FPGA Express
HDL Reference Manual

September 1996

Comments?
E-mail your comments about Synopsys documentation to doc@synopsys.com

SYTIOPSYS]

Copyright Notice and Proprietary Information

Copyright © 1996 Synopsys, Inc. All rights reserved. This software and manual are owned by Synopsys, Inc., and/or its licensamd may be used only as
authorized in the license agreement controlling such use. No part of this publication may be reproduced, transmitted, or tratathin any form or by any
means, electronic, mechanical, manual, optical, or otherwise, without prior written permission of Synopsys, Inc., or as exprggstovided by the license
agreement

Right to Copy Documentation

The license agreement with Synopsys permits licensee to make copies of the documentation for its internal use only. Each copwl$tinclude all copyrights,
trademarks, service marks, and proprietary rights notices, if any. Licensee must assign sequential numbersto all copies. Thespies shall contain the
following legend on the cover page:

“This document is duplicated with the permission of Synopsys, Inc. for the exclusive use of
and its employees. Thisis copy number

Destination Control Statement
All technical data contained in this publication is subject to the export control laws of the United States of America. Discli@sto nationals of other countries
contrary to United States law is prohibited. It is the reader’ s responsibility to determine the applicable regulations and towg@y with them.

Disclaimer
SYNOPSYS, INC., AND ITSLICENSORS MAKE NO WARRANTY OF ANY KIND, EXPRESSOR IMPLIED, WITH REGARD TO THISMATERIAL,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Trademarks

Synopsys, the Synopsyslogo, BINMOS-CBA, CMOS-CBA, COSSAP, DESIGN (ARROWS), DesignPower, dont_use, ExpressModel, LM-1000, LM@120
Logic Modeling, the Logic Modeling logo, Model Access, Model Tools, SmartLicense, SmartLogic, SmartM odel, SmartM odels, SNUG, SOLTV -
SourceModel Library, Stream Driven Simulator, Synopsys VHDL Compiler, Synthetic Designs, and Synthetic Libraries are registemdlemarks of

Synopsys, Inc.

Behavioral Compiler, CBA Design System, characterize, Compiled Designs, Cyclone, Data Path Architect, Data Path Express, DC BtpBC Professional,
Design Analyzer, Design Compiler, DesignSource, DesignTime, DesignWare, DesignWare Developer, dont_touch, dont_touch_network | ECompiler,
Falcon Interface, Floorplan Manager, FoundryModel, FPGA Compiler, FPGA Express, Frame Compiler, General Purpose Post-ProcessaiPP, HDL
Advisor, HDL Compiler, Integrator, Interactive Waveform Viewer, Library Compiler, LM-1400, LM-700, LM-family, Logic Model, M egmnArchitect,
M odel Source, ModelWare, M S-3200, M S-3400, PL debug, PrimeTime, Shadow Debugger, Shortcut, Silicon Architects, SimuBus, Smartdit;cu
SmartModel Windows, Source-Level Design, SourceModel, SWIFT, SWIFT Interface, Synopsys Graphical Environment, Test Compiler,tT&smpiler
Plus, Test Manager, TestBench Manager, TestSim, 3-D Debugging, VHDL System Simulator, Visualyze, VSS Expert, and V SS Professlana
trademarks of Synopsys, Inc.

In-Sync and LEARN-IT! are service marks of Synopsys, Inc.

All other products are trademarks of their respective holders and should be treated as such.

Chapter 1
FPGA Expresswith Verilog HDL

FPGA Express translates and optimizes a Verilog HDL description into an
internal gate-level equivalent, then compiles this representation to produce
an optimized gate-level design in a given FPGA technology.

This chapter introduces the main concepts and capabilities of FPGA
Expressin the following sections:

n Hardware Description Languages
n FPGA Express and the Design Process
n Design Methodology

Har dwar e Description Languages

Hardware description languages (HDL s) describe the architecture and
behavior of discrete electronic systems. Modern HDL s and their associated
simulators are very powerful tools for integrated circuit designers.

A typical HDL supports a mixed-level description in which gate and netlist
constructs are used with functional descriptions. This mixed-level
capability enables you to describe system architectures at avery high level
of abstraction, then incrementally refine a design’s detailed gate-level
implementation.

HDL descriptions play an important role in modern design methodology for
three main reasons:

n Design functionality can be verified early in the design process. A design
written as an HDL description can be simulated immediately. Design
simulation at this higher level, before implementation at the gate-level,
allows you to evaluate architectural and design decisions.

n FPGA Express provides Verilog compilation and logic synthesis, allowing
you to automatically convert an HDL description to a gate-level
implementation in atarget FPGA technology. This step eliminates the
former gate-level design bottleneck, the majority of circuit design time, and
the errors introduced when you hand translate an HDL specification to
gates.

With FPGA Express logic optimization, you can automatically transform a
synthesized design into a smaller or faster circuit. FPGA Express provides
both logic synthesis and optimization. For further information, refer to the
FPGA Express User’s Guide.

n HDL descriptions provide technology-independent documentation of a
design and its functionality. An HDL description is more easily read and
understood than a netlist or schematic description. Sincethe initial HDL
design description is technol ogy-independent, you can use it again to
generate the design in a different technol ogy, without having to translate
from the original technology.

The FPGA Express Design Process

FPGA Express translates V erilog language hardware descriptions to a
Synopsysinternal design format. The design can then be optimized and
mapped to a specific FPGA technology library by FPGA Express, as shown
in Figure 1-1.

Figure 1-1 FPGA Express Design Process

C/erilog D_escriptiorD
< FPGA Technology Libr@— FPGA Express

Optimized
Technology-Specific
Netlist

FPGA Express supports a majority of the Verilog constructs.

Using FPGA Expressto Compilea Verilog HDL Design

When aVerilog design isread into FPGA EXxpress, it is converted to an
internal database format so FPGA Express can synthesize and optimize the
design. When FPGA Express optimizes adesign, it may restructure part or
all thedesign. Y ou control the degree of restructuring. Options include

n Fully preserving adesign’s hierarchy

» Allowing full modules to be moved up or down in the hierarchy

» Allowing certain modules to be combined with others

n Compressing the entire design into one module (called flattening the

design) if it is beneficial

The following section describes the design process that uses FPGA Express
with aVerilog HDL Simulator.

Design M ethodology
Figure 1-2 shows atypical design process that uses FPGA Express and a
Verilog HDL Simulator. Each step of this design model is described in
detail.

Figure 1-2 Design Flow

Verilog HDL
Description

0

Verilog
Test Driver @
FPGA Express
FPGA
Development System
Verilog HDL Verilog HDL
Simulator Simulator

Simulation Compare Simulation
Output Output Output

The stepsin Figure 1-2 are explained below.

. Write adesign description in the Verilog language. This description can be

acombination of structural and functional elements (as shown in Chapter 2,
“‘Description Styles*). Thisdescription is used with both FPGA Express
and aVerilog simulator.

Provide Verilog-language test drivers for the Verilog HDL simulator. For
information on writing these drivers, see the appropriate simulator manual.
The drivers supply test vectors for simulation and gather output data.

. Simulate the design by using a Verilog HDL simulator. Verify that the

description is correct.

Use FPGA Express to synthesize and optimize the Verilog design
description into a gate-level netlist. FPGA Express generates optimized
netlists to satisfy timing constraints for atargeted FPGA architecture.

Useyour FPGA development system to link the FPGA technol ogy-specific
version of the design to the Verilog ssmulator. The development system
includes simulation models and interfaces required for the design flow.

. Simulate the technol ogy-specific version of the design with the Verilog

simulator. Y ou can use the original Verilog simulation drivers from Step 2
because module and port definitions are preserved through the translation
and optimization processes.

. Compare the output of the gate-level simulation (Step 6) against the output

of the original Verilog description simulation (Step 3) to verify that the
implementation is correct.

Verilog Example

This section takes you through a sample Verilog design session, starting
with aVerilog description (sourcefile). The ‘‘Count Zeros — Sequential
Version“ examplein this section is from Appendix A. The design session
covers the following topics:

A description of the design problem (count the number of zerosin a
sequentially input 8-bit value)

n A listing of a Verilog design description

Verilog Design Description

The Count Zeros example illustrates a design that takes an 8-bit value and
determinetwo things: first, that the value has exactly one sequence of 0'sin
the value; and second, the number of 0'sin that sequence (if any).

A valid valueis onethat contains only one consecutive series of Os. If more
than one series of Os appears, the valueisinvalid. A value consisting
entirely of 1'sisdefined asavalid value. If avalueisinvalid, the zero
counter isreset (to 0). For example, the value 00000000 is valid and has
eight Os; value 11000111 isvalid and has three 0's; value 00111100 is
invalid.

The circuit accepts the 8-bit data value serially, one bit per clock cycle, by
using the data and clk inputs. The other two inputs are reset, which resets
the circuit, and read, which causes the circuit to begin accepting the data
bits.

The circuit’ s three outputs are

is legal, which istrueif the dataisavalid value.

data ready, which istrue at the first invalid bit or when all eight bits have
been processed.

zeros, which is the number of zerosif is_legal istrue.

Example 1-1 shows the Verilog source description for the Count Zeros
circuit.

Example 1-1 Count Zeros-Sequential Version

module count_zeros(data,reset,read,clk,zeros,is legal,
data_ready);

parameter TRUE=1, FALSE=0;

input data, reset, read, clk;
output is_legal, data ready;
output [3:0] zeros;

reg [3:0] zeros;

regis legal, data ready;

reg seenZero, new_seenZero;

reg seenTrailing, new_seenTrailing;
reg new _is legal;

reg new_data ready;

reg [3:0] new_zeros;

reg [2:0] bits_seen, new_bits seen;

aways @ (data or reset or read or is_legal
or data_ready or seenTrailing or
seenZero) begin
if (reset) begin
new_data ready = FALSE;
new_is legal =TRUE;
new_seenZero = FALSE;
new_seenTrailing = FAL SE;
new_zeros =0;
new_bits seen =0;
end
else begin
new_is legal =is legd,
new_seenZero = seenZero;
new_seenTrailing = seenTrailing;
new_zeros = zeros,
new_bits seen = hits seen;
new_data ready = data ready;
if (read) begin
if (seenTrailing & & (data==0))
begin
new_is legal = FALSE;
new_zeros =0
new_data ready = TRUE;
end
elseif (seenZero & & (data==1'bl))
new_seenTrailing = TRUE;
elseif (data== 1'b0) begin
new_seenZero = TRUE;
new_zeros = zeros + 1;
end

if (bits seen==7)
new_data ready = TRUE;
else
new_bits seen = bits_seen+1,;
end
end
end

aways @ (posedge clk) begin
Zeros = new_zeros,
bits seen = new_bits seen;
seenZero = new_seenZero;
seenTrailing = new_seenTrailing;
is legal = new_is legdl;
data ready = new_data ready;

end

endmodule

Chapter 2
Description Styles

The style of your initial Verilog description has a major effect on the
characteristics of the resulting gate-level design synthesized by FPGA
Express. The organization and style of aV erilog description determines the
basic architecture of your design. Because FPGA Express automates most
of the logic-level decisionsrequired in your design, you can concentrate on
architectural tradeoffs.

Y ou can use FPGA Express to make some of the high-level architectural
decisions. Certain Verilog constructs are well suited to synthesis. To make
the decisions and use the constructs, you need to become familiar with the
following concepts:

Design Hierarchy

Structural Descriptions

Functional Descriptions

Mixing Structural and Functional Descriptions
Design Constraints

Register Selection

Asynchronous Designs

Design Hierarchy

FPGA Express maintains the hierarchical boundaries you define when you
use structural Verilog. These boundaries have two major effects:

Each module specified in your HDL description is synthesized separately
and maintained as a distinct design. The constraints for the design are
maintained, and each module can be optimized separately in FPGA
Express.

Module instantiations within HDL descriptions are maintained during
input. The instance name you assign to user-defined componentsis carried
through to the gate-level implementation.

Chapter 3 discusses modules and module instantiations.

Note: FPGA Express does not automatically maintain (create) the
hierarchy of other nonstructural Verilog constructs such asblocks, loops,
functions, and tasks. These elements of an HDL description are
trandated in the context of their design. After analyzing and
implementing a design, you can use the FPGA Express | mplementation
Window to group the gatesin a block, function, or task. Refer to the
FPGA Express User’'s Guide for further information.

The choice of hierarchical boundaries has a significant effect on the quality
of the synthesized design. Using FPGA Express, you can optimize adesign
while preserving these hierarchical boundaries. However, FPGA Express
only partially optimizes logic across hierarchical modules. Full
optimization is possible across those parts of the design hierarchy that are
collapsed in FPGA Express.

Structural Descriptions

The structural elements of a Verilog structural description consist of
generic logic gates, library-specific components, and user-defined
components connected by wires. In one way, a structural description can
be viewed as asimple netlist composed of nets that connect instantiations
of gates. However, unlike a netlist, netsin the structural description can be
driven by an arbitrary expression that describes the value assigned to the
net. A statement that drives an arbitrary expression onto anet iscalled a
continuous assignment. Continuous assignments are convenient links
between pure netlist descriptions and functional descriptions.

A Verilog structural description can define arange of hierarchical and
gate-level constructs, including module definitions, module instantiations,
and netlist connections. Refer to Chapter 3, “ Structural Descriptions,” for
more information.

Functional Descriptions

The functional elements of a Verilog description consist of f uncti on
declarations, t ask statements, and al ways blocks. These elements
describe the function of the circuit but do not describe its physical makeup,
layout, or choice of gates and components.

Y ou can construct functional descriptions with the Verilog functional
constructs described in Chapter 5. These constructs can appear within
functions or al ways blocks. Functionsimply only combinational logic.
al ways blocks can imply either combinational or sequential logic.

Although many Verilog functional constructs appear sequential in nature
(for example, f or loops and multiple assignments to the same variable),
these constructs describe combinational-logic networks. Other functional
constructs imply sequential-logic networks. Latches and registers are
inferred from these constructs. Refer to Chapter 6 for details.

Mixing Structural and Functional Descriptions

When you use afunctional description style in adesign, the combinational
portions of adesign are typically described in Verilog functions, al ways
blocks, and assignments. The complexity of the logic determines whether
you use one or many functions.

Example 2-1, shows how structural and functional description styles are
mixed in adesign specification. In Example 2—1, the function det ect _

| ogi ¢ determines whether theinput bitisa0 or al. After this
determination ismade, det ect _| ogi ¢ setsns to the next state of the
machine. Anal ways block infers flip-flops to hold the state information
between clock cycles.

Elements of a design can be specified directly as module instantiations at
the structural level. For example, seethe three-state buffer, t 1, in Example
2-1. (Notethat three-state buffers can be inferred. For more information,

refer to “ Three-State Inference” in Chapter 6.) Y ou can also use this
description styleto identify the wires and ports that carry information from
one part of the design to another.

Example 2-1

Mixed Structural and Functional Descriptions

/] This finite state machine (Mealy type) reads one
/1 bit per clock cycle and detects three or nore
/1 consecutive 1s.

nmodul e three ones(signal, clock, detect, output
enabl e) ;

i nput signal, clock, output _enable;

out put detect;

/! Declare current state and next state vari abl es.
reg [1:0] cs;

reg [1:0] ns;

Wi re ungat ed_det ect;

/] declare the synbolic names for states
paraneter NOONES = 0, ONEONE = 1
TWD ONES = 2, AT_LEAST THREE ONES = 3

[FxxFExxkkxxxk QTRUCTURAL DESCR PTI ON
kkkkkkhkkkkhkkhkkkhkkhkxk*k

/1 Instance of a three-state gate that enabl es out put
three state t1 (ungated detect, output_ enabl e,

det ect);

// **************I*** AL\MYS BL(I](
kkkkkkhkkhkkkhkkhkkhkkhkkhkkhkkkk*x
/1 always block infers flip-flops to hold the state
of
/! the FSM
always @(posedge clock) begin
CS = ns;
end

[] *xxxsxxxexixs FUNCTI ONAL DESCR PTI ON

kkhkkhkkkkkhkhkhkhkhkhkkkk*x

function detect | ogic;
input [1:0] cs;

i nput signal ;
begi n
detect logic = 0; [/ default val ue
if (signal ==0) // bit is zero
ns = NO ON\ES;
el se /!l bit is one, increnent
state
case (cs)
NO ONES: ns = ONE_ON\E;
ONE ONE ns = TWD ONES
TWD ONES, AT_LEAST THREE ONES
begi n
ns = AT_LEAST THREE ONES
detect logic = 1;
end
endcase
end

endf uncti on

// kkkkkkhkkhkkkhkkhkkkkhx aSSl gn STATEI\E’\IT kkkkkkhkkhkkkkhkkkkk
assign ungated detect = detect logic(cs, signal);
endnodul e

For a structural or functional HDL description to be synthesized, it must
follow the Synopsys synthesis policy, which has three parts:

» Design methodology
n Description style

n Language constructs

Design Methodology

Design methodology refers to the synthesis design process described in
Chapter 1, “Design Methodology.”

Description Style

Use the HDL design and coding style that makes the best use of the
synthesis process to obtain high-quality results from FPGA Express. See
Chapter 8, “Writing Efficient Circuit Descriptions,” for guidelines.

Language Constructs

The third component of the Verilog synthesis policy isthe set of Verilog
constructs that describe your design, determine its architecture, and give
consistently good results.

Synopsys has chosen HDL constructs that maximize coding flexibility
while producing consistently good results. Although FPGA Express can
read the entire Verilog language, afew HDL constructs cannot be
synthesized. These constructs are unsupported, because they cannot be
realized in logic. For example, you cannot use simulation time as atrigger,
because timeis an element of the simulation process and cannot be
realized. Unsupported Verilog constructs are listed in Appendix C.

Design Constraints

Y ou can describe the performance constraints for a design module with the
FPGA Express Implementation Window. Refer to the FPGA Express
User’s Guide for further information.

Register Selection

The placement of registers and the clocking scheme are important
architectural decisions. There are two ways to define registersin your
Verilog description. Each method has specific advantages.

Y ou can directly instantiate registersinto a Verilog description, selecting
from any element in your FPGA library. Clocking schemes can be
arbitrarily complex. Y ou can choose between a flip-flop and alatch-based
architecture. The main disadvantages to this approach are

e The Verilog description is specific to a given technology because you
choose structural elements from that technology library. However, you
can isolate the portion of your design with directly instantiated registers
as a separate component (module), then connect it to the rest of the
design.

» The description is more difficult to write.

Y ou can use some Verilog constructs to direct FPGA Expressto infer
registers from the description. The advantages of this approach directly
counter the disadvantages of the previous approach. With register
inference, the Verilog description is much easier to write, and it is
technology independent. This method allows FPGA Express to select the
type of component inferred, based on constraints. Therefore, if a specific
component is necessary, instantiation should be used. Some types of
registers and latches cannot be inferred.

See Chapter 6 for adiscussion of latch and register inference.

Asynchronous Designs

Y ou can use FPGA Express to construct asynchronous designs that use
multiple clocks or gated clocks. Although these designs are logically
(statically) correct, they might not simulate or operate correctly because of
race conditions.

