions,
and Equations” earlier in this chapter and “When-Then-Else” in Chapter
5, “Language Reference.”

Truth Tables

Keyword: truth_table

TRUTH_TABLE (inputs -> outputs)
inputs -> outputs ;
 :
 or
TRUTH_TABLE (inputs [:> registered outputs] [-> outputs])

Truth tables specify outputs as functions of input combinations in tabular
form. See also “@Dcset — Don’t Care Set” under “@directive —
Directives” in Chapter 5, “Language Reference.”

.LD Register load input

.LE Latch-enable input to a latch

.LH Latch-enable (high) to a latch

.PR Register preset

.Q Register feedback

.R R input to an SR-type flip-flop

.RE Register reset

.S S input to an SR-type flip-flop

.SP Synchronous register preset

.SR Synchronous register reset

.T T input to a T-type (toggle) flip-flop

Table 2-10
Dot Extensions (Continued)

Dot Extension Description

* The .CLR, .ACLR, .SET, .ASET and .COM dot extensions are not recognized by
device fitters released prior to ABEL 5.0. If you are using a fitter that does not
support these reset/preset dot extensions, specify istype ’invert’ or istype ’buffer’
and the compiler converts the new dot extensions to .SP, .AP, .SR, .AR, and .D,
respectively.
PSDabel-HDL Reference 2-35

Language Structure
State Descriptions

Keyword: state_diagram

STATE_DIAGRAM state_reg
[-> state_out]

[STATE state_exp : [equation]
[equation]

 :
 :
 :
trans_stmt ...]

The State_Diagram section contains state descriptions that describe the
logic design.

The specification of a state description requires the use of the
State_diagram syntax, which defines the state machine, and the If-Then-
Else, Case, and Goto statements that determine the operation of the state
machine.

See Also “With” in Chapter 5, “Language Reference.”

Fuse Declarations (not supported in PSDsoft)

Keyword: fuses

FUSES
fuse_number = fuse value ;
 or
fuse_number_set = fuse value ;

The FUSES section explicitly declares the state of fuses in the associated
device. A device must be declared before a fuses declaration.

XOR Factors

Keyword: XOR_Factors

XOR_Factors
signal name = xor_factors

The XOR_Factors section allows you to specify a Boolean expression that
is to be factored out of and XORed with the sum-of-products reduced
equations. This factoring can result in smaller reduced equations when the
design is implemented in a device featuring XOR gates.
2-36 PSDabel-HDL Reference

Language Structure
Test Vectors Section

Note:

Test vectors are supported only for Equation simulation.

Test Vectors

Keyword: test_vector

Test_vectors [note]
(inputs -> outputs)
[invalues -> outvalues ;] ...

Test vectors specify the expected operation of a logic device by defining its
outputs as a function of its inputs.

Trace Statement

Keyword: trace

trace (inputs -> outputs) ;

The Trace statement limits which inputs and outputs are displayed in the
simulation report.

End Statement
Keyword: end

end module_name

The End statement ends the module, and is required.
PSDabel-HDL Reference 2-37

Language Structure
Other Elements

Directives

Keyword: @directive

@directive [options]

Directives provide options that control the contents or processing of a
source file. Sections of PSDabel-HDL source code can be included
conditionally, code can be brought in from another file, and messages can
be printed during processing.

Some directives take arguments that determine how the directive is
processed. These arguments can be actual arguments or dummy
arguments preceded by a question mark. The rules applying to actual and
dummy arguments are presented under “Arguments and Argument
Substitution” earlier in this chapter.

Available directives are listed below. See @ in Chapter 5, “Language
Reference,”for complete information.

@ALTERNATE
@CARRY
@CONST
@DCSET
@DCSTATE
@EXPR
@EXIT
@IF
@IFB
@IFDEF
@IFIDEN
@IFNB

@IFNDEF
@IFNIDEN
@INCLUDE
@IRP
@IRPC
@MESSAGE
@ONSET
@PAGE
@RADIX
@REPEAT
@SETSIZE
@STANDARD
2-38 PSDabel-HDL Reference

Design Considerations
Chapter 3:
Design Considerations

This chapter discusses issues you need to consider when you create a
design with PSDabel-HDL. The topics covered are listed below:

• Hierarchy in PSDabel-HDL

• Pin-to-Pin Architecture-independent Language Features

• Pin-to-Pin Vs. Detailed Descriptions for Registered Designs

• Using Active-low Declarations

• Polarity Control

• Istypes and Attributes

• Flip-flop Equations

• Feedback Considerations — Using Dot Extensions

• Considerations and Precautions

• Exclusive OR Equations

• State Machines

• Using Complement Arrays

• Accessing Device-specific and Complex Architectural Elements

Hierarchy in PSDabel-HDL
You use hierarchy declarations in an upper-level PSDabel-HDL source to
refer to (instantiate) an PSDabel-HDL module. To instantiate an PSDabel-
HDL module:

In the lower-level module: (optional)

• Identify lower-level I/O Ports (signals) with an Interface statement.

In the top-level source:

1. Declare the lower-level module with an Interface declaration.

2. Instantiate the lower-level module with Functional_block
declarations.

Note:

Hierarchy declarations are not required when instantiating an PSDabel-HDL
module in a Synario schematic. For instructions on instantiating lower-level
modules in schematics, refer to your schematic reference.
PSDabel-HDL Reference 3-1

Design Considerations
Instantiating a Lower-level Module in an PSDabel-HDL Source

Identifying I/O Ports in the Lower-level Module

The way to identify an PSDabel-HDL module’s input and output ports is
to place an Interface statement immediately following the Module
statement. The Interface statement defines the ports in the lower-level
module that are used by the top-level source.

You must declare all input pins in the PSDabel-HDL module as ports, and
you can specify default values of 0, 1, or Don’t-care.

You do not have to declare all output pins as ports. Any undeclared
outputs become No Connects or redundant nodes. Redundant nodes can
later be removed from the designs during post-link optimization.

The following source fragment is an example of a lower-level interface
statement.

module lower
interface (a=0, [d3..d0]=7 -> [z0..z7]) ;
title ’example of lower-level interface statement ’ ...

This statement identifies input a, d3, d2, d1 and d0 with default values,
and outputs z0 through z7. For more information, see “Interface (lower-
level),”in Chapter 5, “Language Reference.”

Specifying Signal Attributes

Attributes specified for pins in a lower-level module are propagated to the
higher-level source. For example, a lower-level pin with an 'invert'
attribute affects the higher-level signal wired to that pin (it affects the pin's
preset, reset, preload, and power-up value).

Output Enables (OE)

Connecting a lower-level tristate output to a higher-level pin results in the
output enable being specified for the higher-level pin. If another OE is
specified for the higher-level pin, it is flagged as an error. Since most
tristate outputs are used as bidirectionals, it might be important to keep
the lower-level OE.

Buried Nodes

Buried nodes in lower-level sources are handled as follows:

Dangling Nodes Lower-level nodes that do not fanout are
propagated to the higher-level module and
become dangling nodes. Optimization may
remove dangling nodes.

Combinational nodes Combinational nodes in a lower-level module
become collapsible nodes in the higher-level
module.

Registered nodes Registered nodes are preserved with
hierarchical names assigned to them.
3-2 PSDabel-HDL Reference

Design Considerations
 Declaring Lower-level Modules in the Top-level Source

To declare a lower-level module, you match the lower-level module’s
interface statement with an interface declaration. For example, to declare
the lower-level module given above, you would add the following
declaration to your upper-level source declarations:

lower interface (a, [d3..d0] -> [z0..z7]) ;

You could specify different default values if you want to override the
values given in the instantiated module, otherwise the instantiated
module must exactly match the lower-level interface statement. See
“Interface (top-level),”in Chapter 5, “Language Reference,” for more
information.

Instantiating Lower-level Modules in Top-level Source

Use a functional_block declaration in an top-level PSDabel-HDL source
to instantiate a declared lower-level module and make the ports of the
lower-level module accessible in the upper-level source. You must declare
sources with an interface declaration before you instantiate them.

To instantiate the module declared above, add an interface declaration
and signal declarations to your top-level declarations, and add port
connection equations to your top-level equations, as shown in the source
fragment below:

DECLARATIONS
 low1 FUNCTIONAL_BLOCK lower ;
 zed0..zed7 pin ; "upper-level inputs
 atop pin istype ’reg,buffer’; "upper-level output
 d3..d0 pin istype ’reg,buffer’; "upper-level ouputs
EQUATIONS
 atop = low1.a; "wire this source’s outputs
 [d3..d0] = low1.[d3..d0] ; " to lower-level inputs
 low1.[z0..z7] = [zed0..zed7]; "wire this source’s inputs
to
 " lower-level outputs

See “Functional_block,”in Chapter 5, “Language Reference,” for more
information.

Hierarchy and Retargeting and Fitting

Redundant Nodes

When you link multiple sources, some unreferenced nodes may be
generated. These nodes usually originate from lower-level outputs that
are not being used in the top-level source. For example, when you use a
4-bit counter as a 3-bit counter. The most significant bit of the counter is
unused and can be removed from the design to save device resources. This
step also removes trivial connections. In the following example, if out1 is
a pin and t1 is a node:

out1 = t1;
t1 = a86;

would be mapped to

out1 = a86;
PSDabel-HDL Reference 3-3

Design Considerations
Merging Feedbacks

Linking multiple modules can produce signals with one or more feedback
types, such as .FB and .Q. You can tell the optimizer to combine these
feedbacks to help the fitting process.

Post-linked Optimization

If your design has a constant tied to an input, you can re-optimize the
design. Re-optimizing may further reduce the product terms count.

For example, if you have the equation

out = i0 & i1 || !i0 & i2;

and i0 is tied to 1, the resulting equation would be simplified to

out = i1;

Hierarchy and Test Vectors (PLD JEDEC Simulation - not supported in PSDsoft)

If you are targeting a PLD device and want to do JEDEC simulation of
your project, you must specify your test vectors in the top-level source. If
you have existing test vectors in lower-level sources, you can merge the
inputs stimulus of blocks that are connected to the top-level pins with the
expected values of blocks that are connected to the top-level outputs. The
test vectors in the lower-level modules can still be used for individual
JEDEC simulation.

 Node Collapsing
All combinational nodes are collapsible by default . Nodes that are to be
collapsed (or nodes that are to be preserved) are flagged through the use
of signal attributes in the language. The signal attributes are:

Collapsing provides multi-level optimization for combinational logic.
Designs with arithmetic and comparator circuits generally generate a
large number of product terms that will not fit to any programmable logic
device. Node collapsing allows you to describe equations in terms of
multi-level combinational nodes, then collapse the nodes into the output
until it reaches the product term you specify. The result is an equation that
is optimized to fit the device constraints.

Selective Collapsing

In some instances you may want to prevent the collapsing of certain
nodes. For example, some nodes may help in the simulation process.
You can specify nodes you do not want collapsed as Istype ’keep’ and the
optimizer will not collapse them.

Istype ’keep’ Do not collapse this node.

’collapse’ Collapse this node.
3-4 PSDabel-HDL Reference

Design Considerations
Pin-to-pin Language Features
PSDabel-HDL is a device-independent language. You do not have to
declare a device or assign pin numbers to your signals until you are ready
to implement the design into a device. However, when you do not specify
a device or pin numbers, you need to specify pin-to-pin attributes for
declared signals.

Because the language is device-independent, the PSDabel-HDL compiler
does not have predetermined device attributes to imply signal attributes.
If you do not specify signal attributes or other information (such as the dot
extensions, which are described later), your design might not operate
consistently if you later transfer it to a different target device.

Device-independence Vs. Architecture-independence

The requirement for signal attributes does not mean that a complex design
must always be specified with a particular device in mind. You may still
have to understand the differences between PSD families but you do not
have to specify a particular device when describing your design.

Attributes and dot extensions help you refine your design to work
consistently when moving from one class of device architecture to
another; for example from devices having inverted outputs to those with
a particular kind of reset/preset circuitry. However, the more you refine
your design, using these language features, the more restrictive your
design becomes in terms of the number of device architectures for which
it is appropriate.

Signal Attributes

Signal attributes remove ambiguities that occur when no specific device
architecture is declared. If your design does not use device-related
attributes (either implied by a DEVICE statement or expressed in an
ISTYPE statement), it may not operate the same way when targeted to
different device architectures. See “Pin,” “Node” and “Istype _ Attribute
Declarations” in Chapter 5, “Language Reference.”
PSDabel-HDL Reference 3-5

Design Considerations
Signal Dot Extensions

Signal dot extensions, like attributes, enable you to more precisely
describe the behavior of a circuit that may be targeted to different
architectures. Dot extensions remove the ambiguities in equations.

Refer to “Feedback Considerations — Using Dot Extensions,” later in this
chapter and in Chapter 2, “Language Structure,” or “. ext — Dot
Extensions,”in Chapter 5, “Language Reference,” for more information.

Pin-to-pin vs. Detailed Descriptions
for Registered Designs

You can use PSDabel-HDL assignment operators when you write high-
level equations. The = operator specifies a combinational assignment,
where the design is written with only the circuit’s inputs and outputs in
mind. The := assignment operator specifies a registered assignment,
where you must consider the internal circuit elements (such as output
inverters, presets and resets) related to the memory elements (typically
flip-flops). The semantics of these two assignment operators are discussed
below.

Using := for Pin-to-pin Descriptions

The := implies that a memory element is associated with the output
defined by the equation. For example, the equation

Q1 := !Q1 # Preset;

implies that Q1 will hold its current value until the memory element
associated with that signal is clocked (or unlatched, depending on the
register type). This equation is a pin-to-pin description of the output signal
Q1. The equation describes the signal's behavior in terms of desired
output pin values for various input conditions. Pin-to-pin descriptions are
useful when describing a circuit that is completely architecture-
independent.

Language elements that are useful for pin-to-pin descriptions are the ":="
assignment operator, and the .CLK, .OE, .FB, .CLR, .ACLR, .SET, .ASET
and .COM dot extensions described in Chapter 5, “Language Reference.”
These dot extensions help resolve circuit ambiguities when describing
architecture-independent circuits.
3-6 PSDabel-HDL Reference

Design Considerations
Resolving Ambiguities

In the equation above (Q1 := !Q1 # Preset;), there is an ambiguous feedback
condition. The signal Q1 appears on the right side of the equation, but
there is no indication of whether that fed-back signal should originate at
the register, come directly from the combinational logic that forms the
input to the register, or come from the I/O pin associated with Q1. There
is also no indication of what type of register should be used (although
register synthesis algorithms could, theoretically, map this equation into
virtually any register type). The equation could be more completely
specified in the following manner:

Q1.CLK = Clock; "Register clocked from input
Q1 := !Q1.FB # Preset; "Reg. feedback normalized to pin value

This set of equations describes the circuit completely and specifies enough
information that the circuit will operate identically in virtually any device
in which you can fit it. The feedback path is specified to be from the
register itself, and the .CLK equation specifies that the memory element is
clocked, rather than latched.

Detailed Circuit Descriptions

In contrast to a pin-to-pin description, the same circuit can be specified in
a detailed form of design description in the following manner:

Q1.CLK = Clock; "Register clocked from input
Q1.D = !Q1.Q # Preset; "D-type f/f used for register

In this form of the design, specifying the D input to a D-type flip-flop and
specifying feedback directly from the register restricts the device
architectures in which the design can be implemented. Furthermore, the
equations describe only the inputs to, and feedback from, the flip-flop and
do not provide any information regarding the configuration of the actual
output pin. This means the design will operate quite differently when
implemented in a device with inverted outputs, versus a device with non-
inverting outputs.

To maintain the correct pin behavior, using detailed equations, one
additional language element is required: a ’buffer’ attribute (or its
complement, an ’invert’ attribute). The ’buffer’ attribute ensures that the
final implementation in a device has no inversion between the specified D-
type flip-flop and the output pin associated with Q1. For example, add the
following to the declarations section:

Q1 pin istype ’buffer’;

Detailed Descriptions: Designing for Macrocells

One way to understand the difference between pin-to-pin and detailed
description methods is to think of detailed descriptions as macrocell
specifications. A macrocell is a block of circuitry normally (but not always)
associated with a device’s I/O pin. Figure 3-1 illustrates a typical
macrocell associated with signal Q1.
PSDabel-HDL Reference 3-7

Design Considerations
Detailed descriptions are written for the various input ports of the
macrocell (shown in Figure 3-1 with dot extension labels). Note that the
macrocell features a configurable inversion between the Q output of the
flip-flop and the output pin labeled Q1. If you use this inverter (or select a
device that features a fixed inversion), the behavior you observe on the Q1
output pin will be inverted from the logic applied to (or observed on) the
various macrocell ports, including the feedback port Q1.q.

Pin-to-pin descriptions, on the other hand, allow you to describe your
circuit in terms of the expected behavior on an actual output pin,
regardless of the architecture of the underlying macrocell. Figure 3-2
illustrates the pin-to-pin concept:

When pin-to-pin descriptions are written in PSDabel-HDL, the “generic
macrocell” shown above is synthesized from whatever type of macrocell
actually exists in the target device.

Figure 3-1
Detail Macrocell

Figure 3-2
Pin-to-pin Macrocell

Q1.ap

Q1.ar

Q1.clk

Q1.d

Q1.q

AP

D

Clk

Q1.oe

Q1O
Fuse
Mux

1

Q

AR

Q1.pin

!Q1.pin 0665-3

OR

a

b

a

b

Q1

Q1

1748-1
3-8 PSDabel-HDL Reference

Design Considerations
Examples of Pin-to-pin and Detailed Descriptions

Two equivalent module descriptions, one pin-to-pin and one detailed, are
shown below for comparison:

Pin-to-pin Module Description

module Q1_1
 Q1 pin istype ’reg’;
 Clock,Preset pin;

equations
 Q1.clk = Clock;
 Q1 := !Q1.fb # Preset;

test_vectors ([Clock,Preset] -> Q1)
 [.c. , 1] -> 1;
 [.c. , 0] -> 0;
 [.c. , 0] -> 1;
 [.c. , 0] -> 0;
 [.c. , 1] -> 1;
 [.c. , 1] -> 1;
end

Detailed Module Description

module Q1_2
 Q1 pin istype ’reg_D,buffer’;
 Clock,Preset pin;

equations
 Q1.CLK = Clock;
 Q1.D = !Q1.Q # Preset;

test_vectors ([Clock,Preset] -> Q1)
 [.c. , 1] -> 1;
 [.c. , 0] -> 0;
 [.c. , 0] -> 1;
 [.c. , 0] -> 0;
 [.c. , 1] -> 1;
 [.c. , 1] -> 1;
end

The first description can be targeted into virtually any device (if register
synthesis and device fitting features are available), while the second
description can be targeted only to devices featuring D-type flip-flops and
non-inverting outputs.

To implement the second (detailed) module in a device with inverting
outputs, the source file would need to be modified in the following
manner:
PSDabel-HDL Reference 3-9

Design Considerations
Detailed Module with Inverted Outputs

module Q1_3
 Q1 pin istype ’reg_D,invert’;
 Clock,Preset pin;

equations
 Q1.CLK = Clock;
 !Q1.D = Q1.Q # Preset;

test_vectors ([Clock,Preset] -> Q1)
 [.c. , 1] -> 1;
 [.c. , 0] -> 0;
 [.c. , 0] -> 1;
 [.c. , 0] -> 0;
 [.c. , 1] -> 1;
 [.c. , 1] -> 1;
end

In this version of the module, the existence of an inverter between the
output of the D-type flip-flop and the output pin (specified with the
’invert’ attribute) has necessitated a change in the equation for Q1.D.

As this example shows, device-independence and pin-to-pin description
methods are preferable, since you can describe a circuit completely for any
implementation. Using pin-to-pin descriptions and generalized dot
extensions (such as .FB, .CLK and .OE) as much as possible allows you to
implement your PSDabel-HDL module into any one of a particular class
of devices. (For example, any device that features enough flip-flops and
appropriately configured I/O resources.) However, the need for
particular types of device features (such as register preset or reset) might
limit your ability to describe your design in a completely architecture-
independent way.

If, for example, a built-in register preset feature is used in a simple design,
the target architectures are limited. Consider this version of the design:

module Q1_5
 Q1 pin istype ’reg,buffer’;
 Clock,Preset pin;

equations
 Q1.CLK = Clock;
 Q1.AP = Preset;
 Q1 := !Q1.fb ;

test_vectors ([Clock,Preset] -> Q1)
 [.c. , 1] -> 1;
 [.c. , 0] -> 0;
 [.c. , 0] -> 1;
 [.c. , 0] -> 0;
 [.c. , 1] -> 1;
 [.c. , 1] -> 1;
end

The equation for Q1 still uses the := assignment operator and .FB for a pin-
to-pin description of Q1’s behavior, but the use of .AP to describe the reset
function requires consideration of different device architectures. The .AP
extension, like the .D and .Q extensions, is associated with a flip-flop
input, not with a device output pin. If the target device has inverted
outputs, the design will not reset properly, so this ambiguous reset
behavior is removed by using the ’buffer’ attribute, which reduces the
range of target devices to those with non-inverted outputs.

Using .ASET instead of .AP can solve this problem if the fitter being used
supports the .ASET dot extension.
3-10 PSDabel-HDL Reference

Design Considerations
Versions 5 and 7 of the design above and below are unambiguous, but
each is restricted to certain device classes:

module Q1_7
 Q1 pin istype ’reg,invert’;
 Clock,Preset pin;

equations
 Q1.CLK = Clock;
 Q1.AR = Preset;
 Q1 := !Q1.fb ;

test_vectors ([Clock,Preset] -> Q1)
 [.c. , 1] -> 1;
 [.c. , 0] -> 0;
 [.c. , 0] -> 1;
 [.c. , 0] -> 0;
 [.c. , 1] -> 1;
 [.c. , 1] -> 1;
end

When to Use Detailed Descriptions

Although the pin-to-pin description is preferable, there will frequently be
situations when you must use a more detailed description. If you are
unsure about which method to use for various parts of your design,
examine the design’s requirements. If your design requires specific
features of a device (such as register preset or unusual flip-flop
configurations), detailed descriptions are probably necessary. If your
design is a simple combinational function, or if it matches the “generic”
macrocell in its requirements, you can probably use simple pin-to-pin
descriptions.

Using := for Alternative Flip-flop Types

In PSDabel-HDL you can specify a variety of flip-flop types using
attributes such as istype 'reg_D' and 'reg_JK'. However, these attributes do
not enforce the use of a specific type of flip-flop when a device is selected,
and they do not affect the meaning of the := assignment operator.

You can think of the := assignment operator as a memory operator. The
type of register that most closely matches the := assignment operator’s
behavior is the D-type flip-flop.

The primary use for attributes such as istype 'reg_D', 'reg_JK' and 'reg_SR'
is to control the generation of logic. Specifying one of the 'reg_' attributes
(for example, istype 'reg_D') instructs the AHDL compiler to generate
equations using the.D extension regardless of whether the design was
written using .D, := or some other method (for example, state diagrams).

Note:

You also need to specify istype ’invert’ or ’buffer’ when you use detailed syntax.
PSDabel-HDL Reference 3-11

Design Considerations
Using := for flip-flop types other than D-type is only possible if register
synthesis features are available to convert the generated equations into
equations appropriate for the alternative flip-flop type specified. Since the
use of register synthesis to convert D-type flip-flop stimulus into JK or SR-
type stimulus usually results in inefficient circuitry, the use of := for these
flip-flop types is discouraged. Instead, you should use the .J and .K
extensions (for JK-type flip-flops) or the .S and .R extensions (for SR-type
flip-flops) and use a detailed description method (including ’invert’ or
’buffer’ attributes) to describe designs for these register types.

There is no provision in the language for directly writing pin-to-pin
equations for registers other than D-type. State diagrams, however, may
be used to describe pin-to-pin behavior for any register type.

Using Active-low Declarations
In PSDabel-HDL you can write pin-to-pin design descriptions using
implied active-low signals. Active-low signals are declared with a ’!’
operator, as shown below:

!Q1 pin istype ’reg’;

If a signal is declared active-low, it is automatically complemented when
you use it in the subsequent design description. This complementing is
performed for any use of the signal itself, including as an input, as an
output, and in test vectors. Complementing is also performed if you use
the .fb dot extension on an active-low signal.

The following three designs, for example, operate identically:

Design 1 — Implied Pin-to-Pin Active-low

module act_low2
 !q0,!q1 pin istype ’reg’;
 clock pin;
 reset pin;

equations
 [q1,q0].clk = clock;
 [q1,q0] := ([q1,q0].FB + 1) & !reset;

test_vectors ([clock,reset] -> [q1, q0])
 [.c. , 1] -> [0 , 0];
 [.c. , 0] -> [0 , 1];
 [.c. , 0] -> [1 , 0];
 [.c. , 0] -> [1 , 1];
 [.c. , 0] -> [0 , 0];
 [.c. , 0] -> [0 , 1];
 [.c. , 1] -> [0 , 0];
end

Design 2 — Explicit Pin-to-Pin Active-low

module act_low1
 q0,q1 pin istype ’reg’;
 clock pin;
 reset pin;

equations
 [q1,q0].clk = clock;
 ![q1,q0] := (![q1,q0].FB + 1) & !reset;
3-12 PSDabel-HDL Reference

Design Considerations
test_vectors ([clock,reset] -> [!q1,!q0])
 [.c. , 1] -> [0 , 0];
 [.c. , 0] -> [0 , 1];
 [.c. , 0] -> [1 , 0];
 [.c. , 0] -> [1 , 1];
 [.c. , 0] -> [0 , 0];
 [.c. , 0] -> [0 , 1];
 [.c. , 1] -> [0 , 0];
end

Design 3 — Explicit Detailed Active-low

module act_low3
 q0,q1 pin istype ’reg_d,buffer’;
 clock pin;
 reset pin;

equations
 [q1,q0].clk = clock;
 ![q1,q0].D := (![q1,q0].Q + 1) & !reset;

test_vectors ([clock,reset] -> [!q1,!q0])
 [.c. , 1] -> [0 , 0];
 [.c. , 0] -> [0 , 1];
 [.c. , 0] -> [1 , 0];
 [.c. , 0] -> [1 , 1];
 [.c. , 0] -> [0 , 0];
 [.c. , 0] -> [0 , 1];
 [.c. , 1] -> [0 , 0];
end

Both of these designs describe an up counter with active-low outputs. The
first example inverts the signals explicitly (in the equations and in the test
vector header), while the second example uses an active-low declaration
to accomplish the same thing.

Polarity Control
Automatic polarity control is a powerful feature in PSDabel-HDL where a
logic function is converted for both non-inverting and inverting devices.

A single logic function may be expressed with many different equations.
For example, all three equations below for F1 are equivalent.

(1) F1 = (A & B);
(2) !F1 = !(A & B);
(3) !F1 = !A # !B;

In the example above, equation (3) uses two product terms, while equation
(1) requires only one. This logic function will use fewer product terms in a
non-inverting device than in an inverting device. The logic function
performed from input pins to output pins will be the same for both
polarities.

Not all logic functions are best optimized to positive polarity. For
example, the inverted form of F2, equation (3), uses fewer product terms
than equation (2).

(1) F2 = (A # B) & (C # D);
(2) F2 = (A & C) # (A & D) # (B & C) # (B & D);
(3) !F2 = (!A & !B) # (!C & !D);

Programmable polarity devices are popular because they can provide a
mix of non-inverting and inverting outputs to achieve the best fit.
PSDabel-HDL Reference 3-13

Design Considerations
Polarity Control with Istype

In PSDabel-HDL, you control the polarity of the design equations and
target device (in the case of programmable polarity devices) in two ways:

• ~Using Istype 'neg', 'pos' and 'dc'

• ~Using Istype 'invert' and 'buffer'

Using Istype ’neg’, ’pos’, and ’dc’ to Control Equation and Device Polarity

The 'neg', 'pos', and 'dc' attributes specify types of optimization for the
polarity as follows:

Using ’invert’ and ’buffer’ to Control Programmable Inversion

An optional method for specifying the desired state of a programmable
polarity output is to use the 'invert' or 'buffer' attributes. These attributes
ensure that an inverter gate either does or does not exist between the
output of a flip-flop and its corresponding output pin. When you use the
'invert' and 'buffer' attributes, you can still use automatic polarity selection
if the target architecture features programmable inverters located before
the associated flip-flop.

These attributes are particularly useful for devices, where the reset and
preset behavior is affected by the programmable inverter.

Note:

The ’invert’ and ’buffer’ attributes do not actually control device or equation
polarity — they only enforce the existence or nonexistence of an inverter between
a flip-flop and its output pin.

The polarity of devices that feature a fixed inverter in this location, and a
programmable inverter before the register, cannot be specified using
’invert’ and ’buffer’.

’neg’ Istype ’neg’ optimizes the circuit for negative polarity.
Unspecified logic in truth tables and state diagrams
becomes a 0.

’pos’ Istype ’pos’ optimizes the circuit for positive polarity.
Unspecified logic in truth tables and state diagrams
becomes a 1.

’dc’ Istype ’dc’ uses polarity for best optimization.
Unspecified logic in truth tables and state diagrams
becomes don’t care (X).
3-14 PSDabel-HDL Reference

Design Considerations
Flip-flop Equations
Pin-to-pin equations (using the := assignment operator) are only
supported for D flip-flops. PSDabel-HDL does not support the :=
assignment operator for T, SR, or JK flip-flops and has no provision for
specifying a particular output pin value for these types.

If you write an equation of the form:

Q1 := 1;

and the output, Q1, has been declared as a T-type flip-flop, the PSDabel-
HDL compiler will give a warning and convert the equation to

Q1.T = 1;

Since the T input to a T-type flip-flop does not directly correspond to the
value you observed on the associated output pin, this equation will not
result in the pin-to-pin behavior you want.

To produce specific pin-to-pin behavior for alternate flip-flop types, you
must consider the behavior of the flip-flop you used and write detailed
equations that stimulate the inputs of that flip-flop. A detailed equation to
set and hold a T-type flip-flop is shown below:

Q1.T = !Q1.Q;

Feedback Considerations — Using Dot Extensions
The source of feedback is normally set by the architecture of the target
device. If you don’t specify a particular feedback path, the design may
operate differently in different device types. Specifying feedback paths
(with the .FB, .Q or .PIN dot extensions) eliminates architectural
ambiguities. Specifying feedback paths also allows you to use
architecture-independent simulation.

The following rules should be kept in mind when you are using feedback:

• No Dot Extension — A feedback signal with no dot extension (for
example, count := count+1;) results in pin feedback if it exists in the
target device. If there is no pin feedback, register feedback is used, with
the value of the register contents complemented (normalized) if
needed to match the value observed on the pin.

• .FB Extension — A signal specified with the .FB extension (for
example, count := count.fb+1;) results in register feedback normalized
to the pin value if a register feedback path exists. If no register feedback
is available, pin feedback is used, and the fuse mapper checks that the
output enable does not conflict with the pin feedback path. If there is a
conflict, an error is generated if the output enable is not constantly
enabled.

• .COM Extension — A signal specified with the .COM extension (for
example, count := count.com+1;) results in OR-array (pre-register)
feedback, normalized to the pin value if an OR-array feedback path
exists. If no OR-array feedback is available, pin feedback is used and
the fuse mapper checks that the output enable does not conflict with
the pin feedback path. If there is a conflict, an error is generated if the
output enable is not constantly enabled.
PSDabel-HDL Reference 3-15

Design Considerations
• .PIN Extension — If a signal is specified with the .PIN extension (for
example, count := count.pin+1;), the pin feedback path will be used. If
the specified device does not feature pin feedback, an error will be
generated. Output enables frequently affect the operation of fed-back
signals that originate at a pin.

• .Q Extension — Signals specified with the .Q extension (for example,
count.d = count.q + 1;) will originate at the Q output of the associated
flip-flop. The fed-back value may or may not correspond to the value
you observe on the associated output pin; if an inverter is located
between the Q output of the flip-flop and the output pin (as is the case
in most registered PAL-type devices), the value of the fed-back signal
will be the complement of the value you observe on the pin.

• .D Extension — Some devices allow feedback of the input to the
register. To select this feedback, use the .D extension. Some device kits
also support .COM for this feedback; refer to your device kit manual
for detailed information.

