AN-852

Application Note

MONITOR FOR THE
MC146805G2L1 MICROCOMPUTER

Prepared by
David Bush
Microprocessor Product Engineer

and

Ed Rupp
Microprocessor System Design Engineer
Austin, Texas

INTRODUCTION

The MC146805G2 is a fully static single-chip CMOS
Microcomputer. It has 112 bytes of RAM, 2106 bytes of user
ROM, four 8-bit input/output ports, a timer, and an on-chip
oscillator. The MC146805G21.1 ROM contains a monitor
routine which provides the user with the ability to evaluate
the MC146805G2 using a standard RS232 terminal. The user
can enter short programs into the on-chip RAM and execute
them via the monitor. A description of the monitor operation
follows along with an assembled listing of the actual pro-
gram.

MONITOR MODE

In this mode the MC146805G2L1 Microcomputer is con-
nected to a terminal capable of running at 300, 1200, 4800, or
9600 baud. Figure 1 contains a schematic diagram of the
monitor mode connections and a table showing C0 and Cl
switch settings to obtain a baud rate that matches the ter-
minal. Be sure the oscillator frequency is 3.579545 MHz. Any
area of RAM from location $18 to $7A may be used for pro-
gram storage; however, upper locations may be needed for
user stack.

‘When the microcomputer is reset, a power-up message is
printed. Following the message, the prompt character ‘“.”’ is
printed and the monitor waits for a response. The response
may consist of single letter commands with some commands
requiring additional input. Unrecognized commands respond
by printing “?”*. Valid commands are:

R — Display the Register

A — Display/Change the Accumulator

X — Display/Change the Index Register

M — Display/Change Memory

C — Continue Program Execution

E — Execute Program at Address

S — Display State of 170 and Timer

62

R — Display the Register

The processor registers are displayed as they appear on the
stack. The format of the register print is:

HINZC AA XX PP

The first field shows the state of the condition code register
bits. Each bit in the register has a single letter corresponding
to the bit name. If the letter is present, the bitis 1. If a <2 is
printed in place of the letter, that bit is 0. For example,
«}..ZC” means that the H, Z, and C bits are 1 and that the I
and N bits are 0. The remainder of the line shows the status
of the accumulator, index register, and program counter,
respectively. The stack pointer is always at a fixed address (in
this case $7A). The values shown are the values loaded into
the CPU when a “C”’ or “E’ command is executed. All
register values except the condition code register can be
changed with other commands. To change the condition
code register, it is necessary to use the memory change com-
mand and modify location $7B.

A — Examine/Change the Accumulator

This command begins by printing the current value of the
accumulator and then waits for more input. In order to
change the current value, type in a new value (two hex digits).
To leave the accumulator unchanged, type any non-hex digit
(a space is a good choice).

X — Examine/Change the Index Register

This procedure is the same as the “‘A” command, but af-
fects the index register instead.

M — Examine/Change Memory

Any memory location may be examined or changed with
this command (except of course, ROM). To begin, type ‘“M”’
followed by a hexadecimal address in the range
$0000-$1FFF. The monitor responds by beginning a new line

+5V R -
NN 20 pF -— ate
0 0 300
0 1 1200
Flose! 5—1———‘1 reser ™ voo o ! o | ®w
2 1— 39 oM 3.579545 MH 1 1 9600
1. =m0 o0sC1 — J z =G
3 38 = Closed
NUM 0sC2 1=0Open
= fgraz TIMERP IZO pF
fras P07 =
gras PD6[I
fgras PDSP
gra3 PD4D
fra2 PD30 +5V
c PA] PD2 : +5V To Terminal
14 Serial In
grao FD1R See Table 6 0 S
PBO PDO k 10k 1489)
s 0 3 6_¢
grsr PCO 8 4
PB2 PC1[
. [26
P >
gres PC2 fzs 1oy
gres pc3p
2
gess pcafl Serial Out
gres pcs) P— 1 10
dre7 PC6 321 10k — 7
-12v
rizo Vgs PC7 J—’V\N_+5V 2
DB25 Connector

FIGURE 1. Monitor Mode Schematic Diagram

and printing the memory address followed by the current

contents of that location. At this point you may type:
1. “.’” and re-examine the same byte. (Try this with loca-
tion $0008.)

