CMOS 8-BIT MICROCONTROLLERS

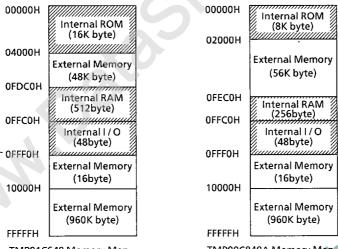
TMP91P640N - 10 / TMP91P640F - 10

1. OUTLINE AND CHARACTERISTICS

The TMP91P640 is a system evalution LSI having a built in One-Time PROM for TMP91C640.

A programming and verification for the internal PROM is achieved by using a general EPROM programmer with an adapter socket.

The function of this device is exactly same as the TMP91C640 or TMP90C840A by programming to the internal PROM.


The different points between TMP91P640 and TMP90C840A are the memory size (ROM/RAM) and maximum operating frequency.

The operating frequency range of TMP91P640 is from 1MHz to 10MHz, against that of TMP91C640/TMP90C840A is from 1MHz to 12.5MHz.

The TMP91P640N-10 is in a Shrink Dual Inline Package (SDIP64-P-750).

The TMP91P640F-10 is in a Quad Flat Package (QFP64-P-1420A).

The following are the memory map of TMP91C640 and TMP90C840A.

TMP91C640 Memory Map TMP90C840A Memory Map

PARTS NO.		ROM	RAM	PACKAGE	ADAPTER SOCKET NO.
TMP91P640N-10	ОТР		F12 v Shit	64-SDIP	BM1115A
TMP91P640F-10	1	16384 x 8bit	512 × 8bit	64-FP	BM1116A

261190

atal).com

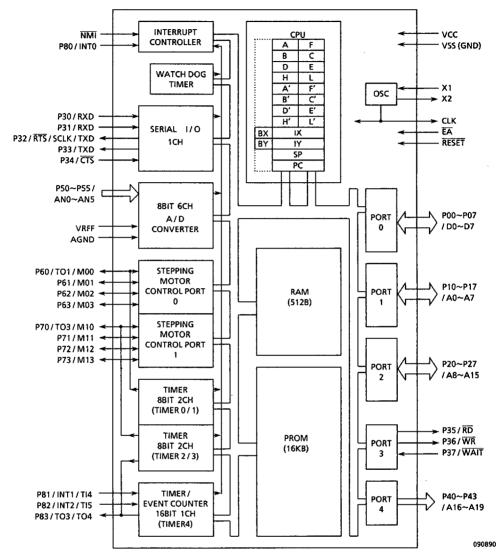


Figure 1 TMP91P640-10 Block Diagram

2. PIN ASSIGNMENT AND FUNCTIONS

2.1 Pin Assignment

Figure 2.1 (1) shows pin assignment of the TMP91P640N-10.

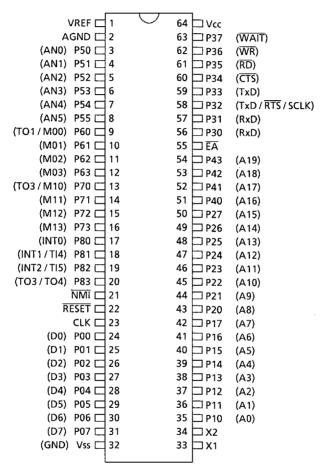


Figure 2.1 (1) Pin Assignment (64-SDIC/SDIP)

Figure 2.1 (2) shows pin assignment of the TMP91P640F-10.

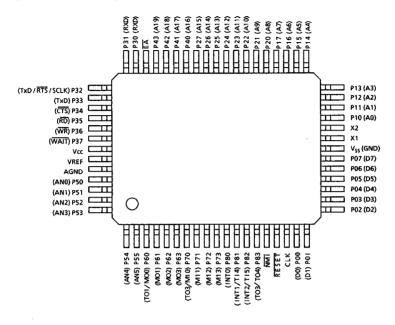


Figure 2.1 (2) Pin Assignment (64-FP)

2.2 Pin Names and Functions

The TMP91P640 has MCU mode and PROM mode.