Dot Extensions and Architecture-Independence

To be architecture-independent, you must write your design in terms of
its pin-to-pin behavior rather than in terms of specific device features
(such as flip-flop configurations or output inversions).

For example, consider the simple circuit shown in Figure 3-3. This circuit
toggles high when the Toggle input is forced high, and low when the
Toggle is low. The circuit also contains a three-state output enable that is
controlled by the active-low Enable input.

The following simple PSDabel-HDL design (Figure 3-4) describes this
simple one-bit synchronous circuit. The design description uses
architecture-independent dot extensions to describe the circuit in terms of
its behavior, as observed on the output pin of the target device. Since this
design is architecture-independent, it will operate the same (disregarding
initial powerup state), irrespective of the device type.

Figure 3-3
Dot Extensions and Architecture-Independence: Circuit 1

Ena

Clk

Toggle QoutD Q

0770-1
3-16 PSDabel-HDL Reference

Design Considerations
If you implement this circuit in a simple P16R8 PAL device (either by
adding a device declaration statement or by specifying the P16R8 in the
Fuseasm process), the result will be a circuit like the one illustrated in
Figure 3-5. Since the P16R8 features inverted outputs, the design equation
is automatically modified to take the feedback from Q-bar instead of Q.

module pin2pin

 Clk pin 1;
 Toggle pin 2;
 Ena pin 11;
 Qout pin 19 istype ’reg’;

equations
 Qout := !Qout.FB & Toggle;
 Qout.CLK = Clk;
 Qout.OE = !Ena;

test_vectors([Clk,Ena,Toggle] -> [Qout])
 [.c., 0 , 0] -> 0;
 [.c., 0 , 1] -> 1;
 [.c., 0 , 1] -> 0;
 [.c., 0 , 1] -> 1;
 [.c., 0 , 1] -> 0;
 [.c., 1 , 1] -> .Z.;
 [0 , 0 , 1] -> 1;
 [.c., 1 , 1] -> .Z.;
 [0 , 0 , 1] -> 0;
end

Figure 3-4
Pin to Pin One-bit Synchronous Circuit

Figure 3-5
Dot Extensions and Architecture-Independence: Circuit 2

D Q

Q

1

2

11

19

0768-1
PSDabel-HDL Reference 3-17

Design Considerations
If you implement this design in a device with a different architecture, such
as an E0320, the resulting circuit could be quite different. But, because this
is a pin-to-pin design description, the circuit behavior is the same.
Figure 3-6 illustrates the circuit that results when you specify an E0320.

Dot Extensions and Detail Design Descriptions

You may need to be more specific about how you implement a circuit in
a target device. More-complex device architectures have many
configurable features, and you may want to use these features in a
particular way. You may want a precise powerup and preset operation or,
in some cases, you may need to control internal elements.

The circuit previously described (using architecture-independent dot
extensions) could be described, for example, using detailed dot extensions
in the following PSDabel-HDL source file (Figure 3-7):

Figure 3-6
Dot Extensions and Architecture-Independence: Circuit 3

D Q

Q

2

19

0769-1

1

1
0

0
1

2880=0
2881=0

2882=1
2883=1

module detail1
 d1 device ’P16R8’;
 Clk pin 1;
 Toggle pin 2;
 Ena pin 11;
 Qout pin 19 istype ’reg_D’;

equations
 !Qout.D = Qout.Q & Toggle;
 Qout.CLK = Clk;
 Qout.OE = !Ena;

test_vectors([Clk,Ena,Toggle] -> [Qout])
 [.c., 0 , 0] -> 0;
 [.c., 0 , 1] -> 1;
 [.c., 0 , 1] -> 0;
 [.c., 0 , 1] -> 1;
 [.c., 0 , 1] -> 0;
 [.c., 1 , 1] -> .Z.;
 [0 , 0 , 1] -> 1;
 [.c., 1 , 1] -> .Z.;
 [0 , 0 , 1] -> 0;
end

Figure 3-7
Detail One-bit Synchronous Circuit with Inverted Qout
3-18 PSDabel-HDL Reference

Design Considerations
This version of the design will result in exactly the same fuse pattern as
indicated in Figure 3-3. As written, this design assumes the existence of an
inverted output for the signal Qout. This is why the Qout.D and Qout.Q
signals are reversed from the architecture-independent version of the
design presented earlier.

Note:

The inversion operator applied to Qout.D does not correspond directly to the
inversion found on each output of a P16R8. The equation for Qout.D actually
refers to the D input of one of the P16R8’s flip-flops; the output inversion found
in a P16R8 is located after the register and is assumed rather than specified.

To implement this design in a device that does not feature inverted
outputs, the design description must be modified. The following example
(Figure 3-5) shows how to write this detailed design for the E0320 device:

This design would result in the same circuit and E0320 fuse pattern
previously illustrated in Figure 3-6.

module detail2
 d2 device ’E0320’;
 Clk pin 1;
 Toggle pin 2;
 Ena pin 11;
 Qout pin 19 istype ’reg_D’;

equations
 Qout.D = !Qout.Q & Toggle;
 Qout.CLK = Clk;
 Qout.OE = !Ena;

test_vectors([Clk,Ena,Toggle] -> [Qout])
 [.c., 0 , 0] -> 0;
 [.c., 0 , 1] -> 1;
 [.c., 0 , 1] -> 0;
 [.c., 0 , 1] -> 1;
 [.c., 0 , 1] -> 0;
 [.c., 1 , 1] -> .Z.;
 [0 , 0 , 1] -> 1;
 [.c., 1 , 1] -> .Z.;
 [0 , 0 , 1] -> 0;
end

Figure 3-8
Detail One-bit Synchronous Circuit with Non-inverted Qout
PSDabel-HDL Reference 3-19

Design Considerations
Using Don’t Care Optimization
Use Don’t Care optimization to reduce the amount of logic required for an
incompletely specified function. The @DCSET directive (used for logic
description sections) and ISTYPE attribute 'dc' (used for signals) specify
don’t care values for unspecified logic.

Consider the following PSDabel-HDL truth table:

truth_table ([i3,i2,i1,i0]->[f3,f2,f1,f0])
 [0, 0, 0, 0]->[0, 0, 0, 1];
 [0, 0, 0, 1]->[0, 0, 1, 1];
 [0, 0, 1, 1]->[0, 1, 1, 1];
 [0, 1, 1, 1]->[1, 1, 1, 1];
 [1, 1, 1, 1]->[1, 1, 1, 0];
 [1, 1, 1, 0]->[1, 1, 0, 0];
 [1, 1, 0, 0]->[1, 0, 0, 0];
 [1, 0, 0, 0]->[0, 0, 0, 0];

This truth table has four inputs, and therefore sixteen (24) possible input
combinations. The function specified, however, only indicates eight
significant input combinations. For each of the design outputs
(f3 through f0) the truth table specifies whether the resulting value should
be 1 or 0. For each output, then, each of the eight individual truth table
entries can be either a member of a set of true functions called the on-set,
or a set of false functions called the off-set.

Using output f3, for example, the eight input conditions can be listed as
on-sets and off-sets as follows (maintaining the ordering of inputs as
specified in the truth table above):

on-set of f3 off-set of f3
 0 1 1 1 0 0 0 0
 1 1 1 1 0 0 0 1
 1 1 1 0 0 0 1 1
 1 1 0 0 1 0 0 0

The remaining eight input conditions that do not appear in either the on-
set or off-set are said to be members of the dc-set, as follows for f3:

dc-set of f3
 0 0 1 0
 0 1 0 0
 0 1 0 1
 0 1 1 0
 1 0 0 1
 1 0 1 0
 1 0 1 1
 1 1 0 1

Expressed as a Karnaugh map, the on-set, off-set and dc-set would appear
as follows (with ones indicating the on-set, zeroes indicating the off-set,
and dashes indicating the dc-set):

0

-

1

0

0

-

-

-

0

1

1

-

-

-

1

-
1746-1

00 01 11 10

00

01

11

10

i1 i0

i3 i2
3-20 PSDabel-HDL Reference

Design Considerations
If the don’t-care entries in the Karnaugh map are used for optimization,
the function for f3 can be reduced to a single product term (f3 = i2) instead
of the two (f3 = i3 & i2 & !i0 # i2 & i1 & i0) otherwise required.

The PSDabel-HDL compiler uses this level of optimization if the @DCSET
directive or ISTYPE 'dc' is included in the PSDabel-HDL source file, as
shown in Figure 3-9 .

This example results in a total of four single-literal product terms, one for
each output. The same example (with no istype 'dc') results in a total of
twelve product terms.

For truth tables, Don’t Care optimization is almost always the best
method. For state machines, however, you may not want undefined
transition conditions to result in unknown states, or you may want to use
a default state (determined by the type of flip-flops used for the state
register) for state diagram simplification.

When using don’t care optimization, be careful not to specify overlapping
conditions (specifying both the on-set and dc-set for the same conditions)
in your truth tables and state diagrams. Overlapping conditions result in
an error message.

For state diagrams, you can perform additional optimization for design
outputs if you specify the @dcstate attribute. If you enter @dcstate in the
source file, all state diagram transition conditions are collected during
state diagram processing. These transitions are then complemented and
applied to the design outputs as don’t-cares. You must use @dcstate in
combination with @dcset or the 'dc' attribute.

module dc
 i3,i2,i1,i0 pin;
 f3,f2,f1,f0 pin istype ’dc,com’;

truth_table ([i3,i2,i1,i0]->[f3,f2,f1,f0])
 [0, 0, 0, 0]->[0, 0, 0, 1];
 [0, 0, 0, 1]->[0, 0, 1, 1];
 [0, 0, 1, 1]->[0, 1, 1, 1];
 [0, 1, 1, 1]->[1, 1, 1, 1];
 [1, 1, 1, 1]->[1, 1, 1, 0];
 [1, 1, 1, 0]->[1, 1, 0, 0];
 [1, 1, 0, 0]->[1, 0, 0, 0];
 [1, 0, 0, 0]->[0, 0, 0, 0];
end

Figure 3-9
Source File Showing Don’t Care Optimization
PSDabel-HDL Reference 3-21

Design Considerations
Exclusive OR Equations
Designs written for exclusive-OR (XOR) devices should contain the ’xor’
attribute for architecture-independence.

Optimizing XOR Devices

You can use XOR gates directly by writing equations that include XOR
operators, or you can use implied XOR gates. XOR gates can minimize the
total number of product terms required for an output or they can emulate
alternate flip-flop types.

Using XOR Operators in Equations

If you want to write design equations that include XOR operators, you
must either specify a device that features XOR gates in your PSDabel-HDL
source file, or specify the ’xor’ attribute for all output signals that will be
implemented with XOR gates. This preserves one top-level XOR operator
for each design output. For example,

module X1
 Q1 pin istype ’com,xor’;
 a,b,c pin;
equations
 Q1 = a $ b & c;
end

Also, when writing equations for XOR PALs, you should use parentheses
to group those parts of the equation that go on either side of the XOR. This
is because the XOR operator ($) and the OR operator (#) have the same
priority in PSDabel-HDL. See example octalf.abl.

Using Implied XORs in Equations

High-level operators in equations often result in the generation of XOR
operators. If you specify the ’XOR’ attribute, these implied XORs are
preserved, decreasing the number of product terms required. For
example,

module X2
 q3,q2,q1,q0 pin istype ’reg,xor’;
 clock pin;
 count = [q3..q0];
equations
 count.clk = clock;
 count := count.FB + 1;
end

This design describes a simple four-bit counter. Since the addition
operator results in XOR operators for the four outputs, the ’xor’ attribute
can reduce the amount of circuitry generated.
3-22 PSDabel-HDL Reference

Design Considerations
Note:

The high-level operator that generates the XOR operators must be the top-level
(lowest priority) operation in the equation. An equation such as

count := (count.FB + 1) & !reset ;
does not result in the preservation of top-level XOR operators, since the &
operator is the top-level operator.

Using XORs for Flip-flop Emulation

Another way to use XOR gates is for flip-flop emulation. If you are using
an XOR device that has outputs featuring an XOR gate and D-type flip-
flops, you can write your design as if you were going to be implementing
it in a device with T-type flip-flops. The XOR gates and D-type flip-flops
emulate the specified T-type flip-flops. When using XORs in this way, you
should not use the ’xor’ attribute for output signals unless the target device
has XOR gates.

JK Flip-Flop Emulation

You can emulate JK flip-flops using a variety of circuitry found in
programmable devices. When a T-type flip-flop is available, you can
emulate JK flip-flops by ANDing the Q output of the flip-flop with the K
input. The !Q output is then ANDed with the J input. This specific
approach is useful in devices such as the Intel/Altera E0600 and E0900.

Figure 3-10 illustrates the circuitry and the Boolean expression.

You can emulate a JK flip-flop with a D flip-flop and an XOR gate. This
technique is useful in devices such as the P20X8. The circuitry and Boolean
expression is shown below in Figure 3-11.

Figure 3-10
JK Flip-flop Emulation Using T Flip-flop

Preset

Clear

Clock

1
2
3
4

3

S
C
T

Q

Q

T FF
5

6

Q

Q : = (J & !Q) # (K & Q) 0777-1

1
2

1
2

1
2

3

3

K

J

AND2

AND2

OR2
PSDabel-HDL Reference 3-23

Design Considerations
Finally, you can also emulate a JK flip-flop by combining the D flip-flop
emulation of a T flip-flop, in Figure 3-10, with the circuitry of Figure 3-11.
Figure 3-12 illustrates this concept.

State Machines
A state machine is a digital device that traverses a predetermined
sequence of states. State-machines are typically used for sequential control
logic. In each state, the circuit stores its past history and uses that history
to determine what to do next.

This section provides some guidelines to help you make state diagrams
easy to read and maintain and to help you avoid problems. State machines
often have many different states and complex state transitions that
contribute to the most common problem, which is too many product terms
being created for the chosen device. The topics discussed in the following
subsections help you avoid this problem by reducing the number of
required product terms.

The following subsections provide state machine considerations:

• Use Identifiers Rather Than Numbers for States

• Powerup Register States

Figure 3-11
T Flip-flop Emulation Using D Flip-flop

Figure 3-12
JK Flip-flop Emulation, D Flip-flop with XOR

0755-1

Preset

Clear

Clock

1
2

1
2
3
4

T

S
C
D

Q

Q

D FF

XOR
5

6

Q

Q : = T $ Q

3

Preset

Clear

Clock

1

2

1

2
3

4
3

S

C
D

Q

Q

D FF

XOR
5

6

Q

Q : = (Q) $ (J & !Q # K & Q)

0756-1

31

2

1

2

1

2

3

3

K

J

AND2

AND2

OR2

Integrated Circuit in Digital Electronics
Arpad Barna and Dan Porat
John Whiley & Sons 1973
3-24 PSDabel-HDL Reference

Design Considerations
• Unsatisfied Transition Conditions, D-Type Flip-Flops

• Unsatisfied Transition Conditions, Other Flip-Flops

• Number Adjacent States for a One-bit Change

• Use State Register Outputs to Identify States

• Use Symbolic State Descriptions

Use Identifiers Rather Than Numbers for States

A state machine has different “states” that describe the outputs and
transitions of the machine at any given point. Typically, each state is given
a name, and the state machine is described in terms of transitions from one
state to another. In a real device, such a state machine is implemented with
registers that contain enough bits to assign a unique number to each state.
The states are actually bit values in the register, and these bit values are
used along with other signals to determine state transitions.

As you develop a state diagram, you need to label the various states and
state transitions. If you label the states with identifiers that have been
assigned constant values, rather than labeling the states directly with
numbers, you can easily change the state transitions or register values
associated with each state.

When you write a state diagram, you should first describe the state
machine with names for the states, and then assign state register bit values
to the state names.

For an example, see Figure 3-13, which lists the source file for a state
machine named “sequence.” (This state machine is also discussed in the
design examples.) Identifiers (A, B, and C) specify the states. These
identifiers are assigned a constant decimal value in the declaration section
that identifies the bit values in the state register for each state. A, B, and C
are only identifiers: they do not indicate the bit pattern of the state
machine. Their declared values define the value of the state register (sreg)
for each state. The declared values are 0, 1, and 2.
PSDabel-HDL Reference 3-25

Design Considerations
module Sequence
title ’State machine example D. B. Pellerin Data I/O
Corp’;

 sequence device ’p16r4’;

 q1,q0 pin 14,15 istype ’reg’;
 clock,enab,start,hold,reset pin 1,11,4,2,3;
 halt pin 17 istype ’reg’;
 in_B,in_C pin 12,13 istype ’com’;
 sreg = [q1,q0];

"State Values...
 A = 0; B = 1; C = 2;

equations
 [q1,q0,halt].clk = clock;
 [q1,q0,halt].oe = !enab;

state_diagram sreg;
 State A: " Hold in state A until start is active.
 in_B = 0;
 in_C = 0;
 IF (start & !reset) THEN B WITH halt := 0;
 ELSE A WITH halt := halt.fb;

 State B: " Advance to state C unless reset
is active
 in_B = 1; " or hold is active. Turn on halt
indicator
 in_C = 0; " if reset.
 IF (reset) THEN A WITH halt := 1;
 ELSE IF (hold) THEN B WITH halt := 0;
 ELSE C WITH halt := 0;

 State C: " Go back to A unless hold is active
 in_B = 0; " Reset overrides hold.
 in_C = 1;
 IF (hold & !reset) THEN C WITH halt := 0;
 ELSE A WITH halt := 0;

test_vectors([clock,enab,start,reset,hold]-
>[sreg,halt,in_B,in_C])
 [.p. , 0 , 0 , 0 , 0]->[A , 0 , 0 , 0];
 [.c. , 0 , 0 , 0 , 0]->[A , 0 , 0 , 0];
 [.c. , 0 , 1 , 0 , 0]->[B , 0 , 1 , 0];
 [.c. , 0 , 0 , 0 , 0]->[C , 0 , 0 , 1];

 [.c. , 0 , 1 , 0 , 0]->[A , 0 , 0 , 0];
 [.c. , 0 , 1 , 0 , 0]->[B , 0 , 1 , 0];
 [.c. , 0 , 0 , 1 , 0]->[A , 1 , 0 , 0];
 [.c. , 0 , 0 , 0 , 0]->[A , 1 , 0 , 0];

 [.c. , 0 , 1 , 0 , 0]->[B , 0 , 1 , 0];
 [.c. , 0 , 0 , 0 , 1]->[B , 0 , 1 , 0];
 [.c. , 0 , 0 , 0 , 1]->[B , 0 , 1 , 0];
 [.c. , 0 , 0 , 0 , 0]->[C , 0 , 0 , 1];
end

Figure 3-13
Using Identifiers for States
3-26 PSDabel-HDL Reference

Design Considerations
Powerup Register States

If a state machine has to have a specific starting state, you must define the
register powerup state in the state diagram description or make sure your
design goes to a known state at powerup. Otherwise, the next state is
undefined.

Unsatisfied Transition Conditions

D-Type Flip-Flops

For each state described in a state diagram, you specify the transitions to
the next state and the conditions that determine those transitions. For
devices with D-type flip-flops, if none of the stated conditions are met, the
state register, shown in Figure 3-14, is cleared to all 0s on the next clock
pulse. This action causes the state machine to go to the state that
corresponds to the cleared state register. This can either cause problems or
you can use it to your advantage, depending on your design.

You can use the clearing behavior of D-type flip-flops to eliminate some
conditions in your state diagram, and some product terms in the
converted design, by leaving the cleared-register state transition implicit.
If no specified transition condition is met, the machine goes to the cleared-
register state. This behavior can also cause problems if the cleared-register
state is undefined in the state diagram, because if the transition conditions
are not met for any state, the machine goes to an undefined state and stays
there.

To avoid problems caused by this clearing behavior, always have a state
assigned to the cleared-register state. Or, if you don’t assign a state to the
cleared-register state, define every possible condition so some condition is
always met for each state. You can also use the automatic transition to the
cleared-register state by eliminating product terms and explicit definitions
of transitions. You can also use the cleared-register state to satisfy illegal
conditions.

Figure 3-14
D-type Register with False Inputs

NO PRODUCT TERM
NO PRODUCT TERM
NO PRODUCT TERM
NO PRODUCT TERM
NO PRODUCT TERM
NO PRODUCT TERM
NO PRODUCT TERM
NO PRODUCT TERM

D Q

Q

LOGIC 0
F0

0774-1
PSDabel-HDL Reference 3-27

Design Considerations
Other Flip-flops

If none of the state conditions is met in a state machine that employs JK,
RS, and T-type flip-flops, the state machine does not advance to the next
state, but holds its present state due to the low input to the register from
the OR array output. In such a case, the state machine can get stuck in a
state. You can use this holding behavior to your advantage in some
designs.

If you want to prevent the hold, you can use the complement array
provided in some devices (such as the F105) to detect a “no conditions
met” situation and reset the state machine to a known state.

Precautions for Using Don’t Care Optimization

When you use don’t care optimization, you need to avoid certain design
practices. The most common design technique that conflicts with this
optimization is mixing equations and state diagrams to describe default
transitions. For example, consider the design shown in Figure 3-15 on
page 3-29.

This design uses the complement array feature of the Signetics FPLA
devices to perform an unconditional jump to state [0,0,0,0]. If you use the
@DCSET directive, the equation that specifies this transition

[S3,S2,S1,S0].R = (!COMP & [1,1,1,1]);

will conflict with the dc-set generated by the state diagram for S3.R, S2.R,
S1.R, and S0.R. If equations are defined for state bits, the @DCSET
directive is incompatable. This conflict would result in an error and failure
when the logic for this design is optimized.

To correct the problem, you must remove the @DCSET directive so the
implied dc-set equations are folded into the off-set for the resulting logic
function. Another option is to rewrite the module as shown in Figure 3-16
on page 3-30.
3-28 PSDabel-HDL Reference

Design Considerations
module TRAFFIC
title ’Traffic Signal Controller Kim-Fu Lim Data I/O Corp’

 traffic device ’F167’;
 Clk,SenA,SenB pin 1, 8, 7;
 PR pin 16; "Preset control
 GA,YA,RA pin 15..13;
 GB,YB,RB pin 11..9;

 "Node numbers are not required if fitter is used
 S3..S0 node 31..34 istype ’reg_sr,buffer’;
 COMP node 43;

 H,L,Ck,X = 1, 0, .C., .X.;
 Count = [S3..S0];

"Define Set and Reset inputs to traffic light flip-flops
 GreenA = [GA.S,GA.R];
 YellowA = [YA.S,YA.R];
 RedA = [RA.S,RA.R];
 GreenB = [GB.S,GB.R];
 YellowB = [YB.S,YB.R];
 RedB = [RB.S,RB.R];
 On = [1 , 0];
 Off = [0 , 1];

" test_vectors edited

equations
 [GB,YB,RB].AP = PR;
 [GA,YA,RA].AP = PR;
 [GB,YB,RB].CLK = Clk;
 [GA,YA,RA].CLK = Clk;
 [S3..S0].AP = PR;
 [S3..S0].CLK = Clk;

"Use Complement Array to initialize or restart
 [S3..S0].R = (!COMP & [1,1,1,1]);
 [GreenA,YellowA,RedA] = (!COMP & [On ,Off,Off]);
 [GreenB,YellowB,RedB] = (!COMP & [Off,Off,On]);

state_diagram Count
 State 0: if (SenA & !SenB) then 0 with COMP = 1;
 if (!SenA & SenB) then 4 with COMP = 1;
 if (SenA == SenB) then 1 with COMP = 1;

 State 1: goto 2 with COMP = 1;
 State 2: goto 3 with COMP = 1;
 State 3: goto 4 with COMP = 1;

State 4: GreenA = Off;
 YellowA = On ;
 goto 5 with COMP = 1;

 State 5: YellowA = Off;
 RedA = On ;
 RedB = Off;
 GreenB = On ;
 goto 8 with COMP = 1;

State 8: if (!SenA & SenB) then 8 with COMP = 1;
 if (SenA & !SenB) then 12 with COMP = 1;
 if (SenA == SenB) then 9 with COMP = 1;

 State 9: goto 10 with COMP = 1;
 State 10: goto 11 with COMP = 1;
 State 11: goto 12 with COMP = 1;

State 12: GreenB = Off;
 YellowB = On ;
 goto 13 with COMP = 1;

State 13: YellowB = Off;
 RedB = On ;
 RedA = Off;
 GreenA = On ;
 goto 0 with COMP = 1;
end

Figure 3-15
State Machine Description with Conflicting Logic
PSDabel-HDL Reference 3-29

Design Considerations
module TRAFFIC1
title ’Traffic Signal Controller, M. McClure Data I/O Corp’
 traffic1 device ’F167’;
 Clk,SenA,SenB pin 1, 8, 7;
 PR pin 16; "Preset control
 GA,YA,RA pin 15..13;
 GB,YB,RB pin 11..9;
 S3..S0 node 31..34 istype ’reg_sr,buffer’;
 H,L,Ck,X = 1, 0, .C., .X.;
 Count = [S3..S0];
"Define Set and Reset inputs to traffic light flip flops
 GreenA = [GA.S,GA.R];
 YellowA = [YA.S,YA.R];
 RedA = [RA.S,RA.R];
 GreenB = [GB.S,GB.R];
 YellowB = [YB.S,YB.R];
 RedB = [RB.S,RB.R];
 On = [1 , 0];
 Off = [0 , 1];
" test_vectors edited
equations
 [GB,YB,RB].AP = PR;
 [GA,YA,RA].AP = PR;
 [GB,YB,RB].CLK = Clk;
 [GA,YA,RA].CLK = Clk;
 [S3..S0].AP = PR;
 [S3..S0].CLK = Clk;
@DCSET
state_diagram Count
 State 0: if (SenA & !SenB) then 0;
 if (!SenA & SenB) then 4;
 if (SenA == SenB) then 1;
 State 1: goto 2;
 State 2: goto 3;
 State 3: goto 4;

 State 4: GreenA = Off;
 YellowA = On ;
 goto 5;
 State 5: YellowA = Off;
 RedA = On ;
 RedB = Off;
 GreenB = On ;
 goto 8;
 State 6: goto 0;
 State 7: goto 0;
 State 8: if (!SenA & SenB) then 8;
 if (SenA & !SenB) then 12;
 if (SenA == SenB) then 9;
 State 9: goto 10;
 State 10: goto 11;
 State 11: goto 12;
 State 12: GreenB = Off;
 YellowB = On ;
 goto 13;
 State 13: YellowB = Off;
 RedB = On ;
 RedA = Off;
 GreenA = On ;
 goto 0;
 State 14: goto 0;
 State 15: "Power up and preset state
 RedA = Off;
 YellowA = Off;
 GreenA = On ;
 RedB = On ;
 YellowB = Off;
 GreenB = Off;
 goto 0;
end

Figure 3-16
@DCSET-compatible State Machine Description
3-30 PSDabel-HDL Reference

Design Considerations
Number Adjacent States for One-bit Change

You can reduce the number of product terms produced by a state diagram
by carefully choosing state register bit values. Your state machine should
be described with symbolic names for the states, as described above. Then,
if you assign the numeric constants to these names so the state register bits
change by only one bit at a time as the state machine goes from state to
state, you will reduce the number of product terms required to describe
the state transitions.

As an example, take the states A, B, C, and D, which go from one state to
the other in alphabetical order. The simplest choice of bit values for the
state register is a numeric sequence, but this is not the most efficient
method. To see why, examine the following bit value assignments. The
preferred bit values cause a one-bit change as the machine moves from
state B to C, whereas the simple bit values cause a change in both bit values
for the same transition. The preferred bit values produce fewer product
terms.

If one of your state register bits uses too many product terms, try
reorganizing the bit values so that state register bit changes in value as few
times as possible as the state machine moves from state to state.

Obviously, the choice of optimum bit values for specific states can require
some tradeoffs; you may have to optimize for one bit and, in the process,
increase the value changes for another. The object should be to eliminate
as many product terms as necessary to fit the design into the device.

Use State Register Outputs to Identify States

Sometimes it is necessary to identify specific states of a state machine and
signal an output that the machine is in one of these states. Fewer equations
and outputs are needed if you organize the state register bit values so one
bit in the state register determines if the machine is in a state of interest.
Take, for example, the following sequence of states in which identification
of the Cn states is required:

State Simple Bit Values Preferred Bit Values

A 00 00

B 01 01

C 10 11

D 11 10
PSDabel-HDL Reference 3-31

Design Considerations
State Register Bit Values

This choice of state register bit values allows you to use Q3 as a flag to
indicate when the machine is in any of the Cn states. When Q3 is high, the
machine is in one of the Cn states. Q3 can be assigned directly to an output
pin on the device. Notice also that these bit values change by only one bit
as the machine cycles through the states, as is recommended in the section
above.

Using Symbolic State Descriptions

Symbolic state descriptions describe a state machine without having to
specify actual state values. A symbolic state description is shown in
Figure 3-17.

State Name Q3 Q2 Q1

A 0 0 0

B 0 0 1

C1 1 0 1

C2 1 1 1

C3 1 1 0

D 0 1 0
3-32 PSDabel-HDL Reference

Design Considerations
Symbolic state descriptions use the same syntax as non-symbolic state
descriptions; the only difference is the addition of the State_register and
State declarations, and the addition of symbolic synchronous and
asynchronous reset statements.

Symbolic Reset Statements

In symbolic state descriptions, the Sync_Reset and Async_Reset
statements specify synchronous or asynchronous state machine reset
logic. For example, to specify that a state machine must asynchronously
reset to state Start when the Reset input is true, you write

ASYNC_RESET Start : (Reset) ;

Symbolic Test Vectors

You can also write test vectors to refer to symbolic state values by entering
the symbolic state register name in the test vector header (in the output
sections), and the symbolic state names in the test vectors as output values.

module SM
 a,b,clock pin; " inputs
 a_reset,s_reset pin; " reset inputs
 x,y pin istype ’com’; " simple outputs

 sreg1 state_register;
 S0..S3 state;

equations
 sreg1.clk = clock;

state_diagram sreg1
 state S0:
 goto S1 with {x = a & b;
 y = 0; }
 state S1: if (a & b)
 then S2 with {x = 0;
 y = 1; }
 state S2: x = a & b;
 y = 1;
 if (a) then S1 else S2;
 state S3:
 goto S0 with {x = 1;
 y = 0; }

 async_reset S0: a_reset;
 sync_reset S0: s_reset;
end

Figure 3-17
Symbolic State Description
PSDabel-HDL Reference 3-33

Design Considerations
Using Complement Arrays
The complement array is a unique feature found in some logic sequencers.
This section shows a typical use ending counter sequence.

You can use transition equations to express the design of counters and
state machines in some devices with JK or SR flip-flops. A transition
equation expresses a state of the circuit as a variation of, or adjustment to,
the previous state. This type of equation eliminates the need to specify
every node of the circuit; you can specify only those that require a
transition to the opposite state.

An example of transition equations is shown in Figure 3-18, a source file
for a decade counter having a single (clock) input and a single latched
output. This counter divides the clock input by a factor of ten and
generates a 50% duty-cycle squarewave output. The device used is an F105
FPLS. In addition to its registered outputs, this device contains a set of
“buried” (or feedback) registers whose outputs are fed back to the product
term inputs. These nodes must be declared, and can be given any names.

Node 49, the complement array feedback, is declared (as COMP) so that it
can be entered into each of the equations. In this design, the complement
array feedback is used to wrap the counter back around to zero from state
nine, and also to reset it to zero if an illegal counter state is encountered.
Any illegal state (and also state 9) will result in the absence of an active
product term to hold node 49 at a logic low. When node 49 is low, Figure 3-
19 shows that product term 9 resets each of the feedback registers so the
counter is set to state zero. (To simplify the following description of the
equations in Figure 3-8, node 49 and the complement array feedback are
temporarily ignored.)