. “/\” and go to the previous byte. Typing ‘¥\’ at loca-
tion $0000 causes the monitor to go to $1FFF.

“CR” and go to the next byte. “CR” is the carriage
return character. The byte after $1FFF is $0000.

“pD”, where “DD”’ is a valid 2-digit hexadecimal
number. The new data is stored at the current address
and the monitor then goes to the next location. This
means that to enter a program it is only necessary to go
to the starting address of the program and start typing
in the bytes. To see if the byte was really inputted, you
can use the */\”’ character to return to the last byte
typed in.

. Finally, any character other than those described
above causes the memory command to return to the
prompt level of the monitor and prints *“.””.

63

C — Continue Program Execution

The “‘C”* command merely executes an RTI instruction.
This means that all the registers are reloaded exactly as they
are shown in the register display. Execution continues until
the reset switch is depressed or the processor executes an
SWI. Upon executing an SWI, the monitor regains control
and prints the prompt character. This feature can be used for
an elementary form of breakpoints. Since there is really no
way to know where the stack pointer is after an SWI, the
monitor assumes that it is at $7A. This will not be the case if
an SWI is part of a subroutine. In this case, the monitor will
be re-entered but the stack pointer will point to $78. This is
perfectly valid and typing “‘C”’ will pick up the program
from where it left off. However, the A, X, R, and E com-
mands all assume the stack starts at $7A and will not func-
tion properly. If the stack location is known, it is still possi-
ble to examine the registers by using the M command.

E — Start Execution at Address
The “E’” command waits for a valid memory address

($0000-$1FFF) and places the address typed on the stack at
locations $7E and $7F. The command then executes an RTI
just like the ““C”> command. If the address typed is not a
valid memory address, the command exits to the monitor
without changing the current program counter value.

§ — Display 1/0 States and Timer

The “S”’ command displays ports A, B, C, and D data
along with the timer data and control register contents. The
format of the display is:

A B C D TIM TCR

The data displayed is simply memory (RAM) locations
$0000-$30003 with $0008 and $0009. Ports A, B, and D may
be written to by first making them all outputs; i.e., for port
A, change location $0004 (port A DDR) to $FF. Port C and
the timer registers cannot be changed as they are used by the
monitor.

MONITOR PROGRAM

A flowchart for the monitor mode program is provided in
Figure 2. A listing for the ROM monitor program is attached
to the end of this application note.

(Monitor Start)

Print CR, LF
Print Prompt
Get Character
Print Space

Main

()

Pant A

A=Get2 Heq—{ Main

Print X

H X = Get 2 Hex |——C Main

O U

State

Pnnt Machine

]..C -)

N

Print Registers

Get = Get 3 Hex

PC=Get 3 Hex

—

Print CR, LF
Print Get
Print Memory (Get)

FIGURE 2. Monitor Mode Operating Flowchart

64

Sep 8 15:10 1981 14680562 ROM Monitor Listing Page 1

MC1446805¢62 ROM PATTERN

The MC4BOSGR single~chip microcomputer is a 40-pin CMOS
device with 2096 bytes of ROM, 112 bytes of RAM, four
8-bit I/0 ports, a timer and an external interrupt
input The ROM contains two separate programs. Either
of these programs may be selected on rTeset by wiring port
C as follows:

C7 Ct CO function

1 o] o] monitar (300 baud)
i o] 1 monitor (1200 baud)
1 1 o] monitor (4800 baud)
i 1 1 monitor (9400 baud)
0 X X bicycle odometer