Chapter 8 describes how to write Verilog descriptions of asynchronous
designsin the section “ Synthesis Issues.”

Chapter 3
Structural Descriptions

A Verilog circuit description can be one of two types: a structural
description or afunctional description, also referred to as an Register
Transfer Level (RTL) description. A structural description defines the
exact physical makeup of the circuit, detailing components and the
connections between them. A functional or RTL description describes a
circuit in terms of its registers and the combinational logic between the
registers.

This chapter describes the construction of structural descriptionsin the
following sections:

Modules

Macromodules

Port Definitions

M odule Statements and Constructs

M odule Instantiations

Modules

Figure 3-1

The principal design entity in the Verilog language isamodule. A module
consists of the module name, its input and output description (port
definition), a description of the functionality or implementation for the
module (module statements and constructs), and named instantiations.
Figure 3-1 illustrates the basic structural parts of a module.

Structural Parts of a Module

Module

Example 3-1

M odule Name and
Port List

Definitions
Port, Wire, Register,
Parameter, Integer, Function

M odule Statements and
Constructs

M odule Instantiations

Example 3-1 shows a simple modul e that implements a 2-input NAND gate
by instantiating an AND gateand an INV gate. Thefirst line of the module
definition provides the name of the module and alist of ports. The second
and third lines give the direction for all ports. (Ports are either inputs,
outputs, or bidirectionals.) A wire variableis created in the fourth line of
the description. Next, the two components are instantiated; copies named
instancel and instance2 of the components AND and INV are created.
These components are connected to the ports of the module, and are finally
connected by using the variable and_out.

M odule Definition
nodul e NANDX(a, b, z);

i nput a, b; /1l Inputs to nand gate
out put z; /] Qutputs fromnand gate
wire and out; // Qutput fromand gate

AND i nst ancel(a, b, and_out);
I NV i nstance2(and_out, 2z);
endnodul e

macromodule Constructs

Example 3-2

The macromodule construct makes simulation more efficient by merging
the macromodul e definition with the definition of the calling (parent)
module. However, FPGA Express treats the macromodule construct as a
module construct. Whether you use module or macromodul e the synthesis
process, the hierarchy it creates, and the end result are the same. Example
3-2 shows how to use the macromodul e construct.

macromodule Construct

macr onodul e adder (inl,in2,outl);
input [3:0] inl,in2;

out put [4:0] outl;

assign outl =inl + in2;
endnodul e

Note: When a macromodule isinstantiated, a new level of hierarchy is
created. You can ungroup thisnew level of hierarchy in the FPGA
Express | mplementation Window.

Port Definitions

A port list consists of port expressions that describe the input and output
interface for amodule. Define the port list in parentheses after the module
name, as shown below.

nodule nane (port _list) ;

A port expression in aport list can be any of the following:

An identifier

A single bit selected from a bit vector declared within the module

A group of bits selected from a hit vector declared within the module

A concatenation of any of the above

Concatenation isthe process of combining several single-bit or multiple-bit

operands into one large bit vector. For more information on concatenation,
refer to the section “ Concatenations’ in Chapter 4.

Each port in a port list must be declared explicitly as input, output, or
bidirectional in the module with an input, output, or inout statement. (See
“Port Declarations’ later in this chapter.) For example, the module
definition in Example 31 shows that module NAND has three ports, a, b,
and z, connected to 1-bit nets a, b, and z. These connections are declared in
the input and output statements.

Port Names

Example 3-3

Some port expressions are identifiers. If the port expression is an identifier,
the port name is the same as the identifier. A port expression is not an
identifier if the expression is a single bit or group of bits selected from a
vector of bits, or a concatenation of signals. In these cases, the port is
unnamed unless you explicitly name it.

Example 3-3 shows some module definition fragments that illustrate the
use of port names. The portsfor module ex1 are named a, b, and z, and are
connected to nets a, b, and z, respectively. The first two ports of module
ex2 are unnamed; the third port isnamed z. The ports are connected to nets
a[1], (0], and z respectively. Module ex3 hastwo ports: the first port is
unnamed and is connected to a concatenation of nets a and b; the second
port, named z, is connected to net z.

Module Port Lists

nmodul e ex1(a, b, z);
i nput a, b;

out put z;

endnodul e

nodul e ex2(a[1], a[0], z);
input [1:0] a;

out put z;

endnodul e

nmodul e ex3({a, b}, z);
i nput a, b;

out put z;

endnodul e

Y ou can rename a port by explicitly assigning a name to a port expression
with the dot (.) operator. The module definition fragmentsin Example 3-4
show how to rename ports. The ports for module ex4 are explicitly named
in_a, in_b, and out These ports are connected to nets a, b, and z. Module
ex5 shows ports named i1, i0, and z connected to nets a[1], a[0], and z,
respectively. Thefirst port for module ex6 (the concatenation of netsa and
b) isnamed i.

Example 3-4 Naming Portsin Modules

nodul e ex4(.in_a(a), .in_b(b), .out(z));
i nput a, b;
out put z;

endnodul e

nmodul e ex5(.i1(a[1]), .i0(a[0]), z);
input [1:0] a;
out put z;

endnodul e

nmodul e ex6(.i({a,b}), z);
i nput a, b;
out put z;

endnodul e

Module Statements and Constructs

FPGA Express recognizes the following Verilog statements and constructs
when they are used in a Verilog module:

n parameter declarations
n wire, wand, wor, tri, supply0, and supplyl declarations
n reg declarations

n input declarations

" output declarations

n inout declarations

n Continuous assignments
» Module instantiations

n Gate instantiations

n Function definitions

n always blocks

n task statements

Data declarations and assignments are described in this section. Module
and gate instantiations are described later in this chapter. Function
definitions, task statements, reg variables, and always blocks are described
in Chapter 5, “Functional Descriptions.”

Structural Data Types

Example 3-5

Verilog structural data typesinclude wire, wand, wor, tri, supply0, and
supplyl1. Although parameter does not fall into the category of structural
datatypes, it is presented here because it is used with structural data types.

Y ou can define an optional range for all the data types presented in this
section. The range provides a means for creating a bit-vector. The syntax
for arange specification is

[meb : Isb]

Expressions for msh (most significant bit) and Isb (least significant bit)
must be nonnegative constant-valued expressions. Constant-valued
expressions are composed only of constants, Verilog parameters, and
operators.

parameter Definitions

Verilog parameters allow you to customize each instantiation of amodule.
By setting different values for the parameter when you instantiate the
module, you can cause different logic to be constructed. For more
information, see “Building Parameterized Designs,” later in this chapter.

A parameter definition represents constant values symbolically. The
definition for a parameter consists of the parameter name and the value
assigned to it. The value can be any constant-valued expression of integer
or Boolean type, but not of typereal. If you do not set the size of the
parameter with arange definition or a sized constant, the parameter is
unsized and defaults to a 32-bit quantity. Refer to Appendix C for a
discussion of constant formats.

Y ou can use a parameter wherever anumber is alowed, and you can define
a parameter anywhere within a module definition. However, the Verilog
language requires that you define the parameter before you use it.

Example 3-5 shows two parameter declarations. Parameters TRUE and
FALSE are unsized, and have values of 1 and 0, respectively. Parameters
S0, S1, S2, and S3 have values 3, 1, 0, and 2, respectively, and are stored as
2-bit quantities.

parameter Declarations

paranet er TRUE=1, FALSE=O;
parameter [1:0] S0=3, S1=1, S2=0, S3=2;

Example 3-6

wire Data Types

A wire datatype in a Verilog description represents the physical wiresin a
circuit. A wireconnectsgate-level instantiations and moduleinstantiations.
The Verilog language allows you to read a wire value from within a
function or a begin...end block, but you cannot assign a wire value from
within afunction or abegin...end block. (An always block is a specific
type of begin...end block).

A wire does not storeitsvalue. It must be driven in one of two ways:
By connecting the wire to the output of a gate or module.

By assigning a value to the wire in a continuous assignment.

In the Verilog language, an undriven wire defaultsto avalue of Z (high
impedance). However, FPGA Expressleaves undriven wires unconnected.
Multiple connections or assignments to a wire short the wires together.

In Example 3-6, two wire data types are declared: aand b. aisasingle-bit
wire, while b is a 3-bit vector of wires (the most significant bit (MSB) has
an index of 2 and the least significant bit (LSB) has an index of 0.)

wire Declarations

wre a;
wire [2:0] b;

Y ou can assign adelay value in awire declaration, and you can use the
Verilog keywords scalared and vectored for simulation. FPGA Express
accepts the syntax of these constructs, but they are ignored when the circuit
is synthesized.

Note: You can use delay information for modeling, but FPGA Express
ignoresthis delay information. If the functionality of your circuit
depends on the delay information, FPGA Express might create logic with
behavior that does not agree with the behavior of the simulated circuit.

wand Data Types
Thewand (wired AND) datatype is a specific type of wire data type.

In Example 37, two variables drive the variable c. The value of cis
determined by the logical AND of aand b.

Example 3-7

Example 3-8

wand (wired AND) Data Types

nmodul e wand_test(a, b, c);
i nput a, b;
out put c;

wand c;
assign c

assign c
endnodul e

Y ou can assign adelay value in a wand declaration, and you can use the
Verilog keywords scalared and vectored for simulation. FPGA Express
accepts the syntax of these constructs, but they are ignored when the circuit
is synthesized.

wor Data Types
Thewor (wired OR) data type is a specific type of wire data type.

In Example 3-8, two variables drive the variable c. Thevalueof cis
determined by the logical OR of aand b.

wor (wired-OR) Data Types

nmodul e wor _test(a, b, ¢);
i nput a, b;
out put c;

wor c;
assign c

assign c
endnodul e

tri Data Types

Thetri (three-state) datatypeis a specific type of wire datatype. Only one
of the variables that drive the tri data type can have anon-Z
(high-impedance) value. This single variable determines the value of the tri
datatype

Note: FPGA Express does not enforce the above condition. You must
ensure that no more than one variable driving a tri data type has a value

other than Z.

In Example 3-9, three variables drive the variable out.

Example 3-9

Example 3-10

Example 3-11

tri (Three-State) Data Types

nmodul e tri _test (out, condition);
input [1:0] conditon;
out put out;

reg a, b, c;
tri out;

always @(condition) begin

a=1bz;// set all variables to Z
b = 1 bz;
c =1 bz;
case (condition) // set only one variable to
non-Z
2'’b00 : a = 1" bil;
2’b01 : b = 1'b0O;
2'’b10 : ¢ = 1" bil;
endcase
end
assign out = a; /! make the tri connection
assign out = b;
assign out = c;
endnodul e

supply0/ supplyl Data Types

The supply0 and supplyl data types define wires tied to logic 0 (ground)
and logic 1 (power). Using supply0 and supplyl isthe same as declaring a
wireand assigning a0 or altoit. In Example 3-10, power istied to logic
landgndistied to logic O.

supply0 and supplyl Constructs

suppl yO gnd;
suppl y1 power;

reg Data Types

A reg represents avariable in Verilog. A reg can be a 1-bit quantity or a
vector of bits. For avector of bits, the range indicates the most significant
bit (MSB) and least significant bit (LSB) of the vector. Both bits must be
nonnegative constants, parameters, or constant-valued expressions.
Example 3-11 shows some reg declarations.

reg Declarations

reg x;// single bit
reg a,b,c;// 3 1-bit quantities
reg [7:0] q;// an 8-bit vector

Port Declarations

Y ou must explicitly declare the direction (whether input, output, or
bidirectional) of each port that appears in the port list of a port definition.
Use the input, output, and inout statements, as described in the following
sections.

input Declarations

All input ports of a module are declared with an input statement. An input
isatype of wire and is governed by the syntax of wire. Y ou can use arange
specification to declare an input that is a vector of signals, asfor input b in
the following example. The input statements can appear in any order in the
description but must be declared before they are used. For example:

i nput a;
input [2:0] b;

output Declarations

All output ports of amodule are declared with an output statement. Unless
otherwise defined by areg, wand, wor, or tri declaration, an output isatype
of wire and is governed by the syntax of wire. An output statement can
appear in any order in the description, but you must declare it before you
useit.

Y ou can use arange specification to declare an output value that is a vector
of signals. If you use areg declaration for an output, the reg must have the
same range as the vector of signals. For example:

out put a;
out put [2:0]b;
reg [2:0] b;

inout Declarations

Y ou can declare bidirectional ports with the inout statement. Aninoutisa
type of wire and is governed by the syntax of wire. FPGA Express allows
you to connect only inout ports to module or gate instantiations. Y ou must
declare an inout before you use it. For example:

i nout a;
i nout [2:0]b;

Continuous Assignment

If you want to drive avalue onto awire, wand, wor, or tri, use a continuous
assignment to specify an expression for the wire value. Y ou can specify a
continuous assignment in two ways:

Example 3-12

n Use an explicit continuous assignment statement after the wire, wand, wor,

or tri declaration.

Specify the continuous assignment in the same line as the declaration for a
wire.

Example 3—12 shows two equivalent methods for specifying a continuous
assignment for wire a.

Two Equivalent Continuous Assignments

wre a; /] declare
assign a =b & c; /] assign
wirea=>b &c; /1 declare and assign

The left side of a continuous assignment can be
A wire, wand, wor, or tri.
One or more bits selected from a vector.

A concatenation of any of these.

Theright side of the continuous assignment statement can be any supported
Verilog operator, or any arbitrary expression that uses previously declared
variables and functions. Note that you cannot assign avalueto aregin a
continuous assignment.

Verilog allowsyou to assign drive strength for each continuous assignment
statement. FPGA Express accepts drive strength, but it does not affect the
synthesis of the circuit. Keep thisin mind when you use drive strength in
your Verilog source.

Assignments are performed bit-wise, with the low bit on theright side
assigned to the low bit on the |eft side. If the number of bits on the right
side is greater than the number on the |eft side, the high-order bits on the
right side are discarded. If the number of bits on the left sideis greater than
the number on the right side, operands on the right side are zero-extended.

Module Instantiations

Module instantiations are copies of the logic that define component
interconnections in a module.

nodul e_nane i nstance_nanel (ternminall, terninal2),
i nstance_nanme2 (terninall, termnal2);

A moduleinstantiation consists of the name of the module (module_name),
followed by one or more instantiations. An instantiation consists of an
instantiation name (instance_name) and a connection list. A connection list
isalist of expressions called terminals, separated by commas. These
terminals are connected to the ports of the instantiated module.

Terminals connected to input ports can be any arbitrary expression.
Terminals connected to output and inout ports can be identifiers, single-bit
or multiple-bit slices of an array, or a concatenation of these. The hit
widths for aterminal and its module port must be the same.

If you use an undeclared variable as aterminal, the terminal isimplicitly
declared as ascalar (1-bit) wire. After the variableisimplicitly declared as
awire, it can appear wherever awireis allowed.

Example 3—13 shows the declaration for the module SEQ with two
instances (SEQ_1 and SEQ 2).

Example 3-13 Module Instantiations

nodul e SEQBUSO, BUS1, QJT); // description of nodul e SEQ
i nput BUSO, BUSI;
out put QUT;

endﬁbdule

modul e top(DO, D1, D2, D3, QUTO, QUT1);
input DO, D1, D2, D3;
out put QUTO, QUTY,

SEQ SEQ 1(D0, D1, QJTO), // instantiations of nodul e SEQ
SEQ 2(. QUT(QUJT1), . BUSL(DB), . BUSO(DR));
endnodul e

Named and Positional Notation

M odul e instantiations can use either named or positional notation to specify
the terminal connections.

In name-based module instantiation, you explicitly designate which port is
connected to each terminal in thelist. Undesignated portsinthe module are
unconnected.

In position-based module instantiation, you list the terminals and specify
connections to the modul e according to the terminal’ s position in the list.
Thefirst terminal in the connection list is connected to the first module
port, the second terminal to the second module port, and so on. Omitted
terminal s indicate that the corresponding port on the moduleis
unconnected.

In Example 3-13, SEQ 2 isinstantiated with named notation, as follows:
Signal OUT1 is connected to port OUT of the module SEQ.

Signal D3 is connected to port BUSL.

Signal D2 is connected to port BUSO.

SEQ 1lisinstantiated by using positional notation, as follows:
Signal DO is connected to port BUSO of module SEQ.

Signal D1 is connected to port BUSL.

Signal OUTO is connected to port OUT.

Building Parameterized Designs

Example 3-14

The Verilog language allows you to create parameterized designs by
overriding parameter values in a module during instantiation. In Verilog,
you can do this with the defparam statement or with the following syntax.

nodul e_nane #(par anet er _val ue, paranmeter _val ue,...)
i nst ance_name
(terminal list)

FPGA Express does not support the defparam statement but does support
the syntax above.

The module in Example 3-14 contains a parameter declaration.

parameter Declaration in aModule

nmodul e foo (a,b,c);
parameter width = 8;

input [width-1:0] a,b;
output [width-1:0] c;

assign ¢c = a & b;

endnodul e

In Example 3-14, the default value of the parameter width is 8, unless you
override the value when the module isinstantiated. When you change the
value, you build a different version of your design. Thistype of designis
called a parameterized design.

Example 3-15

FPGA Express reads parameterized designs as templates. These designs
are stored in an intermediate format so that they can be built with different
(nondefault) parameter values when they are instantiated.

If your design contains parameters, you can indicate that the design should
beread in as atemplate by adding the pseudo comment //synopsys template
to your code.

If you use parameters as constants that never change, do not read in your
design as atemplate. One way to build atemplate into your design is by
instantiating it in your Verilog code. Example 3—15 shows how to do this.

Instantiating a Parameterized Design in your Verilog Code

nodul e param (a, b, ¢);

input [3:0] a,b;
output [3:0] c;

foo #(4) Ul(a,b,c); // instantiate foo

endnodul e

Example 3-15 instantiates the parameterized design, foo, which has one
parameter that is assigned the value 4.

Because module foo is defined outside the scope of module param, errors
such as port mismatches and invalid parameter assignments are not
detected until the design is linked. When FPGA Express links module
param, it searches for template foo in memory. If foo isfound, itis
automatically built with the specified parameters. FPGA Express checks
that foo has at |east one parameter and three ports, and that the bit widths of
the ports in foo match the bit-widths of portsa, b, and c. If templatefoo is
not found, the link fails.

Templatesinstantiated with different parameter values are different designs
and require unique names. Three variables control the naming convention
for the templates:

template_naming_style = “%s_%p”
template_parameter_style = “%s%d"

template_separator_style=" "

Thetemplate_naming_style variable is the master variable for renaming a
template. The %sfield is replaced by the name of the original design, and
the %op field is replaced by the names of all the parameters.

Thetemplate parameter_style variable determines how each parameter is
named. The %sfield isreplaced by the parameter name, and the %d field
isreplaced by the value of the parameter.

Thetemplate separator_style variable contains a string that separates
parameter names. Thisvariable isused only for templates that contain more
than one parameter.