The first equation states that the F0 (output) register is set (to provide the
counter output) and the P0 register is set when registers P0, P1, P2, and P3
are all reset (counter at state zero) and the clear input is low. Figure 3-19
shows how the fuses are blown to fulfill this equation; the complemented
outputs of the registers (with the clear input low) form product term 0.
Product term 0 sets register P0 to increment the decade counter to state 1,
and sets register F0 to provide an output at pin 18.
3-34 PSDabel-HDL Reference

Design Considerations
The second equation performs a transition from state 1 to state 2 by setting
the P1 register and resetting the P0 register. (The .R dot extension is used
to define the reset input of the registers.) In state 2, the F0 register remains
set, maintaining the high output. The third equation again sets the P0
register to achieve state 3 (P0 and P1 both set), while the fourth equation
resets P0 and P1, and sets P2 for state 4, and so on.

module DECADE
title ’Decade Counter Uses Complement Array
Michael Holley Data I/O Corp’

 decade device ’F105’;

 Clk,Clr,F0,PR pin 1,8,18,19;
 P3..P0 node 40..37;
 COMP node 49;

 F0,P3..P0 istype ’reg_sr,buffer’;

_State = [P3,P2,P1,P0];
 H,L,Ck,X = 1, 0, .C., .X.;

equations
 [P3,P2,P1,P0,F0].ap = PR;
 [F0,P3,P2,P1,P0].clk = Clk;

"Output Next State Present State Input
 [F0.S, COMP, P0.S] = !P3.Q & !P2.Q & !P1.Q & !P0.Q & !Clr; "0 to 1
 [COMP, P1.S,P0.R] = !P3.Q & !P2.Q & !P1.Q & P0.Q & !Clr; "1 to 2
 [COMP, P0.S] = !P3.Q & !P2.Q & P1.Q & !P0.Q & !Clr; "2 to 3
 [COMP, P2.S,P1.R,P0.R] = !P3.Q & !P2.Q & P1.Q & P0.Q & !Clr; "3 to 4
 [COMP, P0.S] = !P3.Q & P2.Q & !P1.Q & !P0.Q & !Clr; "4 to 5
 [F0.R, COMP, P1.S,P0.R] = !P3.Q & P2.Q & !P1.Q & P0.Q & !Clr; "5 to 6
 [COMP, P0.S] = !P3.Q & P2.Q & P1.Q & !P0.Q & !Clr; "6 to 7
 [COMP,P3.S,P2.R,P1.R,P0.R] = !P3.Q & P2.Q & P1.Q & P0.Q & !Clr; "7 to 8
 [COMP P0.S] = P3.Q & !P2.Q & !P1.Q & !P0.Q & !Clr; "8 to 9
 [P3.R,P2.R,P1.R,P0.R] = !COMP; "Clear

"After Preset, clocking is inhibited until High-to-Low clock transition.
test_vectors ([Clk,PR,Clr] -> [_State,F0])
 [0 , 0, 0] -> [X , X];
 [1 , 1, 0] -> [^b1111, H]; " Preset high
 [1 , 0, 0] -> [^b1111, H]; " Preset low
 [Ck, 0, 0] -> [0 , H]; " COMP forces to State 0
 [Ck, 0, 0] -> [1 , H];
" ..vectors edited...
 [Ck, 0, 1] -> [0 , H]; " Clear
end

Figure 3-18
Transition Equations for a Decade Counter
PSDabel-HDL Reference 3-35

Design Considerations
Wraparound of the counter from state 9 to state 0 is achieved by means of
the complement array node (node 49). The last equation defines state 0 (P3,
P2, P1, and P0 all reset) as equal to !COMP, that is, node 49 at a logic low.
When this equation is processed, the fuses are blown as indicated in
Figure 3-19. Figure 3-19 shows that state 9 (P0 and P3 set) provides no
product term to pull node 49 high. As a result, the !COMP signal is true to
generate product term 9 and reset all the “buried” registers to zero.

Figure 3-19
Abbreviated F105 Schematic

0 1 2 3 4 5 6 7 8 9

S

R

S

R

S

R

S

R

S

R

P0

P1

P2

P3

F0

49

18

1CLR

CLK (INPUT)

F0 (OUTPUT)

Note: Clock input
not shown
on schematic

0776-1
3-36 PSDabel-HDL Reference

Source File Examples
Chapter 4:
Source File Examples

The following examples are representative of programmable logic
applications and serve to illustrate significant PSDabel-HDL features. You
can use these examples to get started creating your own source files. For
complete information on creating a source file, see Chapter 2, “Language
Structure,” and Chapter 5, “Language Reference.”

All the examples in this section are installed with your software, and you
can use them without making any changes, or modify them in your
designs.

The examples are divided into sections that demonstrate how to use the
following programmable logic applications:

• Equations

• State Diagrams

• Truth Tables

• Combined Logic Descriptions

• Hierarchy

• ABEL or Synario Projects

Equations
Memory Address Decoder

Address decoding is a typical application of programmable logic devices,
and the following describes the PSDabel-HDL implementation of such a
design.

Design Specification

Figure 4-1 shows the block diagram for this design and a continuous block
of memory divided into sections containing dynamic RAM (DRAM), I/O
(IO), and two sections of ROM (ROM1 and ROM2). The purpose of this
decoder is to monitor the 6 high-order bits (A15-A10) of a sixteen-bit
address bus and select the correct section of memory based on the value of
these address bits. To perform this function, a simple decoder with six
inputs and four outputs is designed for implementation in a simple PLD.
PSDabel-HDL Reference 4-1

Source File Examples
The address ranges associated with each section of memory are shown
below. These address ranges can also be seen in the source file in
Figure 4-3.

Design Method

Figure 4-2 shows a simplified block diagram for the address decoder. The
decoder is implemented with equations employing relational and logical
operators as shown in Figure 4-3.

Significant simplification is achieved by grouping the address bits into a
set named Address. The ten address bits that are not used for the address
decode are given no-connect values in the set, indicating that the address
in the overall design (that beyond the decoder) contains 16 bits, but that
bits 0 to 9 do not affect the decode of that address and are not monitored.
In contrast, defining the set as

Address = [A15,A14,A13,A12,A11,A10]

ignores the existence of the lower-order bits. Specifying all 16 address lines
as members of the address set allows full 16-bit comparisons of the
address value against the ranges shown above.

Figure 4-1
Block Diagram: Memory Address Decoder

Memory Section Address Range (hex)

DRAM 0000-DFFF

I/O E000-E7FF

ROM2 F000-F7FF

ROM1 F800-FFFF

A15

A14

A13

A12

A11

A10

ROM1

ROM2

IO

DRAM

ROM1 ROM2 I/O DRAM

FFFF F800 F000 E800 E000 0000
0697-1
4-2 PSDabel-HDL Reference

Source File Examples
Test Vectors

In this design, the test vectors are a straightforward listing of the values
that must appear on the output lines for specific address values. The
address values are specified in hexadecimal notation.

12-to-4 Multiplexer
The following describes the implementation of a 12-input to 4-output
multiplexer using high level equations.

Figure 4-2
Simplified Block Diagram: Memory Address Decoder

module decode
title ’memory decode Jean Designer Data I/O Corp Redmond
WA’

 A15,A14,A13,A12,A11,A10 pin 1,2,3,4,5,6;
 ROM1,IO,ROM2,DRAM pin 14,15,16,17 istype ’com’;
 H,L,X = 1,0,.X.;
 Address = [A15,A14,A13,A12, A11,A10,X,X, X,X,X,X,
X,X,X,X];

equations
 !DRAM = (Address <= ^hDFFF);
 !IO = (Address >= ^hE000) & (Address <= ^hE7FF);
 !ROM2 = (Address >= ^hF000) & (Address <= ^hF7FF);
 !ROM1 = (Address >= ^hF800);

test_vectors
 (Address -> [ROM1,ROM2,IO,DRAM])
 ^h0000 -> [H, H, H, L];
 ^h4000 -> [H, H, H, L];
 ^h8000 -> [H, H, H, L];
 ^hC000 -> [H, H, H, L];
 ^hE000 -> [H, H, L, H];
 ^hE800 -> [H, H, H, H];
 ^hF000 -> [H, L, H, H];
 ^hF800 -> [L, H, H, H];
end

Figure 4-3
Memory Address Decoder Source File

Address

ROM1

ROM2

IO

DRAM
0703-1
PSDabel-HDL Reference 4-3

Source File Examples
Design Specification

Figure 4-4 shows the block diagram for this design. The multiplexer
selects one of the four inputs and routes that set to the output. The inputs
are a0-a3, b0-b3, and c0-c3. The outputs are y0-y3. The routing of inputs to
outputs is straightforward: a0 or b0 or c0 is routed to the output y0, a1 or
b1 or c1 is routed to the output y1, and so on with the remaining outputs.
The select lines, s0 and s1, control the decoding that determines which set
is routed to the output.

Design Method

Figure 4-5 shows a block diagram for the same multiplexer after sets have
been used to group the signals. All of the inputs have been grouped into
the sets a, b, and c. The outputs and select lines are grouped into the sets,
y and select, respectively. This grouping of signals into sets takes place in
the declaration section of the source file listed in Figure 4-6.

When the sets have been declared, specification of the design is made with
the following four equations that use WHEN-THEN statements.

when (select == 0) then y = a;
when (select == 1) then y = b;
when (select == 2) then y = c;
when (select == 3) then y = c;

The relational expression (==) inside the parentheses produces an
expression that evaluates to true or false value, depending on the values
of s0 and s1.

Figure 4-4
Block Diagram: 12-to-4 Multiplexer

a0
a1
a2
a3

b0
b1
b2
b3

c0
c1
c2
c3

y0
y1
y2
y3

s1 s0 0704-1
4-4 PSDabel-HDL Reference

Source File Examples
In the first equation, this expression is then ANDed with the set a which
contains the four bits, a0-a3, and could be written as

y = (select == 0) & a

Assume select is equal to 0 (s1 = 0 and s0 = 0), so a true value is produced.
The true is then ANDed with the set a on a bit by bit basis, which in effect
sets the product term to a. If select were not equal to 0, the relational
expression inside the parentheses would produce a false value. This value,
when ANDed with anything, would give all zeroes.

The other product terms in the equation work in the same manner.
Because select takes on only one value at a time, only one of the product
terms pass the value of an input set along to the output set. The others
contribute 0 bits to the ORs.

Test Vectors

The test vectors for this design are specified in terms of the input, output,
and select sets. Note that the values for a set can be specified by decimal
numbers and by other sets. The constants H and L, used in the test vectors,
were declared as four bit sets containing all ones or all zeroes.

Figure 4-5
Simplified Block Diagram: 12-to-4 Multiplexer

a

b

c

y

select 0705-1
PSDabel-HDL Reference 4-5

Source File Examples
4-Bit Universal Counter
The following design describes the implementation of a 4-bit up/down
counter with parallel load and count enable. The design is described using
high-level PSDabel-HDL equations. Figure 4-7 shows a block diagram of
the counter and its signals. Figure 4-8 shows the source file for this design.

module Mux12T4
title ’12 to 4 multiplexer
Dave Pellerin Data I/O Corp. Redmond WA’

 mux12t4 device ’P16V8S’;

 a0..a3 pin 1..4;
 b0..b3 pin 5..8;
 c0..c3 pin 9..13;
 s1,s0 pin 18,19;
 y0..3 pin 14..17;

 H = [1,1,1,1];
 L = [0,0,0,0];
 X = .x.;
 select = [s1, s0];
 y = [y3..y0];
 a = [a3..a0];
 b = [b3..b0];
 c = [c3..c0];

equations
 when (select == 0) then y = a;
 when (select == 1) then y = b;
 when (select == 2) then y = c;
 when (select == 3) then y = c;

test_vectors ([select, a, b, c] -> y)
 [0 , 1, X, X] -> 1;"select = 0, gates
lines a to output
 [0 ,10, H, L] -> 10;
 [0 , 5, H, L] -> 5;
 [1 , H, 3, H] -> 3;"select = 1, gates
lines b to output
 [1 ,10, 7, H] -> 7;
 [1 , L,15, L] -> 15;
 [2 , L, L, 8] -> 8;"select = 2, gates
lines c to output
 [2 , H, H, 9] -> 9;
 [2 , L, L, 1] -> 1;
 [3 , H, H, 0] -> 0;"select = 3, gates
lines c to output
 [3 , L, L, 9] -> 9;
 [3 , H, L, 0] -> 0;
end

Figure 4-6
Source File: 12-to-4 Multiplexer
4-6 PSDabel-HDL Reference

Source File Examples
The outputs q3, q2, q1, and q0 contain the current count. The least
significant bit (LSB) is q0 the most significant bit (MSB) is q3.

Using Sets to Create Modes

The counter has four different modes of operation: Load Data From
Inputs, Count Up, Count Down, and Hold Count. You select the modes by
applying various combinations of values to the inputs cnten, ld, and u_d,
as described below. The four modes have different priorities, which are
defined in the PSDabel-HDL description.

The Load mode has the highest priority. If the ld input is high, then the q
outputs reflect the value on the d inputs after the next clock edge.

The Hold mode has the next highest priority. Provided ld is low, then
when the cnten input is low, the q outputs maintain their current values
upon subsequent clock edges, ignoring any other inputs.

The Up and Down modes have the same priority, and by definition are
mutually exclusive. Provided cnten is high and ld is low, then when u_d
is high, the counter counts up and when u_d is low, the counter
counts down.

Counter Reset

The counter is reset asynchronously by assertion of the input rst.

Using Range Operators

Because this design uses range operators and sets, you can modify the
counter to be any width by making changes in the declarations section.
You could create a 9-bit counter by changing the lines which read “d3..d0”
and “q3..q0” to “d8..d0” and “q8..q0,” respectively. The range expressions
are expanded out and create register sets of corresponding width.

Figure 4-7
Block Diagram: 4-bit Universal Counter

2193-1

d3
UNICNT

I 25

d2
d1
d0
clk
rst
cnten

q3
q2
q1
q0

ld
u_d
PSDabel-HDL Reference 4-7

Source File Examples
Design Description

Hierarchical Interface Declaration

Directly after the module name, the design contains a hierarchical
interface declaration which is used by the PSDabel-HDL compiler and
linker if another PSDabel-HDL source instantiates this source. The
interface list shows all of the input, output, and bidirectional signals (if
any) in the design.

Declarations

The declarations contain sections that make the design easier to interpret.
The sections are as follows:

Equations

The design of the counter equations enables you to easily define modes
and your actual register equations will be easily readable. The counter
equation uses when-then-else syntax. The first line

when LOAD then count := data

uses the symbolic name LOAD, defined earlier in the source file as

LOAD = (MODE == [X, 1, X])

and MODE itself is a set of inputs in a particular order, defined
previously as

MODE = [cnten, ld, u_d]

The first line of the equation could have been written as follows

when ((cnten == X) & (ld == 1) & (u_d == X)) then count := data

which is functionally the same, but the intermediate definitions used
instead makes the source file more readable and easier to modify.

Constants Constant values are defined.

Inputs Design inputs are declared.

Outputs The output pin list contains an istype declaration for
retargetability.

Sets The names data and count are defined as sets
(groups) containing the inputs d3, d2, d1, and d0, and
the outputs q3, q2, q1, and q0, respectively.

Modes The “Mode equations” are actually more contant
declarations. First MODE is defined as the set
containing cnten, ld, and u_d, in that order. Next,
LOAD is defined as being true when the members of
MODE are equal to X, 1, and X, respectively. HOLD,
UP, and DOWN are defined similarly.
4-8 PSDabel-HDL Reference

Source File Examples
Note:

You can also see the advantages of set notation in the test vector section (which
has been edited in this manual, but can be seen in the actual .abl file). In the test
vectors, the input data is applied as a decimal value, and the output count is a
decimal value rather than a set of binary bits.

module unicnt
interface (d3..d0, clk,rst,ld, u_d -> q3..q0) ;

title ’4 bit universal counter with parallel load
 Tom Bowns Data I/O Corporation’ ;

"Constants
 X,C,Z = .X., .C., .Z. ;

"Inputs
 d3..d0 pin ; "Data inputs, 4 bits wide
 clk pin ; "Clock input
 rst pin ; "Asynchronous reset
 cnten pin ; "Count enable
 ld pin ; "Load counter with input data value
 u_d pin ; "Up/Down selector: HIGH selects up

"Outputs
 q3..q0 pin istype ’reg’; "Counter outputs

"Sets
 data = [d3..d0]; "Data set
 count = [q3..q0]; "Counter set

"Mode equations
 MODE = [cnten,ld,u_d]; "Mode set composed
 "of control pins.
 LOAD = (MODE == [X , 1, X]); "Various modes are
 "defined by
 HOLD = (MODE == [0 , 0, X]); "values applied to
 "control pins.
 UP = (MODE == [1 , 0, 1]); "Symbolic name may
 "be defined as
 DOWN = (MODE == [1 , 0, 0]); "a set equated to a
 "value.

Equations
 when LOAD then count := data "Load counter with data
 else when UP then count : = count + 1 "Count up
 else when DOWN then count : = count - 1 "Count down
 else when HOLD then count := count ; "Hold count

 count.clk = clk; "Counter clock input
 count.ar = rst; "Counter reset input

"Test_vectors edited...

End

Figure 4-8
Source File: 4-bit Universal Counter
PSDabel-HDL Reference 4-9

Source File Examples
Bidirectional Three-state Buffer
A four-bit bidirectional buffer with tristate outputs is presented here. The
design is implemented in an F153 FPLA with bidirectional inputs/outputs
and programmable output polarity. Simple Boolean equations are used to
describe the function.

Design Specification

Figure 4-9 shows a block diagram for this four-bit buffer. Signals A0-A3
and B0-B3 function both as inputs and outputs, depending on the value on
the select lines, S0-S1. When the select value (the value on the select lines)
is 1, A0-A3 are enabled as outputs. When the select value is 2, B0-B3 are
enabled as outputs. (The choice of 1 and 2 for select values is arbitrary.) For
any other values of the select lines, both the A and B outputs are at high
impedance. Output polarity for this design is positive.

Design Method

A simplified block diagram for the buffer is shown in Figure 4-10. The A
and B inputs/outputs are grouped into two sets, A and B. The select lines
are grouped into the select set. Figure 4-11 shows the source file that
describes the design.

Figure 4-9
Block Diagram: Bidirectional Three-state Buffer

S1 S0

B3 B2 B1 B0 A2 A1 A0A3 0716-1

Figure 4-10
Simplified Block Diagram: Bidirectional Three-state Buffer

Select

B A 0717-1
4-10 PSDabel-HDL Reference

Source File Examples
High-impedance and don’t-care values are declared to simplify notation
in the source file. The equations section describes the full function of the
design. What appear to be unresolvable equations are written for A and B,
with both sets appearing as inputs and outputs. The enable equations,
however, enable only one set at a time as outputs; the other set functions
as inputs to the buffer.

Test vectors are written to test the buffer when either set is selected as the
output set, and for the case when neither is selected. The test vectors are
written in terms of the previously declared sets so the element values do
not need to be listed separately.

4-Bit Comparator
This is a design for a 4-bit comparator that provides an output for “equal
to,” “less than,” “not equal to,”and “greater than” (as well as intermediate
outputs). The design is implemented with high level equations.

Design Specification

The comparator, as shown in Figure 4-12, compares the values of two four-
bit inputs (A0-A3 and B0-B3) and determines whether A is equal to, not
equal to, less than, or greater than B. The result of the comparison is shown
on the output lines, EQ, GT, NE, and LT.

module tsbuffer
title ’bidirectional three state buffer Brenda French &
Mary Bailey Data I/O Corp’
 TSB1 device ’F153’;
 S1,S0 Pin 1,2; Select = [S1,S0];
 A3,A2,A1,A0 Pin 12,13,14,15; A = [A3,A2,A1,A0];
 B3,B2,B1,B0 Pin 16,17,18,19; B = [B3,B2,B1,B0];

 X,Z = .X., .Z.;

equations
 A = B;
 B = A;

 A.oe = (Select == 1);
 B.oe = (Select == 2);

test_vectors
 ([Select, A, B]-> [A, B])
 [0 , 0, 0]-> [Z, Z];
 [0 , 15, 15]-> [Z, Z];

 [1 , X, 5]-> [5, X];
 [1 , X, 10]-> [10, X];

 [2 , 5, X]-> [X, 5];
 [2 , 10, X]-> [X, 10];

 [3 , 0, 0]-> [Z, Z];
 [3 , 15, 15]-> [Z, Z];
end

Figure 4-11
Source file: Bidirectional Three-state Buffer
PSDabel-HDL Reference 4-11

Source File Examples
Design Method

Figure 4-13 and Figure 4-14 show the simplified block diagram and source
file listing for the comparator. The inputs A0-A3 and B0-B3 are grouped
into the sets A and B. YES and NO are defined as 1 and 0, to be used in the
test vectors.

The equations section of the source file contains the following equations:

EQ = A == B;
NE = !(A == B);
GT = A > B;
LT = !((A > B) # (A == B));

You could also use the following equations for the design of this
comparator. However, many more product terms are used in the FPLA:

EQ = A == B;
NE = A != B;
GT = A > B;
LT = A < B;

The first set of equations takes advantage of product term sharing within
the target FPLA, while the latter set requires a different set of product
terms for each equation. For example, the equation

NE = !(A == B);

uses the same 16 product terms as the equation

EQ = A == B;

thereby reducing the number of product terms.

Figure 4-12
Block Diagram: 4-bit Comparator

EQ

A0

A1

A2

A3

B0

B1

B2

B3

GT

NE

LT
0740-2

Figure 4-13
Simplified Block Diagram: 4-bit Comparator

EQ

A

B

GT

NE

LT
0741-2
4-12 PSDabel-HDL Reference

Source File Examples
In a similar manner, the equation

LT = !((A > B) # (A == B));

uses the same product terms as equations

EQ = A == B;
GT = A > B;

whereas the equation

LT = A < B;

(in the second set of equations) requires the use of additional product
terms. Sharing product terms in devices that allow this type of design
architecture can serve to fit designs into smaller and less expensive logic
devices.

Test Vectors

Three separate test vectors sections are written to test three of the four
possible conditions. (The fourth and untested condition of NOT EQUAL
TO is simply the inverse of EQUAL TO.) Each test vectors table includes a
test vector message that helps make report output from the compiler and
the simulators easier to read.

The three tested conditions are not mutually exclusive, so one or more of
them can be met by a given A and B. In the test vectors table, the constants
YES and NO (rather than 1 and 0) are used for ease of reading. YES and
NO are declared in the declaration section of the source file.

module comp4a
title ’4-bit look-ahead comparator
Steve Weil & Gary Thomas Data I/O Corp.’

 comp4a device ’F153’;
 A3..A0 pin 1..4;
 A = [A3..A0];
 B3..B0 pin 5..8;
 B = [B3..B0];

 NE,EQ,GT,LT pin 16..19 istype ’com’;

 No,Yes = 0,1;

equations
 EQ = A == B;
 NE = !(A == B);
 GT = A > B;
 LT = !((A > B) # (A == B));

" test_vectors deleted...

end

Figure 4-14
Source File: 4-bit Comparator
PSDabel-HDL Reference 4-13

Source File Examples
Truth Table Examples
Seven-segment Display Decoder

This display decoder decodes a four-bit binary number to display the
decimal equivalent on a seven-segment LED display. The design
incorporates a truth table.

Design Specification

Figure 4-15 shows a block diagram for the design of a seven-segment
display decoder and a drawing of the display with each of the seven
segments labeled to correspond to the decoder outputs. To light a
segment, the corresponding line must be driven low. Four input lines
D0-D3 are decoded to drive the correct output lines. The outputs are
named a, b, c, d, e, f, and g corresponding to the display segments. All
outputs are active low. An enable, ena, is provided. When ena is low, the
decoder is enabled; when ena is high, all outputs are driven to high
impedance.

Design Method

Figure 4-16 and Figure 4-17 show the simplified block diagram and the
source file for the PSDabel-HDL implementation of the display decoder.
The binary inputs and the decoded outputs are grouped into the sets bcd
and led. The constants ON and OFF are declared so the design can be
described in terms of turning a segment on or off. To turn a segment on,
the appropriate line must be driven low, thus we declare ON as 0 and
OFF as 1.

Figure 4-15
Block Diagram: Seven-segment Display Decoder

a

b

c

d

e

f

g

D0

D1

D2

D3

ena

a

g
bf

ce

d

0738-1
4-14 PSDabel-HDL Reference

Source File Examples
The design is described in two sections, an equations section and a truth
table section. The decoding function is described with a truth table that
specifies the outputs required for each combination of inputs. The truth
table header names the inputs and outputs. In this example, the inputs are
contained in the set named bcd and the outputs are in led. The body of the
truth table defines the input to output function.

Because the design decodes a number to a seven segment display, values
for bcd are expressed as decimal numbers, and values for led are
expressed with the constants ON and OFF that were defined in the
declarations section of the source file. This makes the truth table easy to
read and understand; the incoming value is a number and the outputs are
on and off signals to the LED.

The input and output values could have just as easily been described in
another form. Take for example the line in the truth table:

5 -> [ON, OFF, ON , ON, OFF, ON, ON]

This could have been written in the equivalent form:

[0, 1, 0, 1] -> 36

In this second form, 5 was simply expressed as a set containing binary
values, and the LED set was converted to decimal. (Remember that ON
was defined as 0 and OFF was defined as 1.) Either form is supported, but
the first is more appropriate for this design. The first form can be read as,
“the number five turns on the first segment, turns off the second, . . .”
whereas the second form cannot be so easily translated into
meaningful terms.

Figure 4-16
Simplified Block Diagram: Seven-segment Display Decoder

ena

bcd led

0739-1
PSDabel-HDL Reference 4-15

Source File Examples
Test Vectors

The test vectors for this design test the decoder outputs for the ten valid
combinations of input bits. The enable is also tested by setting ena high for
the different combinations. All outputs should be at high impedance
whenever ena is high.

module bcd7
title ’seven segment display decoder 1 Aug 1990
Walter Bright Data I/O Corp Redmond WA’
" a
" --- BCD-to-seven-segment decoder similar to the 7449
" f| g |b
" --- segment identification
" e| d |c
" ---
 bcd7 device ’P16P8’;

 D3,D2,D1,D0,Ena pin 2,3,4,5,6;
 a,b,c,d,e,f,g pin 13,14,15,16,17,18,19 istype ’com’;

 bcd = [D3,D2,D1,D0];
 led = [a,b,c,d,e,f,g];

 ON,OFF = 0,1; " for common anode LEDs
 L,H,X,Z = 0,1,.X.,.Z.;

equations
 led.oe = !Ena;
@dcset
truth_table (bcd -> [a , b , c , d , e , f , g])
 0 -> [ON, ON, ON, ON, ON, ON, OFF];
 1 -> [OFF, ON, ON, OFF, OFF, OFF, OFF];
 2 -> [ON, ON, OFF, ON, ON, OFF, ON];
 3 -> [ON, ON, ON, ON, OFF, OFF, ON];
 4 -> [OFF, ON, ON, OFF, OFF, ON, ON];
 5 -> [ON, OFF, ON, ON, OFF, ON, ON];
 6 -> [ON, OFF, ON, ON, ON, ON, ON];
 7 -> [ON, ON, ON, OFF, OFF, OFF, OFF];
 8 -> [ON, ON, ON, ON, ON, ON, ON];
 9 -> [ON, ON, ON, ON, OFF, ON, ON];
" test_vectors edited
end

Figure 4-17
Source File: 4-bit Counter with 2-input Mux
4-16 PSDabel-HDL Reference

Source File Examples
State Diagram Examples
Three-state Sequencer

The following design is a simple sequencer that demonstrates the use of
PSDabel-HDL state diagrams. The design is implemented in a P16R4
device. The number of State Diagram states that can be processed depends
on the number of transitions and the path of the transitions. For example,
a 64-state counter uses fewer terms (and smaller equations) than a 63-state
counter. For large counter designs, use the syntax
CountA:= CountA + 1 to create a counter rather than using a state
machine. See also example COUNT116.abl for further information on
counter implementation.

Design Specification

Figure 4-18 shows the sequencer design with a state diagram that shows
the transitions and desired outputs. The state machine starts in state A and
remains in that state until the ’start’ input becomes high. It then sequences
from state A to state B, from state B to state C, and back to state A. It
remains in state A until the ’start’ input is high again. If the ’reset’ input is
high, the state machine returns to state A at the next clock cycle. If this
reset to state A occurs during state B, a ’halt’ synchronous output goes
high, and remains high until the machine is again started.

During states B and C, asynchronous outputs ’in_B’ and ’in_C’ go high to
indicate the current state. Activation of the ’hold’ input will cause the
machine to hold in state B or C until ’hold’ is no longer high, or ’reset’
goes high.

Design Method

The sequencer is described by using a STATE_DIAGRAM section in the
source file. Figure 4-19 shows the source file for the sequencer. In the
source file, the design is given a title, the device type is specified, and pin
declarations are made. Constants are declared to simplify the state
diagram notation. The two state registers are grouped into a set called
’sreg’ and the three states (A, B, and C) are declared, with appropriate
values specified for each.

The state values chosen for this design allow the use of register preload to
ensure that the machine starts in state A. For larger state machines with
more state bits, careful numbering of states can dramatically reduce the
logic required to implement the design. Using constant declarations to
specify state values saves time when you make changes to these values.

The state diagram begins with the STATE_DIAGRAM statement that
names the set of signals to use for the state register. In this example, ’sreg’
is the set of signals to use.
PSDabel-HDL Reference 4-17

Source File Examples
Within the STATE_DIAGRAM, IF-THEN-ELSE statements are used to
indicate the transitions between states and the input conditions that cause
each transition. In addition, equations are written in each state that
indicate the required outputs for each state or transition.

For example, state A reads:

State A:
 in = 0;
 in_C = 0;
 if (start & !reset) then B with
halt := 0;
 else A with halt := halt;

This means that if the machine is in state A, and start is high but reset is
low, it advances to state B. In any other input condition, it remains in
state A.

The equations for in_B and in_C indicate those outputs should remain
low while the machine is in state A. The equations for halt, specified with
the with keyword, indicate that halt should go low if the machine
transitions to state B, but should remain at its previous value if the
machine stays in state A.

Test Vectors

The specification of the test vectors for this design is similar to other
synchronous designs. The first vector is a preload vector, to put the
machine into a known state (state A), and the following vectors exercise
the functions of the machine. The A, B, and C constants are used in the
vectors to indicate the value of the current state, improving the readability
of the vectors.

Figure 4-18
State Diagram: Three-state Sequencer

A

default

C
in_B = 0
in_C = 1

hold & !reset

default

hold & !resetreset

default

B
in_B = 1
in_C = 0

with halt: = 0with halt: = 0

with halt: = 1

with halt: = 0

with halt: = 0

start & !reset
with halt: = 0

with halt: = 0

0718-2
4-18 PSDabel-HDL Reference

Source File Examples
Combined Logic Descriptions
This section contains an advanced logic design and builds on examples
and concepts presented in the earlier sections of this manual. This design,
a blackjack machine, is the combination of more than one basic logic
design. Design specification, methods, and complete source files are given
for all parts of the blackjack machine example, which contains the
following logic designs:

• Multiplexer

• 5-bit adder

• Binary to BCD converter

• State machine

module sequence
title ’State machine example D. B. Pellerin Data I/O
Corp’;

 sequence device ’p16r4’;

 q1,q0 pin 14,15 istype
’reg,invert’;
 clock,enab,start,hold,reset pin 1,11,4,2,3;
 halt pin 17;
 in_B,in_C pin 12,13;
 sreg = [q1,q0];

 "State Values...
 A = 0; B = 1; C = 2;

equations
 [q1,q0,halt].clk = clock;
 [q1,q0,halt].oe = !enab;

state_diagram sreg;
 State A: " Hold in state A until start is active.
 in_B = 0;
 in_C = 0;
 IF (start & !reset) THEN B WITH halt := 0;
 ELSE A WITH halt := halt.fb;

 State B: " Advance to state C unless reset is active
 in_B = 1; " or hold is active. Turn on halt
 indicator
 in_C = 0; " if reset.
 IF (reset) THEN A WITH halt := 1;
 ELSE IF (hold) THEN B WITH halt := 0;
 ELSE C WITH halt := 0;

 State C: " Go back to A unless hold is active
 in_B = 0; " Reset overrides hold.
 in_C = 1;
 IF (hold & !reset) THEN C WITH halt := 0;
 ELSE A WITH halt := 0;

" test_vectors edited...
end

Figure 4-19
Source File: Three-state Sequencer
PSDabel-HDL Reference 4-19

Source File Examples
This example is a classic blackjack machine based on C.R. Clare’s design
in Designing Logic Systems Using State Machines (McGraw Hill, 1972). The
blackjack machine plays the dealer’s hand, using typical dealer strategies
to decide, after each round of play, whether to draw another card or to
stand.

