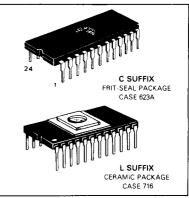
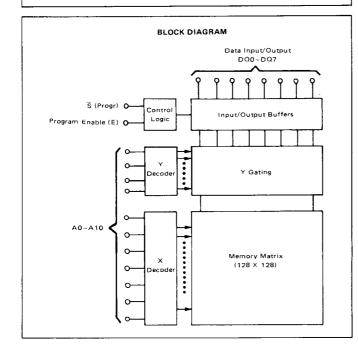
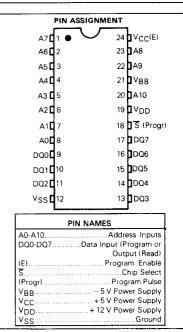


TMS2716 TMS27A16

2048 × 8 ERASABLE PROM


The TMS2716 and TMS27A16 are 16,384-bit Erasable and Electrically Reprogrammable PROMs designed for system debug usage and similar applications requiring nonvolatile memory that could be reprogrammed periodically. The transparent window on the package allows the memory content to be erased with ultraviolet light. The TMS2716 is pin compatible with 2708 EPROMs, allowing easy memory size doubling.


- Organized as 2048 Bytes of 8 Bits
- Fully Static Operation (No Clocks, No Refresh)
- Standard Power Supplies of +12 V, +5 V, and -5 V
- Maximum Access Time = 300 ns TMS27A16
 450 ns TMS2716
- · Chip-Select Input for Memory Expansion
- TTL Compatible No Pull-up Resistors Required
- Three-State Outputs for OR-Tie Capability
- The TMS2716 is Pin Compatible to MCM2708 and MCM68708 EPROMs


MOS

(N-CHANNEL, SILICON-GATE)

2048 × 8-BIT UV ERASABLE PROM

ABSOLUTE MAXIMUM RATINGS (1)

Rating	Value	Unit
Operating Temperature	0 to +70	°c
Storage Temperature	-65 to +125	°c
V _{DD} with Respect to V _{BB}	+20 to -0.3	V
V _{CC} and V _{SS} with Respect to V _{BB}	+15 to -0.3	V
All Input or Output Voltage with Respect to VBB During Read	+15 to -0.3	V
(E) Input with Respect to VBB During Programming	+20 to -0.3	V
Program Input with Respect to VBB	+35 to -0.3	٧
Power Dissipation	1.8	Watts

NOTE 1: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

PIN CONNECTION DURING READ OR PROGRAM

	F	in Numbe	r
Mode	9-11, 13-17	18	24
Read	Dout	V _{IL} or	Vcc
Program	Din	Pulsed V _{IHP}	VIHW

DC READ OPERATING CONDITIONS AND CHARACTERISTICS

(Full operating voltage and temperature range unless otherwise noted)

RECOMMENDED DC READ OPERATING CONDITIONS

Parame	ter	Symbol	Min	Nom	Max	Unit
Supply Voltage	TMS2716	Vcc	4.75	5.0	5.25	V
		V _{DD}	11,4	12	12.6	V
		∨ _{BB}	-5.25	-5.0	-4.75	V
	TMS27A16	V _{CC}	4.5	5.0	5.5	V
		VDD	10.8	12	13.2	V
		VBB	-5.5	-5.0	-4.5	V
Input High Voltage		VIH	2.2	-	V _{CC} + 1.0	V
Input Low Voltage		VIL	v _{ss}	-	0.65	V
			l	ž	1 1	

READ OPERATING DC CHARACTERISTICS

Characteristic	Condition	Symbol	Min	Тур	Max	Unit
Address Input Sink Current	Vin = VCCmax or Vin = VIL	lin	-	1	10	μΑ
Output Leakage Current	V _{out} = V _{CC} max and S = 5 V	¹LO		1	10	μА
V _{DD} Supply Current	Worst-Case Supply Currents	I _{DD}		-	65	mA
V _{CC} Supply Current	All Inputs High	¹cc	-	-	12	mA
V _{BB} Supply Current	(E) = 5.0 V, T _A = 0°C	I _{BB}	-	-	45	mA
Output Low Voltage	IOL = 1.6 mA	VOL	_	-	0.45	V
Output High Voltage	I _{OH} = -100 μA	V _{OH1}	3.7	T -		V
Output High Voltage	I _{OH} = -1.0 mA	V _{OH2}	2.4	_	-	V

VBB must be applied prior to VCC and VDD. VBB must also be the last power supply switched off.