When atemplate is renamed, only the parameters you select when you
instantiate the parameterized design are used in the template name. For
example, template ADD contains parameters N, M, and Z. Y ou can build a
design where N = 8, M = 6, and Z is the default value. The name assigned
tothisdesignis ADD_N8 M6. If no parameters are selected, the template
is built with default values, and the name of the created design is the same
as the name of the template.

Gate-Level Modeling

Verilog provides a number of basic logic gates that enable modeling at the
gate level. Gate-level modeling is a special case of positional notation for
module instantiation that uses a set of predefined module names. FPGA
Express supports the following gate types:

» and
» nand
noor

" nor
n XOr
n Xnor
 buf
" not

n tran

Connection lists for instantiations of a gate-level model use positional
notation. In the connection lists for and, nand, or, nor, xor, and xnor gates,
the first terminal connects to the output of the gate, and the remaining
terminals connect to the inputs of the gate. Y ou can build arbitrarily wide
logic gates with as many inputs as you want.

Connection lists for buf, tran, and not gates also use positional notation.
Y ou can have as many outputs as you want, followed by only one input.
Each terminal in a gate-level instantiation can be a 1-bit expression or
signal.

Example 3-16

In gate-level modeling, instance names are optional. Drive strengths and
delays are allowed, but they are ignored by FPGA Express. Example 3-16
shows two gate-level instantiations.

Gate-Level Instantiations

buf (buf_out,e);
and and4(and_out, a, b, c, d);

Note: Delay optionsfor gate primitives are parsed but ignored by FPGA
Express. Because FPGA Expressignoresthe delay information, it might
create logic whose behavior does not agree with the simulated behavior of
thecircuit. See Chapter 6 for more information.

Three-State Buffer Instantiation

Example 3-17

FPGA Express supports the following gate types for instantiation of
three-state gates:

bufifO (active low enableline)
bufifl (active high enableline)
notifO (active low enable line; output inverted)
notifl (active high enable line; output inverted)

Connection lists for bufif and notif gates use positional notation. Specify
the order of the terminals as follows:

Thefirst terminal connects to the output of the gate.
The second terminal connectsto the input of the gate.

The third terminal connects to the control line.

Example 3—17 shows a three-state gate instantiation with an active high
enable and no inverted output.

Three-State Gate | nstantiation

nodul e three state (inl,outl, cntrll);
input inl,cntrl1;

out put out 1;

bufifl (outl,inl,cntrll);

endnodul e

Chapter 4
Expressions

In Verilog, expressions consist of a single operand or multiple operands
separated by operators. Use expressions where avalueisrequired in
Verilog.

This chapter explains how to build and use expressions in the following
sections:

n Constant-V alued Expressions
n QOperators

n Operands

n Expression Bit Widths

Constant-Valued Expressions

A constant-valued expression is an expression whose operands are either
constants or parameters. FPGA Express determines the value of these
expressions.

In Example 4-1, si ze- 1 isaconstant-valued expression. The expression
(op == ADD) ? a+b : a-b isnotaconstant-valued expression,
because the value depends on the variable op. If thevalueof op is1,b is
added to a; otherwise, b is subtracted from a.

Example 4-1

Valid Expressions

/1 all expressions are constant-val ued,
/] except in the assign statemnent.
nodul e add_or _subtract(a, b, op, s);
/] perforns s =ath if opis ADD

/1 s =ab if opis not ADD
par amet er si ze=8;

par amet er ADD=1’ b1l;

i nput op;

input [size-1:0] a, b;

output [size-1:0] s;

assign s = (op == ADD ? atb : a-b; // not a
const ant -
/1 val ued expression
endnodul e

The operators and operands used in an expression influence the way a
design is synthesized. FPGA Express evaluates constant-valued
expressions and does not synthesize circuitry to compute their value. If an
expression contains constants, they are propagated to reduce the amount of
circuitry required. FPGA Express does synthesize circuitry for an
expression that contains variables, however.

Operators

Table4-1

Operator

{}

Operators represent an operation to be performed on one or two operandsto
produce anew value. Most operators are either unary operators that apply
to only one operand, or binary operators that apply to two operands. Two
exceptions are conditional operators, which take three operands and
concatenation operators, which take any number of operands. The Verilog
language operators supported by FPGA Expressarelistedin Table4-1. A
description of the operators and their order of precedenceisgiven in the
following sections.

Verilog Operators Supported by FPGA Express

Description
concatenation
arithmetic
modulus
relational

logical NOT

Operator

&&

Description
logical AND
logical OR
logical equality
logical inequality
bit-wise NOT
bit-wise AND
bit-wise OR
bit-wise XOR
bit-wise XNOR
reduction AND
reduction OR
reduction NAND
reduction NOR
reduction XOR
reduction XNOR
left shift
right shift
conditional

In the following descriptions, the terms variable and variable operand refer

to operands or expressions that are not constant-valued expressions. This

group includes wires and registers, bit-selects and part-sel ects of wires and
registers, function calls, and expressions that contain any of these elements.

Arithmetic Operators

Arithmetic operators perform simple arithmetic on operands. The Verilog
arithmetic operators are

" addition (+)

n subtraction (-)

Example 4-2

» multiplication (*)
n division (/)

n modulus (%

Y ou can use the addition (+), subtraction (-), and multiplication (*)
operators with any operand form (constants or variables). The addition (+)
and subtraction (-) operators can be used as either unary or binary
operators. FPGA Express requiresthat division (/) and modulus (%)
operators have constant-valued operands.

Example 4-2 shows three forms of the addition operator. The circuitry built
for each addition operation is different because of the different operand
types. The first addition requires no logic, the second synthesizes an
incrementer, and the third synthesizes an adder.

Addition Operator

par aret er si ze=8;
wire [3:0] a b,c,d e

assign ¢ = size + 2; // constant + constant
assign d = a + 1; /! variable + constant
assign e = a + b; /! variable + variable

Relational Operators

Example 4-3

Relational operators compare two quantitiesand yield a0 or 1 value. A
true comparison evaluatesto 1; afalse comparison evaluatesto 0. All
comparisons assume unsigned quantities. The circuitry synthesized for
relational operatorsis a bit-wise comparator whose size is based on the
sizes of the two operands.

The Verilog relational operators are
lessthan (<)

less than or equal to (<=)

greater than (>)

greater than or equal to (>=)

Example 4-3 shows the use of arelational operator.

Relational Operator

function [7:0] nax(a, b);
input [7:0] a,b;
if (a>Db) mx
el se nax
endf uncti on

a;
b;

Equality Operators

Example 4-4

Equality operators generate a0 if the expressions being compared are not
equal and a 1 if the expressions are equal. Equality and inequality
comparisons are performed bit-wise.

The Verilog equality operators are
equality (==
inequality (! =)

Example 4—4 showsthe equality operator used to test for aJMP instruction.
The output signal j unp issetto 1 if the two high-order bits of
instruction areequal tothe value of parameter JMP; otherwise,
junp issettoO.

Equality Operator

nmodul e is_junp_instruction (instruction, junp);
parameter JMP = 2’ h3;

input [7:0] instruction;
out put j unp;
assign junp = (instruction[7:6] == JM);

endnodul e

Handling Comparisonsto Xor Z

Comparisonsto an X or aZ are alwaysignored. If your code contains a
comparison to an X or aZ, awarning message is displayed indicating that
the comparison is aways evaluated to false, which might cause simulation
to disagree with synthesis.

For example, the variable B in the following code (from afile called
t est 2. v) isalways assigned to the value 1, because the comparison to X
isignored.

Example 4-5

Comparison to X Ignored

al ways begin
if (A== 1 bx) // thisis line 10
B_ .

el se ,
B =1;
end

When FPGA Express reads this code, the following warning message is
generated.

VMr ni ng: Conparisons to a “don’t care” are treated as
always being false in routine test2 line 10 in file

‘test2.v'. This nmay cause sinulation to disagree with
synt hesis. (HDL-170)

For an alternate method of handling comparisonsto X or Z, insert the/ /
synopsys transl ate_of f directive before the comparison and
insertthe// synopsys translate_on directive after the
comparison. Inserting these directives might cause simulation to disagree
with synthesis.

Logical Operators

Logical operators generate a1l or a0, according to whether an expression
evaluatestotrue (1) orfal se (0). The Verilog logical operators are

logical NOT (1)

logical AND (&&)

logical OR (] |)

Thelogical not operator produces avalue of 1 if its operand is zero and a
value of O if its operand isnonzero. Thelogical and operator produces a

value of 1 if both operands are nonzero. Thelogical or operator produces
avalue of 1 if either operand is nonzero.

Example 4-6 shows some logical operators.

Example 4-6

Logical Operators

nmodul e is_valid sub inst(inst, node,valid, uninp);

par amet er | MVEDI ATE=2' b00, DI RECT=2’ b01;

par amet er SUBA i mm=8’ h80, SUBA dir=8' h90,
SUBB i nm=8’ hc0, SUBB_di r=8" hdo;

input [7:0] inst;

input [1:0] node;

out put valid, uninp;

assign valid = (((nmode == | MMEDI ATE) && (
(inst == SUBA imm) ||

(inst == SUBB imm))) |

((rmode == DI RECT) && (

(inst == SUBA dir)

(inst == SUBB dir)

assign uninp = !valid;

endnodul e

Bit-Wise Operators

Example 4-7

Bit-wise operators act on the operand bit by bit. The Verilog bit-wise
operators are

unary negation (~)
binary AND (&)

binary OR (|)

binary XOR (*)

binary XNOR ("~ or ~")

Example 4-7 shows some hit-wise operators.

Bit-Wise Operators

nmodul e full _adder(a, b, cin, s, cout);
input a, b, cin;
out put s, cout;

a”™b”cin
(a&b) | (cin & (alb));

assign s
assi gn cout
endnodul e

Reduction Operators

Reduction operators take one operand and return a single bit. For example,
the reduction and operator takesthe and value of all the bits of the
operand and returns a 1-bit result. The Verilog reduction operators are

n reduction AND (&)

n reduction OR (|)

n reduction NAND (~&)

n reduction NOR (~|)

n reduction XOR (")

n reduction XNOR (*~ or ~)

Example 4-8 shows the use of some reduction operators.

Example 4-8 Reduction Operators

nmodul e check input (in, parity, all_ones);
input [7:0] in;
output parity, all_ones;

assign parity
assign all_ones
endnodul e

A
& in;

Shift Operators

The Verilog shift operators are
o shift left (<<)
o shift right (>>)

A shift operator takes two operands and shifts the value of the first operand
right or left by the number of bits given by the second operand.

After the shift, vacated bits are filled with zeros. Shifting by a constant
resultsin trivial circuitry (because only rewiring isrequired). Shifting by a
variable causes a general shifter to be synthesized. Example 4-9 shows
how aright-shift operator is used to perform adivision by 4.

Example 4-9

Shift Operator

nmodul e di vide by 4(dividend, quotient);
input [7:0] dividend;
output [7:0] quotient;

assign quotient = dividend >> 2; // shift right 2
bits
endnodul e

Conditional Operators

Example 4-10

Example 4-11

Conditional operators (? :) evaluate an expression and return a value that
is based on the truth of the expression. Example 4-10 shows how to use
conditional operators. If the expression (op == ADD) evaluatesto
true,thevaluea+b isassignedtoresul t ; otherwise, thevaluea-b is
assignedtoresul t .

Conditional Operator

nmodul e add_or_subtract(a, b, op, result);

par amet er ADD=1’ b0;
input [7:0] a, b;

i nput op;

output [7:0] result;

assign result = (op == ADD) ? atb : a-b;
endnodul e
Conditional operators can be nested to produceanif . . . else if

construct. Example 4-11 shows the conditional operators ? : usedto
evaluate the value of op successively and perform the correct operation.

Nested Conditional Operator

nmodul e arithmetic(a, b, op, result);

par amet er ADD=3’ h0, SUB=3" h1, AND=3" h2,
OR=3' h3, XOR=3' h4;

input [7:0] a,b;
input [2:0] op;
output [7:0] result;

assign result = ((op == ADD) ? atb : (
(op == SUB) ? a-b : (
(op == AND) ? a&b : (
(op== R ?alb: (
(op == XCR) ? a*b : (a))))));

endnodul e

Concatenations

Example 4-12

Example 4-13

Concatenation combines one or more expressions to form alarger vector.
In the Verilog language, you indicate concatenation by listing all
expressionsto be concatenated, separated by commas, in curly braces({ }).
Any expression except an unsized constant is allowed in a concatenation.
For example, the concatenation {1’ b1, 1' b0, 1’ b0} vyieldsthe value
3’ b100.

Y ou can also use a constant-valued repetition multiplier to repeat the
concatenation of an expression. The concatenation{ 1’ b1, 1’ b0, 1' b0}
can also bewrittenas{ 1’ b1, {2{1" b0}}} toyield3 b100. The
expression { 2{ expr } } within the concatenation repeats expr two times.

Example 4-12 shows a concatenation that forms the value of a
condition-code register.

Concatenation Operator

output [7:0] ccr;
wire half _carry, interrupt, negative, zero,
overflow carry;

éééi gn ccr ={ 2'b00, half_carry, interrupt,
negative, zero, overflow carry };
Example 4-13 shows an equivalent description for the concatenation.

Concatenation Equivalent
output [7:0] ccr;

assign ccr[7] = 1" b0;
assign ccr[6] = 1" b0;
assign ccr[5] = half_carry;
assign ccr[4] = interrupt;
assign ccr[3] = negative;
assign ccr[2] = zero;
assign ccr[1] = overflow
assign ccr[0] = carry;

Operator Precedence

Table 4-2 lists the precedence of all operators, from highest to lowest. All
operators at the same level in the table are evaluated from left to right,
except the conditional operator (?:), which is evaluated from right to left.

Operator Precedence

Operator Description

[] bit-select or part-select

() parentheses

I, ~ logical and bit-wise

negation

&, |, ~&, ~, "~ N N~ reduction operators

+ - unary arithmetic

{ } concatenation

* 1, % arithmetic

+ - arithmetic

<<, >> shift

> >z, < <= relational

=, I= logical equality

& bit-wise AND

A bit-wise XOR and XNOR

| bit-wise OR

& & logical AND

|| logical OR

?: conditional
Operands

The following kinds of operands can be used in an expression:

Numbers

Wires and registers
Bit-selects
Part-selects

Function cdlls

Each of these operandsis explained in the following subsections.

Numbers

A number is either a constant value or a value specified as a parameter.
Theexpression si ze- 1 in Example 4-1 illustrates how you can use both a
parameter and a constant in an expression.

Y ou can define constants as sized or unsized, in binary, octal, decimal, or
hexadecimal bases. The default size of an unsized constant is 32 bits.
Refer to Appendix C for a discussion of the format for numbers.

Wires and Registers

Example 4-14

Example 4-15

Variables that represent both wires and registers are allowed in an
expression. (Wires are described in the section “Module Statements and
Constructs’ in Chapter 3. Registers are described in “Function
Declarations’ in Chapter 5.) If the variable is a multibit vector, and you use
only the name of the variable, the entire vector is used in the expression.
Bit-selects and part-selects allow you to select single or multiple bits,
respectively, from avector. These are described in the next two sections.

In the Verilog fragment shown in Example 4-14, a, b, and ¢ are 8-hit
vectors of wires. Because only the variable names appear in the expression,
the entire vector of each wi r e isused in evaluating the expression.

Wire Operands

wire [7:0] a,b,c;
assign c = a & b;

Bit-Selects

A hit-select isthe selection of asingle bit fromawi re, regi ster ,or
par aret er vector. The value of the expression in brackets ([]) selects
the bit you want from the vector. The selected bit must be within the
declared range of the vector. Example 4-15 shows a simple example of a
bit-select with an expression.

Bit-Select Operands

wire [7:0] a,b,c;
assign c[0] = a[0] & b[0];

Part-Selects

Example 4-16

A part-select isthe selection of agroup of bitsfroma wire, regi ster
or paraneter vector. The part-select expression must be
constant-valued in the Verilog language, unlike the bit-select operator. If a
variable is declared with ascending indices or descending indices, the
part-select (when applied to that variable) must be in the same order.

The expression in Example 4-14 can also be written (with descending
indices) as shown in Example 4-16.

Part-Select Operands
assign c[7:0] =a[7:0] & b[7:0]

Function Calls

Example 4-17

Verilog allows you to call one function from inside an expression and use
the return value from the called f unct i on asan operand. Functionsin
Verilog return avalue consisting of one or more bits. The syntax of a
function call is the function name followed by a comma-separated list of
function inputs enclosed in parentheses. Example 4-17 shows the function
call | egal usedin an expression.

Function Call Used as an Operand

assign error =! legal (inl, in2);

Functions are described in Chapter 5, ‘* Functional Descriptions.”

Concatenation of Operands

Example 4-18

Concatenation isthe process of combining several single-bit or multiple-bit
operands into one large bit vector. The use of the concatenation operators,
apair of braces({ }), isdescribed in the section ‘* Concatenations* earlier in
this chapter.

Example 4-18 shows two 4-hit vectors (ni bbl el and ni bbl e2) that are
joined to form an 8-bit vector that is assigned to an 8-bit wi re vector

(byte).

Concatenation of Operands

wire [7:0] byte;
wire [3:0] nibblel, nibble2;
assign byte = {nibbl el, ni bbl e2};

Expression Bit Widths

The bit width of an expression depends on the widths of the operands and
the types of operators in the expression.

Table 4-3 showsthe bit width for each operand and operator. Inthetable, i,
j, and k are expressions; L(i) isthe bit width of expressioni.

To preserve significant bits within an expression, Verilog fillsin zeros for
smaller-width operands. The rules for this zero-extension depend on the
operand type. Theserulesare also listed in Table 4-3.

Table4-3 Expression Bit-Widths
Expression Bit Length Comments
unsized constant 32-hit self-determined
sized constant as specified self-determined
i+ max(L(i),L(j)) context-determined
i-j max(L(i),L(j)) context-determined
i max(L(i),L(j)) context-determined
i/j max(L(i),L(j)) context-determined
i %] max(L(i),L(j)) context-determined
i & j max(L(i),L(j)) context-determined
il max(L(i),L(j)) context-determined
i max(L(i),L(j)) context-determined
i A~ max(L(i),L(j)) context-determined
~i L(i) context-determined
i==] 1-bit self-determined
il==] 1-bit self-determined
i && | 1-bit self-determined
ilj 1-bit self-determined
P>] 1-bit self-determined

i>=j 1-bit self-determined

Expression
i<j
i<=]j

&i

i >> |
{i{i}}
i << |
i?j 1k
{i,...i}
{i{j..Kk}

Bit Length Comments

1-bit self-determined

1-bit self-determined

1-bit self-determined

1-bit self-determined

1-bit self-determined

1-bit self-determined

1-bit self-determined

1-bit self-determined

L(i) j is self-determined

i*L(j) j is self-determined

L(i) j is self-determined

Max(L(j),L(K)) j is self-determined

L(i)+...+L(j) self-determined

I*(L(j)+...+L(K)) self-determined
Verilog classifies expressions (and operands) as either self-determined or
context-determined. A self-determined expression is one in which the
width of the operands is determined solely by the expression itself. These
operand widths are never extended.
Example 4-19 shows a self-determined expression that is a concatenation of
variables with known widths.