The blackjack machine consists of these functions: a card reader that reads
each card as it is drawn, control logic that tells it how to play each hand
(based on the total point value of the cards currently held), and display
logic that displays scores and status on the machine's four LEDs. For this
example, we are assuming that the two digital display devices used to
display the score have built-in seven-segment decoders.

To operate the machine, insert the dealer’s card into the card reader. The
machine reads the value and, in the case of later card draws, adds it to the
values of previously read cards for that hand. (Face cards are valued at 10
points, non-face cards are worth their face value, and aces are counted as
either 1 or 11, whichever count yields the best hand.) If the point total is 16
or less, the GT16 line will be asserted (active low) and the Hit LED will
light up. This indicates that the dealer should draw another card. If the
point total is greater than 16 but less than 22, no LEDs will light up
(indicating that the dealer should draw no new cards). If the point total is
22 or higher, LT22 will be asserted (active low) and the Bust LED will light
(indicating that the dealer has lost the hand).

As Figure 4-20 shows, the blackjack machine is implemented in
three PLDs:

1. A multiplexer-adder-comparator, which adds the value of the newly
drawn card to the existing hand (and indicates an ace to the
state machine);

2. A binary to binary-coded-decimal (BCD) converter, which takes in the
five-bit binary score and converts it to two-digits of BCD for the
digital display.

3. The blackjack controller (a state machine that contains the game logic).
This logic includes instructions that determine when to add a card
value, when to count an ace as 1, and when to count an ace as 11.
4-20 PSDabel-HDL Reference

Source File Examples
Circuits that are a straightforward function of a set of inputs and outputs
are often most easily expressed in equations; the adder is such a circuit.
The PLD for the adder function (identified as MUXADD in Figure 4-20)
includes three elements: a multiplexer, the adder itself, and a comparator.

The multiplexer selects either the value of the newly dealt card or one of
the two fixed values used for the ace (ADD10 or SUB10). The adder adds
the value selected by the multiplexer to the previous score when triggered
by the clock signal, ADDCLK. The comparator detects when an ace is
present and passes this information on to the blackjack controller, BJACK.

Outputs that do not follow a specific pattern are most easily expressed as
truth tables. This is the case with the binary-to-BCD converter that is
identified in the schematic (Figure 4-20) as BINBCD. This PLD converts
five bits of binary input to BCD output for two digital display elements.

The following text describes the internal logic design necessary to keep the
card count, to control the play sequence, and to show the count on the
digital display (or the state on the Hit and Bust LEDs). Neither the card
reader nor the physical design is discussed here. Assume that the card
reader provides a binary value that is representative of the card read.

Figure 4-20
Schematic of a Blackjack Machine Implemented in Three PLDs

23
22
21
20
19
18
17
16
15
14
13

1
2
3
4
5
6
7
8
9

10
11

1
2
3
4
5
6
7
8
9

19
18
17
16
15
14
13
12
11

C1
C2
C3
C4

S0
S1
S2
S3
S4

isAce

V0
V1
V2
V3

1
2
3
4
5
6
7
8
9

19
18
17
16
15
14
13
12
11

D0
D1
D2
D3
D4
D5
GT16
LT22

Ace
Q0
Q1
Q2
Sub10
Add10
AddClk

0
1
2
3

0
1
2
3

+5V

BUST HIT

BJACK

P16R6Clk

Restart

CardIn
CardOut

BINBCD

P16L8

MUXADD

P22V10

0775-1
PSDabel-HDL Reference 4-21

Source File Examples
The design has eight inputs (four of which are the binary encoded card
values, V0-V3). The remaining four inputs are signals that indicate
the following:

• Restart (the machine is to be restarted)

• CardIn (a card is in the reader)

• CardOut (no card is in the reader)

• CLK (a clock signal to synchronize the design to the card reader)

CardIn, CardOut, and Clk are provided by the card reader. Restart is
provided by a switch on the exterior of the machine.

Design Specification — MUXADD

MUXADD consists of an input multiplexer, an adder, and a comparator.
The multiplexer determines what value is added to the current score (by
the adder) The added value consists of the contents of the external card
reader (V0-V1 declared as Card), a numeric value of +10, or a numeric
value of -10.

The inputs Add10 and Sub10 from the controller (state machine) BJACK
determine which of the three values the multiplexer selects for application
to the adder. Card is applied to the adder when Add10 and Sub10 are
active high, as generated by the BJACK controller. When Add10 becomes
active low, 10 is added to the current score (to count an ace as 11 instead
of 1), and when Sub10 is active low, -10 is added to the current score (to
count an ace as 1 instead of 11).

The adder provides an output named Score (S0-S4) which is the sum of the
current adder contents and the value selected by the input multiplexer (the
card reader contents, +10, or -10). The comparator monitors the contents
of the external card reader (Card) and generates an output, is_Ace, to the
BJACK controller that signifies that an ace is present in the card reader.

Design Method — MUXADD

MUXADD is implemented in a P22V10, and consists of a three-input
multiplexer, a five-bit ripple adder, and a five-bit comparator. These
circuit elements are defined in the equations shown in Figure 4-21. For the
multiplexer inputs, a set named Card defines inputs V0 through V4 as the
value of the card reader, while inputs Add10 and Sub10 are used directly
in the following equations to define the multiplexer. The multiplexer
output to the adder is named Data and is defined by the equations

Data = Add10 & Sub10 & Card
 # !Add10 & Sub10 & ten
 # Add10 & !Sub10 & minus_ten;

Device Function in the Blackjack Machine

P22V10 Multiplexer/Adder/Comparator

P16L8 Binary-BCD converter

P16R6 State machine
4-22 PSDabel-HDL Reference

Source File Examples
The adder (MUXADD) contained in the P22V10 is a five-bit binary ripple
adder that adds the current input from the multiplexer to the current
score, with carry. The adder is clocked by a signal (AddClk) from the
BJACK controller and is described with the following equations:

Score := Data $ Score.FB $ CarryIn;
CarryOut = Data & Score.FB # (Data # Score.FB) & CarryIn;
Reset = !Clr;

In the above equations, Score is the sum of Data (the card reader output,
value of ten, or value of minus ten), Score (the current or last calculated
score), and CarryIn (the shifted value of CarryOut, described below). The
new value of Score appears at the S0 through S4 outputs of MUXADD at
the time of the AddClk pulse generated by the BJACK controller (state
machine).

Before the occurrence of the AddClk clock pulse, an intermediate adder
output appears at combinatorial outputs of the P22V10, labeled C0
through C4 and defined as the set named CarryOut (shown below). A
second set named CarryIn defines the same combinatorial outputs as
CarryOut, but the outputs are shifted one bit to the left, as shown below.

CarryIn = [C4..C1, 0];
CarryOut = [X,C4..C1];

The set declarations define CarryIn as CarryOut with the required shift to
the left for application back to adder input. At the time of the AddClk
pulse from the BJACK controller, CarryIn is added to Score and Data by
an exclusive-or operation.

The comparator portion of MUXADD is defined with

is_Ace = Card == 1;

which provides an input to the BJACK controller whenever the value
provided by the card reader is 1.
PSDabel-HDL Reference 4-23

Source File Examples
Test Vectors — MUXADD

The test vectors shown in Figure 4-21 verify operation of MUXADD by
first clearing the adder (so Score is zero), then adding card reader values 7
and 10. The test vectors then input an ace (1) from the card reader (Card)
to produce a Score of 1 and pull the is_Ace output high. Subsequent
vectors verify the -10 function of the input multiplexer and adder. The
trace statement lets you observe the carry signals in simulation.

Design Specification — BINBCD

To display the Score, appearing at the output of MUXADD, a binary to bcd
converter is implemented in a P16L8. It is the function of the converter to
accept the four lines of binary data generated by MUXADD and provide
two sets of binary coded decimal outputs for two bcd display devices; one
to display the units of the current score, and the other to display the tens.
The four-bit output bcd1 (D0-D3) contains the units of the current score,
and is connected to the high-order display digit. The two-bit output bcd2
(D4 and D5) contains the tens, and is fed to the low-order display digit.

BINBCD also provides a pair of outputs to light the Bust and Hit LEDs.
Bust is lit whenever Score is 22 or greater; while Hit is lit whenever Score
is 16 or less.

module MuxAdd
title ’5-bit ripple adder with input multiplex Michael
Holley Data I/O Corp.’

 muxadd device ’P22V10’;

 AddClk,Clr,Add10,Sub10,is_Ace pin 1,9,8,7,14;
 V4..V0 pin 6..2;
 S4..S0 pin 15..19;
 C4..C1 pin 20..23;

 X,C,L,H = .X., .C., 0, 1;

 Card = [V4..V0];
 Score = [S4..S0];
 CarryIn = [C4..C1, 0];
 CarryOut = [X,C4..C1];
 ten = [0, 1, 0, 1, 0];
 minus_ten = [1, 0, 1, 1, 0];

 S4..S0 istype ’reg’ ;

" Input Multiplexer
 Data = Add10 & Sub10 & Card
 # !Add10 & Sub10 & ten
 # Add10 & !Sub10 & minus_ten;

@DISP MARG = equations
 Score := Data $ Score.FB $ CarryIn;
 CarryOut = Data & Score.FB # (Data # Score.FB) & CarryIn;
 Score.ar = !(Clr # Clr);
 Score.clk = AddClk;
 is_Ace = Card == 1;

" test_vectors edited...
end MuxAdd

Figure 4-21
Source File: Multiplexer / Adder / Comparator
4-24 PSDabel-HDL Reference

Source File Examples
Design Method — BINBCD

The design of BINBCD is shown in the source file of Figure 4-22. The
design of the converter is easily expressed with a truth table that lists the
value of Score (inputs S0 through S4 are declared as Score) for values of
bcd1 and bcd2. bcd1 and bcd2 are sets that define the outputs that are fed
to the two digital display devices. The truth table lists Score values up to
decimal 31.

The truth table represents a method of expressing the design “manually.”
You could use a macro to create a truth table in the following manner:

clear(binary);
@repeat 32 { binary - [binary/10,binary%10]; inc(binary);}

As indicated in Figure 4-22 (and described in “Test Vectors — BINBCD”),
this macro is used to generate the test vectors for the converter. The
generated *.lst file shows the truth table created from the macro.

The BINBCD design also provides the outputs LT22 and GT16 to control
the Bust and Hit LEDs. A pair of equations generate an active-high LT22
signal to turn off the Bust LED when Score is less than 22, and an active-
high GT16 signal to turn off the Hit LED when Score is greater than 16.

Test Vectors — BINBCD

The test vectors shown in Figure 4-22 verify operation of the LT22 and
GT16 outputs of the converter by assigning various values for Score and
checking for the corresponding outputs.

The test vectors for the binary to bcd converter are defined by means of the
following macro:

test_vectors (score - [bcd2,bcd1])
 clear(binary);
 @repeat 32 { binary - [binary/10,binary%10]; inc(binary);}

This macro generates a test vector with the variable binary set to 0 by the
macro (a) {@const ?a=0}; (in the binbcd.abl source file shown in
Figure 4-22), followed by 31 vectors provided by the @repeat directive.
The 31 vectors are generated by incrementing the value of the variable
binary by a factor of 1 for each vector. Refer to the inc macro (a) {@const
?a=?a+1;}; line in Figure 4-22. On the output side of the test vectors,
division is used to create the output for bcd2 (tens display digit), while the
remainder (modulus) operator is used to create the output for bcd1 (units
display digit).
PSDabel-HDL Reference 4-25

Source File Examples
module BINBCD
title ’comparator and binary to bcd decoder for Blackjack Machine
Michael Holley Data I/O Corp ’

" The 5 -bit binary (0 - 31) score is converted into two BCD outputs.
" The integer division ’/’ and the modulus operator ’%’ are used to
" extract the individual digits from the two digit score.
" ’Score % 10’ will yield the ’units’ and
" ’Score / 10’ will yield the ’tens’
"
" The ’GT16’ and ’LT22’ outputs are for the state machine controller.

 binbcd device ’P16L8’;

 S4..S0 pin 5..1;
 score = [S4..S0];
 LT22,GT16 pin 12,13 istype ’com’;

 D5,D4 pin 14,15 istype ’com’;
 bcd2 = [D5,D4];
 D3..D0 pin 16..19 istype ’com’;
 bcd1 = [D3..D0];

" Digit separation macros
 binary = 0; "scratch variable
 clear macro (a) {@const ?a=0};
 inc macro (a) {@const ?a=?a+1;};

equations
 LT22 = (score < 22); "Bust
 GT16 = (score > 16); "Hit / Stand

" test_vectors edited...

truth_table (score -> [bcd2,bcd1])
 0 -> [0 , 0];
 1 -> [0 , 1];
 2 -> [0 , 2];
 3 -> [0 , 3];
 4 -> [0 , 4];
 5 -> [0 , 5];
 6 -> [0 , 6];
 7 -> [0 , 7];
 8 -> [0 , 8];
 9 -> [0 , 9];
 10 -> [1 , 0];
 11 -> [1 , 1];
 12 -> [1 , 2];
 13 -> [1 , 3];
 14 -> [1 , 4];
 15 -> [1 , 5];
 16 -> [1 , 6];
 17 -> [1 , 7];
 18 -> [1 , 8];
 19 -> [1 , 9];
 20 -> [2 , 0];
 21 -> [2 , 1];
 22 -> [2 , 2];
 23 -> [2 , 3];
 24 -> [2 , 4];
 25 -> [2 , 5];
 26 -> [2 , 6];
 27 -> [2 , 7];
 28 -> [2 , 8];
 29 -> [2 , 9];
 30 -> [3 , 0];
 31 -> [3 , 1];

" This truth table could be replaced with the following macro.
" clear(binary);
" @repeat 32 {
" binary -> [binary/10,binary%10]; inc(binary);}
"
" The test vectors will demonstrate the use of the macro.
test_vectors (score -> [bcd2,bcd1])
 clear(binary);
 @repeat 32 {
 binary -> [binary/10,binary%10]; inc(binary);}
end

Figure 4-22
Source File: 4-bit Counter with 2-input Mux
4-26 PSDabel-HDL Reference

Source File Examples
Design Specification — BJACK

BJACK, the blackjack controller, is technically a state machine (a circuit
capable of storing an internal state reflecting prior events). State machines
use sequential logic, branching to new states and generating outputs on
the basis of both the stored states and external inputs.

In the case of the controller, the state machine stores states that reflect the
following blackjack machine conditions:

• The value of Score in one of the decimal value ranges (0 to 16, 17 to
21, or 22+).

• The status of the card reader (card in or card out).

• The presence of an ace in the card reader.

On the basis of these stored states (and input from each new card), the
controller decides whether or not a +10 or -10 value is sent to the adder.

Design Method — BJACK

Developing a bubble diagram is the first step in describing a state
machine. Figure 4-23 shows a bubble diagram (pictorial state diagram) for
the controller. This bubble diagram indicates state transitions and the
conditions that cause those transitions. Transitions are represented by
arrows and the conditions causing the transitions are written alongside
the arrow.

You must express the bubble diagram in the form shown in the
state_diagram in Figure 4-24. There is a one-to-one correlation between
the bubble diagram and the state diagram described in the source file
(Figure 4-24). The table below describes the state identifiers (state machine
states) illustrated in the bubble diagram and listed in the source file.

State Identifier Description

Clear Clear the state machine, adder, and displays.

ShowHit Indicate that another card is needed. Hit indicator is lit.

AddCard Add the value at the adder input to the current count.

Add10
Add the fixed value 10 to the current count, effectively giving
an ace a value of 11.

Wait Wait until a card is taken out of the reader.

Test17 Test the current count for a value less than 17.

Test22 Test the current count for a value less than 22.

Sub10
Add the fixed value -10 to the current count, effectively
subtracting 10 and restoring an ace to 1.

ShowBust Indicate that no more cards are needed. Bust indicator is lit.

ShowStand
Indicate that no more cards are needed. Neither Hit nor Bust
indicators are lit.
PSDabel-HDL Reference 4-27

Source File Examples
Figure 4-23
Pictorial State Diagram: Blackjack Machine

Clear

ShowHit

AddCard

Wait

Test17

Test22

ShowBust

Sub10

Add10

ShowStand

Restart = Low

CardIn = High

CardOut = High

Restart = High

CardIn = Low

CardOut = Low

GT16

isAce & !Ace

! (isAce & !Ace)

! LT22 & Ace

! LT22 & !AceLT22

! GT16

Restart = Low
Or Power Up

0742-1
4-28 PSDabel-HDL Reference

Source File Examples
Note that in Figure 4-24, each of the state identifiers (for example,
ShowHit) is defined as sets having binary values. These values were
chosen to minimize the number of product terms used in the P16R6.

Operation of the state machine proceeds as follows if no aces are drawn:

• If a card is needed from the reader, the state machine goes to state
ShowHit.

• When CardIn goes low, meaning that a card has been read, a transition
to state AddCard is made. The card value is added to the current score.

• The machine goes to Wait state until the card is withdrawn from
the reader.

• The machine goes to Test17 state.

• If the score is less than 17, another card is drawn.

• If the score is greater than or equal to 17, the machine goes to
state Test22.

• If the score is less than 22, the machine goes to the ShowStand state.

• If the score is 22 or greater, a transition is made to the ShowBust state.

• In either ShowStand or ShowBust state, a transition is made to Clear
(to clear the state register and adder) when Restart goes low.

• When Restart goes back to high, the state machine returns to ShowHit
and the cycle begins again.

Operation of the state machine when an ace is drawn is essentially the
same. A card is drawn and the score is added. If the card is an ace and no
ace has been drawn previously, the state machine goes to state Add10, and
ten is added to the count (in effect making the ace an 11). Transitions to
and from Test17 and Test22 proceed as before. However, if the score
exceeds 21 and an ace has been set to 11, the state machine goes to state
Sub10, 10 is subtracted from the score, and the state machine goes to
state Test17.

Test Vectors — BJACK

Figure 4-24 shows three sets of test vectors; each set represents a different
“hand” of play (as described above the set of vectors) and tests the
different functions of the design. The Restart function is used to set the
design to a known state between each hand, and the state identifiers are
used instead of the binary values (which they represent)

.

PSDabel-HDL Reference 4-29

Source File Examples
module bjack
title ’BlackJack state machine controller
Michael Holley Data I/O Corp.’

 bjack device ’P16R6’;

"Inputs
 Clk,ClkIN pin 1,2; "System clock
 GT16,LT22 pin 3,4; "Score less than 17 and 22
 is_Ace pin 5; "Card is ace
 Restart pin 6; "Restart game
 CardIn,CardOut pin 7,8; "Card present switches
 Ena pin 11;

 Sensor = [CardIn,CardOut];
 _In = [0 , 1];
 InOut = [1 , 1];
 Out = [1 , 0];

"Outputs
 AddClk pin 12 istype ’com’; "Adder clock
 Add10 pin 13 istype ’reg_D,invert’; "Input Mux control
 Sub10 Pin 14 istype ’reg_D,invert’; "Input Mux control
 Q2,Q1,Q0 pin 15,16,17 istype ’reg_D,invert’;
 Ace pin 18 istype ’red_D,invert’; "Ace Memory

 High,Low = 1,0;
 H,L,C,X = 1,0,.C.,.X.; "test vector characters

 Qstate = [Add10,Sub10,Q2,Q1,Q0];
 Clear = [1 , 1 , 1, 1, 1]; "31
 ShowHit = [1 , 1 , 1, 1, 0]; "30
 AddCard = [1 , 1 , 0, 0, 0]; "24
 Add_10 = [0 , 1 , 0, 0, 0]; "16
 Wait = [1 , 1 , 0, 0, 1]; "25
 Test_17 = [1 , 1 , 0, 1, 0]; "26
 Test_22 = [1 , 1 , 0, 1, 1]; "27
 ShowStand = [1 , 1 , 1, 0, 0]; "28
 ShowBust = [1 , 1 , 1, 0, 1]; "29
 Sub_10 = [1 , 0 , 0, 0, 1]; "17
 Zero = [0 , 0 , 0, 0, 0]; "0

equations
 [Qstate,Ace].c = Clk;
 [Qstate,Ace].oe = !Ena;

@dcset
state_diagram Qstate

 State Clear: AddClk = !ClkIN;
 Ace := Low;
 if (Restart==Low) then Clear else ShowHit;
 State ShowHit: AddClk = Low;
 Ace := Ace;
 if (CardIn==Low) then AddCard else ShowHit;
 State AddCard: AddClk = !ClkIN;
 Ace := Ace;
 if (is_Ace & !Ace) then Add_10 else Wait;
 State Add_10: AddClk = !ClkIN;
 Ace := High;
 goto Wait;
 State Wait: AddClk = Low;
 Ace := Ace;
 if (CardOut==Low) then Test_17 else Wait;
 State Test_17: AddClk = Low;
 Ace := Ace;
 if !GT16 then ShowHit else Test_22;
 State Test_22: AddClk = Low;
 Ace := Ace;
 case LT22 : ShowStand;
 !LT22 & !Ace : ShowBust;
 !LT22 & Ace : Sub_10;
 endcase;
 State Sub_10: AddClk = !ClkIN;
 Ace := Low;
 goto Test_17;
 State ShowBust: AddClk = Low;
 Ace := Ace;
 if (Restart==Low) then Clear else ShowBust;
 State ShowStand: AddClk = Low;
 Ace := Ace;
 if (Restart==Low) then Clear else ShowStand;
 State Zero: goto Clear;

@page
" test_vectors edited...

Figure 4-24
Source File: State Machine (Controller)
4-30 PSDabel-HDL Reference

Source File Examples
Hierarchy Examples
The following PSDabel-HDL source files show how to combine the three
blackjack examples into one top-level source for implementation in a
larger device.

The three lower-level modules are unchanged from the non-hierarchical
versions and still include their original device declarations. The device
declarations in this example provide the PSDabel-HDL compiler with
information about device-specific requirements, such as implied logic and
default signal attributes.

Note:

To process this design, you must enable the “compatible” and “implied”
properties of the Compile Logic process.

The test vectors have been removed, since this design is not targeted to
a PLD.

module bjacktop;
title ’instantiating bjack, muxadd, binbcd; By Kim-Fu Lim,
Data I/O Corp.’

// Sub-module prototypes...
 bjack interface
(Clk,ClkIN,GT16,LT22,is_Ace,Restart,CardIn,CardOut,Ena
 :> AddClk, Add10,Sub10,Q2..Q0, Ace);

 muxadd interface (V0..V4,AddClk,Clr,Add10,Sub10 :> S0..S4
-> is_Ace);

 binbcd interface (S0..S4, LT22, GT16 -> D0..D5);

// Sub-module instantiations...
 BJ functional_block bjack;
 MA functional_block muxadd;
 BB functional_block binbcd;

// Top level inputs...
 Clk pin; "System clock -- bjack
 CardIn,CardOut pin; "Card present switches -- bjack
 Restart pin; "Restart game -- bjack
 V4..V0 pin; " -- muxadd
 Ace pin;
 Card = [V4..V0];
 Sensor = [CardIn,CardOut];
 _In = [0 , 1];
 InOut = [1 , 1];
 Out = [1 , 0];

// Top level outputs...

 D5..D0 pin istype ’com’; " -- binbcd
 BCD1 = [D3..D0];
 BCD2 = [D5,D4];

// Top level pins (for observing state machine)...
 Q2..Q0 pin istype ’com’;
 Add10,Sub10 pin istype ’com’;
 AddClk node istype ’com,keep’;
PSDabel-HDL Reference 4-31

Source File Examples
 Qstate = [Add10,Sub10,Q2,Q1,Q0];
 Clear = [1 , 1 , 1, 1, 1]; "31
 ShowHit = [1 , 1 , 1, 1, 0]; "30
 AddCard = [1 , 1 , 0, 0, 0]; "24
 Add_10 = [0 , 1 , 0, 0, 0]; "16
 Wait = [1 , 1 , 0, 0, 1]; "25
 Test_17 = [1 , 1 , 0, 1, 0]; "26
 Test_22 = [1 , 1 , 0, 1, 1]; "27
 ShowStand = [1 , 1 , 1, 0, 0]; "28
 ShowBust = [1 , 1 , 1, 0, 1]; "29
 Sub_10 = [1 , 0 , 0, 0, 1]; "17
 Zero = [0 , 0 , 0, 0, 0]; "0

 Hit = !BB.GT16;
 Bust = !BB.LT22;

 C,X,L,H = .c.,.x.,0,1;

equations

// Describe the input connections...
 MA.[V4,V3,V2,V1,V0] = Card;
 MA.Clr = Restart;
 BJ.Clk = Clk;
 BJ.ClkIN = Clk;
 BJ.Restart = Restart;
 BJ.CardIn = CardIn;
 BJ.CardOut = CardOut;
 BJ.Ena = 0;

// Describe the output connections...
 [D5,D4,D3,D2,D1,D0] = BB.[D5,D4,D3,D2,D1,D0];
 Add10 = BJ.Add10;
 Sub10 = BJ.Sub10;
 Q0 = BJ.Q0;
 Q1 = BJ.Q1;
 Q2 = BJ.Q2;
 Ace = BJ.Ace;

// Describe inter-module connections...
 MA.Sub10 = BJ.Sub10;
 MA.Add10 = BJ.Add10;
 AddClk = BJ.AddClk;
 MA.AddClk = AddClk;
 BB.[S0,S1,S2,S3,S4] = MA.[S0,S1,S2,S3,S4];
 BJ.is_Ace = MA.is_Ace;
 BJ.GT16 = BB.GT16;
 BJ.LT22 = BB.LT22;

end;

module bjack ;
title ’BlackJack state machine controller
Michael Holley Data I/O Corp. 9 Aug 1990’

 bjack device ’P16R6’;

"Inputs
 Clk,ClkIN pin 1,2; "System clock
 GT16,LT22 pin 3,4; "Score less than 17 and 22
 is_Ace pin 5; "Card is ace
 Restart pin 6; "Restart game
 CardIn,CardOut pin 7,8; "Card present switches
 Ena pin 11;

 Sensor = [CardIn,CardOut];
 _In = [0 , 1];
 InOut = [1 , 1];
 Out = [1 , 0];
4-32 PSDabel-HDL Reference

Source File Examples
"Outputs
 AddClk pin 12; "Adder clock
 Add10 pin 13; "Input Mux control
 Sub10 pin 14; "Input Mux control
 Q2,Q1,Q0 pin 15,16,17;
 Ace pin 18; "Ace Memory

 High,Low = 1,0;
 H,L,C,X = 1,0,.C.,.X.; "test vector charactors

 Qstate = [Add10,Sub10,Q2,Q1,Q0];
 Clear = [1 , 1 , 1, 1, 1]; "31
 ShowHit = [1 , 1 , 1, 1, 0]; "30
 AddCard = [1 , 1 , 0, 0, 0]; "24
 Add_10 = [0 , 1 , 0, 0, 0]; "16
 Wait = [1 , 1 , 0, 0, 1]; "25
 Test_17 = [1 , 1 , 0, 1, 0]; "26
 Test_22 = [1 , 1 , 0, 1, 1]; "27
 ShowStand = [1 , 1 , 1, 0, 0]; "28
 ShowBust = [1 , 1 , 1, 0, 1]; "29
 Sub_10 = [1 , 0 , 0, 0, 1]; "17
 Zero = [0 , 0 , 0, 0, 0]; "0

equations
 [Qstate,Ace].c = Clk;
 [Qstate,Ace].oe = !Ena;

@dcset
state_diagram Qstate

 State Clear: AddClk = !ClkIN;
 Ace := Low;
 if (Restart==Low) then Clear else ShowHit;

 State ShowHit: AddClk = Low;
 Ace := Ace;
 if (CardIn==Low) then AddCard else ShowHit;

 State AddCard: AddClk = !ClkIN;
 Ace := Ace;
 if (is_Ace & !Ace) then Add_10 else Wait;

 State Add_10: AddClk = !ClkIN;
 Ace := High;
 goto Wait;

 State Wait: AddClk = Low;
 Ace := Ace;
 if (CardOut==Low) then Test_17 else Wait;

 State Test_17: AddClk = Low;
 Ace := Ace;
 if !GT16 then ShowHit else Test_22;

 State Test_22: AddClk = Low;
 Ace := Ace;
 case LT22 : ShowStand;
 !LT22 & !Ace : ShowBust;
 !LT22 & Ace : Sub_10;
 endcase;

 State Sub_10: AddClk = !ClkIN;
 Ace := Low;
 goto Test_17;

 State ShowBust: AddClk = Low;
 Ace := Ace;
 if (Restart==Low) then Clear else ShowBust;
PSDabel-HDL Reference 4-33

Source File Examples
 State ShowStand: AddClk = Low;
 Ace := Ace;
 if (Restart==Low) then Clear else ShowStand;

 State Zero: goto Clear;

end

module muxadd ;
title ’5-bit ripple adder with input multiplex
Michael Holley Data I/O Corp. 26 Mar 1990’

 muxadd device ’P22V10’;

 AddClk,Clr,Add10,Sub10,is_Ace pin 1, 9, 8, 7,14;
 V4,V3,V2,V1,V0 pin 6, 5, 4, 3, 2;
 S4,S3,S2,S1,S0 pin 15,16,17,18,19;
 C4,C3,C2,C1 pin 20,21,22,23;

 X,C,L,H = .X., .C., 0, 1;

 Card = [V4,V3,V2,V1,V0];
 Score = [S4,S3,S2,S1,S0];
 CarryIn = [C4,C3,C2,C1, 0];
 CarryOut = [X,C4,C3,C2,C1];
 ten = [0, 1, 0, 1, 0];
 minus_ten = [1, 0, 1, 1, 0];

 S4,S3,S2,S1,S0 istype ’reg’ ;

" Input Multiplexer
 Data = Add10 & Sub10 & Card
 # !Add10 & Sub10 & ten
 # Add10 & !Sub10 & minus_ten;

equations
 Score := Data $ Score $ CarryIn;

 CarryOut = Data & Score # (Data # Score) & CarryIn;

 Score.ar = !Clr;

 Score.c = AddClk;

 is_Ace = Card == 1;

end;

module binbcd;
title ’comparator and binary to bcd decoder for Blackjack
Machine
Michael Holley Data I/O Corp 12 Oct 1992’

" The 5 -bit binary (0 - 31) score is converted into two
BCD outputs.
" The interger division ’/’ and the modulus operator ’%’ are
used to
" extract the individual digits from the two digit score.
" ’Score % 10’ will yield the ’units’ and
" ’Score / 10’ will yield the ’tens’
"
" The ’GT16’ and ’LT22’ outputs are for the state machine
controller.

 binbcd device ’P16L8’;

 S4,S3,S2,S1,S0 pin 5,4,3,2,1;
 score = [S4,S3,S2,S1,S0];

 LT22,GT16 pin 12,13 istype ’com’;

 D5,D4 pin 14,15 istype ’com’;
 bcd2 = [D5,D4];
4-34 PSDabel-HDL Reference

Source File Examples
 D3,D2,D1,D0 pin 16,17,18,19 istype ’com’;
 bcd1 = [D3,D2,D1,D0];

" Digit separation macros
 binary = 0; "scratch variable
 clear macro (a) {@const ?a=0};
 inc macro (a) {@const ?a=?a+1;};

equations
 LT22 = (score < 22); "Bust
 GT16 = (score > 16); "Hit / Stand

test_vectors (score -> [GT16,LT22])
 1 -> [0 , 1];
 6 -> [0 , 1];
 8 -> [0 , 1];
 16 -> [0 , 1];
 17 -> [1 , 1];
 18 -> [1 , 1];
 20 -> [1 , 1];
 21 -> [1 , 1];
 22 -> [1 , 0];
 23 -> [1 , 0];
 24 -> [1 , 0];

truth_table (score -> [bcd2,bcd1])
 0 -> [0 , 0];
 1 -> [0 , 1];
 2 -> [0 , 2];
 3 -> [0 , 3];
 4 -> [0 , 4];
 5 -> [0 , 5];
 6 -> [0 , 6];
 7 -> [0 , 7];
 8 -> [0 , 8];
 9 -> [0 , 9];
 10 -> [1 , 0];
 11 -> [1 , 1];
 12 -> [1 , 2];
 13 -> [1 , 3];
 14 -> [1 , 4];
 15 -> [1 , 5];
 16 -> [1 , 6];
 17 -> [1 , 7];
 18 -> [1 , 8];
 19 -> [1 , 9];
 20 -> [2 , 0];
 21 -> [2 , 1];
 22 -> [2 , 2];
 23 -> [2 , 3];
 24 -> [2 , 4];
 25 -> [2 , 5];
 26 -> [2 , 6];
 27 -> [2 , 7];
 28 -> [2 , 8];
 29 -> [2 , 9];
 30 -> [3 , 0];
 31 -> [3 , 1];

" This truth table could be replaced with the following macro.
" clear(binary);
" @repeat 32 {
" binary -> [binary/10,binary%10]; inc(binary);}
"
" The test vectors will demonstrate the use of the macro.
"
test_vectors (score -> [bcd2,bcd1])
 clear(binary);
 @repeat 32 {
 binary -> [binary/10,binary%10]; inc(binary);}
end
PSDabel-HDL Reference 4-35

Source File Examples
PSDabel and Synario Projects
The following PSDabel-HDL source, p6top.abl, (Figure 4-25) instantiates
variable instances of prep6.abl (Figure 4-26).

module p6top (rep)
title ’Variable instances of PREP6 described in
 Hierarchical ABEL-HDL By Kim-Fu Lim, Data I/O Corp.’