The monitor is substantially the same as all previous
monitors for the &805. The monitor uses serial I/0 for
its communication with the operater. Serial input is C(C2
and serial output is C3

% ok d ok %k % k & %k ok ok ok & ok Kk % ok & % ok k * X%

*

*
* I/0 Register Addresses
*
0000 GO 00 porta equ 000 I1/0 port O
Q000 00 Ot portb equ $001 1/0 port 1
0000 GO G2 portc equ $002 1/0 port 2
00C0 00 O3 portd equ $C03 I/0 port 3
0000 Q0 G4 ddr equ 4 data direction register offset (e. g. porta+ddr)
0000 00 08 timer equ $008 8-bit timer register
2000 Q0 0% ter equ $009 timer control register
00C0 00 1O RAM equ %010 start of on—-chip ram
¢000 00 BO ZROM equ %080 start of page zero Tom
CGO00 01 Q0 ROM equ $100 start of main rom
0000 20 GO MEMSIZ equ $2000 memory address space size
*
* Character Constants
*
0000 00 Od CR equ $0D carriage return
000C 00 0Ca LF equ $0A line feed
0000 00 20 BL equ $20 blank
G000 00 00 EOS equ $00 end of string
#
*

LR S AR T L g e g ey At
ROM MONITOR for the 1 4 6805662

Written by Ed Rupp, 1980

* & %k ok k %k %k X

The monitor has the following commands

65

Sep

0602
0&02
0602
0602

0602
0ad2

0602
0602
0602
04602
0&02

8 15:10 1981

(e]4]
oe]
[ele]
o0

co
GO

00
00
[o]o]
co
o0

2e

Od
Se
2e

7+
7a

10
14
i5
16
17

14480562 ROM Monitor Listing Page 2

¥ ok ok ok ok ok ok K % % ko koK Kk ko ok ok o k ok & ok ok & ok % k K % % %k %k %

Print registers
format is CCCCC AA XX PPP

Print/change A accumulator
Prints the register value, then
waits for new valuve. Type

any non—-hex character to exit

Print/change X accumulator.
Works the same as ‘A’,. except modifies X instead

Memory examine/change
Type M AAA to begin,

then type: . -— to Te-examine current
“ -- to examine previous
CR —- to examine next
DD —- new data

Anything else exits memory command

Continue program. Execution starts at
the location specified in the program
counter, and
continues until an swi is executed
or until reset.

Execute from address. Format is
E AbAA. AAAA is any valid memory address

Display Machine State. All important registers are
displayed

Special Equates

equ
equ
equ
equ

Other

equ
equ

‘ prompt character

CR go to next byte
oo go to previous byte
re-examine same byte

.

$7F initial stack pointer value
initsp-5 top of stack

ram variables

equ
equ
equ
equ
equ

state

A B
dd dd

RAM+0O 4-byte no-mans land, see pick and drop subroutines
RAM+4 acca temp for getc,pute

RAM+5 x Teg. temp for getc,putc

RAM+& current input/output character

RAM+7 number of bits left to get/send

=== print machine state

€ D TIM TCR
dd dd dd dd

66

Sep

Q&0
DAQA

0517

0514
051

Okle
04620
0622
0625
0624
04623

0628
0629
0b2a
0h2d
0630
0631
0633

0635
0638
063a
063d
0440
0643
0645
0648

Qb4a

Qbas
0651
0652
0633
0654
0656
0657
0659
0465b
0465d
0640
06463

8 15:10 1981

S¥
fé
cd
cd
Sc
a3
26

cd
bé
cd
cd
cd
bé
cd
20

48

bé
48
48
43
b7
Sf
ab
38
24
a6
cd
5c

04
£4

07
08
07
07
o7
a9
07
48

49

7b

10

28

1C¢

06
08

20 20 42 20
20 20 44 20
4d 20 54 43

co

Gt

Se
2b

b
Se
b
8b

Se

4e Sa 43

4a
01

iomsg

*
state
state2

statel
*
*
*

pio

& & ok k *x

ccstr

pcc

pcca

pce3

14680562 ROM Moniter Listing Page 3

header string for I/0 register display

fcb CR, LF

fcc /A B C D TIM TCR/

fcb CR, LF, EOS

clrx

lda iomsg., x get next char

cme #EOS qQuit?