Example 4-19 Self-Determined Expression

output [7:0] result;
wire [3:0] tenp;

assign tenp = 4’ b1111;
assign result = {tenp, tenp};

The concatenation hastwo operands. Each operand has awidth of four bits
and avalueof 4' b1111 . Theresulting width of the concatenation is eight
bits, which is the sum of the width of the operands. The value of the
concatenationis 8’ b11111111 .

Example 4-20

A context-determined expression is one in which the width of the
expression depends on all operand widths in the expression. For example,
Verilog defines the resulting width of an addition as the greater of the
widths of itstwo operands. The addition of two 8-bit quantities produces
an 8-hit value; however, if the result of the addition is assigned to a 9-bit
guantity, the addition produces a 9-bit result. Because the addition
operands are context-determined, they are zero-extended to the width of the
largest quantity in the entire expression.

Example 4-20 shows context-determined expressions.

Context-Determined Expressions

if (((1'bl << 15) >> 15) == 1'b0)
/] This expression is ALWAYS true.

if ((((1'bl << 15) >> 15) | 20'b0) == 1'b0)
/] This expression is NEVER true.

Theexpression ((1' bl << 15) >> 15) producesaone-bit O value
(1' b0) . Thel isshifted off the left end of the vector, producing avalue
of 0. Theright shift has no additional effect. For a shift operator, the first
operand (1' b1) is context-dependent; the second operand (15) is
self-determined.

Theexpression (((1' bl << 15) >> 15) | 20’ b0) produces a
20-bit 1 value (20’ bl) . 20’ bl hasal intheleast significant bit
position and Osin the other 19 bit positions. Because the largest operand
within the expression has awidth of 20, the first operand of the shift is
zero-extended to a 20-bit value. The left shift of 15 does not drop the 1
value off the left end; the right shift bringsthe 1 value back to theright end,
resulting in a20-bit 1 value (20’ bl) .

Chapter 5
Functional Descriptions

A Verilog circuit description can be one of two types: a structural
description or afunctional description, also referred to as a Register
Transfer Level (RTL) description. A structural description explainsthe
exact physical makeup of the circuit, detailing components and the
connections between them. A functional or RTL description describes a
circuit in terms of its registers and the combinational logic between the
registers.

This chapter describes the construction and use of functional descriptionsin
the following sections:

n Using Sequential Constructs
n function Declarations

» Function Statements

n task Statements

n always Blocks

Using Sequential Constructs

Although many Verilog constructs appear sequential in nature, they
describe combinational circuitry. A simple description that appears to be
sequential is shown in Example 5-1.

Example 5-1

Example 5-2

Example 5-3

Sequential Statements

X = b;

it (y)
X = X + a;

FPGA Express determinesthe combinational equivalent of thisdescription.
Infact, FPGA Expresstreatsthe statementsin Example 5-1 the ssmeway it
treats the statements in Example 5-2.

Equivalent Combinational Description
it (y)

X = b + a;
el se
X = b;

To describe combinational logic, you write a sequence of statements and
operators to generate the output values you want. For example, suppose the
+ operator is not supported, and you want to create a combinational,
ripple-carry adder. The easiest way to describe this circuit is as a cascade
of full adders, asin Example 5-3. The example has eight full adders, with
each adder following the one before. From this description, FPGA Express
generates afully combinational adder.

Combinational Ripple-Carry Adder

function [7:0] adder;
input [7:0] a, b;
reg c;
i nteger i;
begi n
c = 0;
for (i =0; i <=7, i =
adder[i] = a[i] M b
c =af[i] &Db[i] |

+ 1) begin
] M c
] &c | b[i] &c;

end
end
endf uncti on

function Declarations

Verilog function declarations are one of the two primary methods for
describing combinational logic. The other method isthe al ways block,
described later in this chapter. Y ou must declare and use Verilog functions
within amodule. Y ou can call functions from the structural part of a
Verilog description by using them in a continuous assignment statement or
asaterminal in amodule instantiation. Y ou can also call functions from
other functions or from al ways blocks.

Example 5-4

FPGA Express supports the following V erilog function declarations:
i nput declarations

r eg declarations

memory declarations

par aret er declarations

i nt eger declarations

Functions begin with the keyword f unct i on and end with the keyword
endf uncti on . Thewidth of the function’ s return value (if any) and the
name of the function follow the f unct i on keyword, as shown in the
syntax below.
function [range] name_of function ;

[func_declaration]*

statenment _or_null
endf uncti on

Defining the bit r ange of the return value is optional. Specify r ange
inside square brackets ([]). If you do not definer ange, a 1-bit quantity is
returned by default. The function’s output is set by assigning it to the
function name. A function can contain one or more statements. If you use
multiple statements, enclose the statements between abegi n. . . end

pair.

A simplefuncti on declaration is shown in Example 5-4.

Simple Function Declaration

function [7:0] scranble;

input [7:0] a;
input [2:0] control;
i nteger i;
begi n
for (i =0; i <=7;,1 =i +1)
scranble[i] =a[i ”~ control];
end

endf uncti on

Function statements supported by FPGA Express are discussed under
“Function Statements” later in this chapter.

input Declarations

Verilog input declarations specify the input signals for a function.

Y ou must declare the inputs to a Verilog function immediately after you
declare the function name. The syntax of i nput declarationsfor a
function is the same as the syntax of i nput declarations for amodule, as
shown below.

input [range] |ist_of variables ;

The optional r ange specification declares an input as a vector of signals.
Specify r ange inside square brackets ([]).

Note: The order in which you declare the inputs must match the order of
theinputsin the function call.

Function Output

Example 5-5

The output from a function is assigned to the function name. A Verilog
function has only one output, which can be avector. For multiple outputs
from afunction, use the concatenation operation to bundle several values
into one return value. This single return value can then be unbundled by
the caller. Example 5-5 shows how unbundling is done.

Many Outputs from a Function
function [9:0] signed_add;
input [7:0] a, b;

reg [7:0] sum

reg carry, overflow,

begi n

éi.(:gned_add = {carry, overflow, suni;
end
endf uncti on

éééi gn {C V, result_bus} = signed add(busA, busB);

Thesi gned_add function bundlesthevaluesof carry , overfl ow,
and suminto one value. Thisnew valueisreturned inthe assi gn
statement following the function. The original values are then unbundled
by the function that called the si gned_add function.

reg Declarations

Example 5-6

A register represents avariable in Verilog. The syntax for aregister
declaration is

reg [range] |ist_of register_variables ;

A r eg declaration can be a single-bit quantity or avector of bits. The

r ange parameter specifies the most significant bit (nsb) and least
significant bit (I sb) of the vector. Both must be nonnegative constants,
parameters, or constant-valued expressions, and are enclosed in square
brackets ([]). Example 5-6 shows somer eg declarations.

Register Declarations

reg x; /[* single bit */
reg a, b, c; /* 3 single-bit quantities */
reg [7:0] q; /* an 8-bit vector */

The Verilog language allows you to assign avalue to ar eg variable only
within afunction or an al ways block.

Inthe Verilog simulator, r eg variables can hold state information. A r eg
variable can hold its value across separate calls to afunction. In some
cases, FPGA Express emulates this behavior by inserting flow-through
latches. In other cases, this behavior is emulated without alatch. The
concept of holding state is elaborated in Chapter 6 and in several examples
in Appendix A.

Memory Declarations

Example 5-7

The memory construct models a bank of registers or memory. In Verilog,
the memory construct is actually atwo-dimensional array of r eg variables.
Sample memory declarations are shown in Example 5-7.

Memory Declarations

reg [7:0] byte reg;
reg [7:0] mem bl ock [255:0];

In Example 5-7, byt e_reg isan 8-hit register and nem bl ock isan
array of 256 registers, each of which is eight bitswide. Y ou can index the
array of registersto access individual registers, but you cannot access

individual bits of aregister directly. Instead, you must copy the appropriate
register into atemporary one-dimensional register. For example, to access
the fourth bit of the eighth register in mem bl ock , enter

byte reg = membl ock [7];
i ndi vidual _bit = byte reg [3];

parameter Declarations

Example 5-8

Parameter variables are local or global variables that hold values. The
syntax for a par anet er declarationis

paranmeter [range] identifier = expression,
i dentifier = expression;

The range specification is optional.

Y ou can declare parameter variables as local to afunction. However, you
cannot use alocal variable outside of that function. Parameter declarations
in afunction are identical to parameter declarationsin amodule. (See
Chapter 3 for more information.) The function in Example 5-8 contains a
par arret er declaration.

Parameter Declaration in a Function

function gte;
paraneter w dth = 8;
input [width-1:0] a,b;
gte = (a >= b);

endf unction

integer Declarations

Integer variables are local or global variables that hold numeric values.
Thesyntax for ani nt eger declarationis

integer identifier list;

You can declarei nt eger variableslocally at the function level or
globally at the module level. The default sizefor i nt eger variablesis
32 bits. FPGA Express determines bit widths, except in the case of a
dont-care resulting from a compile.

Example 5-9 illustratesi nt eger declarations.

Example 5-9

Integer Declarations

i nteger a; /* single 32 bit integer */
i nteger b, c; /* two integers */

Function Statements

The function statements supported by FPGA Express are
Procedural assignments

RTL assignments

begin . . . end block statements

if. . . el se statements

case,casex, and casez statements

for loops

whi | e loops

forever loops

di sabl e statements

Procedural Assignments

Procedural assignments are assignment statements used inside a function.
They are similar to the continuous assignment statements described in
Chapter 3, “Module Statements and Constructs’, except that the left side of
aprocedural assignment can contain only r eg variables and integers.
Assignment statements set the value of the |eft side to the current value of
theright side. Theright side of the assignment can contain any arbitrary
expression of the data types described in Chapter 3, including ssmple
constants and variables.

The left side of the procedural assignment statement can contain only the
following data types:

reg variables

Bit-selects of r eg variables
Part-selects of r eg variables
Integers

Concatenations of the above

The expressions in the part-select of aleft side must be constant-valued.

Example 5-10

Assignments are made bit-wise, with the low bit on the right side assigned
to the low hit on the left side. If the number of bits on theright sideis
greater than the number on the left side, the high-order bits on theright side
are discarded. If the number of bits on the |eft side is greater than the
number on the right side, the right side bits are zero-extended. Multiple
procedural assignments are allowed.

Some examples of procedural assignments are shown in Example 5-10.

Procedural Assignments

sum= a + b;
control[5] = (instruction == 8 h2e);
{carry_in, a[7:0]} = 9 h 120;

RTL Assignments

Procedural assignmentsin Verilog can be blocking in nature. For example,
you can assign a delay of five time units with the following statement.

rega = #5 argl + argz;

The expression, argl + arg2 is evaluated, then execution is suspended for
five time units before the assignment is performed and the next statement is
processed. Execution of the next statement is blocked until the current
statement’ s execution is completed.

On the other hand, RTL assignments et you define nonblocking procedural
assignments with timing controls. If you use a nonblocking RTL
assignment statement instead of the procedural assignment, the sum is
computed immediately, but the assignment is done after the five time-unit
delay.

rega <= #5 argl + argz;

However, execution proceeds without waiting for the assignment to finish.
FPGA Express ignores intra-assignment and interassignment delays;
therefore, the RTL assignment behaves like the blocking procedural
assignment in this case.

To illustrate the difference in behavior between RTL assignments and
blocking procedural assignments, consider Example 5-11 and Example
5-12, where there are multiple assignments.

Example 5-11 RTL Assignments

al ways @ posedge cl k) begin
regc <= data;

regd <= regc;

end

Figure 5-1 Schematic of RTL Assignments

TD regc
datal =y — == ragd

T e

Example 5-11 is adescription of aserial register implemented with RTL
assignments. The recently assigned value of regc , whichisdata, is
assignedto regd asthe schematic indicates. If blocking assignments are
used, asin Figure 5-2, a serial register is not synthesized, because
assignments are executed before proceeding.

Example 5-12 Blocking Assignment
al ways @ posedge cl k) begin

rega = dat a;
regb = rega;
end
Figure 5-2 Schematic of Blocking Assignment
—_—>raa=
datal —1 = rmgb

The following restrictions apply to RTL assignments:;

n - 'Y ou cannot use procedural assignments with blocking delays and RTL
assignments at the same time. The following example is not allowed.

reg b,c;

al ways begin

b <= #4a; // RIL assi gnment

c = #3b; // procedure assignnment with
/1 bl ocking del ay

end

n Because FPGA Expressignores delay information, synthesis might not
agree with simulation.

n |f you first assign avalueto ar eg variable with a procedural assignment,

you cannot use an RTL assignment on that r eg anywhere in the module.

n |f you first assign avalueto ar eg variable with an RTL assignment, you

cannot use a procedural assignment on that r eg anywhere in the module.

begin ... end Block Statements

Example 5-13

Block statements are away of syntactically grouping several statements
into asingle statement.

In Verilog, sequential blocks are delimited by the keywordsbegi n and
end. These begin...end blocksare commonly used in conjunction
withi f ,case,andfor statementsto group several statements together.
Functionsand al ways blocks that contain more than one statement
requirea begin...end block to group the statements. Verilog also
provides a construct called a named block, as shown in Example 5-13.

Block Statement with a Named Block

begin : bl ock_nane
reg local variable 1;
integer |ocal _variable 2;
paraneter |ocal variable_ 3;
statenents ...
end

In Verilog, no semicolon (;) followsthebegi n or end keywords. You
identify named blocks by following the begi n keyword with acolon (:)
and abl ock_nane, asshown. Verilog syntax allows you to declare
variableslocally in anamed block. You canincluder eg, i nt eger , and
par arret er declarations within anamed block, but not in an unnamed
block. Named blocks allow you to use the di sabl e statement.

if ... else Statements

i f...else statementsexecute ablock of statements according to the
value of one or more expressions.

Example 5-14

Thesyntax of ani f. .. el se statementis
if (expr)
begi n
statenents ...
end
el se
begi n
statenents ...
end

The i f statement consists of the keyword i f , followed by an expression
enclosed in parentheses. This expression isfollowed by a statement or
block of statements enclosed withthebegi n and end keywords. If the
value of the expression isnonzero, itis t r ue , and the statement block that
followsisexecuted. If thevalue of the expressioniszero,itis f al se , and
the statement block that follows is not executed.

Anoptional el se statement canfollow ani f statement. If the
expression following the i f keyword is f al se , the statement or block
of statementsfollowing the el se keyword is executed.

Theif...else statement can cause registersto be synthesized.
Registers are synthesized when you do not assign avalue to the same r eg
variablein all branches of a conditional construct. Information on registers
is provided in Chapter 6.

FPGA Express synthesizes multiplexer logic (or similar select logic) from a
singlei f statement. The conditional expressioninani f statementis
synthesized as a control signal to a multiplexer, which determines the
appropriate path through the multiplexer. For example, the statementsin
Example 5-14 create multiplexer logic controlled by ¢ and placeseither a
or b inthevariable x.

if Statement that Synthesizes Multiplexer Logic
if (c)

X = a;
el se
X = b;

Example 5-15 illustrateshow i f and el se can be used to create an
arbitrarily longi f...else if...el se structure.

Example 5-15

Example 5-16

if ...dseif...ese Structure

if (instruction == ADD
begi n
carry in = 0;
conpl ement _arg = 0;

end
else if (instruction == SUB)
begi n
carry in = 1;
conpl ement _arg = 1;
end
el se

illegal instruction = 1;
Example 5-16 showshow tousenested i f and el se statements.

Nested if and else Statements
if (select[1])

begi n
if (select[0]) out =in[3];
else out =in[2];

end

el se

begi n
if (select[0]) out =in[1];
else out =in[0];

end

Conditional Assignments

Example 5-17

FPGA Express can synthesize alatch for aconditionally assigned variable.
If a path exists that does not explicitly assign a value to avariable, the
variable is conditionally assigned. See the section on “Latch Inference” in
Chapter 6 for more information.

In Example 5-17, the variable val ue isconditionally driven. If c isnot
true, val ue isnot assigned and retainsits previous value.

Synthesizing a Latch for a Conditionally Driven Variable

al ways begin

if (¢) begin

val ue = x;

end

Y = value; //causes a latch to be synthesized for
val ue

end

case Statements

Thecase statement issimilar in functiontotheif...else...
conditional statement. The case statement allowsamultipath branchin
logic that is based on the value of an expression. One way to describe a
multicyclecircuit iswitha case statement (see Example 5-18). Another
way iswith multiple @(clock-edge) statements, which are discussed later in
this section.

Thesyntax for a case statement is shown below.

case (expr)
case_itenml : begin

statenments ...

end
case_itenR : begin

statenments ...

end
default : begin

statenents ...
end
endcase

The case statement consists of the keyword case , followed by an
expression in parentheses, followed by one or more case-items (and
associated statementsto be executed), followed by the keyword endcase .
A case-item consists of an expression (usually asimple constant) or alist of
expressions separated by commas, followed by acolon (:).

The expression following the case keyword is compared against each
case-item expression, one by one. When the expressions are equal, the
condition evaluatesto t r ue . Multiple expressions separated by commas
can be used in each case-item. When multiple expressions are used, the
conditionissaidto bet r ue if any of the expressionsin the case-item
match the expression following the case keyword.

Thefirst case-item that evaluatesto t r ue determines the path. All
subsequent case-items are ignored, even if they aret r ue . If no case-item
is true, noaction istaken. You can define a default case-item with the
expression def aul t , which isused when no other case-itemis true.

Anexampleof a case statement isshown in Example 5-18.

Example 5-18

case Statement

case (state)

| DLE: begin
if (start)
next state = STEP1;
el se
next _state = |IDLE
end
STEP1: begin
/* do first state processing here */
next state = STEPZ2;
end
STEP2: begin
/* do second state processing here */
next state = | DLE
end
endcase

Full Case and Parallel Case

FPGA Express automatically determineswhether a case statementis
full or parallel. A case statement isreferred to asfull caseif all possible
branches are specified. If you do not specify all possible branches, but you
know that one or more branches can never occur, you can declarea case
statement as full casewiththe// synopsys full _case directive.
Otherwise, FPGA Express synthesizes alatch. See* full_case Directive’
in Chapter 9 for more information.

FPGA Express synthesizes optimal logic for the control signals of acase
statement. If FPGA Express cannot statically determine that branches are
parallel, it synthesizes hardware that includes a priority encoder. |If FPGA
Express can determine that no cases overlap (parallel case), a multiplexer
is synthesized, because a priority encoder isnot necessary. You can also
declarea case statement asparalel case with the// synopsys

paral | el _case directive. Refer to the section “parallel_case
Directive’ in Chapter 9.

Example 5-19 does not result in either alatch or a priority encoder.