 @ifb (?rep)
 { @message ’Must specify -arg N’
 @exit }
 D15..D0 pin;
 Q15..Q0 pin istype ’reg’;
 Clk, Rst pin;

 Q = [Q15..Q0];
 D = [D15..D0];

 @const N = ?rep - 1;

prep6 interface (D15..D0, Clk, Rst -> Q15..Q0);

 ACC macro (i)
 { @expr {ACC}?i; }

 @const i = 0;
 @repeat ?rep
 { ACC(i) functional_block prep6;
 @const i = i + 1; }

equations
 ACC0.[D15..D0] = D;

 @const i = 0;
 @repeat ?rep
 { ACC(i).[Clk, Rst] = [Clk, Rst];
 @const i = i+1; }

 @const i = 0;
 @repeat ?rep-1
 { ACC(i+1).[D15..D0] = ACC(i).[Q15..Q0];
 @const i = i+1; }
 Q = ACC(N).[Q15..Q0];
end

Figure 4-25
Top-level PSDabel-HDL Source
4-36 PSDabel-HDL Reference

Source File Examples
Lower-level Sources
Figure 4-26 shows the lower-level PSDabel-HDL file instantiated by
p6top.abl. This file does not contain an interface statement, which is
optional in lower-level files.

MODULE prep6
TITLE ‘16-Bit Accumulator

 By Kim-Fu Lim, Data I/O Corp.’

D15..D0 pin;
Q15..Q0 pin istype ‘reg’;
Clk, Rst pin;

Q = [Q15..Q0];
B = [D15..D0];

@carry 2;

EQUATIONS
 Q := D + Q;
 Q.C = Clk;
 Q.AR = Rst;

END

Figure 4-26
Lower-level PSDabel-HDL Source
PSDabel-HDL Reference 4-37

Source File Examples
4-38 PSDabel-HDL Reference

Language Reference
Chapter 5:
Language Reference

This chapter provides detailed information about each of the language
elements in PSDabel-HDL. It assumes you are familiar with the basic
syntax discussed in Chapter 2, “Language Structure.” Each entry contains
the following sections (if applicable):

• Syntax — is the required syntax for the element.

• Purpose — is a brief description of the intended use of the element.

• Use — is a discussion of the potential uses of the element, including
any special considerations.

• Examples — are examples of the element as it is used in a design
description.

• See Also — refers to other elements and discussions, and to design
examples that demonstrate the use of an element.

Basic syntax information (on subjects such as blocks, strings, sets and
arguments) is provided in Chapter 2, “Language Structure.”
PSDabel-HDL Reference 5-1

Language Reference
. ext — Dot Extensions
Syntax

signal_name.ext

Purpose
Dot extensions provide a way to refer specifically to internal signals and
nodes that are associated with a primary signal in your design.

Use
Signal dot extensions describe, more precisely, the behavior of signals in a
logic description, and remove the ambiguities in equations.

You can use PSDabel-HDL dot extensions in complex language constructs,
such as nested sets or complex expressions.

Using Pin-to-Pin Vs. Detailed Dot Extensions:

Dot extensions allow you to refer to various circuit elements (such as
register clocks, presets, feedback and output enables) that are related to a
primary signal.

Some dot extensions are general purpose and are intended for use with a
wide variety of device architectures. These dot extensions are therefore
referred to as pin-to-pin (or “architecture-independent”). Other dot
extensions are intended for specific classes of device architectures, or
require specific device configurations. These dot extensions are referred to
as detailed (or “architecture-dependent” or “device-specific”) dot
extensions.

In most cases, you can describe a circuit using either pin-to-pin or detailed
dot extensions. Which form you use depends on the application and
whether you want to implement the application in a variety of
architectures. The advantages of each method are discussed later in
this section.

Table 5-1 lists the PSDabel-HDL dot extensions. Pin-to-pin dot extensions
are indicated with a check in the Pin-to-Pin column.
5-2 PSDabel-HDL Reference

Language Reference
Table 5-1
Dot Extensions

Dot Ext. Pin-to-pin Description

.ACLR2,3 ä A device-independent asynchronous register
reset, equivalent to .AR with ISTYPE ’buffer’ (or
.AP with ISTYPE ’invert’).

.AP Asynchronous register preset

.AR Asynchronous register reset

.ASET2,3 ä A device-independent asynchronous register
preset, equivalent to .AP with ISTYPE ’buffer’ (or
.AR with ISTYPE ’invert’).

.CE Clock-enable input to a gated-clock flip-flop

.CLK1 ä Clock input to an edge-triggered flip-flop

.CLR2,3 ä A device-independent synchronous register
reset, equivalent to .SR with ISTYPE ’buffer’ (or
.SP with ISTYPE ’invert’).

.COM3 ä A combinational feedback from the flip-flop data
input, normalized to the pin value and used to
distinguish between pin (.PIN) and internal logic
array (.COM) feedback.

.D1 When on the left side of an equation, .D is the
data input to a D-type flip-flop; on the right side,
.D is combinational feedback.

.FB ä Register feedback

.FC Flip-flop mode control

.J J input to a JK-type flip-flop

.K K input to a JK-type flip-flop

.LD Register load input

.LE Latch-enable input to a latch

.LH Latch-enable (high) to a latch

.OE1 ä Output enable

1 Example follows.
2 If ISTYPE ’buffer’ or ’invert’ is specified, the compiler converts these dot exten-

sions to the equivalent detailed dot extension.
3 Some fitters do not support these dot extensions.
PSDabel-HDL Reference 5-3

Language Reference
Detailed Design Dot Extensions

Table 5-2 shows the dot extensions that are supported (and which of those
are required) for different register types in detailed design descriptions.
The required dot extensions are indicated with a check in the Extension
Required column.

.PIN ä Pin feedback

.PR1 Register preset (synchronous or asynchronous)

.Q Register feedback

.R R input to an SR-type flip-flop

.RE1 Register reset (synchronous or asynchronous)

.S S input to an SR-type flip-flop

.SET2,3 ä A device-independent synchronous register
preset, equivalent to .SP with ISTYPE ’buffer’ (or
.SR with ISTYPE ’invert’).

.SP Synchronous register preset

.SR Synchronous register reset

.T T input to a T-type (toggle) flip flop

Table 5-1
Dot Extensions (Continued)

Dot Ext. Pin-to-pin Description

1 Example follows.
2 If ISTYPE ’buffer’ or ’invert’ is specified, the compiler converts these dot exten-

sions to the equivalent detailed dot extension.
3 Some fitters do not support these dot extensions.
5-4 PSDabel-HDL Reference

Language Reference
Table 5-2
Dot Extensions for Device-specific (detailed) Designs

Register
Type

Extension
Required

Supported
Extensions Definition

combinational
(no register)

.oe

.pin

.com

output enable
pin feedback
combinational feedback

D-type flip-flop ä
ä

.clk

.d

.fc

.oe

.q

.sp

.sr

.ap

.ar

.pin

clock
data input
flip-flop mode control
output enable
flip-flop feedback
synchronous preset
synchronous reset
asynchronous preset
asynchronous reset
pin

JK-type flip-
flop

ä
ä
ä

.clk

.j

.k

.fc

.oe

.q

.sp

.sr

.ap

.ar

.pin

clock
j input
k input
flip-flop mode control
output enable
flip-flop feedback
synchronous reset
synchronous reset
asynchronous preset
asynchronous reset
pin feedback

SR-type flip-
flop

ä
ä
ä

.clk

.s

.r

.oe

.q

.sp

.sr

.ap

.ar

.pin

clock
set input
reset input
output enable
flip-flop feedback
synchronous preset
synchronous reset
asynchronous preset
asynchronous preset
pin feedback

T-type flip-flop ä
ä

.clk

.t

.oe

.q

.sp

.sr

.ap

.ar

.pin

clock
toggle input
output enable
flip-flop feedback
synchronous preset
synchronous reset
asynchronous preset
asynchronous reset
pin feedback

L-type latch ä
ä

.d

.le

.lh

.oe

.q

.pin

data input
latch enable input to a latch
latch enable (high) input to
 a latch
output enable
flip-flop feedback
pin feedback

Gated clock D
flip-flop

ä
ä

.clk or .ce

.d

.oe

.q

.pin

clock or clock enable
data input
output enable
flip-flop feedback
pin feedback
PSDabel-HDL Reference 5-5

Language Reference
Pin-to-Pin Design Dot Extensions

Table 5-3 shows the dot extensions that are allowable (and which of those
are required) for pin-to-pin design descriptions. The required dot
extensions are indicated with a check in the Required column.

Figures 5-1 through 5-8 show the effect of each dot extension. The actual
source of the feedback may vary from that shown.

Table 5-3
Dot Extensions for Architecture-independent (pin-to-pin) Designs

Register Type Required
Allowable
Extensions Definition

combinational
(no register)

none
.oe
.pin

output
output enable
pin feedback

registered logic ä .clr
.aclr
.set
.aset
.clk
.com
.fb
.pin

synchronous preset
asynchronous preset
synchronous set
asynchronous set clock
clock
combinational feedback
registered feedback
pin feedback

Figure 5-1
Pin-to-pin Dot Extensions in an Inverted Output Architecture

D Q

Q

.OE

.SET (.ASET)

.FB

.PIN

.CLR (.ACLR)

.CLK

.COM

Istype 'reg'
5-6 PSDabel-HDL Reference

Language Reference
Figure 5-2
Pin-to-pin Dot Extensions in a Non-inverted Output Architecture

Figure 5-3
Detailed Dot Extensions for a D-type Flip-flop Architecture

0
0
1

0
1
X

0
1

Last Q

LE D Q

D Q

.OE

.LE

.SP (.AP)

.SR (.AR)

.D

CLEAR

PRESET

QLE

.Q

.PIN

Istype 'reg_l,invert'

D Q
Q

.OE

.CLK

.SR (.AR)

.SP (.AP)

.D
PRESET

CLEAR

.Q

.PIN

Istype 'reg_d,invert'

Q

PSDabel-HDL Reference 5-7

Language Reference
Figure 5-4
Detailed Dot Extensions for a T-type Flip-flop Architecture

Figure 5-5
Detailed Dot Extensions for an RS-type Flip-flop Architecture

T Q

.OE

.CLK

.SR (.AR)

.SP (.AP)

.T
PRESET

CLEAR

.Q

.PIN

Q

Istype 'reg_t,invert'

.OE

.R

.SR (.AR)

.SP (.AP)

.S

Q

.CLK

.Q

.PIN

S Q
PRESET

CLEAR

Istype 'reg_sr,invert'

R

5-8 PSDabel-HDL Reference

Language Reference
Figure 5-6
Detailed Dot Extensions for a JK-type Flip-flop Architecture

Figure 5-7
Detailed Dot extensions for a Latch with active High Latch Enable

.OE

.K

 .SR (.AR)

.J

Q

.CLK

.Q

.PIN

Q

CLEAR

PRESET

Istype 'reg_jk,invert'

J

K

 .SP (.AP)

D Q

.OE

.LH

.SP (.AP)

.D

CLEAR

PRESET

QLH

.Q

.PIN

1
1
0

0
1
X

0
1

Last Q

LH D Q

Istype 'reg_l,invert'

.SR (.AR)
PSDabel-HDL Reference 5-9

Language Reference
Figure 5-8
Detailed Dot Extensions for a Latch with Active Low Latch Enable

Figure 5-9
Detailed Dot Extensions for a Gated-clock D Flip-flop

0
0
1

0
1
X

0
1

Last Q

LE D Q

D Q

.OE

.LE

.SP (.AP)

.SR (.AR)

.D

CLEAR

PRESET

QLE

.Q

.PIN

Istype 'reg_l,invert'

0
0
1

0
1
X

0
1

Last Q

CLK
X
1
1

CE D Q

D Q

.OE

.CE

.SR (.AR)

.D

CLEAR

PRESET

QCE

.Q

.PIN

Istype 'reg_g,invert'

.CLK

.SP (.AP)
5-10 PSDabel-HDL Reference

Language Reference
Examples
These equations precisely describe the desired circuit as a toggling D-type
flip-flop that is clocked by the input Clock, assuming ISTYPE
’reg_D,buffer’:

Q1.clk = Clock;
Q1.D = !Q1.Q # Preset;

Register preset:

Q2.PR = S & !T;

Register reset:

Q2.RE = R & !T;

The same circuit can be described without ISTYPE ’buffer’ as:

Q1.clk = Clock;
Q1 := !Q1.FB # Preset;
Q2.SET = S & !T; Q2.CLR = R & !T;

Three-state Output Enables

Output enables are described in PSDabel-HDL with the .oe dot extension
applied to an output signal name. For example,

Q1.oe = !enab;

The equation specifies that the input signal enab controls the output
enable for an output signal named Q1.

Note:

If you explicitly state the value of a fixed output enable, you restrict the device
fitters’ ability to map the indicated signal to a simple input pin instead of a three-
state I/O pin.

See Also Istype
“Attributes” in the Chapter 2, “Language Structure”
“Signal Dot Extensions” in the Chapter 3, “Design Considerations”
PSDabel-HDL Reference 5-11

Language Reference
= — Constant Declarations
Syntax

id [,id]... = expr [,expr]... ;

Purpose
A constant declaration that defines constants used in a module.

Use

Note:

The equal sign (=) used for constant declarations in the Declarations section is
also used for equations in the Equations section. See “Operators, Expressions, and
Equations” in Chapter 2, “Language Structure.”

A constant is an identifier that retains a constant value throughout
a module.

The identifiers on the left side of the equals sign are assigned the values
listed on the right side. There is a one-to-one correspondence between the
identifiers and the expressions listed. There must be one expression for
each identifier.

The ending semicolon is required after each declaration.

Constants are helpful when you use a value many times in a module,
especially when you may be changing the value during the design
process. Constants allow you to change the value once in the declaration
of the constant, rather than changing the value throughout the module.

Constant declarations may not be self-referencing. The following
examples will cause errors:

X = X;
a = b;
b = a;

An include file, constant.inc, in the PSDabel-HDL library file contains
definitions for the most frequently used PSDabel-HDL constants. To
include this file, enter

Library ’constant’ ;

id An identifier naming a constant to be used within a
module.

expr An expression defining the constant value.
5-12 PSDabel-HDL Reference

Language Reference
Examples
ABC = 3 * 17; " ABC is assigned the value 51
Y = ’Bc’ ; " Y = ^h4263 ;
X =.X.; " X means ’don’t care’
ADDR = [1,0,15]; " ADDR is a set with 3 elements
A,B,C = 5,[1,0],6; " 3 constants declared here
D pin 6; " see next line
E = [5 * 7,D]; " signal names can be included
G = [1,2]+[3,4]; " set operations are legal
A = B & C; " operations on identifiers are valid
A = [!B,C]; " set and identifiers on right

Using Intermediate Expressions

You can use intermediate (constant) expressions in the declarations
section to reduce the number of output pins required to implement multi-
level functions. Intermediate expressions can be useful when a module has
repeated expressions. In general, intermediate expressions

• decrease the number of output pins required, but

• increase the amount of logic required per output

A constant expression is interpreted as a string of characters, not as a
function to be implemented. For example, for the following Declarations
and Equations

Declarations
 TMP1 = [A3..A0] == [B3..B0];
 TMP2 = [A7..A4] == [B7..B4];
Equations
 F = TMP1 & TMP2;

the compiler substitutes the declarations into the equations, creating

F = (A7 !$ B7) & (A6 !$ B6) & (A5 !$ B5) & (A4 !$ B4) &
 (A3 !$ B3) & (A2 !$ B2) & (A1 !$ B1) & (A0 !$ B0);

In contrast, if you move the constant declarations into the
equations section:

Declarations
 TMP1,TMP2 pin 18,19
Equations
 TMP1 = [A3..A0] == [B3..B0];
 TMP2 = [A7..A4] == [B7..B4];
 F = TMP1 & TMP2;

the compiler implements the equations as three discrete product terms,
with the result

TMP1 =(A3 !$ B3) & (A2 !$ B2) & (A1 !$ B1) & (A0 !$ B0);
TMP2 =(A7 !$ B7) & (A6 !$ B6) & (A5 !$ B5) & (A4 !$ B4);
 F = TMP1 & TMP2;

The first example (using intermediate expressions) requires one output
with 16 product terms, the second example (using equations) requires
three outputs with less than 8 product terms per output. In some cases, the
number of product terms required for both methods can be reduced
during optimization.
PSDabel-HDL Reference 5-13

Language Reference
Note:

As an alternate method for specifying multi-level circuits such as this, you can use
the @CARRY directive. See “@directive — Directives” later in this chapter.

See Also Declarations
Equations
“Constants” in the Chapter 2, “Language Structure”
5-14 PSDabel-HDL Reference

Language Reference
attr' — Signal Attributes
See Istype _ Attribute Declarations.
PSDabel-HDL Reference 5-15

Language Reference
@directive — Directives
Purpose

Directives control the contents or processing of a source file. You can use
directives to conditionally include sections of PSDabel-HDL source code,
bring code in from another file, and print messages during processing. The
available directives are given on the following pages.

Use
Some of the directives use arguments to determine how the directive is
processed. The arguments can be actual arguments, or dummy arguments
preceded by question marks (?). The rules applying to actual and dummy
arguments are presented in Chapter 2, “Language Structure.”
5-16 PSDabel-HDL Reference

Language Reference
@Alternate — Alternate Operator Set

Syntax
@alternate

Use
@Alternate enables an alternate set of operators. If you are more familiar
with the alternate set, you may want to use this directive.

The alternate operators remain in effect until the @Standard directive is
used or the end of the module is reached.

Using the alternate operator set precludes use of the PSDabel-HDL
addition, multiplication, and division operators because they represent
the OR, AND, and NOT logical operators in the alternate set. The standard
operators !, &, #, $, and !$ still work when @Alternate is in effect.

The alternate operator set is listed in Table 5-4.

See Also @STANDARD

Table 5-4
Alternate Operator Set

PSDabel-HDL
Operator Alternate Operator Description

! / NOT

& * AND

+ OR

$: + : XOR

!$: * : XNOR
PSDabel-HDL Reference 5-17

Language Reference
@Carry — Maximum Bit-width for Arithmetic Functions

Syntax
@carry expression ;

Use

The @Carry directive allows you to reduce the amount of logic required
for processing large arithmetic functions by specifying how adders,
counters, and comparators are generated. The number generated by the
expression indicates the maximum bit-width to use when performing
arithmetic functions.

For example, for an 8-bit adder, a @Carry statement with an expression
which results in 2 would divide the 8-bit adder into four 2-bit adders,
creating intermediate nodes. This would reduce the amount of logic
generated.

The statement:

@carry 1;

generates chains of one-bit adders and comparators for all subsequent
adder and comparator equations (instead of the full look-ahead carry
equations normally generated).

This directive automatically generates additional combinational nodes.
Use different values for the @Carry statement to specify the types of
adders and comparators required for the design. To specify that full
lookahead carry should be generated (the default if no @Carry has been
specified) use the statement:

@carry 0

Examples
@carry 2; "generate adder chain
[s8..s0] = [.x.,a7..a0]+[.x.,b7..b0]

See Also = (Constant Declarations)
“Constants” in Chapter 2, “Language Structure”

expression A numeric expression.
5-18 PSDabel-HDL Reference

Language Reference
@Const — Constant Declarations

Syntax
@const id = expression ;

Use

@Const allows new constant declarations to be made in a source file
outside the normal (and required) declarations section.

The @Const directive defines internal constants inside macros. Constants
defined with @Const override previous constant declarations. You cannot
use @Const to redefine an identifier that was used earlier in the source file
as something other than a constant (for example, a macro or pin).

Examples
@CONST count = count + 1;

See Also = (Constant Declarations)
“Constants” in Chapter 2, “Language Structure”

id An identifier.

expression An expression.
PSDabel-HDL Reference 5-19

Language Reference
@Dcset — Don’t Care Set

Syntax
@dcset

Use
PSDabel-HDL uses don’t-care conditions to help optimize partially-
specified logic functions. Partially-specified logic functions are those that
have less than 2n significant input conditions, where n is the number of
input signals. The @Dcset directive allows the optimization to use either 1
or 0 for don’t cares to optimize these functions.

Caution:

The @Dcset directive overrides Istype attributes ’dc’, ’neg’ and ’pos’.

See Also @Onset
Istype 'dc'
?:= and ?= Assignment Operators

Truth_table
“@DCSET Considerations and Precautions” in Chapter 3, “Design
Considerations”
5-20 PSDabel-HDL Reference

Language Reference
@Dcstate — State Output Don’t Cares

Syntax
@dcstate

Use
When @dcstate is specified, all unspecified state diagram states and
transitions are applied to the design outputs as don’t cares. You must use
this option in combination with @dcset or with the 'dc' attribute.

See Also @DCSET
Istype 'dc'
PSDabel-HDL Reference 5-21

Language Reference
@Exit — Exit Directive

Syntax
@exit

Use
The @Exit directive stops processing of the source file with error bits set.
(Error bits allow the operating system to determine that a processing error
has occurred.)
5-22 PSDabel-HDL Reference

Language Reference
@Expr — Expression Directive

Syntax
@expr [{block}] expression ;

Use

@Expr evaluates the given expression and converts it to a string of digits
in the default base numbering system. This string and the block are then
inserted into the source file at the point where the @Expr directive occurs.
The expression must produce a number.

@Expr can contain variable values and you can use it in loops with
@Repeat.

Examples
@expr {ABC} ^B11 ;

Assuming that the default base is base ten, this example causes the text
ABC3 to be inserted into the source file.

block A block.

expression An expression.
PSDabel-HDL Reference 5-23

Language Reference
@If — If Directive

Syntax
@if expression {block }

Use

@IF includes or excludes sections of code based on the value of an
expression. If the expression is non-zero (logical true), the block of code is
included.

Dummy argument substitution is supported in the expression.

Examples
@if (A > 17) { C = D $ F ; }

expression An expression.

block A block of text.
5-24 PSDabel-HDL Reference

Language Reference
@Ifb — If Blank Directive

Syntax
@IFB (arg) {block }

Use

@IFB includes the text contained within the block if the argument is blank
(if it contains 0 characters).

Examples
@IFB ()
{text here is included with the rest of the source file.}

@IFB (hello) { this text is not included }

@IFB (?A) {this text is included if no value is substituted
for A. }

See Also “Arguments and Argument Substitution” in Chapter 2, “Language
Structure”

arg An actual argument, or a dummy argument preceded by
a “?”

block A block of text.
PSDabel-HDL Reference 5-25

Language Reference
@Ifdef — If Defined Directive

Syntax
@ifdef id {block }

Use

@IFDEF includes the text contained within the block, if the identifier
is defined.

Examples
A pin 5 ;
@ifdef A { Base = ^hE000 ; }
"the above assignment is made because A was defined

id An identifier.

block A block of text.
5-26 PSDabel-HDL Reference

Language Reference
@Ifiden — If Identical Directive

Syntax
@ifiden (arg1,arg2) {block }

Use

The text in the block is included if arg1 and arg2 are identical.

Examples
@ifiden (?A,abcd) { ?A device ’P16R4’; }

A device declaration for a P16R4 is made if the actual argument
substituted for A is identical to abcd.

arg1,2 Actual arguments, or dummy argument names
preceded by a “?”

block A block of text.
PSDabel-HDL Reference 5-27

Language Reference
@Ifnb — If Not Blank Directive

Syntax
@ifnb (arg) {block }

Use

@IFNB includes the text contained within the block if the argument is not
blank (if it contains more than 0 characters).

Examples
@IFNB () { PSDabel-HDL source here is not included with the
rest of the source file. }

@IFNB (hello) { this text is included }

@IFNB (?A) {this text is included if a value is substituted
for A}

arg An actual argument, or a dummy argument name
preceded by a “?”

block A block of text.
5-28 PSDabel-HDL Reference

Language Reference
@Ifndef — If Not Defined Directive

Syntax
@ifndef id {block }

Use

@IFNDEF includes the text contained within the block, if the identifier is
undefined. Thus, if no declaration (pin, node, device, macro, or constant)
has been made for the identifier, the text in the block is inserted into the
source file.

Examples
@ifndef A{Base=^hE000;}
"if A is not defined, the block is inserted in the text

id An identifier.

block A block of text.
PSDabel-HDL Reference 5-29

Language Reference
@Ifniden — If Not Identical Directive

Syntax
@ifniden (arg1,arg2) {block }

Use

The text in the block is included in the source file if arg1 and arg2 are
not identical.

Examples
@ifniden (?A,abcd) { ?A device ’P16R8’; }

A device declaration for a P16R8 is made if the actual argument
substituted for A is not identical to abcd.

arg1,2 Actual arguments, or dummy argument names
preceded by a “?”

block A block of text.
5-30 PSDabel-HDL Reference

Language Reference
@Include — Include Directive

Syntax
@include filespec

Use

@INCLUDE causes the contents of the specified file to be placed in the
PSDabel-HDL source file. The inclusion begins at the location of the
@INCLUDE directive. The file specification can include an explicit drive
or path specification that indicates where the file is found. If no drive or
path specification is given, the default drive or path is used.

Examples
@INCLUDE ’macros.abl’ "file specification
@INCLUDE ’\\incs\\macros.inc’ "DOS paths require 2 slashes

See Also Library

filespec A string specifying the name of a file.
PSDabel-HDL Reference 5-31

Language Reference
@Irp — Indefinite Repeat Directive

Syntax
@irp dummy_arg (arg [,arg]...) {block }

Use

@IRP causes the block to be repeated in the source file n times, where n
equals the number of arguments contained in the parentheses. Each time
the block is repeated, the dummy argument takes on the value of the next
successive argument.

Examples
@IRP A (1, ^H0A,0)
{B = ?A ; }

results in:

B = 1 ;
B = ^H0A ;
B = 0 ;

which is inserted into the source file at the location of the @IRP directive.
Note that multiple assignments to the same identifier result in an
implicit OR.

Note that if the directive is specified like this:

@IRP A (1,^H0A,0)
{B = ?A ; }

the resulting text would be:

B = 1 ; B = ^H0A ; B = 0 ;

The text appears all on one line because the block in the @IRP definition
contains no end-of-lines. Remember that end-of-lines and spaces are
significant in blocks.

dummy_arg A dummy argument.

arg An actual argument, or a dummy argument name
preceded by a “?”

block A block of text.
5-32 PSDabel-HDL Reference

Language Reference
@Irpc — Indefinite Repeat, Character Directive

Syntax
@irpc dummy_arg (arg) {block }

Use

@IRPC causes the block to be repeated in the source file n times, where n
equals the number of characters contained in arg. Each time the block is
repeated, the dummy argument takes on the value of the next character.

Examples
@IRPC A (Cat)
{B = ?A ;
}

results in:

B = C ;
B = a ;
B = t ;

which is inserted into the source file at the location of the @IRPC directive.

dummy_arg A dummy argument.

arg An actual argument, or a dummy argument name
preceded by a “?”

block A block.
PSDabel-HDL Reference 5-33

Language Reference
@Message — Message Directive

Syntax
@message ’string’

Use

@Message sends the message specified in string to your monitor. You can
use this directive to monitor the progress of the parsing step of the
compiler, or as an aid to debugging complex sequences of directives.

Examples
@message ’Includes completed’

string Any string.
5-34 PSDabel-HDL Reference

Language Reference
@Onset — No Don’t Care’s

Syntax
@onset

Use
The @onset directive disables the use of don’t care input conditions for
optimization.

See Also @Dcset
ISTYPE 'dc'
PSDabel-HDL Reference 5-35

Language Reference
@Page — Page Directive

Syntax
@page

Use
Send a form feed to the listing file. If no listing is being created, @page has
no effect.
5-36 PSDabel-HDL Reference

Language Reference
@Radix — Default Base Numbering Directive

Syntax
@radix expr ;

Use

The @Radix directive changes the default base. The default is base 10
(decimal). This directive is useful when you need to specify many
numbers in a base other than 10. All numbers that do not have their base
explicitly stated are assumed to be in the new base. (See “Numbers” in
Chapter 2, “Language Structure.”)

The newly-specified default base stays in effect until another @radix
directive is issued or until the end of the module is reached. Note that
when a new @radix is issued, the specification of the new base must be in
the current base format.

When the default base is set to 16, all numbers in that base that begin with
an alphabetic character must begin with leading zeroes.

Examples
@radix 2 ; "change default base to binary
@radix 1010 ; "change from binary to decimal

expr An expression that produces the number 2, 8, 10 or 16 to
indicate a new default base numbering.
PSDabel-HDL Reference 5-37

Language Reference
@Repeat — Repeat Directive

Syntax
@repeat expr {block }

Use

@REPEAT causes the block to be repeated n times, where n is specified by
the constant expression.

Examples
The following use of the repeat directive,

@repeat 5 {H,}

results in the insertion of the text “H,H,H,H,H,” into the source file. The
@REPEAT directive is useful in generating long truth tables and sets of test
vectors. Examples of @REPEAT can be found in the example files.

expr A numeric expression.

block A block.
5-38 PSDabel-HDL Reference

Language Reference
@Setsize — Set Indexing

Syntax
@setsize [expression];

Purpose
The @setsize directive generates a number corresponding to the number
of elements in the expression, which must be a set. This directive is useful
for set indexing operations.

Example
@SETSIZE [a,b,c]

generates the number 3.

For set indexing, you can use the @SETSIZE directive in macros in the
following manner:

high macro (s) {?S[@SETSIZE(?S);-1..@SETSIZE(?S);/2-1]};

The high macro returns the upper half of a set of any size (the high 4 bits
of an 8-bit set, for example).

Note:

The terminating semicolons are required.

See Also “Set Indexing” in Chapter 2, “Language Structure”
PSDabel-HDL Reference 5-39

Language Reference
@Standard — Standard Operators Directive

Syntax
@standard

Use
The @standard option resets the operators to the PSDabel-HDL standard.
The alternate set is chosen with the @alternate directive.
5-40 PSDabel-HDL Reference

Language Reference
Async_reset and Sync_reset
Syntax

SYNC_RESET symbolic_state_id : input_expression ;
ASYNC_RESET symbolic_state_id : input_expression ;

Purpose
In symbolic state descriptions, the SYNC_RESET and ASYNC_RESET
statements specify synchronous or asynchronous state machine reset logic
in terms of symbolic states.

Use

Examples
ASYNC_RESET Start : Reset ;

SYNC_RESET Start : Reset ;

See Also State
State_diagram
“Using Symbolic State Descriptions” in Chapter 3, “Design
Considerations”

symbolic_state_id An identifier used for reference to a symbolic
state.

input_expression Any expression.
PSDabel-HDL Reference 5-41

Language Reference
Case
Syntax

CASE expression : state_exp;
[expression : state_exp;] ...
ENDCASE ;

Purpose
Use the CASE statement in a State_diagram to indicate transitions of a
state machine when multiple conditions affect the state transitions.

Use

You can nest CASE statements with If-Then-Else, GOTO, and other CASE
statements, and you can use equation blocks.