beg state3 yes, now print values
Jsr putc no, print char

incx bump pointer

bra state2 do it again

now print values underneath the header

clrx

lda o x start with I/0 ports

Jst putbyt

JjstT puts

incx

cpx #4 end of 1/07%

bne pio no, do mare

Jsr puts

lda timer now print the value in the timer
JsT putbyt

Jst puts

Jst puts

lda tcr the control register too
Jjsrv putbyt

bra monit all done

pecc —-=— print condition codes

string for pcc subroutine

fcc /HINZC/

lda stack+l condition codes in acca
asla move h bit to bit 7
asla

asla

sta get save it

clrx

lda *

asl get put bit in ¢

bce pcec3 bit gff means print

lda ccstr, x pickup appropriate character
Jst putc print . or character
incx point to next in string

67

Sep 8 15:10 1981 14480562 ROM Monitor Listing Page 4

Jb&4 a3 0S cpx #3 quit after printing all 5 bits
0844 25 ef blao pcec2
Oes3 81 rts
*
* seta —-—— examine/change accumulator A
#*
0649 ae 7c¢ seta ldx #stack+2 point to A
0s6b 20 G2 bra setany
*
#* setx —-—- #xamine/change accumulator X
*
Ob&d ae 7d setyx ldx #stack+3 point to X
3*
* setany ~-- print (x) and change if necessary
#*
Obé&t 16 setany lda X pick up the data, and
0670 ¢d G7 Se jsT putbyt print it
0673 ¢d 07 Bb Jsr puts
08746 cd 07 94 JsT getbyt see if it should be changed
0479 25 17 bcs monit error. no change
04670 ¢7 sta 4 else replace with new value
067¢ 20 14 bra monit now return
*
#* TRgS ~—= print cpu registers
*
0&4&7e ad cf Tegs bsr pce print cc register
0480 ¢d 07 Bb Jsr puts separate from next stuff
0482 3f 11 clr get+1 point to page zero,
0485 ab& 7c lda #stack+2
04687 b7 12 sta get+2
0683 cd 07 4b Jsv out2hs continue print with A
0&8c cd 07 4b Jsr out2hs X and finally the
048f cd 07 43 Jsr outdhs Program Counter
*
* fall into main loop
3*
* monit -—— print prompt and decode commands
*
0692 cd 07 74 monit JsT crl#f go to next line
0695 ab 2e lda #PROMPT
0497 cd 08 01 Jsr putc print the prompt
06%a c¢d 07 ¢33 Jsv getc get the command character
06%d a4 7+ and #01111111 mask parity
0&6%¢ ¢d 07 8b Jsr puts print space (won‘t destroy A)
0ba2 at 41 cmp A change A
0&ad 27 3 beq seta
Okatét al 58 cmp #X change X
06a8 27 c3 beq setx
Obaa al 52 cmp #'R registers
Obac 27 40O beq regs
Obae al 45 cmp #E execute
06b0 27 14 beq exec
06b2 al 43 cmp #C continue
06b4 27 21 beq cont
0bbs al 44d cmp #M memory
0668 27 e beq memory

68

Sep

Chaba
C&be
Gé&be

Chol
Cbed
Q&6c3
Chbch

[1-1:3=]
Qhch
Obcd
Qbce
06d1
06d2
0645

0&d7

Q6d8
06db
Obdd
0bd+
Q0&Le2
Obed
Obeb
O6e?
Qbeb
Obed
0&6F0
0&F2
06+S
048
[s -3 -1
0bfd
0700
0703
0705
0707
0709
070b
0704d
Q70+
0711
0713
0715
Q717
6719
071b
071d