Example 5-19

Example 5-20

Example 5-21

A case Statement that is Both Full and Parallel

input [1:0] a;
always @a or wor x or y or z) begin
case (a)
2' b11:

b =w;
2' b10:

b =x;
2' b01:

b=y;
2' b00:

b=2z;
endcase
end

Example 5-20 shows a case statement that is missing branches for the cases
2'b01 and 2'b10. Example 5-20 infers alatch for b.

A case Statement that is Parallel but Not Full
input [1:0] a;
always @a or wor z) begin
case (a)
2' b11:
b =w;
2' 00:
b=2z;
endcase
end

The case statement in Example 5-21 isnot parallel or full because the
input valuesof w and x cannot be determined. However, if you know
that only one of theinputsequals 2’ b1l at agiventime, you can usethe
/] synopsys parallel _case directiveto avoid synthesizing a
priority encoder. If you know that either w or x awaysequals 2’ b1l
(asituation known as a one-branch tree), you can usethe // synopsys
full _case directiveto avoid synthesizing alatch.

A case Statement that is Not Full or Parallel

always @ w or x) begin
case (2 bll)

W,
b =10 ;
X:

b =01;
endcase

end

casex Statements

Example 5-22

The casex statementisatypeof case statement. The casex
statement allows a multipath branch in logic according to the value of an
expression, just likethe case statement. The differences between the
case statement andthe casex statement arethe keyword and the
processing of the expressions.

Thesyntax for a casex statement is shown below.
casex (expr)
case_itenml : begin
statenents ...
end
case_itenR : begin
statenents ...
end
default : begin
statenents ...
end
endcase

A case-item can have expressions consisting of

A simple constant

A list of identifiers or expressions separated by commas, followed by a
colon (:)

Concatenated, bit-selected, or part-selected expressions

A constant containing z, X, or ?

Whenaz, x, or ? appearsin acase-item expression, it means that the
corresponding bit of the casex expression is not compared. For example:

casex Statement with x

reg [3:0] cond,;
casex (cond)

4’ b100x: out = 1;
default: out = O;
endcase

In Example 5-22, out issetto 1 if cond isequal to 4’ b1000 or
4’ p1001 , becausethelast bit of cond isdefinedas x.

Example 5-23 shows a complicated section of code that can be simplified
with a casex statement that usesthe ? value.

Example 5-23 Before Using casex with ?

if (cond[3]) out = 0;

else if ('cond[3] & cond[2]) out = 1;

else if ('cond[3] &!cond[2] & cond[1]) out = 2;
else if ('cond[3] &!cond[2] & !cond[1l] & cond[0])

out = 3;
elseif (!cond[3] &'!cond[2] & '!'cond[1] & !cond[0])
out = 4;

Example 5-24 shows the simplified version of the same code.

Example 5-24 After Using casex with ?

casex (cond)
4’ b1???: out = 0O;

4’ b01??: out = 1;

4’ b001?: out = 2;

4’ b0001: out = 3;
4’ b0000: out = 4;
endcase

?, z, and x bitsare allowed in case-item expressions, but are not
allowedin casex expressions. Example 5-25 shows comparisonin an
illegal expression.

Example 5-25 Illegal casex Expression
express = 3 bxz?;

casex (express) /* illegal testing of an expression
*/

endcase

casez Statements

The casez statementisatypeof case statement. The casez
statement allows a multipath branch in logic according to the value of an
expression, just likethe case statement. The differences between the
case statement andthe casez statement are the keyword and the way
the expressions are processed. Thecasez statement acts exactly the same
asthe casex statement, exceptthat x isnot allowed in case-item
expressions. Only z and ? are accepted as special characters.

Example 5-26

Example 5-27

Thesyntax for a casez statement is shown below.

casez (expr)
case_itenl : begin
statenents ...
end
case_itenR : begin
statenents ...
end
default : begin
statenents ...
end
endcase

A case-item can have expressions consisting of
A simple constant

A list of identifiers or expressions separated by commas, followed by a
colon (:)

Concatenated, bit-selected, or part-selected expressions
A constant containingaz or ?

When a casez statementisevaluated, thevalue z inthe case-item
expression isignored. Anexampleof a casez statement with z inthe
case-item is shown in Example 5-26.

casez Statement with z

casez (what _is it)
2' bz0: begin
/* accept anything with [east significant bit
zero */
it is = even;
end
2' bz1: begin
/* accept anything with [east significant bit
one */
it is = odd;
end
endcase

? and z bitsareallowed in case-items, but are not allowed in casez
expressions. Example 5-27 shows anillegal expressionina casez
statement.

Illegal casez Expression
express = 1’ bz;

casez (express) /* illegal testing of an expression
*/

endcase

for Loops

Example 5-28

Example 5-29

Example 5-30

The for loop repeatedly executes asingle statement or block of
statements. The repetitions are performed over a range determined by the
range expressions assigned to an index. Two range expressions are used in
each for loop:l ow range and high range . Notethatinthe
syntax linesthat follow, hi gh_range isgreater than or equal to | ow_
range . FPGA Express recognizes both incrementing and decrementing
loops. The statement to be duplicated issurrounded by begi n and end
Statements.

Note: FPGA Express allows four syntax formsfor af or loop. They are

for (index=1ow range;index < high range;index= i ndex
+ step)

for (index= high range;index > |ow range;index= i ndex
- step)

for (index= |ow range;index <= hi gh_range;index=

i ndex + step)

for (index= high range;index >= | ow range;i ndex=

i ndex - step)

Example 5-28 shows asimplef or loop.

A Simplefor Loop

for (i =0; i <=31; i =i + 1) begin
s[i] =a[i] ™ b[i] ™ carry;
carry = a[i] &Db[i] | a[i] &carry |
b[i] & carry;
end

Notethat for loops can be nested, as shown in Example 5-29.

Nested for Loops
for (i =6; i >=0; i =i - 1)
for (j =0,) <=i;j =] +1
if (value[j] > value[j+1]) begin
tenp = val ue[j +1];
val ue[j +1] = value[j];
val ue[j] = tenp;
end

Y ou can use for loops as duplicating statements. Example 5-30 shows afor
loop that is expanded into its longhand equivalent in Example 5-31.

Example for Loop

for (i=0; i <8; i
exanmple[i] = g

i+1)
] &b[7-i];

Example 5-31 Expanded for L oop

exanpl e[0] = a[0] & b[7];
exanpl e[1] = a[1] & b[6];
exanple[2] = a[2] & b[5];
exanpl e[3] = a[3] & b[4];
exanpl e[4] = a[4] & b[3];
exanpl e[5] = a[5] & b[2];
exanpl e[6] = a[6] & b[1];
exanple[7] = a[7] & b[O];

while Loops

The whi | e loop executes a statement until the controlling expression
evaluatesto fal se. A whil e loop createsa conditional branch that
must be broken by one of the following statements to prevent
combinational feedback

@ (posedge clock) or @(negedge cl ock)

FPGA Express supportswhi | e loops, if you insert one of the following
expressions in every path through the loop

@ (posedge clock) or @(negedge cl ock)

Example 5-32 shows an unsupported whi | e loop that has no
event - expr essi on.

Example 5-32 Unsupported while Loop

al ways
while (x <)
X =X + z;

If you add @ (posedge clock) expressions after the while loop in Example
5-32, you get the supported version shown in Example 5-33.

Example 5-33 Supported while Loop

al ways

begi n @ (posedge cl ock)
while (x <)

begi n

@ (posedge cl ock);

X =X + z;

end

end;

forever Loops

Example 5-34

Infinite loopsin Verilog use the keyword f or ever . You must break up
an infinite loop withan @ (posedge cl ock) or @ (negedge

cl ock) expression to prevent combinational feedback, as shownin
Example 5-34.

Supported forever Loop

al ways

forever

begi n

@ (posedge cl ock);
X =X + z;

end

Youcanusef orever loopswithadi sabl e statement toimplement
synchronous resets for flip-flops. The disable statement is described in the
next section. See Chapter 6, “Register and Three-State Inference,” for
more information on synchronous resets.

The styleillustrated in Example 5-34 is not recommended because it is not
testable. The synthesized state machine does not reset to a known state.
Therefore, it isimpossible to create a test program for the state machine.
Example 5-36 illustrates how a synchronous reset for the state machine can
be synthesized.

disable Statements

FPGA Express supportsthe di sabl e statement when you useitin
named blocks. When a di sabl e statement is executed, it causes the
named block to terminate. A comparator description that uses di sabl e
is shown in Example 5-35.

Example 5-35

Example 5-36

Comparator Using disable

begin : conpare
for (i =7; i >=0; i =i - 1) begin
if (a[i] '=Db[i]) begin
greater _than = a[i];
less than = ~a[i];
equal _to = 0;
/* conparison is done so stop |ooping */
di sabl e conpare;
end
end

/* If we get here a ==
If the disable statement is executed, the next three
lines will not be executed */
greater_than = O;
| ess than = 0;
equal _to = 1;
end

Note that Example 5-35 describes a combinational comparator. Although
the description appears sequential, the generated logic runsin asingle clock
cycle.

Youcanalsousea di sabl e statement to implement a synchronous
reset, as shown in Example 5-36.

Synchronous Reset of State Register Using disable in aforever Loop

al ways

forever

begi n: reset | abel

@ (posedge cl ock);

if (reset) disable reset |abel;
z = a

@ (posedge cl ock);

if (reset) disable reset |abel;
z = b;

end

The di sabl e statement in Example 5-36 causesthe block reset
| abel toimmediately terminate and return to the beginning of the block.
Therefore, thefirst state in the loop is synthesized as the reset state.

task Statements

Example 5-37

Thet ask statements are similar to functionsin Verilog, except they can
have out put and i nout ports. Youcanusethe task statementto
structure your Verilog code so that a portion of code can be reused.

InVerilog, task statements can havetiming controls, and they can take a
nonzero time to return. However, FPGA Expressignores all timing
controls, so synthesis might disagree with simulation if the timing controls
are critical to the function of the circuit.

Example 5-37 shows how a t ask construct is used to define an adder
function.

Using the task Statement

nodul e task _exanple (a, b, c);
input [7:0] a,b;

output [7:0] c;

reg [7:0] c;

task adder;

input [7:0] a,b;
output [7:0] adder;
reg c;

i nteger i;

begi n

c =0;

for (i = i <=7, i =i+l) begin

adder[i] a[i] ~ b[i] » c;

c =(ali] &b[i]) | (a[i] &c) | (b[i] &c);
end

end

endt ask

al ways

adder (a,b,c); // cis areg

0;

endnodul e

Note: Only r eg variablescan receive output valuesfroma t ask;
wi r e variables cannot.

always Blocks

Example 5-38

An al ways block canimply latches or flip-flops, or it can specify purely
combinational logic. An al ways block can contain logic triggered in
response to achangein alevel or therising or falling edge of asignal. The
syntax of an al ways block is
always @(event-expression[or event-expression*])
begi n

statenents ...
end

The event - expr essi on declaresthetriggers, or timing controls. The
word or groupsseveral triggerstogether. The Verilog language specifies
that if triggersinthe event - expr essi on occur, the block is executed.
Only one trigger in a group of triggers needs to occur for the block to be
executed. However, FPGA Expressignoresthe event - expr essi on
unlessit is a synchronous trigger that infers aregister. Refer to Chapter 6
for details.

A simple example of an al ways block with triggersis

A Simple always Block

always @(a or b or ¢) begin
f =a&b&c
end

In Example 5-38, a, b, and c areasynchronoustriggers. If any triggers
change, the simulator resimulatesthe al ways block and recal culates the
valueof f. FPGA Expressignoresthe triggersin this example because
they are not synchronous. However, you must indicate all variables that
areread inthe al ways block astriggers. If you do not indicate all the
variables astriggers, FPGA Express gives awarning message similar to the
following.

Varning: Variable ‘foo’ is being read in block *bar’

decl ared on line 88 but does not occur in the
timng control of the bl ock.

For a synchronous always block, FPGA Express does not require all
variables to be listed.

An al ways block istriggered by any of the following types of
event - expr essi ons:

The change in a specified value. For example:

always @(identifier) begin
statenents ...
end

In the example above, FPGA Express ignores the trigger.
Therising edge of aclock. For example:

always @(posedge event) begin
statenents ...
end

Thefalling edge of aclock. For example:

always @(negedge event) begin
statenents ...
end

A clock or an asynchronous preload condition. For example:

always @(posedge CLOCK or negedge reset) begin
if ! reset begin
statenents ...

end
el se begin
statenents ...
end
end

An asynchronous preload that is based on two events joined by the word
or . For example:

always @(posedge CLOCK or posedge eventl or
negedge event2) begin
if (eventl) begin
statenents ...
end
else if (! event2) begin
statenents ...

end
el se begin
statenents ...
end
end

When the event-expression does not contain posedge or negedge,
combinational logic (no registers) is usually generated, although
flow-through latches can be generated. Refer to the section “Latch
Inference” in Chapter 6.

Note: The statements @ (posedge cl ock) and @ (negedge
cl ock) arenot supported in functions or tasks.

Incomplete Event Specification

Example 5-39

Example 5-40

Example 5-41

Anal ways block can be misinterpreted if you do not list all signals
entering an al ways block in the event specification.

As expected, FPGA Express builds a 3-input AND gate for the description
in Example 5-39.

Incomplete Event List

always @a or b) begin
f =a &b &c;
end

When thisdescriptionissimulated, f isnot recalculated when ¢ changes,
because ¢ isnotlistedinthe event - expr essi on. The simulated
behavior is not that of a 3-input AND gate.

The simulated behavior of the description in Example 5-40 is correct
becauseit includes al signalsinevent - expr essi on.

Complete Event List

always @a or b or c) begin
f =a &b &c;
end

In some cases, you cannot list al signalsin the event specification.
Example 5-41 illustrates this problem.

Incomplete Event List for Asynchronous Preload Condition

al ways @ (posedge ¢ or posedge p)
if (p)

z = d;
el se
zZ = a

Inthelogic synthesized for Example 5-41, if data (d) changeswhile p is
high, the changeisreflected immediately in the output (z). However, when
thisdescriptionissimulated, z isnot recalculated when d changes
because d isnot listed in the event specification. Asaresult, synthesis
might not match simulation.

Asynchronous preloads can be correctly modeled only when you want
changesin the load data to be immediately reflected in the output. In
Example 5-41, datad must change to the preload value before preload

condition p transits from low to high. If you attempt to read avaluein an

asynchronous preload, FPGA Express prints awarning similar to the one

shown below.

Varning: Variable ‘d is being read asynchronously in
routine reset line 21 in file

“lfusr/tests/hdl/asyn.v’'. This m ght cause
si mul ati on- synt hesi s m snat ches.

Chapter 6
Register and Three-State Inference

FPGA Express can infer latches and flip-flops. A register isasimple,
one-bit memory device, either aflip-flop or alatch. A flip-flop isan
edge-triggered memory device. A latchisalevel-sensitive memory device.
Register inference allows you to use sequential logic in your design
descriptions and keep your designs technology independent.

This chapter discusses different types of register and three-state inference
in the following sections:

Latch Inference

Simple Flip-Flop Inference

Flip-Flop Inference with Asynchronous Reset
Additional Types of Register Inference
FPGA Express Latch and Flip-Flop Inference
Delaysin Registers

Efficient Use of Registers

Three-State Inference

Registered and Latched Three-State Enables

Chapter 6 Register and Three-State Inference

-1

-2

Latch Inference

Example 6-1

Example 6-2

Because variables can hold state over time in simulation, FPGA Express
needs to duplicate this condition in hardware. It doesthisby inserting a
D-type flow-through latch. The latch allows avariable to hold its value
(state) until that value is reassigned.

A variable must hold its state when its previous value might change
because of aconditioninan i f statement. When the conditionis true,
the value is reassigned. Because the condition might be f al se , the
variable must be able to hold its state. Therefore, alatch is created to hold
the previous value of the variable. For example:

Creating a Latch
always @(PH 1 or A) begin
if (PH_1) begin
Y = A
end
end

In Example 6-1, the variable Y is not assigned anew valuewhen PH _1 is
fal se. A latchissynthesized with its D input connected to A, itsQ
output connected to Y, and its gate controlled by PH 1.

A latch can also be created when you usea case statement. For
example, the code in Example 6-2 creates a latched binary-coded decimal
(BCD) decoder.

Creating a Latch with a case Statement

nmodul e decoder (1, deci nal) ;
input [3:0] I;

output [9:0] decinal;

reg [9:0] decinal;

always @Il) begin

case(l)

4’ hO: deci mal = 10’ bOOO0000001;
4’ hl: deci mal = 10’ bOO0O0000010;
4’ h2: deci mal = 10’ bOO00000100;
4’ h3: deci mal = 10’ b0O0O00001000;
4’ h4: deci mal = 10’ b0O0O00010000;
4’ h5: deci mal = 10’ b0O000100000;
4’ h6: deci mal = 10’ b0001000000;
4’ h7: deci mal = 10’ b0010000000;
4’ h8: deci mal = 10’ b0100000000;
4’ h9: deci mal = 10’ b1000000000;
endcase

end

endnodul e

Chapter 6 Register and Three-State Inference
Latch Inference

Example 6-3

Example 6-4

Example 6-5

Thefour bitsfrom theinput are passed tothe case statement. Thecase
statement assigns an appropriate binary expression of the input’s decimal
valuetothedeci mal output and latches that value in register

deci mal .

To avoid creating latches, assign avalueto all variables. The codein
Example 6-2 does not create latches if you add the following statement to
the case statement.

defaul t: deci mal = 10’ bOOO0000000;

Variables declared within afunction do not hold their values over time
because every time afunction is called, its variables are reinitialized.
Therefore, FPGA Express does not infer latches for these variables. In
Example 6-3, no latches are inferred.

Variable Declared within a Function—No L atches Inferred

function ny_func;
i nput data, gate;
reg state;

begi n

if (gate) begin

state = data;

end

ny func = state;
end

endf uncti on

Both Example 6-4 and Example 6-5 assign all their variables under all
circumstances and avoid creating latches in FPGA Express.

Avoiding Latch Inference

always @(PH 1 or A) begin
Y = 0;

if (PH_1) begin

Y = A

end

end

Another Way to Avoid Creating Latches

always @(PH 1 or A) begin
if(PH_1) begin

Y = A

end el se begin

Y = 0;

end

end

Chapter 6 Register and Three-State Inference
Latch Inference

-3

-4

Simple Flip-Flop Inference

Example 6-6

A flip-flop isimplied when you use the posedge or negedge cl ock
constructsin an al ways block, as shown below.

always @(posedge clock) begin

end

A variablethat isassigned avalueinthis al ways block is synthesized as
a D-type edge-triggered flip-flop. The flip-flop is clocked on therising (or
falling) edge of the signal (cl ock) following the posedge (or
negedge) keyword. With simple flip-flops (with no asynchronous set or
reset), theblock’s event - expr essi on may contain only one
posedge (or negedge) statement, asshown in Example 6-6.

Creating a Flip-Flop

always @(posedge CLK) begin
Y=A&B,
end

Thiscodeissynthesized into a D-type positive-edge triggered flip-flop with
the D input connectedto A & B, the Q output connected to Y, and the
clock input connected to CLK.