Note:

Equation blocks used within a conditional expression such as IF-THEN, CASE,
or WHEN-THEN result in logic functions that are logically ANDed with the
conditional expression that is in effect.

The state machine advances to the state indicated by state_exp (following
the expression that produces a true value). If no expression is true, the
result is undefined, and the resulting action depends on the device being
used. (For devices with D flip-flops, the next state is the cleared register
state.) For this reason, you should be sure to cover all possible conditions
in the CASE statement expressions. If the expression produces a numeric
rather than a logical value, 0 is false and any non-zero value is true. The
expressions contained within the Case-endcase keywords must be
mutually exclusive (only one of the expressions can be true at any given
time). If two or more expressions within the same Case statement are true,
the resulting equations are undefined.

Examples
"Mutually exclusive Case statement
case a == 0 : 1 ;
 a == 1 : 2 ;
 a == 2 : 3 ;
 a == 3 : 0 ;
endcase ;

"Not mutually exclusive Case statement
case (a == 0) : 1 ;
 (a == 0) & (B == 0) : 0 ;
endcase ;

expression An expression.

state_exp An expression identifying the next state, optionally
followed by WITH transition equations.
5-42 PSDabel-HDL Reference

Language Reference
See Also State_diagram
Goto
If-then-else
With
PSDabel-HDL Reference 5-43

Language Reference
Constant Declarations
See = (Constant Declarations).
5-44 PSDabel-HDL Reference

Language Reference
Declarations
Syntax

Declarations declarations

Purpose
The declarations keyword allows you to declare declarations (such as sets
or other constants) in any part of the PSDabel-HDL source file.

Use

The Declarations keyword is not necessary for declarations immediately
following the module and/or title statement(s).

Examples

An example of declared equations is shown below:

module castle
 moat device ’P16V8C’; "declarations implied
 A,B pin 1,2;
 Out1 pin 15 istype ’com’;
Equations
 Out1 = A & B;

Declarations "declarations keyword required
 C,D,E,F pin 3,4,5,6;
 Out2 pin 16 istype ’com’;
 Temp1 = C & D;
 Temp2 = E & F;

Equations
 Out2 = Temp1 # Temp2;
end;

See Also demo1800.abl

declarations You can use any declarations after the Declarations
keyword.
PSDabel-HDL Reference 5-45

Language Reference
Device (not supported in PSDsoft)
Syntax

device_id DEVICE real_device ;

Purpose
The device declaration statement associates the device name used in a
module with an actual programmable logic device on which designs are
implemented.

Use

The device declaration is optional.

You should give device identifiers, used in device declarations, valid
filenames since JEDEC files are created by appending the extension .jed to
the identifier. The architecture name of the programmable logic device is
indicated by the string, real_device.

The ending semicolon is required.

Examples
D1 DEVICE ’P16R4’ ;

device_id An identifier used for the programmer to load
filenames.

real_device A string describing the architecture name of the real
device represented by device_id.
5-46 PSDabel-HDL Reference

Language Reference
End
Syntax

end module_name

Purpose
The end statement denotes the end of the module.

Use
The end statement can be followed by the module name. For multi-
module source files, the module name is required.
PSDabel-HDL Reference 5-47

Language Reference
Equations
Syntax

equations
element [?]= condition ;
element [?]:= condition ;
when-then-else_statement ;

Purpose
The equations statement defines the beginning of a group of equations
associated with a device.

Use

Equations specify logic functions with an extended form of
Boolean algebra.

A semicolon is required after each equation.

The equations following the equation statement are equations as
described in Chapter 2, “Language Structure.”

Caution:

Use the := and ?:= operators only when writing pin-to-pin registered equations.
Use the = and ?= assignment operators for registered equations with detailed
dot extensions.

Examples
A sample equations section follows:

equations
A = B & C # A ;
[W,Y] = 3 ;
!F = (B == C) ;
Output.D = In1 # In2

See Also When-Then-Else
Module
State_diagram
Truth_table
“Operators, Expressions, and Equations” in Chapter 2, “Language
Structure”

condition An expression.

element An identifier naming a signal, set of signals, or
actual set to which the value of the expression is
assigned.

expression An expression.

=, :=, ?= and ?:= Combinational and registered (pin-to-pin) on-set
and dc-set assignment operators.

when-then-else When-then-else statements.
5-48 PSDabel-HDL Reference

Language Reference
Functional_block
Syntax

DECLARATIONS
instance_name FUNCTIONAL_BLOCK source_name ;

EQUATIONS
instance_name.port_name = signal_name;

Purpose
You can use a functional_block declaration in an upper-level PSDabel-
HDL source to instantiate a declared lower-level module and make the
ports of the lower-level module accessible in the upper-level source. You
must declare modules with an interface declaration before you can
instantiate them with a functional_block statement.

Use

Note:

When a module is instanced by an upper-level source, any signal attributes
(explicit or implied) are inherited by the upper-level source signals. Therefore, you
do not need to specify ISTYPEs in higher-level sources for instantiated signals.

Creating Multiple Instances

You can use the range operator (..) to instantiate multiple instance names
of the module. For example,

CNT0..CNT3 functional_block cnt4 ;

creates 4 instances of the lower-level module cnt4.

Mapping Ports to Signals

Signal names are mapped to port names, using equations (similar to
wiring the signals on a schematic). You need to specify only the signals
used in the upper-level source, if default values have been specified in the
lower-level module interface statement. See “Interface (lower-level)” in
this chapter for more information on setting default values.

instance_name A unique identifier for this instance of the
functional block in the current source.

source_name The name of the lower-level module that is being
instantiated.
PSDabel-HDL Reference 5-49

Language Reference
To specify the signal wiring, map signal names to the lower-level module
port names with dot extension notation. There are three kinds of wire:
input, output, and interconnect.

Examples
module counter;

cnt4 interface (ce, ar, clk, [q0..q3]); // cnt4’s top-level
interface declaration.
CNT0..CNT3 functional_block cnt4; // Four instances of
cnt4.

Clk, AR, CE pin;
Q0..Q3 pin;

equations
 CNT0.[clk, ar, ce] = [Clk; AR, CE]; // Connecting to Clk,
AR, and CE inputs.
 CNT0.[q0..q3] = [Q0..Q3]; // Connecting to Q0..Q3
outputs.
end

Figure 5-10 shows how the above PSDabel-HDL file wires the upper-level
source’s signals to the lower-level module’s ports. Note that the above file
instantiates four instances of cnt4, but only one (CNT0) is wired.

Input Wire Connects lower-level module inputs to upper-level
source inputs. instance.

port = input

Output Wire Connects upper-level source outputs to lower-level
module outputs.

output = instance.port

Interconnect Wire Connects the outputs of one instance of a lower-
level module to another instance’s inputs.
instance0.

port = instance1.port
5-50 PSDabel-HDL Reference

Language Reference
Overriding Default Values

You can override the default values given in a lower-level module’s
interface statement by specifying default equations in the higher-level
source. For example, if you have specified a default value of 1 for the
signal ce in interface cnt4 (but in instance CNT0, you want ce to be 0), you
would write:

CNT0.ce = 0 ;

This equation overrides the 1 with a 0. If you override the default values,
you may want to re-optimize the post-linked design.

Unused Outputs (No Connects)

If you do not want to use a lower-level module’s outputs, specify them as
No Connects (NC) by not wiring up the port to a physical pin. For
example, to make a 3-bit counter out of a 4-bit counter in the upper-level
source, you might use the following wiring equations:

q2..q0 pin ; "upper-level signals
Equations
 [q2..q0] = CNT_A.[q2..q0]

See Also Interface (top-level)
“Hierarchy in PSDabel-HDL” in Chapter 3, “Design Considerations”

hiermult.abl
hmult2.abl

Figure 5-10 Wiring of CNT0

CNT0

I 1

ce
ar
clk

q0
q1
q2
q3

Clk

AR

CE Q0

Q1

Q2

Q3
PSDabel-HDL Reference 5-51

Language Reference
Fuses (not supported in PSDsoft)
Syntax

FUSES
fuse_number = fuse_value ;

or
FUSES
[fuse_number_set] = fuse_value ;

Purpose
The fuses section explicitly declares the state of any fuse in the targeted
device.

Use

The fuses statement provides device-specific information, and precludes
changing devices without editing the statement in the source file.

Fuse values that appear on the right side of the = symbol can be any
number. If a single fuse number is specified on the left side of the =
symbol, the least significant bit (LSB) of the fuse value is assigned to the
fuse. A 0 indicates an intact fuse and a 1 indicates a blown fuse. In the case
of multiple fuse numbers, the fuse value is expanded to a binary number
and truncated or given leading zeros to obtain fuse values for each fuse
number.

Caution:

When fuse states are specified using the FUSES section, the resulting fuse values
supersede the fuse values obtained through the use of equations, truth tables and
state diagrams, and affect device simulation accordingly.

PSDabel-HDL has a limit of 128 fuses per statement, due to the set size
limitations.

Examples
FUSES
3552 = 1 ;
[3478...3491] = ^Hff;

See Also cnt10rom.abl

fuse_number The fuse number obtained from the logic diagram
of the device.

fuse_number_set The set of fuse numbers (contained in square
brackets).

fuse_value The number indicating the state of fuse(s).
5-52 PSDabel-HDL Reference

Language Reference
Goto
Syntax

GOTO state_exp ;

Purpose
The GOTO statement is used in the State_diagram section to cause an
unconditional transition to the state indicated by state_exp.

Use

GOTO statements can be nested with If-Then-Else and CASE statements.

Examples

GOTO 0 ; "goto state 0
GOTO x+y ; "goto the state x + y

See Also State_diagram
Case
If-then-else
With

state_exp An expression identifying the next state,
optionally followed by WITH transition equations.
PSDabel-HDL Reference 5-53

Language Reference
If-Then-Else
Syntax

IF exp THEN state_exp
[ELSE state_exp] ;

Chained IF-THEN-ELSE:

IF expr THEN state_exp
 ELSE IF exp THEN state_exp
 ELSE state_exp ;

Nested IF-THEN-ELSE:

IF exp THEN state_exp
 ELSE IF exp THEN
 IF exp THEN state_exp
 ELSE state_exp
 ELSE state_exp ;

Nested IF-THEN-ELSE with Blocks:

IF exp THEN
{ IF exp THEN state_exp
 IF exp THEN state_exp
}
ELSE state_exp ;

Purpose
The If-then-else statements are used in the State_diagram section to
describe the progression from one state to another.

Use

Caution:

If-Then-Else is only supported within a state_diagram description. Use When-
Then-Else for equations.

Note:

Equation Blocks used within a conditional expression (such as If-then, Case, or
When-then) results in logic functions that are logically ANDed with the
conditional expression that is in effect.

exp An expression.

state_exp An expression or block identifying the next state,
optionally followed by WITH transition equations.
5-54 PSDabel-HDL Reference

Language Reference
The expression following the If keyword is evaluated, and if the result is
true, the machine goes to the state indicated by the state_exp, following the
Then keyword. If the result of the expression is false, the machine jumps
to the state indicated by the Else keyword.

Any number of If statements may be used in a given state, and the Else
clause is optional. The indenting and formatting of an If-then-else
statement is not significant: breaking a complex transition statement
across many lines (and indenting) improves readability.

If-then-else statements can be nested with Goto, Case, and With
statements. If-then-else and Case statements can also be combined
and nested.

Chained IF-THEN-ELSE Statements:

Any number of If-then-else statements can be chained, but the final
statement must end with a semicolon. The chained If-then-else statement
is intended for situations where the conditions are not mutually exclusive.
The Case statement more clearly expresses the same function as chained
mutually-exclusive If-then-else statements.

Chained If-then-else statements can provide multiway branching
transition logic. For example, multiple If-then-else statements can be
chained to describe a three-way branch in the following manner:

STATE S0:
 IF (address < ^h0400)
 THEN S0
 ELSE
 IF (address <= ^hE100)
 THEN S2
 ELSE
 S1;

Examples

if A==B then 2 ; "if A equals B goto state 2
if x-y then j else k; "if x-y is not 0 goto j, else goto k
if A then b*c; "if A is true (non-zero) goto state b*c

Chained IF-THEN-ELSE

if a then 1
 else
if b then 2
 else
if c then 3
 else 0 ;

Nested IF-THEN-ELSE with Blocks

IF (Hold) THEN
{ IF (!RESET) THEN State1 ;
 IF (Error) THEN State2 ;
}
ELSE State3 ;
PSDabel-HDL Reference 5-55

Language Reference
Nested IF-THEN-ELSE Statements

A complex state transition could be written with nested transitions in the
following manner:

STATE S0:
 CASE (select == 1): IF (address == ^h0100)
 THEN S16
 ELSE
 IF (address > ^hE100)
 THEN S17
 ELSE
 S0;
 (select == 2): S2;
 (select == 3): IF (address <= ^hE100)
 THEN IF (reset)
 THEN S3
 ELSE S0;
 ELSE S17;
 (select == 0): S0;
 ENDCASE;

See Also State_diagram
Case
Goto
With
5-56 PSDabel-HDL Reference

Language Reference
Interface (top-level)
Syntax

source_name INTERFACE (input/set[=value] -> output/set :>
bidir/set);

Purpose
The interface keyword declares lower-level modules and their ports
(signals) that are used in the current source. This declaration is used in
conjunction with a functional_block declaration for each instantiation of
the module.

Use

If the lower-level module uses the interface keyword to declare signals,
the upper-level source interface statement must exactly match the
signal listing.

Caution:

Interface declarations cannot contain dot extensions. If you need a specific dot
extension across a source boundary (to resolve feedback ambiguities, for example),
you must introduce an intermediate signal into the lower-level module to provide
the connection to the higher-level source. All dot extension equations for a given
output signal must be located in the PSDabel-HDL module in which the signal is
defined. No references to the signal’s dot extensions can be made outside of the
PSDabel-HDL module.

Note:

When you instantiate a lower-level module in an upper-level source, any signal
attributes (either explicit or implicit) are inherited by the higher-level source
signals that map to the lower-level signals. Do not specify ISTYPEs for
instantiated signals.

module_name The name of the module being declared.

inputs->outputs:>bidirs A list of signals in the lower-level module used
in the current source. Signal names are separated
by commas. Use -> and :> to indicate the
direction of each port of a functional block.

value An optional default value for an input that
overrides defaults in the lower-level module.
PSDabel-HDL Reference 5-57

Language Reference
Examples
module top;
cnt4 interface (ce,ar,clk -> [q3..q0])

Map port names to signal names with equations. See functional_block.

See Also Functional_block
“Hierarchy in PSDabel-HDL” in Chapter 3, “Design Considerations”

bjacktop.abl hiermult.abl
cnt4.abl hmult2.abl
5-58 PSDabel-HDL Reference

Language Reference
Interface (lower-level)
Syntax

MODULE module_name
INTERFACE (input/set[=port_value] -> output/set
[:> bidir/set]);

Purpose
The interface declaration is optional for lower-level modules. Use the
interface declaration in lower-level modules to assign a default port list
and input values for the module when instantiated in higher-level
PSDabel-HDL sources. If you use the interface statement in an instantiated
module, you must declare the signals and sets in the upper-level source in
the same order and grouping as given in the interface statement in the
lower-level module.

Declaring signals in the lower-level module, although optional, does allow
the compiler to check for signal declaration mismatches and therefore
reduces the possibility of wiring errors.

Use

Declared Signals

Declared signals can be a list of lower-level pins, sets, or a combination of
both. The following constraints apply to the different signal types:

module_name The standard module statement.

signal/set Signals or sets in the lower-level module used as
ports to higher-level sources. Use -> and :> to
indicate the direction of each port of a functional
block. Use commas to separate groups of signals

port_value The default value for the port for input signals
only. Default values do not apply to output and
bidirectional signals.

Signal Type Constraints

Input Default values must be binary if applied to an individual
bit, or any positive integer applied to a set. All inputs
must be listed.

Output Unlisted outputs are interpreted as No connects (NC).
Unlisted, fed-back outputs are interpreted as nodes in
the upper-level source, following the naming convention
instance_name/node_name

Bidirectional Listing bidirectional signals is optional, except for those
with output enable (OE). If you specify bidirectional
signals, the compiler checks for invalid wire
connections.
PSDabel-HDL Reference 5-59

Language Reference
Caution:

Interface declarations cannot contain dot extensions. If you need a specific dot
extension across a source boundary (to resolve feedback ambiguities, for example),
you must introduce an intermediate signal into the lower-level module to provide
the connection to the higher-level source. All dot extension equations for a given
output signal must be located in the PSDabel-HDL module in which the signal is
defined. No references to the signal’s dot extensions can be made outside of the
PSDabel-HDL module.

Note:

When you instantiate a lower-level module in a higher-level source, any signal
attributes (explicit or implicit) are inherited by the higher-level source signals that
map to the lower-level signals. Do not specify ISTYPEs for instantiated signals.

Unlisted Signals

If you do not list some signals of the lower-level module in the interface
statement, the following rules apply:

Examples
The following interface statement declares inputs ce, ar, and clk (giving
default values for two of them) and outputs q3 through q0.

module cnt4 interface (ce=1,ar=1,clk -> [q3..q0]) ;

Specifying default values allows you to instantiate cnt4 without declaring
the ce and ar inputs in the upper-level source. If you do not declare these
inputs, they are replaced with the constants 1 and 0, respectively. Since
these constants may affect optimization, you may need to re-optimize the
lower-level module with the constants.

Note:

Supported default values are 1, 0, or X (don’t care). You can give default values
for a set with a positive integer, and each digit of the integer’s binary form supplies
the default value for the corresponding signal in the set.

Unlisted Pins Are: The Compiler Interprets Them As:

Inputs or Bidirectionals with OE Errors

Outputs No Connects (NC), and they can be
removed

Feedback outputs Nodes in the upper-level source,
following the naming convention:
instance_name/node_name
5-60 PSDabel-HDL Reference

Language Reference
See Also Interface (top-level)
Functional_block
“Hierarchy in PSDabel-HDL” in Chapter 3, “Design Considerations”

hiermult.abl hmult2.abl
PSDabel-HDL Reference 5-61

Language Reference
Istype _ Attribute Declarations
Syntax

signal [, signal...] [PIN | NODE [##s]] ISTYPE ’attr
[,attr]...’;

Purpose
The ISTYPE statement defines attributes (characteristics) of signals (pins
and nodes). You should use signal attributes to remove ambiguities in
architecture-independent designs. Even when a device has been specified,
using attributes ensures that the design operates consistently if the device
is changed later.

Use

Signal attributes are specified with the ISTYPE statement, which can be
combined with pin or node declarations in a single declaration. The
attributes defined with ISTYPE specify the architectural constraints for
signals that have not been assigned to a specific device, pin, or node
number, or a specified device (and/or pin number) that has
programmable characteristics.

All attributes listed on the right side of the ISTYPE statement are applied
to each signal specified on the left side.

Declarations of the pin and node names used in the ISTYPE statement
must be made before or with the ISTYPE statement.

Table 5-4 summarizes the available attributes.

Caution:

If you do not specify signal attributes with Istype, the compiler makes
assumptions about signal attributes that may or may not be what you intended.

See Also .ext—Dot Extensions

signal A pin or node identifier.

attr A string that specifies attributes for the signal(s).
Supported attributes are described below.
5-62 PSDabel-HDL Reference

Language Reference
’buffer’

The target architecture does not have an inverter between the associated
flip-flop (if any) and the actual output pin.

’invert’

The target architecture has an inverter between the associated flip-flop
(if any) and the actual output pin.

Control of output inversion in devices is accomplished through the use of
the ’invert’ or ’buffer’ attributes. These attributes enforce the existence
(’invert’) or non-existence (’buffer’) of a hardware inverter at the device pin
associated with the output signal specified.

Table 5-5
Attributes

Dot
Ext.

Arch.
Indep. Description

’buffer’ No Inverter in Target Device

’collapse’ Collapse (remove) this signal.1

’com’ ä Combinational output

’dc’ ä Unspecified logic is don’t care.2

’invert’ Inverter in Target Device

’keep’ Do not collapse this signal from equations.1

’neg’ ä Unspecified logic is 1.2

’pos’ ä Unspecified logic is 0.2

’retain’ ä
Do not minimize this output. Preserve redundant
product terms.3

’reg’ ä Clocked Memory Element.

’reg_d’ D Flip-flop Clocked Memory Element

’reg_g’ D Flip-flop Gated Clock Memory Element

’reg_jk’ JK Flip-flop Clocked Memory Element

’reg_sr’ SR Flip-flop Clocked Memory Element

’reg_t’ T Flip-flop Clocked Memory Element

’xor’ XOR Gate in Target Device

1 If neither ’keep’ nor ’collapse’ is specified, the optimization or fitter programs can
keep or collapse the signal as needed to optimize the circuit.

2 The ’dc,’ ’neg,’ and ’pos’ attributes are mutually exclusive.
3 The ’retain’ attribute only controls optimization performed by PSDabel-HDL Com-

pile Logic. To preserve redundant product terms, you must also specify no reduc-
tion for the Reduce Logic and fitting (place and route) programs.
PSDabel-HDL Reference 5-63

Language Reference
In registered devices, the ’invert’ attribute ensures that an inverter is
located between the output pin and its associated register output.

Note:

Ensuring an inverter is important for both pin-to-pin and detailed design
descriptions because the location of the inverter affects a register’s reset, preset,
preload, and powerup behavior as observed on the associated output pin.

’collapse’

Collapse (remove) this combinational node. If neither ’keep’ nor ’collapse’
is specified, the optimization and fitter programs will keep or collapse the
node for best optimization. In the following example, signal b is given the
’collapse’ attribute:

module coll_b
a,c,d,e pin ;
b node istype ’collapse’

equations
a = b & e;
b = c & d;
end

The resulting equ ation collapses b out of the equations:

a = c & d & e ;

’keep’

Do not collapse this combinational node from equations. In the example
under ’collapse,’ b would be retained.

’com’

Specifies a combinational symbol.

’dc,’ ’neg,’ and ’pos’

These attributes control the value of unspecified logic in your design, and
are mutually exclusive. The values they specify are shown below:

Istype Attribute Unspecified Logic is

’dc’ X (don’t care)

'neg' 1

'pos' 0
5-64 PSDabel-HDL Reference

Language Reference
The ’dc’ attribute is equivalent to the @DCSET directive, except it operates
on signals instead of applying to a whole section.

Note:

The ’neg’ or ’pos’ attribute is implied if a device is specified. For example, ’neg’ is
implied if the device output is inverted (for example, with a 16L8).

Caution:

The @DCSET directive overrides ’dc,’ ’neg,’ and ’pos’.

’reg’

The signal specified is a registered output. Equations, state diagrams, and
truth tables will generate logic for a D-type flip-flop, normalized to take
into account any inverters in the target device.

’reg_d’

The signal specified is a registered output. Equations, state diagrams, and
truth tables will generate logic for a D-type flip-flop, but you must specify
if the output is inverted in the target device (with attribute ’invert’
or ’buffer’).

’reg_g’

The signal specified is a registered output. Equations, state diagrams, and
truth tables will generate logic for a D-type flip-flop, but you must specify
if the output is inverted in the target device (with attribute ’invert’ or
’buffer’). Write equations and truth tables using the .D and .CE dot
extensions when you use this attribute.

’reg_jk’

The signal specified is a JK-type registered output. State diagrams
generate logic for this register type, but you must specify if the output is
inverted in the target device (with attribute ’invert’ or ’buffer’). Write
Equations and truth tables using the .J and .K dot extensions when you use
this attribute.

’reg_sr’

The signal specified is an SR-type registered output. State diagrams will
generate logic for this register type, but you must specify if the output is
inverted in the target device (with attribute ’invert’ or ’buffer’). Write
equations and truth tables using the .S and .R dot extensions when you use
this attribute.
PSDabel-HDL Reference 5-65

Language Reference
’reg_t’

The signal specified is a T-type registered output. State diagrams will
generate logic for this register type, but you must specify if the output is
inverted in the target device (with attribute ’invert’ or ’buffer’). Write
equations and truth tables using the .T dot extension when you use this
attribute.

’retain’

Do not minimize this output. Preserve redundant product terms for
the signal.

’xor’

The signal specified will be implemented using an XOR gate fed by two
sum-of-products logic circuits. If you use XOR operators in the design
equations for this output (or if you use high-level operators that result in
XOR operations), then one XOR operator is retained through
optimization. Use this attribute if you are implementing your design in an
architecture featuring XOR gates.

Examples
F0, A istype ’invert, reg’ ;

This declaration statement defines F0 and A as inverted registered
outputs. You must define both F0 and A earlier in the module. The
following signal declarations are all supported

q3,q2,q1,q0 NODE ISTYPE ’reg_SR’;
Clk,a,b,c PIN 1,2,3,4;
reset PIN;
reset ISTYPE ’com’;
Output PIN 15 ISTYPE ’reg,invert’;

See Also .ext
Pin
Node
“Dot Extensions” and “Attribute Assignment” in Chapter 2, “Language
Structure”

“Dot Extensions and Architecture-Independence” and “Using XOR
Operators in Equations” in Chapter 3, “Design Considerations”
5-66 PSDabel-HDL Reference

Language Reference
Library
Syntax

LIBRARY ’name’ ;

Purpose
The LIBRARY statement causes the contents of the indicated file to be
inserted in the PSDabel-HDL source file. The insertion begins at the
LIBRARY statement.

Use

The file extension of ’.inc’ is appended to the name specified, and the
resulting filename is searched for. If no file is found, the abel5lib.inc library
file is searched.

See Also Module
@Include

name A string that specifies the name of the library file,
excluding the file extension.
PSDabel-HDL Reference 5-67

Language Reference
Macro
Syntax

macro_id MACRO [(dummy_arg [,dummy_arg]...)] {block } ;

Purpose
The macro declaration statement defines a macro. Macros are used to
include PSDabel-HDL code in a source file without typing or copying the
code everywhere it is needed.

Use

A macro is defined once in the declarations section of a module and then
used anywhere within the module as frequently as needed. Macros can be
used only within the module in which they are declared.

Wherever the macro_id occurs, the text in the block associated with that
macro is substituted. With the exception of dummy arguments, all text in
the block (including spaces and end-of-lines) is substituted exactly as it
appears in the block.

When debugging your source file, you can use the -list expand option to
examine macro statements. The -list expand option causes the parsed and
expanded source code (and the macros and directives that caused code to
be added to the source) to be written to the listing file.

Macros and Declared Equations

Use declared equations for constant expressions (instead of macros) for
faster processing. The file, mac.abl, in Figure 5-11 demonstrates the
difference.

macro_id An identifier naming the macro.

dummy_arg A dummy argument.

block A block.
5-68 PSDabel-HDL Reference

Language Reference
Examples
The dummy arguments used in the macro declaration allow different
actual arguments to be used each time the macro is referenced. Dummy
arguments are preceded by a “?” to indicate that an actual argument is
substituted for the dummy by the compiler.

The equation,

NAND3 MACRO (A,B,C) { !(?A & ?B & ?C) } ;

declares a macro named NAND3 with the dummy arguments A, B, and C.
The macro defines a three-input NAND gate. When the macro identifier
occurs in the source, actual arguments for A, B, and C are supplied.

For example, the equation

D = NAND3 (Clock,Hello,Busy) ;

brings the text in the block associated with NAND3 into the code, with
Clock substituted for ?A, Hello for ?B, and Busy for ?C.

This results in:

D = !(Clock & Hello & Busy) ;

which is the three-input NAND.

module mac
title ’Demonstrates difference between MACRO and declared
equations’
 mac device ’P16H8’;
 A,B,C, pin 1,2,3;
 X1,X2,X3 pin 14,15,16 istype ’com’;
 Y1 macro {B # C};
 Y2 = B # C;

equations
 X1 = A & Y1;
 X2 = A & (Y1);
 X3 = A & Y2;

" Note: Because Y1 is a text replacement macro the equation
" for X1 will expand to A & B # C. If the desired function
" was A & (B # C) use parentheses around the macro or use
" a subexpression (Y1=B#C) instead of the macro in the
" declarations.

" The macro could also be written Y1 macro {(B # C)};

test_vectors ([A,B,C] -> [X1,X2,X3])
 [0,0,0] -> [0, 0, 0];
 [0,0,1] -> [1, 0, 0];
 [0,1,0] -> [0, 0, 0];
 [0,1,1] -> [1, 0, 0];
 [1,0,0] -> [0, 0, 0];
 [1,0,1] -> [1, 1, 1];
 [1,1,0] -> [1, 1, 1];
 [1,1,1] -> [1, 1, 1];
end

Figure 5-11
Differences Between MACRO and Declared Equations
PSDabel-HDL Reference 5-69

Language Reference
The macro NAND3 has been specified by a Boolean equation, but it could
have been specified using another PSDabel-HDL construct, such as the
truth table shown here:

NAND3 MACRO (A,B,C,Y)
{ TRUTH_TABLE ([?A ,?B ,?C] -> ?Y)
 [0 ,.X.,.X.] -> 1 ;
 [.X., 0 ,.X.] -> 1 ;
 [.X.,.X., 0] -> 1 ;
 [1 , 1 , 1] -> 0 ; } ;

In this case, the line,

NAND3 (Clock,Hello,Busy,D)

causes the text,

TRUTH_TABLE ([Clock,Hello,Busy] -> D)
 [0 , .X. ,.X.] -> 1 ;
 [.X. , 0 ,.X.] -> 1 ;
 [.X. , .X. , 0] -> 1 ;
 [1 , 1 , 1] -> 0 ;

to be substituted into the code. This text is a truth table definition of D,
specified as the function of three inputs, Clock, Hello, and Busy. This is the
same function as that given by the Boolean equation above. The truth table
format is discussed under Truth_table.

Other examples of macros:

"macro with no dummy arguments
nodum macro { W = S1 & S2 & S3 ; } ;
onedum MACRO (d) { !?d } ; "macro with 1 dummy argument

and when macros are called in logic descriptions:

nodum
X = W + onedum(inp) ;
Y = W + onedum()C ; "note the blank actual argument

resulting in:

"note leading space from block in nodum
W = S1 & S2 & S3 ;
X = W + ! inp ;
Y = W + ! C ;

Recursive macro references (when a macro definition refers to itself) are
not supported, and the compiler halts abnormally. If errors appear after
the first use of a macro, and the errors cannot be easily explained
otherwise, check for a recursive macro reference by examining the
listing file.

See Also = (Constant Declarations)
“Arguments and Argument Substitution” in Chapter 2, “Language
Structure”
5-70 PSDabel-HDL Reference

Language Reference
Module
Syntax

MODULE modname [(dummy_arg [,dummy_arg] ...)]

Purpose
The module statement defines the beginning of a module and must be
paired with an END statement that defines the module’s end.

Use

The optional dummy arguments allow actual arguments to be passed to
the module when it is processed. The dummy argument provides a name
to refer to within the module. Anywhere in the module where a dummy
argument is found preceded by a “?”, the actual argument value is
substituted.

Examples
MODULE MY_EXAMPLE (A,B)
 :
 C = ?B + ?A

In the module named MY_EXAMPLE, C takes on the value of “A + B”
where A and B contain actual arguments passed to the module when the
language processor is invoked.

See Also Title
Interface (submodule)
End
“Arguments and Argument Substitution” in Chapter 2, “Language
Structure”

modname An identifier naming the module.

dummy_arg Dummy arguments.
PSDabel-HDL Reference 5-71

Language Reference
Node
Syntax

[!]node_id [,[!]node_id...] NODE [node# [,node#]] [ISTYPE
’attributes’];

Purpose
The NODE keyword declares signals assigned to buried nodes.

Use

Note:

Using the NODE keyword does not restrict a signal to a buried node. A signal
declared with NODE can be assigned to a device I/O pin by a device fitter.

You can use the range operator (..) to declare sets of nodes. The ending
semicolon is required after each declaration.

When lists of node_id and node # are used in one node declaration, there is
a one-to-one correspondence between the identifiers and numbers.

The following example declares three nodes A, B, and C.

A, B, C NODE ;

The node attribute string, Istype ’attributes,’ should be used to specify
node attributes. Since a node declaration is only required in a detailed
description, use detailed attributes, not pin-to-pin attributes. The ISTYPE
statement and attributes are discussed under Istype.