CAPACITANCE (periodically sampled rather than 100% tested)

Characteristic	Condition	Symbol	Тур	Max	Unit
Input Capacitance (f = 1.0 MHz)	V _{in} = 0 V, T _A = 25°C	C _{in}	4.0	6.0	pF
Output Capacitance (f = 1.0 MHz)	V _{out} = 0 V, T _A = 25°C	C _{out}	8.0	12	pF

AC READ OPERATING CONDITIONS AND CHARACTERISTICS

(Full operating voltage and temperature range unless otherwise noted)

(All timing with $t_r = t_f = 20$ ns, Load per Note 2)

		TMS	S2716	TMS	27A16	
Characteristic	Symbol	Min	Max	Min	Max	Unit
Address to Output Delay	†AVQV	_	450	-	300	ns
Chip Select to Output Delay	tsLQV		120	-	120	ns
Data Hold from Address	tAXQZ	10		10	-	ns
Data Hold from Deselection	tSHQZ	10	120	10	120	ns

NOTE 2: Output Load = 1 TTL Gate and C_L = 100 pF (Includes Jig Capacitance)
Timing Measurement Reference Levels — Inputs: 0.8 V and 2.8 V
Outputs: 0.8 V and 2.4 V

Test Point O

Test Point O

MMD6150

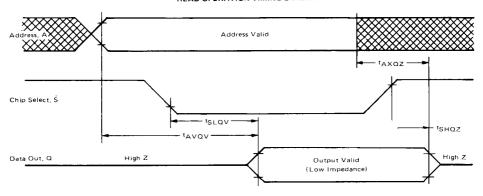
or Equiv

includes Jig Capacitance

*For VOH

TIMING PARAMETER ABBREVIATIONS

signal name from which interval is defined Utransition direction for first signal signal name to which interval is defined transition direction for second signal


The transition definitions used in this data sheet are:

- H = transition to high
- L = transition to low
- V = transition to valid
- X = transition to invalid or don't care
- Z = transition to off (high impedance)

TIMING LIMITS

The table of timing values shows either a minimum or a maximum limit for each parameter. Input requirements are specified from the external system point of view. Thus, address setup time is shown as a minimum since the system must supply at least that much time (even though most devices do not require it). On the other hand, responses from the memory are specified from the device point of view. Thus, the access time is shown as a maximum since the device never provides data later than that time.

READ OPERATION TIMING DIAGRAM

DC PROGRAMMING CONDITIONS AND CHARACTERISTICS

(Full operating voltage and temperature range unless otherwise noted)

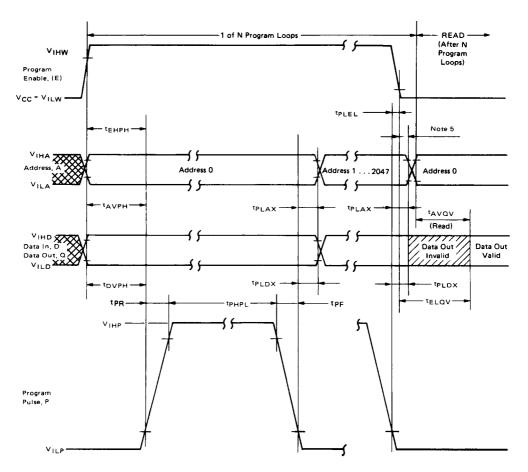
RECOMMENDED PROGRAMMING OPERATING CONDITIONS

Parameter	Symbol	Min	Nom	Max	Unit
Supply Voltage - TMS2716 and TMS27A16	Vcc	4.75	5.0	5.25	Vdc
	V _{DD}	11.4	12	12.6	Vdc
	V _{BB}	-5.25	-5.0	-4.75	Vdc
Input High Voltage for Data	VIHD	3.8	-	V _{CC} + 1	Vdc
Input Low Voltage for Data	VILD	VSS	_	0.65	Vdc
Input High Voltage for Addresses	VIHA	3.8	-	V _{CC} + 1	Vdc
Input Low Voltage for Addresses	VILA	Vss	_	0.4	Vdc
Program Enable (E) Input High Voltage (Note 3)	ViHW	11.4	12	12.6	Vdc
Program Enable (E) Input Low Voltage (Note 3)	VILW=VCC	4.75	5.0	5.25	Vdc
Program Pulse Input High Voltage (Note 3)	VIHP	25		27	Vdc
Program Pulse Input Low Voltage (Note 4)	VILP	VSS	_	1.0	Vdc

NOTE 3: Referenced to VSS.

NOTE 4: VIHP - VILP = 25 V min.