8 15:10 1981

at
ce

Gé
abé
cd
20

cd
2
37
cd
25
b7
: R4

20

cd
25
b7
cd
25
b7
cd
bé
a4l
cd
bé
cd
cd
ad
cd
cd
cd
25
ad
ad
20
al
27
al
27
at
26
3a
bé
al
26

53
c3
Ce

[=51
2f
(=]
ca

Q7

o7
hf
7#
e

-

b5
i1
o7
ae
12
o7
11
1¢
o7
12
07
Qo7
2c
07
07
o7
0é
25
33
db
2e
d7
od
4
Se
Oc
12
12
£
c?

24

94

94

94

7d

Se

Se
eb

Se
eb
4

14680562 ROM

3*
menitd

exec

memory

memz2

memé4

mem3

Monitor Listing Page S5

cmp #S display machine state

bne monit2

Jmp state commands are getting too far away
equ *

lda # 7 none of the above

Jsr putc

bra monit loop around

exec ——— execute from given address

JsT getbyt get high nybble

bcs monit bad digit

tax save for & second

JsT getbyt now the low byte

becs monit bad address

sta stack+3 program counter low

stx stack+4 program counter high

cont ——-— continue users program

Tti simple enaough
memory ——- memory examine/change

Jer getbyt build address

bes monit bad hex character

sta get+l

Jsrv getbyt

becs monit bad hex character

sta get+2 address is now in get+1%2
Jsr crlf begin new line

lda get+l print current locatioen

and #$1F mask upper 3 bits (8K map)
jsT putbyt

ida get+2

Jst putbyt

Jsv puts a blank, then

bsr pick get that byte

Js® putbyt and print it

48T puts another blank.

jsv getbyt try to get a byte

bcs mem3 might be a special character
bsv drop otherwise, put it and continue
bsr bump go to next address

bra mema and repeat

cmp #SAME re—-examine same?

beq mem2 yes, return without bumping
cmp #FWD go to next?

beq memd yes, bump then loap

cmp #BACK go back one byte?

bne xmonit no, exit memory command
dec get+2 decrement low byte

lda get+2 check for underflow

cmp #$FF

bne mem2 no underflow

69

Sep 8 15:10 1981 14680562 ROM Monitor Listing Page &

Za 11 dec get+1
20 2 bra mema
3*
#* convenient transfer point back to monit
*
G733 cc 04 92 xmonit Jmp monit Teturn to monit
*
* utilities
*
pick --- get byte from anywhere in memory
* this is a horrible routine (not merely
#* self-modifying, but self-creating)
*
* 9et+1%2 point to address to read,
* byte is returned in A
* X is unchanged at exit
*
Q724 bFf 15 pick stx xtemp save X
0728 ae d& ldx #$D6 Dé=1da 2-byte indexed
0?2a 20 G4 bra common
*
*
*® drop ~-- put byte to any memory location
* has the same undesirable properties
#* as pick
* A has byte to store, and get+1%2 points
#* to location to store
* A and X unchanged at exit
*
072c bf 15 drop stx xtemp save X
072e ae d7 ldx #4D7 d7=sta 2-byte indexed
#
*
0730 bf 1G common stx get put opcode in place
0732 ae 81 ldx #481 8l=rts
0724 bf 13 stx get+3 now the return
0736 5¢ clrx we want zero offset
0737 bd 10 Jsr get execute this mess
0729 be i5 ldx xtemp restore X
073h B1 rts and exit
*
* bump -~~~ add one to current memory pointer
*
* A and X unchanged
*
073¢c 3c 12 bump inc get+2 increment 1ow byte
072e 26 02 bne bump2 Non-zero means no carry
0740 3¢ 11 inc get+1 increment high nybble
0742 g1 bump2 Tts
*
*
* outd4hs ——— print word pointed to as an address, bump pointer
* X is unchanged at exit
*
0743 ad el out4hs bsr pick get high nybble
0745 a4 1+ and #S1F mask high bits