The node declaration,

B NODE istype ’reg’ ;

specifies that node B is a buried flip-flop.

node_id An identifier used for reference to a node in a logic
design.

node# The node number on the real device.

attributes A string that specifies node attributes for devices
with programmable nodes. Any number of
attributes can be listed, separated by commas.
Attributes are listed in Table 2-8 under
“Attributes” in Chapter 2, “Language Structure.”
5-72 PSDabel-HDL Reference

Language Reference
Example
a0..a3 node 22..25;

assigns a0, a1, a2 and a3 to nodes 22, 23, 24 and 25, respectively.

See Also Istype
Pin
Module
“Attribute Assignment” in Chapter 2, “Language Structure”
“Dot Extensions and Architecture-Independence” in the Chapter 3,
“Design Considerations”
PSDabel-HDL Reference 5-73

Language Reference
Pin
Syntax

[!]pin_id [,[!]pin_id...] PIN [pin# [, pin#]]
[ISTYPE ’attr’];

Purpose
The PIN keyword declares input and output signals that must be available
on a device I/O pin.

Use

When lists of pin_ids and pin#s are used in a pin declaration statement,
there is a one-to-one correspondence between the identifiers and numbers
given. There must be one pin number associated with each identifier
listed.

You can use the range operator (..) to declare sets of pins. The ending
semicolon is required after each declaration.

Note:

Assigning pin numbers defines the particular pin-outs necessary for the design.
Pin numbers only limit the device selection to a minimum number of input and
output pins. Pin number assignments can be changed later by a fitter.

The ! operator in pin declarations indicates that the pin is active-low, and
is automatically negated when the source file is compiled.

The pin attribute string, Istype ’attributes,’ should be used to specify pin
attributes. The ISTYPE statement and attributes are discussed under
Istype. Istype attribute statements are recommended for all pins.

Examples
Clock, !Reset, S1 PIN 1,15,3;

Clock is assigned to pin 1, Reset to pin 15, and S1 to pin 3.

a0..a3 PIN 2..5 istype ’reg,buffer’;

Assigns a0, a1, a2 and a3 to pins 2, 3, 4 and 5, respectively.

See Also Istype
Node
Module
“Dot Extensions and Architecture-Independence” in Chapter 3, “Design
Considerations”

pin_id An identifier that refers to a pin in a module.

pin# The pin number on the physical device.

attr A string that specifies pin attributes for devices
with programmable pins. Attributes are listed in
ISTYPE.
5-74 PSDabel-HDL Reference

Language Reference
Property
Syntax

property_id PROPERTY ’string’ ;

Purpose
The property declaration statement allows you to specify additional
design information associated with an external processing module (such
as a device kit).

The format of the string depends on the fitter to which the property is
being passed. See your device kit user manuals for syntax descriptions.

Note:

You can specify properties for any number of fitters in your design, since all fitters
process only properties with their property ID and ignore all other properties.

Use

Caution:

Property IDs and strings can be case-sensitive. Check your vendor’s fitter
documentation.

Caution:

Property Information will not be present in pre-route/functional simulation.
Consider using schematics (in Synario) to access property features that affect
simulation

Example
AMDMACH property ’GROUP A Q7 Q6 Q5 Q4 Q3 Q2 Q1 Q0’;.

See Also amd_cm8.abl

property_id Identifies properties relevant to specific external
modules, such as fitters.

string Argument containing the actual property data.
PSDabel-HDL Reference 5-75

Language Reference
State (Declaration)
Syntax

state_id [, state_id ...] STATE [IN statereg_id] ;

Purpose
The State declaration is made to declare a symbolic state name and,
optionally, associate it with a state register.

Use

If your design includes more than one symbolic state machine, use the IN
keyword to associate each state with the corresponding state register.

Each state you declare corresponds to one flip-flop in a one-hot machine.

See Also Async_reset
State_register
Sync_reset
“Symbolic State Declarations” in Chapter 2, “Language Structure”
“Using Symbolic State Descriptions” in Chapter 3, “Design
Considerations”

state_id A symbolic state name to be referenced in a
symbolic state description.

statereg_id An identifier for a state register.
5-76 PSDabel-HDL Reference

Language Reference
State (in State_diagram)
Syntax

[STATE state_exp : [equation]
 [equation]
 :
 :
 :
trans_stmt ; ...]

Purpose
The state keyword and the associated section describes one state of a state
diagram. It includes a state value (or a symbolic state name), a state
transition statement, and optional state output equations.

Use

The specification of a state description requires the use of the
State_diagram syntax (which defines the state machine) and the If-Then-
Else, Case, Goto, and With statements (which determine the operation of
the state machine). Symbolic state machines (machines for which the
actual state registers and state values are unspecified) require additional
declarations for the symbolic state register and state names. See “Symbolic
State Declarations” in Chapter 2, “Language Structure.”

A semicolon is required after each transition statement.

See Also Async_reset State_diagram
Case Sync_reset
@Dcset Truth_table
Equations With
Goto Chapter 3, “Design Considerations”
If-then-else
Module
State

state_exp An expression, value, or symbolic state name
giving the current state.

equation An equation that defines the state machine
outputs.

trans_stmt IF-THEN-ELSE, CASE, or GOTO statements,
optionally followed by WITH transition equations.
PSDabel-HDL Reference 5-77

Language Reference
State_diagram
Syntax

State_diagram state_reg
[-> state_out]

[STATE state_exp : [equation]
[equation]

 :
trans_stmt ; ...]

Purpose
The state description describes the operation of a sequential state machine
implemented with programmable logic.

Use

A semicolon is required after each transition statement.

Use State_diagram syntax to define a state machine, and the If-Then-Else,
Case, Goto, and With statements to determine the operation of the state
machine. Symbolic state machines (machines for which the actual state
registers and state values are unspecified) require additional declarations
for the symbolic state register and state names (see “Symbolic State
Declarations” in Chapter 2, “Language Structure”).

The syntax for the IF-THEN-ELSE, CASE, GOTO, WITH, SYNC_RESET,
and ASYNC_RESETstatements are presented here briefly, and are
discussed further in their respective sections.

A state machine starts in one of the states defined by state_exp. The
equations listed after that state are evaluated, and the transition statement
(trans_stmt) is evaluated after the next clock, causing the machine to
advance to the next state.

Equations associated with a state are optional; however, each state must
have a transition statement. If none of the transition conditions for a state
is met, the next state is undefined. (For some devices, undefined state
transitions cause a transition to the cleared register state.)

state_reg An identifier or set of identifiers specifying the
signals that determine the current state of the
machine. For symbolic state diagrams, this
identifier is a symbolic state register name that has
been declared with a State_register declaration.

state_out An identifier or set of identifiers that determines
the next state of the machine (for designs with
external registers).

state_exp An expression or symbolic state name giving the
current state.

equation An equation that defines the state machine
outputs.

trans_stmt IF-THEN-ELSE, CASE, or GOTO statements,
optionally followed by WITH transition equations.
5-78 PSDabel-HDL Reference

Language Reference
Transition Statements

Transition statements describe the conditions that cause transition from
one state to the next. Each state in a state diagram must contain at least one
transition statement. Transition statements can consist of GOTO
statements, IF-THEN-ELSE conditional statements, CASE statements, or
combinations of these different statements.

GOTO Syntax

GOTO state_exp ;

The GOTO statement unconditionally jumps to a different state. When
GOTO is used, it is the only transition for the current state. Example:

STATE S0:
 GOTO S1; "unconditional branch to state S1

CASE Syntax

CASE expression : state_exp ;
[expression : state_exp ;] ...
ENDCASE ;

The CASE statement is used to list a sequence of mutually-exclusive
transition conditions and corresponding next states. Example:

STATE S0:
 CASE (sel == 0): S0 ;
 (sel == 1): S1 ;
 ENDCASE

CASE statement conditions must be mutually exclusive. No two transition
conditions can be true at the same time, or the resulting next state is
unpredictable.

IF-THEN-ELSE Syntax

IF expression THEN state_exp
[ELSE state_exp] ;

IF-THEN-ELSE statements specify mutually-exclusive transition
conditions. Example:

STATE S0:
 IF (address > ^hE100) THEN S1 ELSE S2;

You can use blocks in IF-THEN-ELSE statements, for example,

IF (Hold) THEN State1 WITH {o1 := o1.fb; o2 := o2.fb;}
ELSE State2;

The ELSE clause is optional. A sequence of IF-THEN statements with no
ELSE clauses is equivalent to a sequence of CASE statements. IF-THEN-
ELSE statements can be chained and nested. See IF-THEN-ELSE for more
information.
PSDabel-HDL Reference 5-79

Language Reference
WITH Syntax

state_exp WITH equation ;
[equation ;]

You can use the WITH statement in any of the above transition statements
(the GOTO, IF-THEN-ELSE, or CASE statements) in place of a simple state
expression. For example, to specify that a set of registered outputs are to
contain a specific value after one particular transition, specify the equation
using a WITH statement similar to the one shown below:

STATE S0:
 IF (reset)
 THEN S9 WITH {
 ErrorFlag := 1;
 ErrorAddress := address;
 }
 ELSE
 IF (address <= ^hE100)
 THEN S2
 ELSE
 S0;

The WITH statement is also useful when you describe output behavior for
registered outputs (since registered outputs written only for a current state
would lag by one clock cycle).

SYNC_RESET and ASYNC_RESET Syntax

In symbolic state descriptions the SYNC_RESET and ASYNC_RESET
statements are used to specify synchronous or asynchronous state
machine reset logic in terms of symbolic states. For example, to specify
that a state machine must asynchronously reset to state Start when the
Reset input is true, you would write

ASYNC_RESET Start : Reset ;

See “Symbolic State Declarations” in Chapter 2, “Language Structure,”
page 2-32 and “State Machines” in Chapter 3, “Design Considerations.”

State Descriptions and Pin-to-pin Descriptions

Sequential circuits described with PSDabel-HDL’s state diagram language
are normally written with a pin-to-pin behavior in mind, regardless of the
flip-flop type specified.

The state machine shown below operates the same (in terms of the
behavior seen on its outputs) no matter what type of register is substituted
for 'reg' in the signal declarations. To allow this flexibility, the specification
of 'buffer' or 'invert' is required when a state diagram is written for a
register type other than 'reg.'
5-80 PSDabel-HDL Reference

Language Reference
See Also Async_reset State
Case State_register
@Dcset Sync_reset
Equations Truth_table
Goto With
If-then-else “Symbolic State Declarations” in
Module Chapter 2, “Language Structure”

module statema
title ’State machine example’;
 clock,hold,reset pin;
 P1,P0 pin istype ’reg,buffer’;
 C = .c.;

equations
 [P1,P0].clk = clock;
 [P1,P0].ar = reset;

" state declarations...
declarations
 statema = [P1,P0]
 stateA = [0,0];
 stateB = [1,0];
 stateC = [1,1];
 stateD = [0,1];

state_diagram statema
 state stateA:
 goto stateB;
 state stateB:
 goto stateC;
 state stateC:
 goto stateD;
 state stateD:
 goto stateA;
"test_vectors edited
end

Figure 5-12
Architecture-independent State Machine
PSDabel-HDL Reference 5-81

Language Reference
State_register
Syntax

statereg_id STATE_REGISTER ;

Purpose
For symbolic state diagrams, the State_register is made to declare a
symbolic state machine name.

Use

See Also State
State_diagram
“Symbolic State Declarations” in Chapter 2, “Language Structure”
“Using Symbolic State Descriptions” in Chapter 3, “Design
Considerations”

statereg_id An identifier naming the state register.
5-82 PSDabel-HDL Reference

Language Reference
Sync_reset
See async_reset
PSDabel-HDL Reference 5-83

Language Reference
Test_vectors
Syntax

Test_vectors [note]
(input [,input]... -> output[,output]...)

[invalues -> outvalues ;]
 :

Purpose
Test vectors specify the expected functional operation of a logic device by
explicitly defining the device outputs as functions of the inputs.

Note:

Test_vectors are only used with PLD JEDEC file simulation. For functional
simulation with the PSDabel or Synario Simulators, use a test stimulus file.

Use

Test vectors are used for simulation of an internal model of the device and
functional testing of the design and device. The number of test vectors is
unlimited.

The format of the test vectors is determined by the header. Each vector is
specified in the format described within the parentheses in the header
statement. An optional note string can be specified in the header to
describe what the vectors test, and is included as output in the simulation
output file, the document output file, and the JEDEC programmer
load file.

The table lists input combinations and their resulting outputs. All or some
of the possible input combinations can be listed. All values specified in the
table must be constants, either declared, numeric, or a special constant (for
example, .X. and .C.). Each line of the table (each input/output listing)
must end with a semicolon. Test vector output values always represent the
pin-to-pin value for the output signals.

Test vectors must be sequential for state machines. Test vectors must go
through valid state transitions.

note An optional string that describes the test vectors.

inputs An identifier or set of identifiers specifying the
names of the input signals, or feedback output
signals.

outputs An identifier or set of identifiers specifying the
output signals.

invalues An input value or set of input values.

outvalues A pin-to-pin output value or set of output values
resulting from the given inputs.
5-84 PSDabel-HDL Reference

Language Reference
The Trace keyword can be used to control simulator output from within
the source file.

Functional testing of the physical device is performed by a logic
programmer after a device has been programmed. The test vectors become
part of the programmer load file.

Examples
Following is a simple test vectors section:

TEST_VECTORS
([A,B] -> [C, D])

 [0,0] -> [1,1] ;
 [0,1] -> [1,0] ;
 [1,0] -> [0,1] ;
 [1,1] -> [0,0] ;

The following test vectors are equivalent to those specified above because
values for sets can be specified with numeric constants.

TEST_VECTORS
([A,B] -> [C, D])

 0 -> 3 ;
 1 -> 2 ;
 2 -> 1 ;
 3 -> 0 ;

If the signal identifiers in the test vector header are declared as active-low
in the declaration section, then constant values specified in the test vectors
are inverted accordingly (interpreted pin-to-pin).

See Also Module
Trace
PSDabel-HDL Reference 5-85

Language Reference
Title
Syntax

title ’string’

Purpose
The title statement gives a module a title that appears as a header in both
the programmer load file and documentation file created by the language
processor.

Use
The title is specified in the string following the keyword, title. The string
is opened and closed by an apostrophe and is limited to 324 characters.

The title statement is optional.

Asterisks in the title string do not appear in the programmer load file
header in order to conform with the JEDEC standard.

Examples
An example of a title statement that spans three lines and describes the
logic design is shown below:

module m6809a
title ’6809 memory decode
Jean Designer
Data I/O Corp Redmond WA’

See Also Module
5-86 PSDabel-HDL Reference

Language Reference
Trace
Syntax

TRACE (inputs -> outputs) ;

Purpose
The TRACE statement controls which inputs and outputs are displayed in
the simulation output.

Use
TRACE statements can be placed before a test vector section, or embedded
within a sequence of test vectors.

Note:

Test_vectors are only used with Equation and JEDEC file simulation. For
functional simulation with the Verilog Simulator, use a test stimulus file.

Examples
TRACE ([A,B] -> [C]);
TEST_VECTORS ([A,B] -> [C,D])
 0 -> 3 ;
 1 -> 2 ;
TRACE ([A,B] -> [D]);
 2 -> 1 ;
 3 -> 0 ;

See Also Test_vectors
PSDabel-HDL Reference 5-87

Language Reference
Truth_table
Syntax

TRUTH_TABLE (in_ids -> out_ids)
 inputs -> outputs ;
 or
TRUTH_TABLE (in_ids :> reg_ids)
 inputs :> reg_outs ;
 or
TRUTH_TABLE
(in_ids :> reg_ids -> out_ids)
 inputs :> reg_outs -> outputs ;

Purpose
Truth tables specify outputs as functions of input combinations, in a
tabular form.

Use

Truth tables are another way to describe logic designs with PSDabel-HDL
and may be used in lieu of (or in addition to) equations and state diagrams.
A truth table is specified with a header describing the format of the table
and with the table itself.

A semicolon is required after each line in the truth table.

The truth table header can have one of the three forms shown above,
depending on whether the device has registered or combinational outputs
or both.

The inputs and outputs (both registered and combinational) of a truth
table are either single signals, or (more frequently) sets of signals. If only
one signal is used as either the input or output, its name is specified. Sets
of signals used as inputs or outputs are specified in the normal set notation
with the signals surrounded by brackets and separated by commas (see
“Sets” in Chapter 2, “Language Structure”).

The syntax shown in the first form defines the format of a truth table with
simple combinational outputs. The values of the inputs determine the
values of the outputs.

in_ids Input signal identifiers.

out_ids Output signal identifiers.

reg_ids Registered signal identifiers.

inputs The inputs to the logic function.

outputs The outputs from the logic function.

reg_outs The registered (clocked) outputs.

 -> :> Indicates the input to output function for
combinational (->) and registered (:>) outputs.
5-88 PSDabel-HDL Reference

Language Reference
The second form describes a format for a truth table with registered
outputs. The symbol “:” preceding the outputs distinguishes these outputs
from the combinational outputs. Again the values of the inputs determine
the values of the outputs, but now the outputs are registered or clocked:
they will contain the new value (as determined by the inputs) after the
next clock pulse.

The third form is more complex, defining a table with both combinational
and registered outputs. It is important in this format to make sure the
different specification characters “-” and “:” are used for the different
types of outputs.

Truth Table Format

The truth table is specified according to the form described within the
parentheses in the header. The truth table is a list of input combinations
and resulting outputs. All or some of the possible input combinations may
be listed.

All values specified in the table must be constants, either declared,
numeric, or the special constant .X. Each line of the table (each input/
output listing) must end with a semicolon.

The header defines the names of the inputs and outputs. The table defines
the values of inputs and the resulting output values.

Examples
This example shows a truth table description of a simple state machine
with four states and one output. The current state is described by signals
A and B, which are put into a set. The next state is described by the
registered outputs C and D, which are also collected into a set. The single
combinational output is signal E. The machine simply counts through the
different states, driving the output E low when A equals 1 and B equals 0.

TRUTH_TABLE ([A,B] :> [C,D] -> E)
 0 :> 1 -> 1 ;
 1 :> 2 -> 0 ;
 2 :> 3 -> 1 ;
 3 :> 0 -> 1 ;

Note that the input and output combinations are specified by a single
constant value rather than by set notation. This is equivalent to:

[0,0] :> [0,1] -> 1 ;
[0,1] :> [1,0] -> 0 ;
[1,0] :> [1,1] -> 1 ;
[1,1] :> [0,0] -> 1 ;

When writing truth tables in PSDabel-HDL (particularly when describing
registered circuits) follow the same rules for dot extensions, attributes, and
pin-to-pin/detailed descriptions described earlier for writing equations.
The only difference between equations and truth tables is the ordering of
the inputs and outputs.

The following two fragments of source code, for example, are functionally
equivalent:
PSDabel-HDL Reference 5-89

Language Reference
Fragment 1:

equations

 q := a & load # !q.fb & !load;

Fragment 2:

truth_table ([a ,q.fb,load] :> q)
 [0 , 0 , 0] :> 1;
 [0 , 1 , 0] :> 0;
 [1 , 0 , 0] :> 1;
 [1 , 1 , 0] :> 0;
 [0 , 0 , 1] :> 0;
 [1 , 0 , 1] :> 1;
 [0 , 1 , 1] :> 0;
 [1 , 1 , 1] :> 1;

As an example, the following truth table defines an exclusive-OR function
with two inputs (A and B), one enable (en), and one output (C):

TRUTH_TABLE ([en, A , B] -> C)
 [0,.X.,.X.] -> .X.;" don’t care w/enab off
 [1, 0 , 0] -> 0 ;
 [1, 0 , 1] -> 1 ;
 [1, 1 , 0] -> 1 ;
 [1, 1 , 1] -> 0 ;

See Also Module
Equations
State_diagram
@Dcset
led1.abl
led7.abl
5-90 PSDabel-HDL Reference

Language Reference
When-Then-Else
Syntax

[WHEN condition THEN] [!] element=expression;
[ELSE equation];
 or
[WHEN condition THEN] equation; [ELSE equation];

Purpose
The When-then-else statement is used in equations to describe a logic
function.

Use

Equations use the assignment operators = and ?= (combinational), and :=
and ?:= (registered) described in Chapter 2, “Language Structure.”

The complement operator, “!”, expresses negative logic. The complement
operator precedes the signal name and implies that the expression on the
right of the equation is to be complemented before it is assigned to the
signal. Using the complement operator on the left side of equations is also
supported; equations for negative logic parts can just as easily be
expressed by complementing the expression on the right side of the
equation.

Caution:

When-Then-Else is only supported in equations. Use If-Then-Else in
state_diagram descriptions.

Note:

Equation blocks in conditional expressions such as WHEN-THEN result in logic
functions that are logically ANDed with the conditional expression that is
in effect.

condition Any valid expression.

element An identifier naming a signal or set of signals, or
an actual set, to which the value of the expression
is assigned.

expression Any valid expression.

=, :=, ?= and ?:= Combinational and registered (pin-to-pin)
assignment operators.
PSDabel-HDL Reference 5-91

Language Reference
Examples
WHEN (Mode == S_Data) THEN { Out_data := S_in;
 S_Valid := 1; }
ELSE WHEN (Mode == T_Data) THEN { Out_data := T_in;
 T_Valid := 1; }

See Also “Equations” in Chapter 2, “Language Structure”
5-92 PSDabel-HDL Reference

Language Reference
With
Syntax

trans_stmt state_exp WITH equation
[equation]..;

Purpose
The WITH statement is used in the State_diagram section. When used in
conjunction with the IF-THEN or CASE statement, it allows output
equations to be written in terms of transitions.

Use

You can use the WITH statement in any transition statement, in place of a
simple state expression.

The WITH statement is also useful when you are describing output
behavior for registered outputs, since registered outputs written only for
a current state would lag by one clock cycle.

To specify that a set of registered outputs should contain a specific value
after one particular transition, specify the equation using a WITH
statement similar to the one shown below:

STATE S0:
 IF (reset) THEN S9 WITH { ErrorFlag := 1;
 ErrorAddress := address;}
 ELSE IF (address <= ^hE100)
 THEN S2
 ELSE S0;

Examples
State 5 :
 IF a == 1 then 1 WITH { x := 1 ;
 y := 0 ;}
 ELSE 2 WITH { x := 0 ;
 y := 1 ;}

See Also State_diagram
Case
Goto
If-then-else

trans_stmt The IF-THEN-ELSE, GOTO, or CASE statement.

state_exp The next state.

equation An equation for state machine outputs.
PSDabel-HDL Reference 5-93

Language Reference
XOR_Factors
Syntax

XOR_Factors
signal name = xor_factors ;

Purpose
Use XOR_factors to specify a Boolean expression to be factored out of (and
XORed with) the sum-of-products reduced equations. Factors can
dramatically reduce the reduced equations if you use a device featuring
XOR gates.

Use
XOR_factors converts a sum of products (SOP) equation into an exclusive
OR (XOR) equation. The resulting equation contains the sum of product
functions that, when exclusive ORed together, have the same function as
the original. The XOR_Factors equation is divided into the original
equation, with the factor (or its complement) on one side of the XOR and
the remainder on the other.

After deciding the best XOR_Factors, remember to revise the source file to
use an XOR device for the final design.

Note:

The assignment operator you use in XOR_Factors equations must match the
assignment operator in the Equations section.

Examples
!Q16 = A & B & !D
 # A & B & !C
 # !B & C & D
 # !A & C & D;

Reordering the product terms indicates that (A & B) and (C & D) are good
candidate factors, as shown below:

!Q16 = A & B & (!C # !D)
 # (!A # !B) & C & D;

If we process the following source file, the program reduces the equations
according to the XOR_Factors, A & B.

module xorfact
 xorfact device ’P20X10’;
 Clk,OE pin 1,13;
 A,B,C,D pin 2,3,4,5;
 Q16 pin 16 istype ’reg,xor’;
XOR_Factors
 Q16 := A & B;
equations
 !Q16 := A & B & !D
 # !B & C & D
 # !A & C & D
 # A & B & !C;
end
5-94 PSDabel-HDL Reference

Language Reference
Using A & B as the XOR_Factors, the reduced equations are

!Q16 := ((A & B) $ (C & D));

Example 2

The example octalf.abl uses a more complex high-level equation:

module OCTALF F

title ’Octal counter with xor factoring
Adam Zilinskas Data I/O Corp.’

 octalf device ’P20X8’;
 D0..D7 pin 3..10;
 Q7..Q0 pin 15..22 istype ’reg,xor’;
 CLK,I0,I1,OC,,CarryIn pin 1,2,11,13,23;
 CarryOut pin 14 istype ’com’;
 H,L,X,Z,C = 1, 0, .X., .Z., .C.;

 Data = [D7..D0];
 Count = [Q7..Q0];

 Mode = [I1,I0];
 Clear = [0, 0];
 Hold = [0, 1];
 Load = [1, 0];
 Inc = [1, 1];

xor_factor
 Count.FB := Count & I0;

" ..comments removed..
equations
 Count := (Count.FB + 1) & (Mode == Inc) & !CarryIn
 # (Count.FB) & (Mode == Inc) & CarryIn
 # (Count.FB) & (Mode == Hold)
 # (Data) & (Mode == Load)
 # (0) & (Mode == Clear);

 !CarryOut = !CarryIn & (Count.FB == ^hFF);

 Count.C = CLK;
 Count.OE = !OC;
"..test vectors removed..
"..comments removed..
end OCTALF;
PSDabel-HDL Reference 5-95

Language Reference
5-96 PSDabel-HDL Reference

Index
Index

Symbols
.. (range operator)

example, 4-7
in hierarchy declarations, 5-49
in node declarations, 5-72
in pin declarations, 5-74
in sets, 2-17

:=alternate flip-flop types, 3-11
=, 5-12
@Alternate, 5-17
@Carry, 5-18
@Const, 5-19
@Dcset, 5-20

example, 3-21
@Dcstate, 5-21
@Exit, 5-22
@Expr, 5-23
@If, 5-24
@Ifb, 5-25
@Ifdef, 5-26
@Ifiden, 5-27
@Ifnb, 5-28
@Ifndef, 5-29
@Ifniden, 5-30
@Include, 5-31
@Irp, 5-32
@Irpc, 5-33
@Message, 5-34
@Onset, 5-35
@Page, 5-36
@Radix, 5-37
@Repeat, 5-38
@Setsize, 5-39
@Standard, 5-40
^b, 2-8
^d, 2-8
^h, 2-8
^o, 2-8
’attr’ istype, 5-62
’attribute’, 5-62

and polarity control, 3-14
’collapse’

collapsing nodes, 3-4
selective collapsing, 3-4

.constant, 2-5

.ext, 5-2
’keep’ collapsing nodes, 3-4

A
ABEL-HDL

introduction to, 2-2
structure, 2-25
syntax, 2-2

.ACLR, 5-3
Active-low declarations, 3-12
actlow1.abl, 3-12, 3-13
actlow2.abl, 3-12
Addition, 2-10
@Alternate, 5-17

disabling, 5-40
AND, 2-10

alternate operator for, 5-17
.AP, 5-3
.AR, 5-3
Architecture independence

attributes, 3-5
dot extensions, 3-6, 3-16
dot extensions, example, 3-17
resolving ambiguities, 3-7

Arguments, 2-23
defining in Module statement, 5-71

Arithmetic operators, 2-10
Arrays, complement, 3-34
ASCII, supported characters, 2-3
.ASET, 5-3
Assignment operators, 2-13
Assignments

device, 5-46
multiple, to same identifier, 2-16
node, 5-72
pin, 5-74

Async_reset keyword, 5-41
Asynchronous preset, 5-3
Attributes, 5-62

'buffer', 5-63
'collapse', 5-64
'com', 5-64
'dc', 5-64
'invert', 5-63
'keep', 5-64
'neg', 5-64
'pos', 5-64
'reg', 5-65
'reg_d', 5-65
'reg_g', 5-65
'reg_jk', 5-65
PSDabel-HDL Reference Index-1

Index
’reg_sr’, 5-65
’reg_t’, 5-66
’retain’, 5-66
’xor’, 5-66
and architecture independence, 3-5
collapsing nodes, 3-4
in lower-level sources, 3-2
inherited by higher-level sources, 5-49
istype, 5-62

B
^b, 2-8
Base numbers, 2-8

changing, 5-37
bcd7.abl, 4-16
Bidirectional 3-state buffer, example, 4-10
Binary, 2-8
binbcd.abl, 4-26
bjack.abl, 4-30
Blackjack machine, 4-19
Blocks, 2-6
’buffer’, 5-63

and polarity control, 3-14
example, 3-9

Buried nodes
declaring, 5-72

C
.C., 2-5, 3-3
@Carry, 5-18
Case keyword, 5-42
.CE, 5-3
Chained if-then-else, 5-55
.CLK, 5-3
Clocked memory element

Istype ’reg’, 5-65
Clock-enable, 5-3
Closing a module, 5-47
.CLR, 5-3
’collapse’, 5-64
Collapsing combinational nodes

Istype ’collapse’, 5-64
Istype ’keep’, 5-64

Collapsing nodes, 3-4
selective, 3-4

.COM, 5-3
Combinational nodes, 3-2
Combinatorial device, attribute for, 5-64
Comments, 2-7
comp4a.abl, 4-13
Complement arrays, 3-34

example, 3-35

Complement operator, 2-16
@Const, 5-19
Constants

declarations, 5-12
declared in macros, 5-19
intermediate expressions, 5-13

Counter
example, 4-6

D
.D, 2-5, 5-3, 3-16

example, 5-11
^d, 2-8
D flip-flop

clocked memory element, 5-65
dot extensions, 5-4
gated clocked memory element, 5-65
unsatisfied transition conditions, 3-27

Dangling nodes, 3-2
’dc’, 5-64

and polarity control, 3-14
dc.abl, 3-21
Dc-set, 3-20

and optimization, 3-19
@Dcset, 5-20

disabling, 5-35
optimization and, 3-20
overrides ’dc,’ ’neg,’ and ’pos’, 5-65
precautions, 3-19
state machines and, 3-21, 3-28
with state machines, 3-28

@DCstate, 5-21
decade.abl, 3-35
Decimal, 2-8
Declarations

active-low, 3-12
constants, 5-12
device, 5-46
fuses, 5-52
macro, 5-68
node, 5-72
pin, 5-74
signal, 2-30
structure, 2-28

Declarations keyword, 5-45
Declared equations vs. macros, 5-68
decode.abl, 4-3
Default values

for lower-level source signals, 5-57
supported values, 5-60

Design considerations, 3-1
Detail descriptions, 3-7
Index-2 PSDabel-HDL Reference

Index
and dot extensions, 3-18
and macrocells, 3-7
example, dot extensions, 3-18, 3-19
example, inverting, 3-10
example, non-inverting, 3-9
when to use, 3-11

detail1.abl, 3-18
detail2.abl, 3-19
Device keyword, 5-46
Device kits, passing information to, 5-75
Devices

programmable polarity, 3-13
Directives, 5-16

@Alternate, 5-17
@Carry, 5-18
@Const, 5-19
@Dcset, 5-20
@Dcstate, 5-21
@Exit, 5-22
@Expr, 5-23
@If, 5-24
@Ifb, 5-25
@Ifdef, 5-26
@Ifiden, 5-27
@Ifnb, 5-28
@Ifndef, 5-29
@Ifniden, 5-30
@Include, 5-31
@Irp, 5-32
@Irpc, 5-33
@Message, 5-34
@Onset, 5-35
@Page, 5-36
@Radix, 5-37
@Repeat, 5-38
@Setsize, 5-39
@Standard, 5-40
changing base numbering systems, 5-37
if blank, 5-25
if defined, 5-26
if identical, 5-27
if not blank, 5-28
if not defined, 5-29
if not identical, 5-30

Division, 2-10
Don’t cares, @Dcset, 5-20
Dot extensions, 5-2

.D, 3-16

.FB, 3-15

.PIN, 3-16

.Q, 3-16
and architecture independence, 3-6, 3-16
and architecture independence, example, 3-17

and detail descriptions, 3-18
and feedback, 3-15
example, detail, 3-18, 3-19
for flip-flop types, 5-4
no, 3-15
not allowed across sources, 5-57
pin-to-pin, 5-6