Flip-Flop Inference with Asynchronous Reset

The actual clock used for flip-flopsis derived from the

event - expr essi on forthe al ways block. Inthe

event - expr essi on, test for the posedge or negedge edgesfor
all reset conditions and your clock.

When you build an asynchronous reset, the al ways block has a specific
format. Each reset condition must be a single-hit quantity.

To reset when the condition is high, follow these steps:

Usetheclause posedge condition inthe event-expression
at the beginning of the al ways block.

Test theconditioninan if or el se if statement. For example:

if (condition)

Chapter 6 Register and Three-State Inference
Simple Flip-Flop Inference

To reset when the condition is low, follow these steps:

Use the clause negedge condi ti on inthe event-expression at the
beginning of the al ways block.

. Test the condition’scomplementinanif orel se if statement. For
example:

if (!condition)

Thefirst reset condition must appear inthefirst i f statement. This
statement must be of the form

if (condition)
if (condition == 1"bl)
if (~condition)
if (condition == 1"b0)

or

if (! condition)

In the first two cases, a corresponding posedge conditi on clause
must appear inthe event - expr essi on at the beginning of the

al ways block. Inthefollowing cases, a corresponding negedge
condi ti on must appear there.

If subsequent optional reset conditions are used, they are placed in el se
i f clauses of the form

else if (condition2)

or

elseif (! condition2)

These conditions also require corresponding posedge and negedge
entries in the event-expression at the beginning of the al ways block.
More information about this type of flip-flop is provided in the section
"Additional Types of Register Inference."

The clock for the flip-flop is determined by default when FPGA Express
reachesthefina el se clause. Remember that this clause has no
condition to test. The clocked event isassumed. The flip-flop is clocked

Chapter 6 Register and Three-State Inference
Flip-Flop Inference with Asynchronous Reset

-5

—6

Example 6-7

on therising (falling) edge of the signal following the posedge
(negedge) keyword inthe event - expr essi on at the beginning of
theal ways block. See Example 6-7.

Flip-Flop with Asynchronous Reset

nodul e exanpl e (a, b, clk, reset, c);
i nput a, b, clk, reset;

out put c;

reg c;

al ways @ (posedge cl k or negedge reset) begin
if ('reset) // asynchronous reset

c =0;

el se// posedge clk is assuned

c =a &b;

end
endnodul e

Refer to Examples A—3 and A—4 in Appendix A for more examples of
register use.

Restrictions on Register Capabilities

Indexed expressions are not allowed in the predicate of an
event - expr essi on. Thefollowing example shows an indexed
expression and the error message generated by FPGA Express.

al ways @ (posedge cl k[1])

Error: In an event expression with ‘posedge’ and
‘ negedge’

qualifiers, only sinple identifiers are allowed %.
(VE-91)

Chapter 6 Register and Three-State Inference
Flip-Flop Inference with Asynchronous Reset

n Set and reset conditions must be 1-bit variables. |f you use an expression
for amultibit variable (abus), FPGA Express generates an error message,
as shown in the following example.

al ways @ (posedge cl k or negedge reset bus) begin
if (!'reset bus[1])

énd

Error: The expression for the reset condition of the
“if’ statement in this ‘always’ block can only be a
sinple identifier or its negation (%). (VE-92)

Y ou can use an expression for the reset condition, such as

if (reset == 1'b0)

or

if (~reset)

but you cannot use a complex expression, such as
if (reset == (1-1))

n Usean i f statement at thetop level of an al ways block. The
following example results in an error message.

al ways @ (posedge cl k or posedge reset) begin

if,(reset)

end

Error: The statements in this ‘always’ block are
outsi de the scope of the synthesis policy (%). Only
an ‘if’ statenent is allowed at the top level inthis
“always’ bl ock. Please refer to the FPGA Express

Veril og Ref erence Manual for ways to infer flip-flops
and | atches from*always’ bl ocks. (VE-93)

n To correctly model the loading of asynchronous data to aflip-flop, make
theload condition f al se every time the asynchronous data changes,
then return the load conditionto t r ue to latch the new data. See Example
5-41.

Additional Types of Register Inference

For examples describing various types of latches and flip-flops that use
directives and variables introduced in the following sections, see the HDL
Coding Style: Sequential Devices Application Note.

Chapter 6 Register and Three-State Inference
Additional Types of Register Inference

-8

Directives

The following FPGA Express directives can assist with the inference of
more complex sequential devices.

/] synopsys async_set reset

/] synopsys sync_set reset

/] synopsys async_set reset |ocal

/] synopsys sync_set reset |ocal

/] synopsys async_set reset |ocal all
/] synopsys sync_set reset |ocal all
/1 synopsys one_hot

/1 synopsys one_col d

Chapter 6 Register and Three-State Inference
Additional Types of Register Inference

async_set _reset Directive

Example 6-8

async_set reset takesoneargument of adouble-quoted list of
single-bit signals separated by commas. FPGA Express checks whether an
object specified by theasync_set reset directiveasynchronously sets
or resets alatch or flip-flop in the entire design.

The syntax of async_set reset is

/] synopsys async_set reset "object nane,..."

Asynchronous Set/Reset of a Design

nodul e async_set reset(reset, set, d, gate, y, t) ;

i nput reset, set, gate, d ;
output y, t ;

/] synopsys async_set reset "reset, set

regy, t;

always @(reset or set)
begin : direct_set reset
if (reset)
y = 1'b0; // asynchronous reset
else if (set)
y = 1'bl; // synchronous set
end

always @ (gate or reset) // for set : (gate or set)
if (reset) // for set : if (set)
t =1'b0; // for set : t =1 bl
else if (gate)
t =d ;

endnodul e

Chapter 6 Register and Three-State Inference
Additional Types of Register Inference

-9

-10

Figure 6-1

Asynchronous Set/Reset of a Design

f—

c
tmj_% >
iz

4_

Y

T

Chapter 6 Register and Three-State Inference

Additional Types of Register Inference

sync_set_reset Directive

Example 6-9

Thesync_set _reset directive takes one argument of a double-quoted
list of single-bit signals separated by commas. FPGA Express checks

whether an object specified by thesync_set _reset directive
synchronously sets or resets alatch or flip-flop in the entire design.

Thesyntax of sync_set reset is

/] synopsys sync_set reset "object nane,..."

Synchronous Set/Reset of aDesign

nodul e sync_set reset(clk, reset, set, di, d2, y, t)

i nput clk, reset, set, di, d2 ;
output y, t ;

/] synopsys sync_set reset "reset, set"

regy, t;

al ways @ (posedge cl k)
begi n : synchronous_reset

if (reset)

y = 1'b0; // synchronous reset
el se

y = di

end

al ways @ (posedge cl k)
begi n : synchronous_set

if (set)
t = 1'bl; // synchronous set
el se
t = d2;
end

endnodul e

Chapter 6 Register and Three-State Inference
Additional Types of Register Inference

-11

Figure 6-2 Synchronous Set/Reset of a Design

set%

dz[[o>

A
v

PesetD—>>—G

l:lkI -

=

-12 Chapter 6 Register and Three-State Inference
Additional Types of Register Inference

async_set_reset_local Directive

Theasync_set reset | ocal directivetakestwo arguments. The
first argument isthe label of ablock. The second is a double-quoted list of
single-bit signals separated by commas. Every signal inthelististreated as
thoughtheasync_set reset directiveisattached in the specified
block.

Thesyntax of async_set _reset | ocal is

/1 synopsys async_set reset | ocal block |abel "object nane,..."

Example 6-10

Asynchronous Set/Reset of a Single Block

nmodul e async_set _reset | ocal (reset, set, gate, y, t)

input gate, reset, set ;
output y, t ;

/] synopsys async_set reset |ocal direct_set reset
"reset, set"

regy, t;

always @(reset or set)
begin : direct_set reset

if (reset)
y = 1'b0; // asynchronous reset
else if (set)
y = 1'bl; // asynchronous set
end

always @(gate or reset or set)
begin : gated data

if (gate)
begi n
if (reset)
t =21'b0; // gated data
else if (set)
t =21bl; // gated data
end
end

endnodul e

Chapter 6 Register and Three-State Inference
Additional Types of Register Inference

-14

Figure 6-3

Asynchronous Set/Reset of a Single Block

<
v

rese > >o—wj_>o— },
gl
<
I N
o

gate

Chapter 6 Register and Three-State Inference

Additional Types of Register Inference

sync_set_reset_local Directive

Example 6-11

Thesync_set _reset | ocal directivetakestwo arguments. Thefirst
isthelabel of ablock. The second is adouble-quoted list of single-bit
signals separated by commas. Every signal in thelist istreated as though
thesync_set reset directiveis attached in the specified block.

Thesyntax of sync_set reset _local is

/] synopsys sync_set reset |ocal block | abel
"signal _nare,..."

Synchronous Set/Reset of a Single Block
nmodul e sync_set _reset | ocal (clk, reset, set, gate, d,
y, t)

input clk, gate, reset, set, d ;
output y, t ;

/1 synopsys sync_set reset |ocal clocked set reset
"reset"

regy, t;

al ways @ (posedge cl k)
begi n : cl ocked reset

if (reset)

y = 1'b0; // synchronous reset
el se

y =d;

end

al ways @ (posedge cl k)
begin : gated data

if (gate)
begi n
if (reset)
t =21'b0; // gated data
else if (set)
t =21bl; // gated data
end
end

endnodul e

Chapter 6 Register and Three-State Inference
Additional Types of Register Inference

-16

Figure 6-4

Synchronous Set/Reset of a Single Block

clk[> B

resetD—E—D}—E—

]

- U

Dy -
gate >

Chapter 6 Register and Three-State Inference
Additional Types of Register Inference

async_set _reset _local_all Directive

Example 6-12

Theasync_set reset local all directivetakesonly one
argument, the list of block labels. Theasync_set _reset | ocal _
al | directive specifiesthat all the signals are treated as though the
async_set reset directiveisattached in each of the blocks.

Thesyntax of async_set _reset local _all is
/1 synopsys async_set reset |local all "block_
| abel ,..."

Asynchronous Set/Reset for Part of a Design

nodul e async_set reset local _all(reset, set, gate,
gate2, vy, t, w ;

i nput gate, gate2, reset, set ;

output y, t, w;

/] synopsys async_set reset |local all "direct_set
reset, direct _set reset too"
regy, t, w;

always @(reset or set)
begin : direct_set reset
if (reset)
y = 1'b0; // asynchronous reset
else if (set)
y = 1'bl; // asynchronous set
end

always @(gate or reset or set)
begin : direct_set reset _too
if (gate)
begi n
if (reset)
t = 1'b0; // asynchronous reset
else if (set)
t = 1'bl; // asynchronous set
end
end

always @(gate2 or reset or set)
begin : gated data
if (gate2)
begi n
if (reset)
w=1b0; // gated data
else if (set)
w=1Dbl; // gated data
end
end
endnodul e

Chapter 6 Register and Three-State Inference
Additional Types of Register Inference

-18

Figure 6-5

Asynchronous Set/Reset for Part of a Design

gatBED DO

v
y

s
-
]

Chapter 6 Register and Three-State Inference

Additional Types of Register Inference

sync_set_reset_local_all Directive

Example 6-13

Thesync_set reset local _all directivetakesonly oneargument,
the list of block labels. Thesync_set reset local _all directive
specifiesthat all the signals are treated as though the sync_set _reset
directive is attached in each of the blocks.

Thesyntax of sync_set _reset local _all is
/1 synopsys sync_set reset local _all "block
| abel,..."

Synchronous Set/Reset for Part of a Design

nodul e sync_set reset local _all(clk, reset, set,
gate, gate2, y, t, w ;

i nput clk, gate, gate2, reset, set ;

output y, t, w;

/1 synopsys sync_set reset |local all "clocked set
reset, clocked set reset too"
regy, t, w;

al ways @ (posedge cl k)
begin : cl ocked set reset
if (reset)
y = 1'b0; // synchronous reset
else if (set)
y = 1'bl; // synchronous set
end
al ways @ (posedge cl k)
begin : clocked set reset too
if (gate)
begi n
if (reset)
t = 1'b0; // synchronous reset
else if (set)
t = 1'bl; // synchronous set
end
end
always @(gate2 or reset or set)
begin : gated data
if (gate2)
begi n
if (reset)
w=1"b0; // gated data
else if (set)
w=1Dbl; // gated data
end
end
endnodul e

Chapter 6 Register and Three-State Inference
Additional Types of Register Inference

-20

Figure 6-6 Synchronous set/reset for Part of a Design

gate[>8])]
re PfD—&

clkl_> > a]

set b

qatel >) |: S

y,

Note: Usetheone_hot andone_col ddirectivestoimplement D
flip-flops with asynchronous set and reset signals. These two directives
tell FPGA Expressthat only one of the objectsin thelist are active at a
time. If you aredefining active high signals, usetheone_hot directive.
For active low signals, usetheone_col ddirective. Each directive
specifies two objects.

Chapter 6 Register and Three-State Inference
Additional Types of Register Inference

one_hot Directive

Example 6-14

Theone_hot directive takes one argument of a double-quoted list of
objects separated by commas. This directive indicates that the group of
signalsare one_hot . For example, no more than one signal hasaLogic 1
value. Users are responsible to ensure that the group of objects are one_
hot . In Example 6-14, FPGA Express does not synthesize logic to check
this assertion.

The syntax of one_hot is

/1 synopsys one_hot "object nare,..."

Using the one_hot Directives for Set and Reset

nodul e one_hot _exanpl e (reset, set, reset2, set2, v,
t)

i nput reset, set,
output vy, t ;

/] synopsys async_set reset "reset, set"
/] synopsys async_set reset "reset2, set2"
/1 synopsys one _hot "reset, set"

regy, t;

reset?2, set?2 ;

always @(reset or set)
begin : direct_set reset
if (reset)
y = 1'b0; // asynchronous reset by "reset"
else if (set)
y = 1'bl; // asynchronous set by "set"
end

always @(reset2 or set?2)
begin : direct_set reset _too
if (reset?2)
t = 1'b0; // asynchronous reset by "reset2"
else if (set?2)
t = 1'bl; // asynchronous set by "~reset2 set2"
end

/] synopsys translate off
al ways @reset or set)
if (reset & set)
$wite("ONE-HOT violation for 'reset’,
"set’.");
/] synopsys translate on

endnodul e

Chapter 6 Register and Three-State Inference
Additional Types of Register Inference

—22

Figure 6-7

Using the one_hot Directive for Set and Reset

Chapter 6 Register and Three-State Inference
Additional Types of Register Inference

one_cold Directive

Example 6-15

Theone_col d directiveissimilartotheone_hot directive.one_col d
indicates that no more than one object in the group hasa Logic 0 value.

The syntax of theone_col d directiveis

/1 synopsys one_cold " signal_nanme,..."

Using the one_cold Directive for Set and Reset

nodul e one_col d(reset, set, reset2, set2, y, t) ;
i nput reset, set, reset2, set2 ;

output vy, t ;

/] synopsys async_set reset "reset, set"

/] synopsys async_set reset "reset2, set2"

/1 synopsys one_cold "reset, set"

regy, t;

always @(reset or set)
begin : direct_set reset
if (~reset)
y = 1'b0; // asynchronous reset by "~reset"
else if (~set)
y = 1'bl; // asynchronous set by "~set"
end

always @(reset2 or set?2)
begin : direct_set reset _too
if (~reset?2)
t = 1'b0; // asynchronous reset by "-~reset?2"
else if (~set?2)
t =1'bl; // asynchronous set by "reset2 ~set?2"
end

/] synopsys translate off
al ways @reset or set)
if (~reset & ~set)
Swite("ONE-COLD violation for 'reset’,
"set’.");
/] synopsys translate on

endnodul e

Chapter 6 Register and Three-State Inference
Additional Types of Register Inference

—23

Figure 6-8 Using the one_cold Directive for Set and Reset

reset%

resetl_———

setl)

YO VITIVE Y

FPGA Express Latch and Flip-Flop Inference

For latches, FPGA Express interprets each control object as synchronous.
For a design subsequently analyzed, every constant O loaded on alatch is
used for asynchronous reset, and every constant 1 loaded on alatch is used
for asynchronous set. FPGA Express does not limit checks for assignments
to aconstant O or constant 1 to asingle process. That is, FPGA Express
performs checking across processes and provides a brief report for inferred
latches.

For flip-flops, FPGA Express removes all feedback loops. For example,
feedback loops inferred from a statement such as Q=Q are removed. With
the state feedback removed from a simple D flip-flop, it becomes a
synchronous loaded flip-flop. In addition, FPGA Express removes all
inverted flip-flop feedback loops. For example, feedback loops inferred
from a statement such as Q=Q are removed and synthesized as T flip-flops.

-24 Chapter 6 Register and Three-State Inference
Additional Types of Register Inference

Delays in Registers

If you use delay specifications with values that may be registered, they may
cause the simulation to behave differently from the logic synthesized by
HDL Compiler. For example, the module in Example 6-24 contains delay
information that causes Design Compiler to synthesize a circuit that
behaves unexpectedly.

Delaysin Registers

nmodul e problem (A, C D, clock);
i nput A, cl ock;

output C D

wre B;

assign B = #100 A

flip-flop f1 (A C clock),
f2 (B D clock);
endnodul e

nmodul e flip-flop (DL Q clock);

i nput D, clock

out put q;

always @(posedge clock) Q= #5 D
endnodul e

In Example 6-24, B changes 100 time units after A changes. If the clock
period islessthan 100, output D isone or more clock cycles behind output
Cwhen thecircuit is simulated. However, because HDL Compiler ignores
the delay information, A and B change values at the sametime, and so
do C and D. Thisbehavior is not the same as in the simulated circuit.

When you use delay information in your designs, make sure that the delays
do not affect registered values. In general, you can safely include delay
information in your description if it does not change the value that gets
clocked into aflip-flop.

Efficient Use of Registers

All variables that are assigned valuesin an al ways block containing
either a posedge or negedge clock are synthesized with flip-flops.
To avoid the flip-flop inference, keep combinational logic in a separate

al ways block that doesnot havea posedge or negedge clock. See
the section "Minimizing Registers" in Chapter 8.

Chapter 6 Register and Three-State Inference
Delays in Registers

-25

—26

Three-State Inference

Example 6-16

Figure 6-9

Example 6-17

FPGA Express can infer three-state gates from the value z (high
impedance) in the Verilog language. When avariableis assigned the value
Z, the output of the three-state gate is disabled.

Example 6-16 shows a three-state gate described in Verilog.

Creating a Three-State Gate in Verilog

nmodul e sinple threestate (enable, in, out);
input in, enable;
out put out;
reg out ;

al ways @enabl e or in) begin

i f (enable)
out =in;
el se
out = 1'bz; // assigns high-inpedance
end
endnodul e

Figure 6-9 shows the three-state gate from Example 6-16 in a schematic.

A Three-State Gate in a Schematic
enable
in

A 4-bit-wide bus can be assigned high impedance valueswith 4’ bzzzz
just asabit valueisassigned 1' bz in Example 6-16.