PROGRAMMING OPERATION DC CHARACTERISTICS


Characteristic	Condition	Symbol	Min	Тур	Max	Unit
Address Input Sink Current	V _{in} = 5.25 V	FLI	-	_	10	μAdc
Program Pulse Source Current		IPL		_	3.0	mAdc
Program Pulse Sink Current		1 IPH	-		20	mAdc
V _{DD} Supply Current	Worst-Case Supply Currents	¹DD	-	_	65	mAdc
V _{CC} Supply Current	All Inputs High	¹cc	-	_	15	mAdc
VBB Supply current	(E) = 5 V, T _A = 0°C	I _{BB}	-	-	45	mAdc

AC PROGRAMMING OPERATING CONDITIONS AND CHARACTERISTICS

(Full operating voltage and temperature unless otherwise noted)

Characteristic	Symbol	Min	Max	Unit
Address Setup Time	†AVPH	10	_	μs
(E) Setup Time	[†] EHPH	10	-	μs
Data Setup Time	t _{DVPH}	10	_	μs
Address Hold Time	†PLAX	1.0		μs
(E) Hold Time	tPLEL.	0.5	_	μς
Data Hold Time	†PLDX	1.0		μs
Program to Read Delay	†ELQV	-	10	μs
Program Pulse Width	tPHPL	0.1	1.0	ms
Program Pulse Rise Time	t PR	0.5	2.0	μs
Program Pulse Fall Time	tpp	0.5	2.0	μ5

PROGRAMMING OPERATION TIMING DIAGRAM

NOTE 5: This Program Enable transition must occur after the Program Pulse transition and before the Address Transition.

WAVEFORM DEFINITIONS					
Waveform Symbol	Input	Output	Waveform Symbol	Input	Output
	MUST BE VALID	WILL BE VALID		DON'T CARE ANY CHANGE PERMITTED	CHANGING STATE UNKNOWN
	CHANGE FROM H TO L	WILL CHANGE FROM H TO L			HIGH IMPEDANCI
//////	CHANGE FROM L TO H	WILL CHANGE FROM L TO H			

PROGRAMMING INSTRUCTIONS

After the completion of an ERASE operation, every bit in the device is in the "1" state (represented by Output High). Data are entered by programming zeros (Output Low) into the required bits. The words are addressed the same way as in the READ operation. A programmed "0" can only be changed to a "1" by ultraviolet light erasure

To set the memory up for programming mode, the $V_{CC}(E)$ input (Pin 24) should be raised to +12 V. Programming data is entered in 8-bit words through the data output terminals (DQ0 to DQ7).

The $V_{\mbox{\scriptsize DD}}$ and $V_{\mbox{\scriptsize BB}}$ supply voltages are the same as for the READ operation.

After address and data setup, one program pulse per address is applied to the program input. A program loop is a full pass through all addresses. Total programming time/ address, $T_{Ptotal} = N \times t_{PHPL} \ge 100$ ms. The required number of program loops (N) is a function of the program pulse width (tpHpL) where: 0.1 ms \leq tpHpL \leq 1.0 ms; correspondingly, N is: $100 \le N \le 1000$. There must be N successive loops through all 2048 addresses. It is not permitted to apply more than one program pulse in succession to the same address (i.e., N program pulses to an address and then change to the next address to be programmed). At the end of a program sequence the Program Enable (E) falling edge transition must occur before the first address transition, when changing from a PROGRAM to a READ cycle. The program pin should be pulled down to VILP with an active device, because this pin sources a small amount of current (IJPL) when (E) is at VIHW (12 V) and the program pulse is at VILP.

EXAMPLE FOR PROGRAMMING

Always use the Tptotal = N \times tpHpL \geqslant 100 ms relationship.

1. All 16,384 bits should be programmed with a 0.2 ms program pulse width.

The minimum number of program loops:

$$N = \frac{TPtotal}{tPHPI} = \frac{100 \text{ ms}}{0.2 \text{ ms}} = 500.$$

One program loop consists of words 0 to 2047.

- 2. Words 0 to 200 and 300 to 700 are to be programmed. All other bits are "don't care". The program pulse width is 0.5 ms. The minimum number of program loops, N = 100/0.5 = 200. One program loop consists of words 0 to 2047. The data entered into the "don't care" bits should be all 1s.
- 3. Same requirements as example 2, but the EPROM is now to be updated to include data for words 850 to 880. The minimum number of program loops is the same as in the previous example, N = 200. One program loop consists of words 0 to 2047. The data entered into the "don't care" bits should be all 1s. Addresses 0 to 200 and 300 to 700 must be reprogrammed with their original data pattern.

ERASING INSTRUCTIONS

The TMS2716/27A16 can be erased by exposure to high intensity shortwave ultraviolet light, with a wavelength of 2537 Å. The recommended integrated dose (i.e., UV-intensity X exposure time) is 12.5 Ws/cm². As an example, using the "Model 30-000" UV-Eraser (Turner Designs, Mountain View, CA 94043) the ERASE-time is 30 minutes. The lamps should be used without shortwave filters and the TMS2716/27A16 should be positioned about one inch away from the UV-tubes.