Dummy arguments
defining in Module statement, 5-71

E
Else keyword, 5-54
Emulation of flip-flops, 3-23
End keyword, 5-47
Endcase, 5-42
Equal, 2-12
Equation polarity, 3-14
Equations

for flip-flops, 3-15
overview, 2-15
when-then-else, 5-48, 5-91
XOR, 3-22

Equations keyword, 5-48
Examples

12-to-4 multiplexer, equations, 4-3
4-bit comparator, equations, 4-11
4-bit universal counter, 4-6
7-segment display decoder, truth tables, 4-14
adder, 4-19
bidirectional 3-state buffer, equations, 4-10
binary to BCD converter, 4-19
blackjack machine, 4-19
blackjack machine, state machine, 4-19
memory address decoder, equations, 4-1
multiplexer, 4-19
three-state sequencer, state machine, 4-17

@Exit, 5-22
@Expr, 5-23
Expressions, 2-14

directive for, 5-23

F
.F., 2-5
Factors, XOR, 5-94
.FB, 3-15, 5-3
.FC, 5-3
Feedback

and dot extensions, 3-15
merging, 3-4
referencing across sources, 5-57

Files, including in source file, 5-31, 5-67
Flip-flop mode control, 5-3
PSDabel-HDL Reference Index-3

Index
Flip-flops, 3-28
and dot extensions, 3-15
detail descriptions, 3-11
D-type, 3-27
emulation with XORs, 3-23
state diagrams, 3-12
using := with, 3-11

Form feed, 5-36
4-bit comparator, example, 4-11
4-bit Universal Counter

example, 4-6
Functional_block, 5-49

G
Gated Clock D Flip-flop, dot extensions, 5-4
Goto keyword, 5-53
Greater than, 2-12

H
^h, 2-8
Header, 2-27, 5-86
Hexadecimal, 2-8
Hierarchy, 3-1
Hierarchy declarations

creating multiple instances of a source, 5-49
functional_block, 5-49
inheriting attributes, 5-49
interface (lower-level source), 5-59
interface (top-level source), 5-57
overriding default values, 5-51
supported default values, 5-60
unlisted pins, 5-60
unused outputs, 5-51
wiring lower-level signals, 5-50

I
Identifiers, 2-3

choosing, 2-4
in state machines, 3-24
multiple assignments to, 2-16
reserved, 2-4

@If, 5-24
If blank, 5-25
If defined, 5-26
If identical, 5-27
If not blank, 5-28
If not defined, 5-29
If not identical, 5-30
If-then-else keywords, 5-54
@Ifb, 5-25
@Ifdef, 5-26

@Ifiden, 5-27
@Ifnb, 5-28
@Ifndef, 5-29
@Ifniden, 5-30
@Include, 5-31
Include files, 5-67
Indefinite repeat, 5-32

character, 5-33
Input pin, 5-74
Instantiation, 3-1, 5-57, 5-59

of lower-level sources, 5-49
Interface

(lower-level source), 5-59
(top-level source), 5-57
submodule, 3-2

Intermediate expressions, 5-13
’invert’, 5-63

and polarity control, 3-14
example, 3-10

Inverting outputs
attribute for, 5-63

@Irp, 5-32
@Irpc, 5-33
Istype keyword, 5-62

See also Attributes, 5-62

J
.J, 5-3
JEDEC simulation, 3-4
JK flip-flop

and :=, 3-12
clocked memory element, 5-65
dot extensions, 5-4
emulation of, 3-23

K
.K., 2-5, 5-3
’keep’, 5-64
Keywords

async_reset, 5-41
case, 5-42
declarations, 5-45
device, 5-46
end, 5-47
equations, 5-48
fuses, 5-52
goto, 5-53
if-then-else, 5-54
interface (lower-level source), 5-59
interface (top-level source), 5-57
istype, 5-62
library, 5-67
Index-4 PSDabel-HDL Reference

Index
macro, 5-68
module, 5-71
node, 5-72
pin, 5-74
property, 5-75
state (declarations), 5-76
state (in state_diagram), 5-77
state_diagram, 5-78
state_register, 5-82
sync_reset, 5-41
test_vectors, 5-84
title, 5-86
trace, 5-87
truth_table, 5-88
when-then-else, 5-91
with, 5-93
XOR_factors, 5-94

L
L-type latch, dot extensions, 5-4
Latch-enable, 5-3
.LD, 5-3
.LE, 5-3
Less than, 2-12
.LH, 5-3
Library keyword, 5-67
Linking modules

merging feedbacks, 3-4
post-linked optimization, 3-4

Logic descriptions, 2-33
Logical operators, 2-10
Lower-level sources, 3-2

instantiating, 3-1, 5-49

M
mac.abl, 5-69
Macro keyword, 5-68

example, 5-69
Macros vs. declared equations, 5-68
Memory address decoder, example, 4-1
@Message, 5-34
Minus, 2-10
Module

beginning, 5-71
defined, 2-27
ending, 5-47

Module keyword, 5-71
Modulus, 2-10
Multiplication, 2-10
mux12t4.abl, 4-6
muxadd.abl, 4-24

N
’neg’, 5-63
No connects

in hierarchy declarations, 5-51
Node

collapsing, 3-4
combinational, 3-2
complement arrays, 3-34
dangling, 3-2
istype, 5-62
node keyword, 5-72
registered, 3-3
removing redundant, 3-3
selective collapsing, 3-4
using the range operator in, 5-72

Non-inverting outputs
attribute for, 5-63

NOT, 2-10
alternate operator for, 5-17

Not equal, 2-12
Numbers, 2-8

changing base, 5-37

O
^o, 2-8
Octal, 2-8
octalf.abl, 5-95
.OE, 5-3

example, 5-11
Off-set, 3-20
One-bit changes, 3-31
On-set, 3-20
@Onset, 5-35
Operators

alternate set of, 5-17
arithmetic, 2-11
assignment, 2-13
complement, 2-16
logical, 2-10
overview, 2-10
priority, 2-14
relational, 2-11
standard set, 5-40

Optimization
and @Dcset, 3-20
of XORs, 3-21
post-linked, 3-4
reducing product terms, 3-31

OR, 2-10
alternate operator for, 5-17

Output enable, 5-3
Output enables, 3-2
PSDabel-HDL Reference Index-5

Index
Output pin, 5-74
Outputs

using istype for, 5-62

P
.P., 2-5
@Page, 5-36
.PIN, 3-16, 5-4

assignments, 5-74
istype, 5-62
pin keyword, 5-74
using the range operator in, 5-74

pin2pin.abl, 3-17
Pin-to-pin descriptions, 3-6

and flip-flops, 3-15
example, 3-9
resolving ambiguities, 3-7

Plus, 2-10
Polarity control, 3-13

Istype, and polarity control, 3-14

active levels, 3-13
Ports

declaring lower-level, 3-2
’pos’, 5-64
Post-linked Optimization, 3-4
Powerup state, 3-27
.PR, 5-4

example, 5-11
Preset

built-in, example, 3-10
Priority of operators, 2-14
Product terms

reducing, 3-31
reducing with intermediate expressions, 5-13

Programmable polarity,
active levels for devices, 3-13

Property keyword, 5-75

Q
.Q, 3-16, 5-4
Q11.abl, 3-9
Q12.abl, 3-9
Q13.abl, 3-10
Q15.abl, 3-10
Q17.abl, 3-11

R
.R, 5-4
.RE, 5-4

example, 5-11
@Radix, 5-37
Range operator

example, 4-7
in hierarchy declarations, 5-49
in node declarations, 5-72
in pin declarations, 5-74
in sets, 2-17

Reduction, XOR_factors, 5-94
Redundant nodes, 3-3
Redundant product terms

retaining, 5-66
’reg’, 5-65
’reg_d’, 5-65
’reg_g’, 5-65
’reg_jk’, 5-65
’reg_sr’, 5-65
’reg_t’, 5-66
Register load input, 5-3
Registered design descriptions, 3-6
Registered nodes, 3-3
Registers

bit values in state machines, 3-31
cleared state in state machines, 3-27
dot extensions, 5-4
powerup states, 3-27

Relational operators, 2-11
Repeat, 5-38

@Irp directive, 5-32
@Irpc directive, 5-33

Reset
example, inverted architecture, 3-11
example, non-inverted architecture, 3-10
resolving ambiguities, 3-10

’retain’, 5-66

S
.S, 5-4
Selective collapsing, 3-4
sequence.abl, 3-26, 4-19
.SET, 5-4
Set operations, 2-18
Sets, 2-17

assignment and comparison, 2-19
evaluation of, 2-20
indexing, 5-39
limitations, 2-22
using to create modes, 4-7

@Setsize, 5-39
Index-6 PSDabel-HDL Reference

Index
7-segment display decoder, example, 4-14
Shift, 2-10
Signals

nodes, 5-72
pins, 5-74

Simulation
test_vectors, 5-84
trace keyword, 5-87

Source files
beginning, 5-71
declarations, 2-28
design considerations, 3-1
directives, 2-38
header, 2-27
logic descriptions, 2-33
structure of, 2-25
test vectors, 2-37

.SP, 5-4
Special constants, 2-5
.SR, 5-4
SR flip-flop

and :=, 3-12
clocked memory element, 5-65
dot extensions, 5-4

@Standard, 5-40
State keyword

declarations, 5-76
in descriptions, 5-77

State machine example, 3-26, 5-81
@Dcset, 3-30
blackjack machine, 4-19
no @Dcset, 3-29
three-state sequencer, 4-17

State machines
and @Dcset, 3-28
case keyword, 5-42
cleared register state, 3-27
design considerations, 3-24
goto, 5-53
identifiers in, 3-24
identifying states, 3-31
if-then-else, 5-54
illegal states, 3-27
powerup register states, 3-27
reducing product terms, 3-31
state, 5-77
state_diagram, 5-78
test vectors for, 5-84
transition statements, 5-79
using state register outputs, 3-31
with, 5-93

State registers, 3-31
State_diagram

@DCState, 5-21
State_diagram keyword, 5-78
State_register keyword, 5-82
statema.abl, 5-81
Subtraction, 2-10
Sum-of-products, XOR_factors, 5-94
.Svn., 2-5
Symbolic state descriptions, 3-32

specifying reset logic, 5-41
Sync_reset keyword, 5-41
Synchronous preset, 5-4
Syntax, 2-2

T
.T, 5-4
T flip-flop

and equations, 3-15
clocked memory element, 5-66
dot extensions, 5-4

Tabular truth table, 5-88
Test vectors, 3-4

test_vectors keyword, 5-84
trace keyword, 5-87

Then keyword, 5-54
Three-state sequencer, example, 4-17
Times, 2-10
Title keyword, 5-86
Trace keyword, 5-87
traffic.abl, 3-29
traffic1.abl, 3-30
Transferring designs, 3-5
Transition conditions, 3-27
Transition statements, 5-79
Transitions

case keyword, 5-42
if-then-else keywords, 5-54

Tristate outputs, 3-2
Truth tables

7-segment display decoder example, 4-14
truth_table keyword, 5-88

tsbuffer.abl, 4-11
12-to-4 multiplexer, example, 4-3

U
.U., 2-5
unicnt.abl, 4-9
Unlisted pins

in hierarchy declarations, 5-60
Unspecified logic values, istype ’dc|pos|neg’, 5-64
PSDabel-HDL Reference Index-7

Index
W
When-then-else, 5-48
When-then-else keyword, 5-91
With keyword, 5-93

X
.X., 2-5
x1.abl, 3-22
x2.abl, 3-22
XNOR, 2-10

alternate operator for, 5-17
XOR, 2-10, 5-66

alternate operator for, 5-17
attribute for, 5-66

XOR_Factors
example, 5-94, 5-95
summary, 2-36

XOR_factors keyword, 5-94
xorfact.abl, 5-94
XORs

and operator priority, 3-22
example, 3-22
flip-flop emulation, 3-23
implied, 3-22
optimization of, 3-21

Z
.Z., 2-5
Index-8 PSDabel-HDL Reference

	PSDsoft™
	PSDabel-HDLTM Reference Manual

	Contents
	Chapter 1:� Introduction
	Chapter 2:� Language Structure
	Chapter 3:� Design Considerations
	Chapter 4:� Source File Examples
	Chapter 5:� Language Reference

	Chapter 1: Introduction
	Chapter 2: Language Structure
	Summary
	Introduction to PSDabel-HDL
	Basic Syntax
	Supported ASCII Characters
	Identifiers
	Reserved Identifiers (Keywords)
	Choosing Identifiers

	Constants
	Table 2-1 Special Constants

	Blocks
	Using Blocks in Logic Descriptions
	Blocks in Equations
	Blocks in State Diagrams

	Using Blocks for State Diagram Transitions
	Blocks for Transition Logic

	Comments
	You can enter comments two ways:

	Numbers
	Table 2-2 Number Representation in Different Bases
	Note:

	Strings
	Note:

	Operators, Expressions, and Equations
	Logical Operators
	Table 2-3 Logical Operators

	Arithmetic Operators
	Table 2-4 Arithmetic Operators
	Note:

	Relational Operators
	Table 2-5 Relational Operators

	Assignment Operators
	Table 2-6 Assignment Operators
	Caution:
	Note:
	Caution:

	Expressions
	Table 2-7 Operator Priority (Continued)

	Equations
	See Also “Equations” and “When-Then-Else” in Chapter 5, “Language Reference.”

	Equation Blocks
	See Also If-Then-Else, When-Then-Else, and Case in Chapter 5, “Language Reference.”

	Multiple Assignments to the Same Identifier
	Note:

	Sets
	Set Indexing
	Set Operations
	Two-set Operations

	Set Assignment and Comparison
	Table 2-8 Supported Set Operations

	Set Evaluation
	Example Equations
	Set Operation Rules
	Limitations/Restrictions on Sets

	Arguments and Argument Substitution
	Spaces in Arguments
	Argument Guidelines

	Basic Structure
	Header
	Declarations
	Figure 2-1 PSDabel-HDL Module Structure

	Logic Description
	Test Vectors Section
	End Statement
	Other Elements

	Header
	Module
	Interface
	Title

	Declarations
	Declarations Keyword
	Device Declaration (not supported in PSDsoft)
	Hierarchy Declarations
	Interface Declarations
	Top-level Interface Declarations
	Lower-level Interface Declarations
	Caution:

	Functional_block Statement
	Example of Functional Block Instantiation
	Figure 2-2 Functional Block Instantiation
	See Also “Hierarchy in PSDabel-HDL” in Chapter 3, “Design Considerations.”

	Signal Declarations
	Note:
	Pin Declarations
	Node Declarations
	Attribute Assignment
	Table 2-9 Attributes (Continued)

	Constant Declarations
	See Also “Special Constants” in this chapter.

	Symbolic State Declarations
	See Also “State Descriptions” under “Logic Description” later in this chapter.
	State_register Declarations
	State Declarations

	Macro Declarations
	Library Declaration

	Logic Description
	Dot Extensions
	Syntax
	Table 2-10 Dot Extensions (Continued)

	Equations
	Truth Tables
	State Descriptions
	See Also “With” in Chapter 5, “Language Reference.”

	Fuse Declarations (not supported in PSDsoft)
	XOR Factors

	Test Vectors Section
	Note:
	Test Vectors
	Trace Statement

	End Statement
	Other Elements
	Directives

	Chapter 3: Design Considerations
	Hierarchy in PSDabel-HDL
	In the lower-level module: (optional)
	In the top-level source:
	1. Declare the lower-level module with an Interface declaration.
	2. Instantiate the lower-level module with Functional_block declarations.
	Note:

	Instantiating a Lower-level Module in an PSDabel-HDL Source
	Identifying I/O Ports in the Lower-level Module
	Specifying Signal Attributes
	Output Enables (OE)
	Buried Nodes

	Declaring Lower-level Modules in the Top-level Source
	Instantiating Lower-level Modules in Top-level Source

	Hierarchy and Retargeting and Fitting
	Redundant Nodes
	Merging Feedbacks
	Post-linked Optimization

	Hierarchy and Test Vectors (PLD JEDEC Simulation - not supported in PSDsoft)

	Node Collapsing
	Selective Collapsing

	Pin-to-pin Language Features
	Device-independence Vs.� Architecture-independence
	Signal Attributes
	Signal Dot Extensions

	Pin-to-pin vs. �Detailed Descriptions for Registered Designs
	Using := for Pin-to-pin Descriptions
	Resolving Ambiguities

	Detailed Circuit Descriptions
	Detailed Descriptions: Designing for Macrocells
	Figure 3-1 Detail Macrocell
	Figure 3-2 Pin-to-pin Macrocell

	Examples of Pin-to-pin and Detailed Descriptions
	Pin-to-pin Module Description
	Detailed Module Description

	Detailed Module with Inverted Outputs
	When to Use Detailed Descriptions
	Using := for Alternative Flip-flop Types
	Note:

	Using Active-low Declarations
	Design 1 — Implied Pin-to-Pin Active-low
	Design 2 — Explicit Pin-to-Pin Active-low
	Design 3 — Explicit Detailed Active-low

	Polarity Control
	Polarity Control with Istype
	Using Istype 'neg', 'pos', and 'dc' to Control Equation and Device Polarity
	Using 'invert' and 'buffer' to Control Programmable Inversion
	Note:

	Flip-flop Equations
	Feedback Considerations — Using Dot Extensions
	Dot Extensions and Architecture-Independence
	Figure 3-3 Dot Extensions and Architecture-Independence: Circuit 1
	Figure 3-4 Pin to Pin One-bit Synchronous Circuit
	Figure 3-5 Dot Extensions and Architecture-Independence: Circuit 2
	Figure 3-6 Dot Extensions and Architecture-Independence: Circuit 3

	Dot Extensions and Detail Design Descriptions
	Figure 3-7 Detail One-bit Synchronous Circuit with Inverted Qout
	Note:
	Figure 3-8 Detail One-bit Synchronous Circuit with Non-inverted Qout

	Using Don’t Care Optimization
	Figure 3-9 Source File Showing Don't Care Optimization

	Exclusive OR Equations
	Optimizing XOR Devices
	Using XOR Operators in Equations
	Using Implied XORs in Equations
	Note:

	Using XORs for Flip-flop Emulation
	JK Flip-Flop Emulation
	Figure 3-10 JK Flip-flop Emulation Using T Flip-flop
	Figure 3-11 T Flip-flop Emulation Using D Flip-flop
	Figure 3-12 JK Flip-flop Emulation, D Flip-flop with XOR

	State Machines
	Use Identifiers Rather Than Numbers for States
	Figure 3-13 Using Identifiers for States

	Powerup Register States
	Unsatisfied Transition Conditions
	D-Type Flip-Flops
	Figure 3-14 D-type Register with False Inputs

	Other Flip-flops

	Precautions for Using Don’t Care Optimization
	Figure 3-15 State Machine Description with Conflicting Logic
	Figure 3-16 @DCSET-compatible State Machine Description

	Number Adjacent States for One-bit Change
	A
	00
	00
	B
	01
	01
	C
	10
	11
	D
	11
	10

	Use State Register Outputs to Identify States
	State Register Bit Values
	A
	0
	0
	0
	B
	0
	0
	1
	C1
	1
	0
	1
	C2
	1
	1
	1
	C3
	1
	1
	0
	D
	0
	1
	0

	Using Symbolic State Descriptions
	Figure 3-17 Symbolic State Description
	Symbolic Reset Statements
	Symbolic Test Vectors

	Using Complement Arrays
	Figure 3-18 Transition Equations for a Decade Counter
	Figure 3-19 Abbreviated F105 Schematic

	Chapter 4: Source File Examples
	Equations
	Memory Address Decoder
	Design Specification
	Figure 4-1 Block Diagram: Memory Address Decoder

	Design Method
	Figure 4-2 Simplified Block Diagram: Memory Address Decoder
	Figure 4-3 Memory Address Decoder Source File

	Test Vectors

	12-to-4 Multiplexer
	Design Specification
	Figure 4-4 Block Diagram: 12-to-4 Multiplexer

	Design Method
	Figure 4-5 Simplified Block Diagram: 12-to-4 Multiplexer

	Test Vectors
	Figure 4-6 Source File: 12-to-4 Multiplexer

	4-Bit Universal Counter
	Figure 4-7 Block Diagram: 4-bit Universal Counter
	Using Sets to Create Modes
	Counter Reset
	Using Range Operators
	Design Description
	Hierarchical Interface Declaration
	Declarations
	Equations
	Figure 4-8 Source File: 4-bit Universal Counter
	Note:

	Bidirectional Three-state Buffer
	Design Specification
	Figure 4-9 Block Diagram: Bidirectional Three-state Buffer

	Design Method
	Figure 4-10 Simplified Block Diagram: Bidirectional Three-state Buffer
	Figure 4-11 Source file: Bidirectional Three-state Buffer

	4-Bit Comparator
	Design Specification
	Figure 4-12 Block Diagram: 4-bit Comparator

	Design Method
	Figure 4-13 Simplified Block Diagram: 4-bit Comparator
	Figure 4-14 Source File: 4-bit Comparator

	Test Vectors

	Truth Table Examples
	Seven-segment Display Decoder
	Design Specification
	Figure 4-15 Block Diagram: Seven-segment Display Decoder

	Design Method
	Figure 4-16 Simplified Block Diagram: Seven-segment Display Decoder
	Figure 4-17 Source File: 4-bit Counter with 2-input Mux

	Test Vectors

	State Diagram Examples
	Three-state Sequencer
	Design Specification
	Design Method
	Figure 4-18 State Diagram: Three-state Sequencer

	Test Vectors
	Figure 4-19 Source File: Three-state Sequencer

	Combined Logic Descriptions
	1. A multiplexer-adder-comparator, which adds the value of the newly drawn card to the existing h...
	2. A binary to binary-coded-decimal (BCD) converter, which takes in the five-bit binary score and...
	3. The blackjack controller (a state machine that contains the game logic). This logic includes i...
	Figure 4-20 Schematic of a Blackjack Machine Implemented in Three PLDs
	Design Specification — MUXADD
	Design Method — MUXADD
	Test Vectors — MUXADD
	Figure 4-21 Source File: Multiplexer / Adder / Comparator

	Design Specification — BINBCD
	Design Method — BINBCD
	Test Vectors — BINBCD
	Figure 4-22 Source File: 4-bit Counter with 2-input Mux

	Design Specification — BJACK
	Design Method — BJACK
	Figure 4-23 Pictorial State Diagram: Blackjack Machine

	Test Vectors — BJACK
	.
	Figure 4-24 Source File: State Machine (Controller)

	Hierarchy Examples
	Note:

	PSDabel and Synario Projects
	Figure 4-25 Top-level PSDabel-HDL Source
	Lower-level Sources
	Figure 4-26 Lower-level PSDabel-HDL Source

	Chapter 5: Language Reference
	. ext — Dot Extensions
	Syntax
	Purpose
	Use
	Using Pin-to-Pin Vs. Detailed Dot Extensions:
	Table 5-1 Dot Extensions (Continued)

	Detailed Design Dot Extensions
	Table 5-2 Dot Extensions for Device-specific (detailed) Designs

	Pin-to-Pin Design Dot Extensions
	Table 5-3 Dot Extensions for Architecture-independent (pin-to-pin) Designs
	Figure 5-1 Pin-to-pin Dot Extensions in an Inverted Output Architecture
	Figure 5-2 Pin-to-pin Dot Extensions in a Non-inverted Output Architecture
	Figure 5-3 Detailed Dot Extensions for a D-type Flip-flop Architecture
	Figure 5-4 Detailed Dot Extensions for a T-type Flip-flop Architecture
	Figure 5-5 Detailed Dot Extensions for an RS-type Flip-flop Architecture
	Figure 5-6 Detailed Dot Extensions for a JK-type Flip-flop Architecture
	Figure 5-7 Detailed Dot extensions for a Latch with active High Latch Enable
	Figure 5-8 Detailed Dot Extensions for a Latch with Active Low Latch Enable
	Figure 5-9 Detailed Dot Extensions for a Gated-clock D Flip-flop

	Examples
	Three-state Output Enables
	Note:
	See Also Istype “Attributes” in the Chapter 2, “Language Structure” “Signal Dot Extensions” in th...

	= — Constant Declarations
	Syntax
	Purpose
	Use
	Note:

	Examples
	Using Intermediate Expressions
	Note:
	See Also Declarations Equations “Constants” in the Chapter 2, “Language Structure”

	attr' — Signal Attributes
	@directive — Directives
	Purpose
	Use
	@Alternate — Alternate Operator Set
	Syntax
	Use
	Table 5-4 Alternate Operator Set
	See Also @STANDARD

	@Carry — Maximum Bit-width for Arithmetic Functions
	Syntax
	Use
	Examples
	See Also = (Constant Declarations) “Constants” in Chapter 2, “Language Structure”

	@Const — Constant Declarations
	Syntax
	Use
	Examples
	See Also = (Constant Declarations) “Constants” in Chapter 2, “Language Structure”

	@Dcset — Don’t Care Set
	Syntax
	Use
	Caution:
	See Also @Onset Istype 'dc' ?:= and ?= Assignment Operators Truth_table “@DCSET Considerations an...

	@Dcstate — State Output Don’t Cares
	Syntax
	Use
	See Also @DCSET Istype 'dc'

	@Exit — Exit Directive
	Syntax
	Use
	@Expr — Expression Directive
	Syntax
	Use
	Examples
	@If — If Directive
	Syntax
	Use
	Examples
	@Ifb — If Blank Directive
	Syntax
	Use
	Examples
	See Also “Arguments and Argument Substitution” in Chapter 2, “Language Structure”

	@Ifdef — If Defined Directive
	Syntax
	Use
	Examples
	@Ifiden — If Identical Directive
	Syntax
	Use
	Examples
	@Ifnb — If Not Blank Directive
	Syntax
	Use
	Examples
	@Ifndef — If Not Defined Directive
	Syntax
	Use
	Examples
	@Ifniden — If Not Identical Directive
	Syntax
	Use
	Examples
	@Include — Include Directive
	Syntax
	Use
	Examples
	See Also Library

	@Irp — Indefinite Repeat Directive
	Syntax
	Use
	Examples
	@Irpc — Indefinite Repeat, Character Directive
	Syntax
	Use
	Examples
	@Message — Message Directive
	Syntax
	Use
	Examples
	@Onset — No Don’t Care’s
	Syntax
	Use
	See Also @Dcset ISTYPE 'dc'

	@Page — Page Directive
	Syntax
	Use
	@Radix — Default Base Numbering Directive
	Syntax
	Use
	Examples
	@Repeat — Repeat Directive
	Syntax
	Use
	Examples
	@Setsize — Set Indexing
	Syntax
	Purpose
	Example
	Note:
	See Also “Set Indexing” in Chapter 2, “Language Structure”

	@Standard — Standard Operators Directive
	Syntax
	Use

	Async_reset and Sync_reset
	Syntax
	Purpose
	Use
	Examples
	See Also State State_diagram “Using Symbolic State Descriptions” in Chapter 3, “Design Considerat...

	Case
	Syntax
	Purpose
	Use
	Note:

	Examples
	See Also State_diagram Goto If-then-else With

	Constant Declarations
	Declarations
	Syntax
	Purpose
	Use
	Examples
	See Also demo1800.abl

	Device (not supported in PSDsoft)
	Syntax
	Purpose
	Use
	Examples

	End
	Syntax
	Purpose
	Use

	Equations
	Syntax
	Purpose
	Use
	Caution:

	Examples
	See Also When-Then-Else Module State_diagram Truth_table “Operators, Expressions, and Equations” ...

	Functional_block
	Syntax
	Purpose
	Use
	Note:
	Creating Multiple Instances
	Mapping Ports to Signals

	Examples
	Figure 5-10 Wiring of CNT0
	Overriding Default Values
	Unused Outputs (No Connects)
	See Also Interface (top-level) “Hierarchy in PSDabel-HDL” in Chapter 3, “Design Considerations”

	Fuses (not supported in PSDsoft)
	Syntax
	Purpose
	Use
	Caution:

	Examples
	See Also cnt10rom.abl

	Goto
	Syntax
	Purpose
	Use
	Examples
	See Also State_diagram Case If-then-else With

	If-Then-Else
	Syntax
	Chained IF-THEN-ELSE:
	Nested IF-THEN-ELSE:
	Nested IF-THEN-ELSE with Blocks:

	Purpose
	Use
	Caution:
	Note:
	Chained IF-THEN-ELSE Statements:
	Examples

	Chained IF-THEN-ELSE
	Nested IF-THEN-ELSE with Blocks
	Nested IF-THEN-ELSE Statements
	See Also State_diagram Case Goto With

	Interface (top-level)
	Syntax
	Purpose
	Use
	Caution:
	Note:

	Examples
	See Also Functional_block “Hierarchy in PSDabel-HDL” in Chapter 3, “Design Considerations”

	Interface (lower-level)
	Syntax
	Purpose
	Use
	Declared Signals
	Caution:
	Note:

	Unlisted Signals

	Examples
	Note:
	See Also Interface (top-level) Functional_block “Hierarchy in PSDabel-HDL” in Chapter 3, “Design ...

	Istype _ Attribute Declarations
	Syntax
	Purpose
	Use
	Caution:
	See Also .ext—Dot Extensions
	Table 5-5 Attributes

	'buffer'
	'invert'
	Note:

	'collapse'
	'keep'
	'com'
	'dc,' 'neg,' and 'pos'
	Note:
	Caution:

	'reg'
	'reg_d'
	'reg_g'
	'reg_jk'
	'reg_sr'
	'reg_t'
	'retain'
	'xor'

	Examples
	See Also .ext Pin Node “Dot Extensions” and “Attribute Assignment” in Chapter 2, “Language Struct...

	Library
	Syntax
	Purpose
	Use
	See Also Module @Include

	Macro
	Syntax
	Purpose
	Use
	Macros and Declared Equations
	Figure 5-11 Differences Between MACRO and Declared Equations

	Examples
	See Also = (Constant Declarations) “Arguments and Argument Substitution” in Chapter 2, “Language ...

	Module
	Syntax
	Purpose
	Use
	Examples
	See Also Title Interface (submodule) End “Arguments and Argument Substitution” in Chapter 2, “Lan...

	Node
	Syntax
	Purpose
	Use
	Note:

	Example
	See Also Istype Pin Module “Attribute Assignment” in Chapter 2, “Language Structure” “Dot Extensi...

	Pin
	Syntax
	Purpose
	Use
	Note:

	Examples
	See Also Istype Node Module “Dot Extensions and Architecture-Independence” in Chapter 3, “Design ...

	Property
	Syntax
	Purpose
	Note:

	Use
	Caution:
	Caution:

	Example
	See Also amd_cm8.abl

	State (Declaration)
	Syntax
	Purpose
	Use
	See Also Async_reset State_register Sync_reset “Symbolic State Declarations” in Chapter 2, “Langu...

	State (in State_diagram)
	Syntax
	Purpose
	Use
	See Also Async_reset State_diagram Case Sync_reset @Dcset Truth_table Equations With Goto Chapter...

	State_diagram
	Syntax
	Purpose
	Use
	Transition Statements
	GOTO Syntax
	CASE Syntax
	IF-THEN-ELSE Syntax
	WITH Syntax
	SYNC_RESET and ASYNC_RESET Syntax

	State Descriptions and Pin-to-pin Descriptions
	Figure 5-12 Architecture-independent State Machine
	See Also Async_reset State Case State_register @Dcset Sync_reset Equations Truth_table Goto With ...

	State_register
	Syntax
	Purpose
	Use
	See Also State State_diagram “Symbolic State Declarations” in Chapter 2, “Language Structure” “Us...

	Sync_reset
	Test_vectors
	Syntax
	Purpose
	Note:

	Use
	Examples
	See Also Module Trace

	Title
	Syntax
	Purpose
	Use
	Examples
	See Also Module

	Trace
	Syntax
	Purpose
	Use
	Note:

	Examples
	See Also Test_vectors

	Truth_table
	Syntax
	Purpose
	Use
	Truth Table Format

	Examples
	See Also Module Equations State_diagram @Dcset led1.abl led7.abl

	When-Then-Else
	Syntax
	Purpose
	Use
	Caution:
	Note:

	Examples
	See Also “Equations” in Chapter 2, “Language Structure”

	With
	Syntax
	Purpose
	Use
	Examples
	See Also State_diagram Case Goto If-then-else

	XOR_Factors
	Syntax
	Purpose
	Use
	Note:

	Examples

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	W
	X
	Z