(1) MCU Mode (The TMP91C640 and the TMP91P640 are pin compatiple)

Pin Names and Functions (1/2)

Pin Name	No. of pins	I/O 3 states	Function
P00~P07	8	1/0	Port 0: 8-bit I/O port that allows selection of input/output on byte basis
/D0~D7		3 states	Data bus: Also functions as 8-bit bidirectional data bus for external memory
P10~P17	8	1/0	Port 1: 8-bit I/O port that allows selection on byte basis
/A0~A7		Output	Address bus: The lower 8 bits address bus for external memory
P20~P27	8	I/O	Port 2: 8-bit I/O port that allows selection on bit basis
/A8~A15		Output	Address bus: The upper 8 bits address bus for external memory
P30	1	Input	Port 30: 1-bit input port
/RxD			Receiver Serial Data
P31	1	Input	Port 31: 1-bit input port
/RxD			Receiver Serial Data
P32	1	Output	Port 32: 1-bit output port
/TxD			Transmitter serial Data
/RTS			Request to send serial data
/SCLK			Serial clock output
P33	1	Output	Port 33: 1-bit output port
/TxD			Transmitter Serial Data
P34	1	Input	Port 34: 1-bit input port
/CTS			Clear to send Serial data
P35	1	Output	Port 35: 1-bit output port
/RD			Read: Generates strobe signal for reading external memory
P36	1	Output	Port 36: 1-bit output port
∕WR			Write: Generates strobe signal for writing into external memory
P37	1	Input	Port 37: 1-bit input port
/WAIT			Wait: Input pin for connecting slow speed memory or peripheral LSI
P40~P43	4	Output	Port 4: 4-bit output port that allows selection of Port/Address Bus on bit basis
/A16~A19			Address bus: Also functions as address bus for external memory (4 bits of bank address)
P50~P55	6	Input	Port 5: 6-bit input port
/AN0~AN5	·		Analog input: 6 analog inputs to A/D converter

Pin Names and Functions (2/2)

Pin Name	No. of pins	I/O 3 states	Function
VREF	1		Input of reference voltage to A/D converter
AGND	1		Ground pin for A/D converter
P60~P63	4	1/0	Port 6: 4-bit I/O port that allows I/O selection on bit basis
/M00~M03		Output	Stepping motor control port 0
/TO1		Output	Timer output 1: Output of Timer 0 or 1
P70~P73	4	1/0	Port 7: 4-bit I/O port that allows I/O selection on bit basis
/M10~M13		Output	Stepping motor control port 1
/TO3		Output	Timer output 3: Output of Timer 2 or 3
P80	1	Input	Port 80: 1-bit input port
/INTO			Interrupt request pin 0: interrupt request pin (Level/rising edge is programmable)
P81	1	Input	Port 81: 1-bit input port
/INT1			Interrupt request pin 1: interrupt request pin (Rising/falling edge is programmable)
/TI4			Timer input 4: Counter/capture trigger signal for Timer 4
P82	1	Input	Port 82: 1-bit input port
/INT2			Interrupt request pin 2: rising edge interrupt request pin
/TI 5			Timer input 5: capture trigger signal for Timer 4
P83	1	Output	Port 83: 1-bit output port
/TO3/TO4			Timer output 3/4: Output of Timer 2, 3 or 4
NMÏ	1	Input	Non-maskable interrupt request pin: Falling edge interrupt request pin
CLK	1	Output	Clock output: Generates clock pulse at 1/4 frequency of clock oscillation. It is Pulled up internally during resetting.
ĒĀ	1	Input	External access: Connects with Vcc pin using internal ROM, and with GND pin not using internal ROM.
RESET	1	Input	Reset : Initializes the LSI. (Built in pull-up resister)
X1/X2	2	Input/ Output	Pin for quartz crystal or ceramic resonator
Vcc	1		Power supply (+ 5V)
Vss (GND)	1		Ground (0V)