One three-state device isinferred from asingle al ways block. Example
6-17 infers only one three-state device.

One Three-State Device

always @sela or selb or a or b) begin

t =1 bz;
if (sela)
t = a;
if (selb)
t = b;
end

Chapter 6 Register and Three-State Inference
Three-State Inference

Example 6-18

Thevalue z can also appear in function calls, return statements, and
aggregates, although itisvalid touse z inan expression such as

if (value == 1'bz)

Expressions that compare avalue to z are always evaluated asf al se
during synthesis. This evaluation might cause a difference between
presynthesis and postsynthesis simulations.

Example 6-18 infers two three-state devices.
Inferring Two Three-State Devices

always @sel _a or a)
if (sel_a)
t =a
elset =1 bz;
always @sel _b or b)
if (sel_b)
t = b;
elset =1 bz;

The Verilog conditional statement can also be used to infer three states.

Registered and Latched Three-State Enables

Example 6-19

When avariable is registered (or latched) in the same processin whichitis
three-stated, the enable of the three-state is also registered (or latched).
Example 6-19 shows an example of this code and Figure 6-10 shows the
schematic generated by the code.

Three-State with Registered Enable (Inefficient Description)

nmodul e enabl e ff (clock, condition, enable, in, out
)

input in, enable, condition, clock;

out put out;

reg out ;

always @(posedge clock) begin
if (enable)
out = (~condition) ?in : out;
el se
out = 1’ bz;
end
endnodul e

Chapter 6 Register and Three-State Inference
Registered and Latched Three-State Enables

Figure 6-10 Schematic for a Three-State with a Registered Enable (Inefficient Version)

evmein T]

ek [Cob—————f
in[_=

mmdltlan [1

In Example 6-19, the three-state gate has a register on its enable. To
remove the register from the enable, use two al ways blocks to separate
the register inference from the three-state gate inference, and add a register
t enp. Refer to Example 6-20 and Figure 6-11.

Example 6-20 Three-State without a Registered Enable

nodul e no_enabl e ff (clock, condition, enable, in,
out);

input in, enable, condition, clock;

out put out;

reg out;

reg tenp;

al ways @ posedge clock) begin // flip-flop on input
if (condition)
tenp = in;
end

al ways @enabl e or tenp) begin
if (enable) [/l three-state
out = tenp;
el se
out = 1' bz;
end
endnodul e

Figure 6-11 Schematic for a Three-State without a Registered Enable

mnehla D‘-

in

condition

clock E}—} +

Chapter 6 Register and Three-State Inference
Registered and Latched Three-State Enables

Chapter 7
FPGA Express Directives

FPGA Express translates a Verilog description to a Synopsys internal
format. Specific aspects of this process can be controlled by special FPGA
Express directivesin the Verilog source code. These directives are treated
ascommentsby Verilog simulators and do not affect simulation.

This chapter describes FPGA Express directives and their effect on
tranglation in the following sections:

Notation for HDL Compiler Directives
translate off and translate_on Directives
parallel_case Directive

Full_case Directive

Component Implication

Note: Begin each of the above directiveswith // synopsys. You can
also use $s in place of synopsys.

Notation for FPGA Express Directives

The specia comments that make up FPGA Express directives begin, like
all Verilog comments, with the characters// or/*. The// characters
begin acomment that fits on one line (most FPGA Express directivesfit on

Chapter 7 FPGA Express Directives
Notation for FPGA Express Directives

-1

-2

oneline). If youusethe/* charactersto begin a multiline comment, you
must end the comment with */ . Y ou do not need to usethe/ * characters
at the beginning of each line, only at the beginning of thefirst line. The
word synopsys (all lowercase) following the comment characterstells
FPGA Expressto treat the text following the word synopsys asa
compiler directive.

Note: You cannotuse // synopsysinaregular comment. In
addition, the compiler displays a syntax error if Verilog codeisina //
synopsysdirective.

translate_off and translate_on Directives

The // synopsys translate off and// synopsys

transl ate_on directivestell FPGA Expressto suspend translation of
the source code and restart tranglation at a later point. Use these directives
when your V erilog source code contains commands specific to simulation
that are not accepted by FPGA Express.

Y ou turn trandation off with

/] synopsys translate off

or

/* synopsys translate off */

Y ou turn translation back on with

/] synopsys translate on

or

/* synopsys translate on */

At the beginning of each Verilog file, trandation is enabled. Subsequently,
youcanusethe translate off and translate on directives
anywherein the text. These directives must be used in pairs. Each
translate off directive must appear before its corresponding
transl ate_on directive. Example 7-1 shows asimulation driver
protected by a transl ate_of f directive.

Chapter 7 FPGA Express Directives
translate_off and translate_on Directives

Example 7-1

I/ synopsys translate_on and // synopsys trandate_off Directives

nmodul e trivial (a, b, f);
i nput a, b;
out put f;

assign f = a & b;

[/ synopsys transl ate_ of f

initial $nonitor (a, b, f);

/] synopsys translate on
endnodul e

/* synopsys translate off */
nodul e dri ver;

reg [1:0] value_ in;

i nteger i;

trivial trivl(value_in[1], value in[0]);

initial begin
for (i =0; i <4, i =i +1)
#10 value_in =i;
end
endnodul e
/* synopsys translate on */

parallel _case Directive

The// synopsys paral |l el _case directive affectstheway logicis
generated for the case statement. Aspresented in Chapter 5, a case
statement generates the logic for a priority encoder. Under certain
circumstances, you might not want to build a priority encoder to handle a
case statement. Youcanusethe paral | el _case directiveto force
FPGA Express to generate multiplexer logic instead.

Thesyntax for theparal | el _case directiveis

/1 synopsys parallel case

or

/* synopsys parallel case */

In Example 9-2, the states of a state machine are encoded as one hot
signals. If the case statement in the example were implemented as a
priority encoder, the generated logic would be more complex than
necessary.

Chapter 7 FPGA Express Directives
parallel_case Directive

-3

-4

Example 7-2

I/ synopsys parallel_case Directives

reg [3:0] current_state, next_state;
parameter statel = 4’ b0001, state2 = 4’ b0010,
state3 = 4’ b0100, stated = 4' b1000;

case (1) //synopsys parallel case

current_state[0] : next_state = statez;
current_state[1l] : next_state = state3;
current_state[2] : next_state = state4;
current_state[3] : next_state = statel;

endcase

Usethe paral | el _case directiveimmediately after the case
expression, as shown. Thisdirective makes all case-item evaluationsin
parallel. All caseitemsthat evaluateto true areexecuted (not just the
first one, which might give you unexpected results.)

Ingeneral, use paral |l el _case whenyou know that only one case
item is executed. If only one case item is executed, the logic generated
froma parall el _case directive performs the same function as the
circuit when it issimulated. |f two case items are executed, and you have
usedthe paral | el _case directive, the generated logic is not the same
as the simulated description.

full_case Directive

The // synopsys full _case directive assertsthat all possible
clausesof a case statement have been covered and that no default clause
isnecessary. Thisdirective hastwo uses. it avoids the need for default
logic, and it can avoid latch inferencefrom a case statement by asserting
that all necessary conditions are covered by the given branches of the
case statement. Asshown in Chapter 5, alatch can be inferred whenever
avariableis not assigned a value under all conditions.

Thesyntax forthe ful | _case directiveis

/1 synopsys full _case

or

/* synopsys full case */

Chapter 7 FPGA Express Directives
full_case Directive

Example 7-3

If the case statement containsa default clause, FPGA Express
assumes that all conditions are covered. If thereisno def aul t clause,
and you do not want latches to be created, usethe ful | _case directive
to indicate that all necessary conditions are described in the case
statement.

Example 9-3 showstwo uses of thef ul | _case directive. Notethat the
paral l el _case and full case directivescan becombinedin one
comment.

I/ synopsys full_case Directives

reg [1:0] in, out;
reg [3:0] current_state, next_state;
paraneter statel 4’ b0001, state?

state3 4’ b0100, state4d

4’ b0010,
4’ b1000;

case (in) // synopsys full _case

0: out = 2;

1: out = 3;

2. out = 0O;
endcase

case (1) // synopsys parallel case full _case
current_state[0] : next_state = statez;
current_state[l] : next_state = state3;
current_state[2] : next_state = state4;

current_state[3] : next_state = statel;
endcase
Inthefirst case statement, the condition i n == is not covered.

You can either useadef aul t clauseto cover all other conditions, or use
the ful | _case directive (asin this example) to indicate that other
branch conditions do not occur. If you cover al possible conditions
explicitly, FPGA Expressrecognizesthe case statement asfull case, so
the ful | _case directiveisnot necessary.

Thesecond case statement in Example 9-3 does not cover all 16
possible branch conditions. For example, current _state ==

4’ b0101 isnotcovered. The paral | el _case directiveisusedin
this example because only one of the four caseitems can evaluateto t r ue
and be executed.

Although you can usethe ful | _case directiveto avoid creating
latches, using thisdirective does not guarantee that latches will not be built.
Y ou must still assign avalueto each variable used inthe case statement
in all branches of thecase statement. Example 94 illustrates a situation
wheretheful | _case directive prevents alatch from being inferred for
variable b, but not for variable a.

Chapter 7 FPGA Express Directives
full_case Directive

-5

—6

Example 7-4

Latches and // synopsys full_case

reg a, b;
reg [1:0] c;
case (c¢) /1 synopsys full _case

0: begin a = 1; = 0; end

1: begina=0; b=20; end

2: begina=1; b=1; end

3 b =1 // ais not assigned here
endcase

In general, usethe full _case directive when you know that all
possible branches of the case statement have been enumerated or at |east
all branchesthat can occur. If all branches that can occur are enumerated,
the logic generated from the case statement performs the same function
asthe simulated circuit. If a case condition is not fully enumerated, the
generated logic and the simulation are not the same.

Note: You do not needthe f ul | _case directiveif you have a default
branch or you enumerate all possible branchesina case statement
because FPGA Express assumesthat the case statementis ful | _
case.

Component Implication

In Verilog, you cannot instantiate modules in behavioral code. To include
an embedded netlist in your behavioral code, use the directives //
synopsys map_to_nodule and// synopsys return_port _
name for FPGA Express to recognize the netlist as a function being
implemented by another module. When this subprogram isinvoked in the
behavioral code, the moduleis instantiated.

Thefirst directive, // synopsys nap_to_nodul e ,flagsafunction
for implementation as a distinct component. The syntax is

/] synopsys nap_to_nodul e nodul ename

Chapter 7 FPGA Express Directives
Component Implication

Example 7-19

The second directive identifies a return port, because functionsin Verilog
do not have output ports. A return port name must be identified to
instantiate the function as a component. The syntax is

/] synopsys return_port name port name

Note: Remember that if you adda map_t o_nodul e directiveto a
function, the contents of the function are parsed and ignored and the
indicated moduleisinstantiated. You must ensure that the functionality
of the moduleinstantiated in thisway and the function it replaces are the

same; otherwise, presynthesis and postsynthesis simulation do not match.

Example 922 illustratesthe map_to nodul e and return_port _
nane directives.

Component Implication

nmodule mux_inst (a, b, ¢, d, e);

input a, b, c, d;

out put e;

functi on mux_func;

/] synopsys map_to _modul e nux_rnodul e

/] synopsys return_port name rux_ret

input inl, in2, cntrl

/*

** the contents of this function are ignored for
** synthesis, but the behavior of this function
** nmust match the behavi or of mux_modul e for

** simul ati on purposes

*/

begi n

if (entrl) mux_func = inil;
el se mux_func = in2;

end

endf uncti on

assign e = a & mux_func (b, ¢, d); // this function
cal l

/] actually instantiates conponent (rnodule) mux_
nodul e

endnodul e

nmodul e mux_modul e (inl, in2, cntrl, nux_ret);
input inl, in2, cntrl;
out put nux_ret;

and and2 0 (wirel, inl, cntrl);

not notl (not _cntrl, cntrl);

and and2_1 (wire2, in2, not_cntrl);
or or2 (rmux_ret, wirel, wire2);

endnodul e

Chapter 7 FPGA Express Directives
Component Implication

-7

Chapter 8
Flip-Flops

Thisappendix isfor FPGA Express users whose current design descriptions
include hand-instantiated flip-flops. It explains how to translate these
flip-flopsto al ways blocks that can be used with FPGA Express. Read
this appendix after you have read Chapter 5, “Functional Descriptions.”

Some of the benefits of translating your hand-instantiated flip-flops to
al ways blocksare

Clearer code. Thelogic of the new module definitionsis easier to
understand.

Continued compatibility. The new design descriptions can use the
expanded capabilities of future versions of FPGA Express.

Technology independence. Any FPGA library can be used asthe target for
synthesis of a Verilog description.

Multiple-bit values. Such values can be registered with a single statement,
rather than with multiple flip-flop instantiations.

Translating Flip-flops

Thefirst step in tranglating a flip-flop to the al ways syntax isto be sure
that you understand the function of the module. Next, determine what parts
of the module description provide the flip-flop behavior.

Chapter 8 Flip-Flops
Translating Flip-flops

-1

-2

Example 8-1

Example B—1 shows a simple module that uses three manually inserted
flip-flops.

Existing Module

nmodule sinple (d, e, f, load, clk, zero);
input d, e, f, load, clk;
out put zero;
reg new a, newb, new c;

function zilch ;
input load, a, b, c;

begi n

if (load
new a
new b
new c

end

el se begin
new a
new b
new c

end

begi n

)
d;
e
f

a;
b;
C

if (a==0 & b==0 & c==0)

zi |l ch=1;
el se

zi | ch=0;
end

endf uncti on

FDLS a reg (newa, clk, a,)
FDIS b reg (new b, clk, b,)
FD1IS c reg (newc, clk, c,)

assign zero = zilch (load, a, b, ¢);
endnodul e

This module evaluates the three state variables, a, b, and c, to determine
whether all the values are 0. Additional input signalsare | oad , which
forces a synchronous reset, and cl k , which isthe module’ s clock. The
functionality of the module is described in the function zi | ch . Theinput
values are latched in the flip-flop described in the three statements
beginning with dFF (aD-type edge-triggered flip-flop). A final assi gn
statement assigns the returned value of the function zi | ch to the output
zero.

Example B—1 generates the schematic shown in Figure B—1.

Chapter 8 Flip-Flops
Translating Flip-flops

Figure 8-1 Schematic from Example B—-1

; DH} |
load —

a_reg
ck = > b
— ﬁ_ | §>O_D zero
b reg
> o]
e

To translate this description, find the combinational logic and determine the
triggering events. In thiscase, the function zi | ch creates combinational
logic.

Example 8-2 Existing Module Logic

function zilch ;
input load, a, b, c;

if (load) begin
new a = d;
new b
new c
end
el se begin

new a a;

new b b;

new c c;

end

if (a==0 & b==0 & c==0)
zi |l ch=1;

el se

zi | ch=0;

endfunction

;
f;

In Example B2, thevaluesof a, b, c, d, e, f,and | oad arethe
triggers (signalsthat are read). Y ou can rewrite this description as an
al ways block with triggers, as shown in Example B-3.

Chapter 8 Flip-Flops -3
Translating Flip-flops

Example 8-3

Example 8-4

Example 8-5

Example 8-6

New Module Logic

always @(aor bor cor dor eor f or load) begin
if (load) begin

new a = d;
new b = e;
newc = f;

end

el se begin
new a = a;
new b = b;
new c = c;

end

if (a==0 & b==0 & ¢c==0)
zer o=1;

el se
zer 0=0;

end

The next step isto build an al ways block that replaces the flip-flop
instantiations—the three statements that begin with dFF.

Existing Flip-flop Instantiations

dFF a reg (newa, clk, a);
dFF b reg (newb, clk, b);
dFF c_ reg (newec, clk, ¢);

Usetheclock signal, cl k, asthe event-expression of the new al ways
block, as shown.

First Line of the New always Block
always @(posedge clk) begin

Put the values and the registersin the body of the al ways block. The Q
output valuesin the old module (a, b, and c) become the assigned values
in the new version. The clock from the old version is specified in the
event-expression of thenew al ways block. The Dinput valuesin theold
module (new_a, new b, and new c) become the values read by the
new version, as shown in Example B—6.

New Clocked always Block
always @(posedge clk) begin

a = newa ;
b =newb ;
C = newc ;
end

Chapter 8 Flip-Flops
Translating Flip-flops

Example 8-7

Example 8-8

Now, label the input and output signalsin the module. Look at the variable
declarations and determine which of the wires and functions serve the
flip-flop and which serve the logic of the module.

Existing Inputs and Outputs

nmodule sinple (d, e, f, load, clk, zero);
input d, e, f, load, cl
out put zero;

reg new a, newb, newc;

k;

In this case, as in most cases, the modul€’ s inputs and outputs remain the
same. However, you must changethe wi re valuesto reg values.
Declarethe output zer o twice; once asthe output and onceasar eg, so
it can beused inthe al ways block. Make the former function variables
a, b,and c into reg variables, becausethey are now assigned within
thesecond al ways block. Example B—8 showsthe new input and output
declarations.

New Input and Output Declarations

nmodul e new sinple (d, e, f, load, clk, zero);
input d, e, f, load, clk;

out put zero;

reg zero;

reg a, b, c;

reg newa, newb, newc;

Example B—9 shows the complete new module with al ways blocks.

Chapter 8 Flip-Flops
Translating Flip-flops

-5

Example 8-9 Translated Module Using always Blocks

nmodul e new sinple (d, e, f, load, clk, zero);
input d, e, f, load, clk;

out put zero;

reg zero;

reg a, b, c;

reg newa, newb, newc;

always @(aor bor cor dor eor f or load) begin
if (load) begin

new a = d;

new b
new c
end
el se begin
new a = a;
new b b;
new c = c;
end

e;
f;

if (a==0 & b==0 & ¢c==0)
zero=1;

el se

zer o=0;

end

always @(posedge clk) begin
a = newa ;

b new b ;

C = newc ;

end

endrodul e

-6 Chapter 8 Flip-Flops
Translating Flip-flops

Chapter 9
Verilog Syntax

This appendix contains a syntax description of the Verilog language as
supported by FPGA Express. This appendix covers the following topics:

n Syntax

n Lexical Conventions

» Verilog Keywords

» Unsupported Verilog Language Constructs

Syntax

This section presents the syntax of the supported Verilog language in
Backus Naur Form (BNF), and presents the syntax formalism.

Note: The BNF syntax convention used in this section differs from the
Synopsys syntax convention used elsewhere in this manual.

BNF Syntax Formalism

White space separates lexical tokens.

Chapter 9 Verilog Syntax
Syntax

-1

name isakeyword.

<name> isasyntax construct definition.

<nane> isasyntax construct item.

<name>? isan optional item.

<pane>* iszero, one, or more items.

<name>+ isoneor moreitems.

<port> <, <port>>* isacomma-separated list of items.

gives a syntax definition to an item.

refers to an alternative syntax construct.