70

Sep

o74b
O7 44
Q74+
0730
0751
0752
0753
Q7595
Q757
Q0759
275
G754

075e
0760
0761
0742
0763
0744
0766
0748
Q76a

Q7&b
0764
07&%
0771
0773
0775
0777
077a
077¢

0774
077¢
0781
0784
0786
0788
078a

8 15:10 1981

b7
44
44
a4
44
ad
bé&
ad
e1

67
a4
ab
al
23
ab
cd
bé
81

07
aé
cd
aé
ad
bé
81

13
#1

a%
10

14
10
12
el

2e

10

a5
10
01

13
Of
30
39
02
[ord
08
132

10
Od
o8
Oa
79
10

o1

01

14680562 ROM Monitor Listing Page 7

bsr putbyt and print it
bsr bump go to next address
*
* out2hs —-- print byte pointed to. then a space
* X is unchanged at exit
*
out2hs bsr pick get the byte
sta get save A
lsra
lsra
lsta
isra shift high to low
bst putnyb
lda get
bsr putnyb
bsr bump go to next
bsr puts finish up with a blank
Tts
*
* putbyt ——~ print A in hex
* A and X unchanged
*
putbyt sta get save A
lsra
lsra
isra
Isra shift high nybble down
bsr putnyb print it
lda get
bsr putnyb print low nybble
rts
*
#* putnyb -~-- print lower nybble of A in hex
#* A and X unchanged, high nybble
3* of A is ignored
#*
putnyb sta get+3 save A in yet another temp
and #EF mask off high nybble
add #°0 add ascii zero
cmp #9 check for A-F
bis putny2
add #'A-'9~-1 adyustment for hex A-F
putny2 ysr putc
lda get+3 restore A
rts
*
* crlf ——— print carriage Teturn. line fead
* A and X unchanged
*
crlf sta get save
lda #CR
Jsr putc
lda #LF
bsr pute
lda get restore
rts

71

bump pointer

Sep

&78b
¢784
078¢
Q7291
G793

0794
0796
0798
0799
07%a
07%h
079«
07%e
07a0
G7a2
07aq

07a5
07a7
07a?
07ab
07ad
07a¢
07b1t
0763
0765
07b7
07b9
076b
07bd
O7be
07b¢
07ct
07c2

8 1510 1981

b7
as
ad
bé

ad
25
48
48
48
48
b7
ad
25
bt
21

ad
a4
b7
ad
2b
al
23
a0
al
22
al
23
8
81
bé&
99
e1

1¢
20
70
i0

of
Qc

16
o5
02
10

tc
7¢
13
30
10
09
Oa
Q7
of
0é&
09
02

13

14680562 ROM Monitor Listing Page 8

3%
*
*
#*
p

uts

etnyb

gotit

nothex

*

Puts =-- print a blank (space)
A and X unchanged

sta get save
lda #BL

bsr putc

lda get restore
rts

getbyt ~~— get a hex byte from terminal

A gets the byte typed if it was a valid hex number.
otherwise A gets the last character typed. The c-bit is
set on non-hex characters; clearad otherwise. X
unchanged in any case.

bsr getnyb build byte from 2 nybbles
bes nobyt bad character in input
asla

asla

asla

asla shift nybble to high nybble
sta get save it

bsr getnydb get low nybble now

bes nobyt bad character

add get c—bit cleared

rts

getnyb --~ get hex nybble from terminal

A gets the nybble typed if it was in the range O-F,
otherwise 4 gets the character typed. The c-bit is se
on non-hex characters; cleared otherwise. X is
unchanged.

bsr getc get the character

and #71111111 mask parity

sta get+3 save it just in case
sub #0 subtract ascii zero

bmi nothex was less than ‘0

cmp #9

bls gotit

sub #A-G-1 funny adjustment

cmp #EF too big?

bhi nothex was greater than ‘F’
cmp #9 check betwsen 9 and A
bls nothex

cle €=0 means good hex char
rts

lda get+3 get saved character

sec

Tts Teturn with error
Serial I /70 Routines

72

Sep

07¢3
07¢3
07c¢3

07¢3
G7¢S
07c¢7
Q07c?