(2) PROM Mode

Table 2.1

Pin Function	No. of	T			
Name	pins	1/0	Function	Pin Name (MCU mode)	
A7~A0	8	Input	Address Input	P17~P10	
A13~A8	6	Input	Address input	P25~P20	
A14	_			P26	
A15	2	Input	Befixed to "L" level.	P27	
D7~D0	8	1/0	Data Input/Output	P07~P00	
ŌĒ	1	Input	Output Enable Input	P35	
CE	1	Input	Chip Enable Input	P36	
VPP	1	Power Supply	12.5V / 5V (Programming Power Supply)	EA	
vcc	1	Power Supply	5V	vcc	
VSS	1	Power Supply	ov	VSS	
Pin Name	No. of pins	I/O	Pin Setting		
P30, P31	2	Input	Be fixed to "L" level.		
P32, P33	2	Output	Open		
P34, P37	2	Input	Be fixed to "L" level.		
P43~P40	4	Output	Open		
P55~P50 P63~P60 P73~P70 P82~P80	6 4 4 3	Input	Be fixed to "L" level.		
P83	1	Output	Open		
VREF	1		Be fixed to "L" level.		
AGND	1		Be fixed to "L" level.		
RESET	1	Input	Be fixed to "L" level.		
CLK	1	Input	Be fixed to "L" level.		
NMI	1	Input	Be fixed to "H" level.		
X1	1	Input	Resonator connection pin		
X2	1	Output			

3. OPERATION

The TMP91P640 is the OTP version of the TMP91C640 that is replaced an internal ROM from Mask ROM to One-Time PROM.

The function of TMP91P640 is exactly same as that of TMP90C840A except the internal ROM/RAM size.

Refer to the TMP90C840A except the functions which are not described this section.

The following is an explanation of the hardware configuration and operation in relation to the TMP91P640.

The TMP91P640 has an MCU mode and a PROM mode.

3.1 MCU Mode

(1) Mode Setting and Function

The MCU mode is set by opening the CLK pin (Output status). In the MCU mode, the operation is same as that of TMP91C640.

(2) Memory Map

The memory map is same as that of TMP91C640.

Figure 3.1 shows the memory map of TMP91P640, and the accessing area by the respective addressing mode.

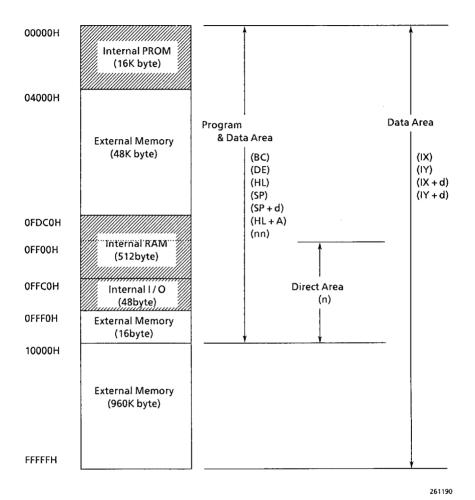
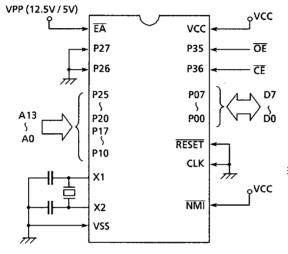


Figure 3.1 TMP91P640 Memory Map

3.2 PROM Mode

(1) Mode Setting and Function


PROM mode is set by setting the RESET and CLK pins to the "L" level.

The programming and verification for the internal PROM is achieved by using a general EPROM programmer with the adaptor socket. The device selection (ROM Type) should be "27256" with following conditions.

size: 256Kbit(32K×8bit) VPP: 12.5V TPW: 1ms

The TMP91P640-10 is not supported an electric signature mode.

Figure 3.2 shows the setting of pins in PROM mode.

For other pins, refer to the section on pin functions (Figure 2.1).

W Use the 10MHz resonator in case of programming and verification by a general EPROM programmer.

261190

Figure 3.2 PROM Mode Pin Setting

(2) Programming Flow Chart

The programming mode is set by applying 12.5V (programming voltage) to the VPP pin when the following pins are set as follows,

$$egin{pmatrix} {\sf Vcc} & : 6.0{\sf V} \\ \hline {\sf RESET} : "L" \ {\sf level} \\ {\sf CLK} & : "L" \ {\sf level} \end{pmatrix}$$

* These conditions can be obtained by using adaptor socket.

After the addres and data have been fixed, a data on the Data Bus is programmed when the \overline{CE} pin is set to "Low" (1ms plus is required).

General programming procedure of an EPROM programmer is as follows,

- Write a data to a specified address for 1ms.
- Verify the data. If the read-out data does not match the expected data, another writing is performed until the correct data is written (Max. 25 times).

After the correct data is written, an additional writting is performed by using three times longer programming pulse width (1ms×programming times), or using three times more programming pulse number. Then, verify the data and increment the address.

The verification for all data is done under the condition of Vpp = Vcc = 5V after all data were witten.

Figure 3.3 shows the programming flow chart.

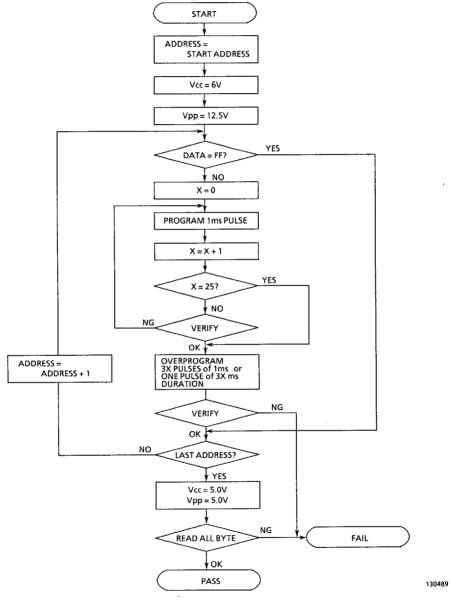


Figure 3.3 Flow Chart

4. ELECTRICAL CHARACTERISTICS

TMP91P640N-10/TMP91P640F-10

4.1 Absolute Maximum Ratings

Symbol	Parameter	Rating	Unit
Vcc	Supply voltage	-0.5~+7	V
VIN	Input voltage	-0.5~Vcc+0.5	
PD	Power dissipation (Ta = 85°C)	F 500 N 600	mW
T _{SOLDER}	Soldering temperature (10 s)	260	င
T _{STG}	Storage temperature	-65~150	ဗ
TOPR	Operating temperature	- 40 ~ 85	°C

261190

4.2 DC Characteristics

Vcc = $5V \pm 10\%$ TA = $-40 \sim 85$ °C ($1 \sim 10$ MHz) Typical Values are for TA = 25°C and Vcc = 5V.