07cce
07ce
07d0
07d1
07d4
07d4
07d7
07d8
07da
07db
07dd
07d¢
07e0

07e2
07e5
07es
07e7

07e8
07ea
O7ed

8 15:1¢ 1981

olo}
[e]e]
00

bf
as
b7
04

bé
ad
?7
de
asé
?d
4a
26
Sd
14
14
Sa
26

04
7d
7d
7d

ad
05
7d

oz
03

15

o8
17
2 fd

a2
02

o8 4b

04

fc

02
o2

£2

02 24

46
02 00

14480562 ROM Moniter Listing Page 9

¥k & ok ok ok ok ok o ok ok ok ok k&K

getc3
geted

*

getc7

getcé

These subroutines are modifications of the original NMOS
version. Differences are due to the variation in cycle
time of CMOS instructions vs. NMOS

Since the INT and TIMER interrupt vectors are used in the
bicycle odometer, the I-bit should always be set when
Tunning the monitor. Hence, the code that fiddles with
the I-bit has been eliminated..

Definition of serial 1/0 lines

Note: changing ‘in’ or ‘out’ will necessitate changing the
way ‘put’ is setup during reset

equ portc serial I/0 port

equ 2 serial input line#

equ 3 serial output line#

getc ——— get a character from the terminal

A gets the character typed, X is unchanged

stx xtemp save X

lda #8 number of bits to read

sta count

brset in,put,getcd4 wait for hilo transition

delay 1/2 bit time

lda put

and #7111 get current baud rate
tax

ldx delays, x get loop constant
lda #4

nop

deca

bne getc2

tstx loop padding

bset in,put ditto

bset in. put CMOS ditto

decx

bne getc3 ma jor loop test

now we should be in the middle of the start bit

brset in,put,getcd false start bit test

tst X more timing delays
tst i
tst)X

main loop for getc

bsr delay (&) commoen delay routine
brclr in,put, getcé (5) test input and set c-bit
tst ;X (4) timing equalizer

73

Sep

Q7ee
Q7ef
O7+0
07f1
07¢f2
C7¢3
074
Q7f&
Q07¢8

o7¢a
07¢c
07 fe

0800

0801
0803
0805
0807
0809
080b
080c¢
080d

080+
0811
0813
0815
0817
0817
0816

0B1e
ot f
og20
0821
0823

o825
0827

0829
082b
082d
ogaf

0830

g 15:1G

Sd
?d
?d
9d
24
?d
36
3a
26

ad
bé
be

e1

b7

5
bt
aé
b7
of
8
20

3&
24
ié
20
17
20
dd

43
43
43
3a
26

14
16

ad
be
bé
81

bé

1é6
17
ee

24
1&
15

16
t4
i3
02
i7

02

146
04
o2

02
[o]¢]
o8

17
ea

02
o2

05

15
14

02

30

1981

13680562 ROM Monitor Listing Page 10

¥

© & %k %k % %

ute

putcS
putc2

putc3

putcé

delay

naop (2) CMOS equalization

nop (2) CMOS equalization

nop (2) CMOS equalization

nop (2) CMDS equalization

nap (2) CMOS equalization

nop (2) CMOS equalization

ror char (5) add this bit to the byte
dec count (S)

bne getc7 (3) still more bits to get(see?)
bsr delay wait out the 9th bit

Ida char get assembled byte

ldx xtemp restore x

rts and return

putc ——— print a on the terminal

X and A unchanged

sta char

sta atemp save it in both places

stx xtemp don’t forget about X

lda #9 going tao put out

sta count 9 bits this time

clrx for very obscure reasons

clc this is the start bit

bra putc2 Jump in the middle of things

main loop for putc

ror char (5) get next bit from memory

bec putc3 (3) now set or clear port bit

bset out, put

bra putc4d

bclr out, put (5)