	· · · · · · · · · · · · · · · · · · ·				
Symbol	Parameter	Min	Max	Unit	Test Conditions
V _{IL}	Input Low Voltage (P0)	-0.3	0.2Vcc - 0.1	V	
V _{IL1}	P1, P2, P3, P4, P5, P6, P7, P8	-0.3	0.3Vcc	٧	
V _{IL2}	RESET, INTO (P80), NMI	-0.3	0.25Vcc	٧	
V _{IL3}	EA	-0.3	0.3	>	
V _{IL4}	X1	-0.3	0.2Vcc	>	
VIH	Input High Voltage (P0)	0.2Vcc + 1.1	Vcc + 0.3	>	
V _{IH1}	P1, P2, P3, P4, P5, P6, P7, P8	0.7Vcc	Vcc + 0.3	>	
V _{IH2}	RESET, INTO (P80), NMI	0.75Vcc ·	Vcc + 0.3	V	
V _{IH3}	EA	Vcc – 0.3	Vcc + 0.3	٧	
V _{IH4}	X1	0.8Vcc	Vcc + 0.3	٧	
VOL	Output Low Voltage		0.45	٧	I _{OL} = 1.6mA
V _{OH} V _{OH1} V _{OH2}	Output High Voltage	2.4 0.75Vcc 0.9Vcc		>>>	$I_{OH} = -400 \mu A$ $I_{OH} = -100 \mu A$ $I_{OH} = -20 \mu A$
I _{DAR}	Darlington Drive Current (8 I/O pins)	- 1.0	- 3.5	mA	V _{EXT} = 1.5V R _{EXT} = 1.1 kΩ
I _{LI}	Input Leakage Current	0.02 (Typ)	±5	μΑ	0.0≦ Vin ≦ Vcc
ILO	Output Leakage Current	0.05 (Typ)	± 10	μΑ	0.2≤ Vin ≤ Vcc - 0.2
Icc	Operating Current (RUN) Idle 1 Idle 2	20 (Typ) 1.5 (Typ) 9 (Typ)	40 5 15	mA mA mA	fosc = 10MHz
	STOP (TA = -40~85°C) STOP (TA = 0~50°C)	0.2 (Typ)	50 10	μ Α μ Α	0.2 ≤ Vin ≤ Vcc – 0.2
V _{STOP}	Power Down Voltage (@STOP)	2 RAM BACK UP	6	٧	$V_{1L2} = 0.2Vcc$, $V_{1H2} = 0.8Vcc$
R _{RST}	RESET Pull Up Registor	50	150	kΩ	
CIO	Pin Capacitance		10	pF	testfreq = 1MHz
V _{TH}	Schmitt width RESET, NMI, INTO	0.4	1.0 (Typ)	٧	

Note: IDAR is guaranteed for a total of up to 8 optional ports.

4.3 AC Characteristics

Vcc = $5V \pm 10\%$ TA = $-40 \sim 85\%$ (1 ~ 10 MHz) CL = 50pF

						,
Symbol	Parameter	Vari	able	10MH:	z Clock	Units
	. avantetei	Min	Max	Min	Max	Oints
tosc	OSC. Period = x	100	1000	100		ns
tcyc	CLK Period	4x	4x	400		ns
twL	CLK Low width	2x – 40		160		ns
twH	CLK High width	2x - 40		160		ns
t _{AC}	Address Setup to RD, WR	x – 45		55		ns
t _{RR}	RD Low width	2.5x - 40		210		ns
t _{CA} *	Address Hold Time After RD, WR	0.5x – 40		10		ns
t _{AD}	Address to Valid Data In		3.5x - 95		255	ns
t _{RD}	RD to Valid Data In		2.5x – 80		170	ns
t _{HR}	Input Data Hold After RD	0		0		ns
tww	WR Low width	2.5x - 40		210		ns
t _{DW}	Data Setup to WR	2x - 50		150		ns
t _{WD}	Data Hold After WR	30	90	30	90	ns
tcwa	RD, WR to Valid WAIT		1.5x – 100		50	ns
t _{AWA}	Address to Vaild WAIT		2.5x – 130		120	ns
twas	WAIT Setup to CLK	70		70		ns
twan	WAIT Hold After CLK	0		0		ns
t _{RV}	RD/WR Recovery Time	1.5x - 35		115		ns
t _{CPW}	CLK to Port Data Output		x + 200		300	ns
t _{PRC}	Port Data Setup to CLK	200		200		ns
t _{CPR}	Port Data Hold After CLK	100		100		ns
t _{CHCL}	RD/WR Hold After CLK	x – 60		40		ns
t _{CLC}	RD/WR Setup to CLK	1.5x - 50		100		ns
t _{CLHA}	Address Hold After CLK	1.5x - 80		70		ns
t _{ACL}	Address Setup to CLK	2.5x - 80		170		ns
t _{CLD}	Data Setup to CLK	x – 50		50		ns

- AC output level High 2.2V/Low 0.8V
- AC input level High 2.4V/Low 0.45V (D0 D7)
 High 0.8Vcc/Low 0.2Vcc (excluding D0 D7)
- * t_{CA} spec is different from other parts of TLCS-90.

4.4 A/D Conversion Characteristics

 $Vcc = 5V \pm 10\%$ TA = $-40 \sim 85$ °C (1~10MHz)

Symbol	Parameter	Min	Тур	Max	Unit
V _{REF}	Analog reference voltage	Vcc – 1.5	Vcc	Vcc	
AGND	Analog reference voltage	VSS	Vss	Vss	V
VAIN	Allowable analog input voltage	Vss		Vcc	Ī
I _{REF}	Supply current for analog reference voltge		0.5	1.0	mA
Error	Total error (TA = 25℃, Vcc = VREF = 5.0V)		1.5		LSB
	Total error			3.0]

130489

4.5 Zero- Cross Characteristics

 $Vcc = 5V \pm 10\%$ TA = $-40 \sim 85\%$ (1~10MHz)

Symbol	Parameter	Condition	Min	Max	Unit
Vzx	Zero- cross detection input	AC coupling $C = 0.1 \mu F$	1	1.8	VAC p - p
Azx	Zero- cross accuracy	50/60Hz sine wave		135	mV
Fzx	Zero- cross detection input frequency		0.04	1	kHz

130489

4.6 Serial Channel Timing – I/O Interface Mode

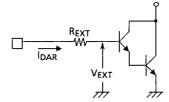
 $Vcc = 5V \pm 10\%$ TA = -40~85% (1~10MHz) CL = 50pF

		Vari	10MH	Unit		
Symbol	Parameter	Min	Max	Min	Max Max 450	Unit
tscy	Serial Port Clock Cycle Time	8x		800		ns
toss	Output Data Setup SCLK Rising Edge	6x – 150		450		ns
tons	Output Data Hold After SCLK Rising Edge	2x - 120		80		ns
tHSR	Input Data Hold After SCLK Rising Edge	0		0		ns
tsrd	SCLK Rising Edge to Input DATA Valid		6x – 150		450	ns

4.7 16-bit Event Counter

V/cc = 5V + 100%	TA = -40~85℃	(1~10MH7)
VLC = 3 V ± 10 %	IA = -40~00 C	(I~IUWITZ)

Symbol	Do no monto n	Varia	Variable			Linita
ЭУППООГ	Parameter	Min	Max	Min	Max	Units
tvck	TI4 clock cycle	8x + 100		900		ns
tvckl	TI4 Low clock pulse width	4x + 40		440		ns
tvckH	TI4 High clock pulse width	4x + 40		440		ns


261190

4.8 Interrupt Operation

 $Vcc = 5V \pm 10\%$ $TA = -40~85^{\circ}C (1~10MHZ)$

Symbol	Parameter			Variable		10MHz Clock		Units	
				Min	Max	Min	Max	Units	
tintal	NMI, INTO Effective pulse width	(Т)	4x		400		ns
tintah	NMI, INTO Effective pulse width	(几)	4x		400		ns
tINTBL	INT1, INT2 Effective pulse width	(T)	8x + 100		900		ns
tINTBH	INT1, INT2 Effective pulse width	(Л.)	8x + 100		900		ns

(Reference) Definition of IDAR

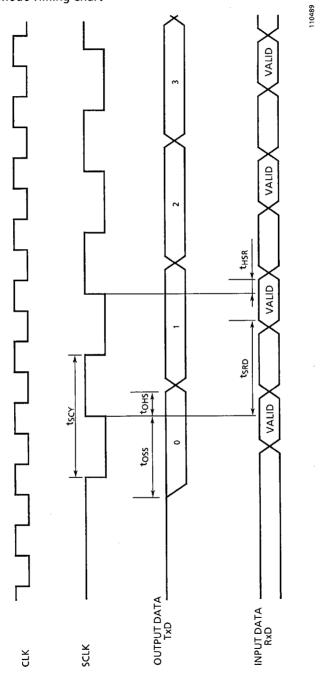
4.9 Read Operation (PROM Mode)