bra putcéd (3) equalize timing again

JsT delay, x (7) must be 2-byte indexed st
this is why X must be iero

coma (3) CMOS equalization

coma (3} CMOS equalization

coma (3) CMOS equalization

dec count 5)

bne puted (3) still more bits

bset in, put 7 cycle delay

bset out, put send stop bit

bsr delay delay for the stop bit

ldx xtemp restore X and

lda atemp of course A

rts

delay -——'precise delay for getc/putec

1da put first, find out

74

Sep 8 15:10 1981 14680562 ROM Monitor Listing Page 11
0B32 a4 03 and #7118 what the baud rate is
0834 97 tax
0835 de 08 4b ldx delays, x loop constant from table
0838 a6 f8 lda #3$FB8 funny adjustment for subroutine overhead
083a ab 09 del3 add #$09
083c del2
083c 9d nop CMOS equalization
083d 4a deca
083e 26 fc bne del2
0840 54 tstx loop padding
0B41 14 02 bset in,put ditte
0843 14 Q2 bset in,put CMOS ditto
0845 Sa decx
0846 26 2 hne del3 main loop
0848 94 nop CMOS equalization
0849 <d nop CMOS equalization
0B84a 81 rts with X still equal to zero
*
* delays for baud rate calculation
*
* This table must not be put on page zero since
* the accessing must take &6 cycles
*
084b 20 delays fcb 32 300 baud
084c 08 fchb =} 1200 baud
0844 02 fcb 2 4800 baud
084e 01 fcb 1 9600 baud
*
* reset ——— power on reset routine
*
#* Based on a port bit, run the bicycle odometer or the monitor
#
; 0B4f reset
084+ Oe 02 03 brset 7,portc,other
i 0832 cc 01 54 Jmp odo be a bicycle odometer
| *
i * run the moniter
*
| 0855 other
l 0855 aé 08 lda #21000 setup port for serial io
i 0857 b7 o2 sta put set output to mark level
| 0859 87 06 sta put+ddr set ddr to have one output
1 *
* print sign-on message
*
| 085b 5¢ clrx
' 085¢c d&6 08 6¢ babble 1da msg., x get next character
' 085¢ at 00 cmp #EQS last char?
! 0861 27 06 beq mstart yes, start monitor
5 0863 cd 08 01 jsr putc and print it
; 0866 Sc incx advance to next char
i 0847 20 £3 bra babble more message
| 0869 mstart
b 0869 83 swi push machine state and go to monitor routine
? 08ba 20 «3 bra reset loop around
b »*

i
{
£
t

75

Sep 8 15:10 1981 14680562 ROM Monitor Listing Page 12

%* MSg ~~— poweT up message
»
0846c 0d Oa msg fch CR, LF
08&e 31 34 346 38 20 35 fcc /1446805627
47 32
0876 GO fcb EQS
*
*
*
* interrupt vectors
#*
1ff6 org MEMSIZ-10 start of vectors
*
1ff& 01 &0 fdb onemil exit wait state \
18 01 e0 fdb onemil timer interrupt i~ odometer vectors
1ffa 02 46 fdb wheel external interrupt /
1ffc 06 92 fdb monit swi to main entry point
iffe 08 4+ fdb reset power on vector

76

	an-852_page01.tif
	an-852_page02.tif
	an-852_page03.tif
	an-852_page04.tif
	an-852_page05.tif
	an-852_page06.tif
	an-852_page07.tif
	an-852_page08.tif
	an-852_page09.tif
	an-852_page10.tif
	an-852_page11.tif
	an-852_page12.tif
	an-852_page13.tif
	an-852_page14.tif
	an-852_page15.tif