DC Characteristic, AC Characteristic

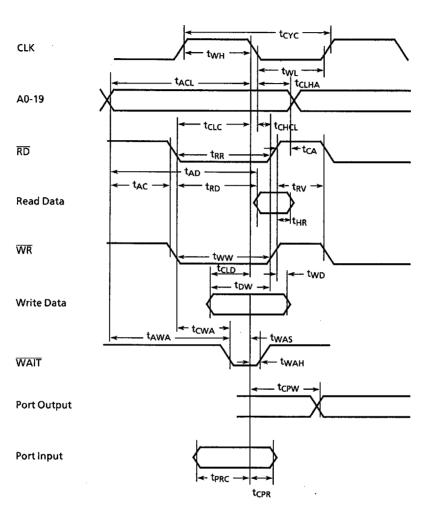
 $TA = -40 \sim 85$ °C $Vcc = 5V \pm 10$ %

Symbol	Parameter	Condition	Min	Max	Unit
V _{PP} V _{IH1} V _{IL1}	V _{PP} Read Voltage Input High Voltage (A0~A15, \overline{CE}, \overline{OE}) Input Low Voltage (A0~A15, \overline{CE}, \overline{OE})	- - -	4.5 0.7×V _{CC} -0.3	5.5 V _{CC} + 0.3 0.3 × V _{CC}	V V
t _{ACC}	Address to Output Delay	C _L = 50 _P F	_	2.25TCYC + α	ns

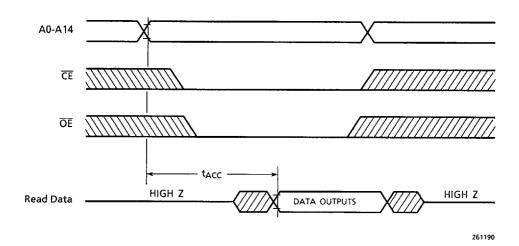
TCYC = 400ns (10MHz Clock) α = 200ns 010491

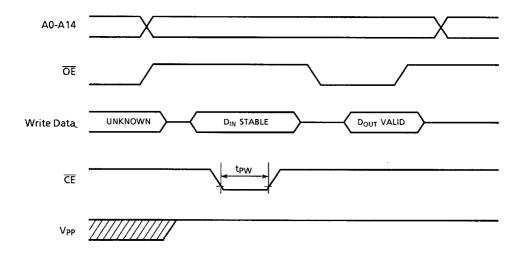

4.10 Programming Operation (PROM Mode)

DC Characteristic, AC Characteristic


 $TA = 25 \pm 5^{\circ}C \ Vcc = 6V \pm 0.25V$

Symbol	Parameter	Condition	Min	Тур	Max	Unit
Vpp	Programing Voltage	_	12.25	12.50	12.75	٧
VIH	Input High Voltage (D0~D7)	-	0.2V _{CC} + 1.1		V _{CC} + 0.3	V
VIL	Input Low Voltage (D0~D7)	-	-0.3		0.2V _{CC} -0.1	V
V _{IH1}	Input High Voltage (A0~A15, CE, OE)	-	0.7Vcc		V _{CC} + 0.3	V
V _{IL1}	Input Low Voltage (A0~A15, CE, OE)	_	-0.3		0.3V _{CC}	V
Icc	V _{CC} Supply Current	fosc = 10MHz	-		50	mA
Ipp	V _{PP} Supply Current	V _{PP} = 13.00V	-		50	mA
tpw	CE Programming Pulse Width	C _L = 50 _P F	0.95	1.00	1.05	ms


4.11 I/O Interface Mode Timing Chart


4.12 Timing Chart

4.13 Read Operation Timing Chart (PROM Mode)

4.14 Programming Operation Timing Chart (PROM Mode)