BNF Syntax

<sour ce_t ext >
;1= <descri pti on>*

<descri pti on>

1= <nodul e>

<nmodul e>

.= nodul e <nane_of nodul e> <list_of ports>?
<modul e_i t enp*
endnodul e
<nane_of nodul e>

1= <| DENTI FI ER>

<list_of ports>
c:= (<port> <, <port>>*)
<port>

<port _expressi on>?
<name_of port> (<port_expressi on>?)

N
<port _expressi on>

1= <port _reference>
[|={ <port _reference> <, <port reference>>* }

-2 Chapter 9 Verilog Syntax
Syntax

<port _reference>

;= <nane_of vari abl e>

| | = <nane_of variabl e> [<expression>]
| | = <nane_of variabl e> [<expressi on>

<expressi on> |

<nane_of port>
1= <| DENTI FI ER>

<nane_of _vari abl e>
.. = <I DENTI FI ER>

<nodul e_i tenr

<par amet er _decl arati on>
<i nput _decl arati on>
<out put _decl arati on>
<i nout decl arati on>
<net decl arati on>
<reg_decl arati on>

<i nt eger _decl arati on>
<gate instantiati on>
<nmodul e_instanti ati on>
<conti nuous_assi gn>
<functi on>

<functi on>

;.= function <range>? <name_of function>
<func_decl arati on>*
<statement_or_nul | >

endf uncti on

<nane_of function>
1= <| DENTI FI ER>

<func_decl arati on>

<par amet er _decl arati on>
<i nput _decl arati on>
<reg_decl arati on>

<i nt eger _decl arati on>

<al ways>
o= always @(<identifier> or <identifier>)
|| = always @(posedge <identifier>)
|| = always @(negedge <identifier>)
|| = always @(<egde> or <edge> or ...)
<edge>

.= posedge <identifier>
| | = negedge <identifier>

<par anet er _decl arati on>

.. = paraneter <range>? <list_of assignnents>

Chapter 9 Verilog Syntax
Syntax

-3

-4

<i nput decl arati on>
;= input <range>? <list_of variabl es>

<out put _decl arati on>
;.= output <range>? <list_of variabl es>

<i nout _decl arati on>

;= inout <range>? <list_of variabl es>

<net _decl arati on>

.= <NETTYPE> <char ge_strengt h>? <expandrange>?
<del ay>? <list_of variabl es>

| | = <NETTYPE> <drive_strengt h>? <expandrange>?
<del ay>? <list_of assi gnnents>

<NETTYPE>
Wwre
wor

wand
tri

<expandr ange>

1= <range>
scal ared <range>
vect ored <range>

|l=

Il=
<reg_decl arati on>

;= reg <range>? <list_of register_variabl es>
<i nteger decl aration>

c:=integer <list _of integer_ variabl es>
<conti nuous_assi gn>

;.= assign <drive_strengt h>? <del ay>?
<list_of assignments>;

<list_of_variabl es>

.= <nane_of variable> <, <name_of vari abl e>>*

<nane_of _vari abl e>
: .= <I DENTI FI ER>

<list_of _register_variabl es>

1= <register _variable> <, <register_variabl e>>*

<regi ster _vari abl e>
: .= <I DENTI FI ER>

<l ist_of _integer_variabl es>

;.= <integer _variable> <, <integer_variabl e>>*

Chapter 9 Verilog Syntax
Syntax

<i nt eger _vari abl e>
: .= <I DENTI FI ER>

<charge_strengt h>
o= (small)
(medi um)

(large)

|
[
<drive_strength>

;= (<STRENGTHO> , <STRENGTHL>)
| |= (<STRENGHT1> , <STRENGTHO>)

<STRENGTHO>

<STRENGTH1>

= suppl yl
strongl
pul | 1
weakl
hi ghz1

<range>

;.= [<expression> : <expression>]

<list_of_assignnents>

.. = <assignnment> <, <assi gnnent >>*

<gate_i nstanti ati on>

= <GATETYPE> <drive_strengt h>? <del ay>?
<gat e_i nstance> <, <gate_instance>>* ;

<GATETYPE>

and
nand
or
nor
xXor
xnor
buf
not

<gat e_i nst ance>
1= <nane_of _gate_i nstance>? (<terninal >
<, <termnal >>*)
<nane_of gate_instance>
: 1= <| DENTI FI ER>

Chapter 9 Verilog Syntax
Syntax

—6

<term nal >

ii=<identifier>

| | = <expressi on>
<nodul e_i nstanti ati on>

: = <nane_of _nodul e> <par anet er _val ue_assi gnnent >?

<nodul e_i nstance> <, <nodul e_i nst ance>>* ;

<nane_of nodul e>

:: = <| DENTI FI ER>

<par anet er _val ue_assi gnnent >
;o= #(<expression> <, <expressi on>>*)

<nodul e_i nst ance>
;= <name_of rnodul e i nst ance>
(<list_of nodul e termnal s>?)
<nane_of nodul e_i nstance>
: 1= <| DENTI FI ER>

<list_of _nodul e_term nal s>

::= <nodul e_term nal >? <, <modul e _t er m nal >>*
| | = <named_port _connection> <, <named_port _
connect i on>>*

<nodul e_t erm nal >
ii=<identifier>
| | = <expressi on>
<naned_port _connecti on>

IDENTIFIER (<identifier>)
| DENTI FI ER (<expression>)

Chapter 9 Verilog Syntax
Syntax

<st at enent >

<assi gnment >
if (<expression>)
<statenent_or_nul | >
[[=if (<expression>)
<statenent_or_nul | >
el se
<statenent_or_nul | >
| | = case (<expression>)
<case itenp+
endcase
| | = casex (<expression>)
<case itenp+
endcase
| | = casez (<expression>)
<case_itenp+
endcase
|| = for (<assignnment> ; <expression>
<assi gnrent >)
<st at enent >
<seq_bl ock>
di sabl e <|I DENTI FI ER> ;
forever <statenent>
whil e (<expression>) <statement>

<statenent _or_null >
;.= statenent
1=

<assi gnnent >

;1= <lval ue> = <expressi on>

<case_itenp

;1= <expression> <, <expression>>* : <statenent_or_
nul | >
| efault : <statement_or_nul | >

=d
= default <statement_or_nul | >

Chapter 9 Verilog Syntax -7
Syntax

-8

<seq_bl ock>

;= begin
<st at ement >*
end
|| = begin : <name_of bl ock>
<bl ock_decl arati on>*
<st at ement >*
end

<nane_of bl ock>
1= <| DENTI FI ER>

<bl ock_decl arati on>

<par amet er _decl arati on>
<reg_decl arati on>
<i nteger _decl arati on>

<| val ue>

<| DENTI FI ER>
<| DENTI FI ER> [<expressi on>]
<concat enat i on>

|
I
<expressi on>

<pri mary>

<UNARY CPERATCR> <pri nary>

<expr essi on> <Bl NARY CPERATCR>
<expressi on> ? <expressi on> : <expression>

<UNARY_OPERATOR>

L > 1 1=
> T — Q}g

+

Chapter 9 Verilog Syntax
Syntax

<BI NARY_OPERATCR>

<primary>

<nunber >

<identifier>

<identifier> [<expression>]

<identifier> [<expression> : <expression>]
<concat enat i on>

<mul ti pl e _concat enati on>

<function_call >

(<expression>)

<nunber >

= <NUMBER>
= <BASE> <NUVBER>
= <Sl ZE> <BASE> <NUMBER>

<NUMBER>

A number can have any of the following characters:
0123456789abcdef xz ABCDEFXZ

<S| ZE>
i="h
[|="8B
||="o0
[|="0
[|="d
|[|="D
[|="h
[[="H

<S| ZE>

Any number of the following digits: 0123456789

Chapter 9 Verilog Syntax
Syntax

-9

-10

<concat enati on>

;.= { <expression> <, <expressi on>>* }

<mul ti pl e_concat enati on>
1= { <expression> { <expression> <, <expressi on>>*
b}
<function_call >
.= <nane_of function> (<expressi on>
<, <expressi on>>*)
<nanme_of function>
:: = <| DENTI FI ER>

<identifier>

Anidentifier is any sequence of letters, digits, and the underscore character
(_), where thefirst character is aletter or underscore. Uppercase and
lowercase |etters are treated as different characters. Identifiers can be any
sizeand all characters are significant. Escaped identifiers start with the
backslash character (\) and end with a space. The leading backslash
character (\) isnot part of theidentifier. Use escaped identifiersto include
any printable ASCII charactersin an identifier.

<del ay>
(1= # <NUMBER>
|| = # <identifier>
|| = # (<expression> <, <expressi on>>*)

Lexical Conventions

Thelexical conventions used by FPGA Express are nearly identical to those
of the Verilog language. The types of lexical tokens used by FPGA
Express are described in the following subsections:

White Space
Comments

Numbers

Identifiers

Operators

Macro Substitutions

i ncl ude Directive
Simulation Directives

Verilog System Functions

Chapter 9 Verilog Syntax
Lexical Conventions

White Space

White space separates words in the input description, and can contain
spaces, tabs, new lines, and form feeds. Y ou can place white space
anywhere in the description. FPGA Express ignores white space.

Comments

Y ou can enter comments anywhere in a Verilog description in two forms:
Beginning with two backslashes / /.

FPGA Expressignores all text between these characters and the end of the
current line.

Beginning with the two characters /* and ending with */ .

FPGA Expressignores all text between these characters, so you can
continue comments over more than one line.

Note: You cannot nest comments.

Numbers

1.

2.

3.

Y ou can declare numbersin severa different radices and bit-widths. A
radix is the base number on which a numbering system is built. For
example, the binary numbering system has aradix of 2, octal hasaradix of
8, and decimal has aradix of 10.

Y ou can use these three number formats:

A simple decimal number that is a sequence of digits between 0 and 9. All
constants declared in this way are assumed to be 32-bit numbers.

A number that specifies the bit width, as well astheradix. These numbers
are exactly the same as the previous format, except they are preceded by a
decimal number that specifies the bit width.

A number followed by atwo-character sequence prefix that specifies the
number’s size and radix. The radix determines which symbols you can
include in the number. Constants declared this way are assumed to be
32-bit numbers. Any of these numbers can include underscores(_). The
underscores improve readability and do not affect the value of the number.
Table C-1 summarizes the available radices and valid characters for the
number.

Chapter 9 Verilog Syntax
Lexical Conventions

Table B-1

Name Character Prefix

binary 'b
octal ‘0
decimal 'd
hexadecimal 'h

Example B-1

Verilog Radices

Valid Characters
O01lxXzz_ 7
0-7xXzzZ_*?
09 _

09afAFxXzz 7

Example C—1 shows some valid number declarations.

Valid Verilog Number Declarations

391 /!l 32-bit deci nal nunber
"h3al3 /!l 32-bit hexadeci mal nunber
10’ 01567 /!l 10-bit octal nunber

3’ b010 /1 3-bit binary nunber

4’ d9 /!l 4-bit deci mal nunber

40’ hFF_FFFF_FFFF // 40-bit hexadeci mal nunber
2’ bxx /!l 2-bits don’t care

3 bzzz [/l 3-bits high-inpedance

Identifiers

Example B-2

Identifiers are user-defined words for variables, function names, module
names, and instance names. |dentifiers can be composed of |etters, digits,
and the underscore character (_). Thefirst character of an identifier cannot
be anumber. Identifiers can be any length. Identifiers are case-sensitive
and all characters are significant.

Anidentifier that contains special characters, begin with numbers, or have
the same name as a keyword can be specified as an escaped identifier. An
escaped identifier starts with the backslash character (\), followed by a
sequence of characters, followed by white space.

Some escaped identifiers are shown in Example C-2.

Sample Escaped |dentifiers

\atb \3state
\ nodul e \(a&b)|c

The Verilog language supports the concept of hierarchical names, which
can be used to access variables of submodules directly from a higher-level
module. Hierarchical names are partially supported by FPGA EXxpress.

-12 Chapter 9 Verilog Syntax
Lexical Conventions

Operators

Operators are one-character or two-character sequences that perform
operationson variables. Some examples of operatorsare +, ~, <=, and
>>, Operators are described in detail in Chapter 4.

Macro Substitutions

Example B-3

Macro substitution assigns a string of text to amacro variable. The string of
text isinserted into the code where the macro is encountered. The definition
begins with the back quote character (‘), followed by the keyword

defi ne , followed by the name of the macro variable. All text from the
macro variable until the end of the line is assigned to the macro variable.

Y ou can declare and use macro variables anywhere in the description. The
definitions can carry across several filesthat are read into FPGA Express at
the same time. To make a macro substitution, type a back quotation mark
(*) followed by the macro variable name.

Some sample macro variable declarations are shown in Example C-3.

Macro Variable Declarations

“define highbits 31: 29
‘define bitlist {first, second, third}
wire [31:0] bus;

“bitlist = bus[‘highbits];

include Construct

The i nclude constructin Verilogissimilar tothe #i ncl ude
directivein C. You can use this construct to include Verilog code, such as
type declarations and functions, from one module into another. Example
C—4 shows an application of the i ncl ude construct.

Chapter 9 Verilog Syntax
Lexical Conventions

-14

Example B-4

Including a File Within aFile

Contents of filel.v

‘ defi ne WORDSI ZE 8

functi on [WORDSI ZE- 1: 0] fast adder;
éndf unction

Contents of secondfile

nmodul e secondfile (inl,in2, out)
“include “filel.v”

wire [WORDSI ZE- 1: 0] tenp;
assign tenp = fastadder (inl,in2);

éndnodule

Included files can include other files, up to 24 levels of nesting. You
cannot usethe i ncl ude construct recursively.

Simulation Directives

Smulation directives (not to be confused with FPGA Express directives
described in Chapter 6) refer to special commands that affect the operation
of the Verilog HDL Simulator. Y ou can include these directivesin your
design description, because FPGA Express parses and ignores them.
“accelerate ‘celldefine ‘default _nettype

“endcel | define ‘endprotect ‘expand vectornets

‘noaccel erate ‘noexpand_vectornets ‘norenove_net names

‘nounconnected drive ‘protect ‘renove net names
‘resetall ‘timescale ‘unconnected drive

Verilog System Functions

Verilog system functions are implemented by the Verilog HDL Simulators
to generate input or output during simulation. Their names start with a
dollar sign ($). These functions are parsed and ignored by FPGA Express.

Chapter 9 Verilog Syntax
Lexical Conventions

Verilog Keywords

al ways
buf
casex
def aul t
end
endprinmtive
for
function
initial
join
nand

not

out put
primtive
pul | 1

r epeat
rtranifo
strongO
suppl y1
tran
triand
tril
weak0
wor

Verilog uses keywords to interpret an input file. Y ou cannot use these
words as user variable names unless you use an escaped identifier. For
more information, see the section “Identifiers,” earlier in this chapter.

and
bufifO
casez
def par am
endcase
endt abl e
force

hi ghz0

i nout

| arge
negedge
notifO
par arret er
pul | down
r cnos

r nnos
rtranifl
strongl
tabl e
tranifO
trior
vectored
weak1
xnor

assi gn
bufifil
cnos

di sabl e
endf uncti on
endt ask
f or ever
hi ghz1
i nput
medi um
nnos
notifl
pnos
pul | up
reg

r pnos
scal ar ed
suppl yO
t ask
trani f1l
trireg
wai t
whil e
xor

begi n
case
deassi gn
el se
endnodul e
event
fork

i f

i nt eger
nodul e
nor

or
posedge
pul 1 0
rel ease
rtran
snal |
suppl y1
tinme
tri
triO
wand
wre

Unsupported Verilog Language Constructs

Thefollowing Verilog constructs are not supported by FPGA Express.

Unsupported definitions and declarations

Unsupported statements
Unsupported operators

Unsupported gate-level constructs

Unsupported miscellaneous constructs

Constructs added to the Verilog Simulator in versions after Verilog 1.6

might not be supported.

Chapter 9 Verilog Syntax
Verilog Keywords

-15

If you use an unsupported construct in a Verilog description, FPGA
Express issues a syntax error such as

event is not supported

Unsupported Definitions and Declarations

Thefollowing Verilog definitions and declarations are not supported by
FPGA EXxpress.

n primitive definition

n time declaration

n event declaration

n triand, trior, tril, tri0, and trireg net types

» Ranges and arrays for integers

Unsupported Statements

Thefollowing Verilog statements are not supported by FPGA Express.
n defparam statement
n initial statement
" repeat statement
n delay control
nevent control
n wait statement
n fork statement
n deassign statement
n force statement
n release statement

n Assignment statement with a variable used as a bit-select on the left side of
the equal sign

Unsupported Operators

Thefollowing Verilog operators are not supported by FPGA Express.
n Case equality and inequality operators (=== and ! ==)

» Division and modulus operators for variables

-16 Chapter 9 Verilog Syntax
Unsupported Verilog Language Constructs

Unsupported Gate-Level Constructs

Thefollowing Verilog gate-level constructs are not supported by FPGA
Express.

" NMOS, PmMOs, CMOS, FNMOS, rpmos, rcmos, pullup, pulldown, tranifo, tranifl,
rtran, rtranif0, and rtranifl gate types

Unsupported Miscellaneous Constructs

Thefollowing V erilog miscellaneous constructs are not supported by
FPGA EXxpress.

n Hierarchical names within amodule

n ‘ifdef, ‘endif and ‘ else compiler directives

Chapter 9 Verilog Syntax =17
Unsupported Verilog Language Constructs

	HDL Reference Manual
	FPGA Express with Verilog HDL
	Hardware Description Languages
	The FPGA Express Design Process
	Using FPGA Express to Compile a Verilog HDL Design
	Design Methodology
	Verilog Example
	Verilog Design Description

	Description Styles
	Design Hierarchy
	Structural Descriptions
	Functional Descriptions
	Mixing Structural and Functional Descriptions
	Design Methodology
	Description Style
	Language Constructs

	Design Constraints
	Register Selection
	Asynchronous Designs

	Structural Descriptions
	Modules
	macromodule Constructs
	Port Definitions
	Port Names

	Module Statements and Constructs
	Structural Data Types
	Port Declarations
	Continuous Assignment

	Module Instantiations
	Named and Positional Notation
	Building Parameterized Designs
	Gate-Level Modeling
	Three-State Buffer Instantiation

	Expressions
	Constant-Valued Expressions
	Operators
	Arithmetic Operators
	Relational Operators
	Handling Comparisons to X or Z
	Logical Operators
	Bit-Wise Operators
	Reduction Operators
	Shift Operators
	Conditional Operators
	Concatenations
	Operator Precedence

	Operands
	Numbers
	Wires and Registers
	Function Calls
	Concatenation of Operands

	Expression Bit Widths

	Functional Descriptions
	Using Sequential Constructs
	function Declarations
	input Declarations
	Function Output
	reg Declarations
	Memory Declarations
	parameter Declarations
	integer Declarations

	Function Statements
	Procedural Assignments
	RTL Assignments
	begin . . . end Block Statements
	if . . . else Statements
	Conditional Assignments
	case Statements
	Full Case and Parallel Case
	casex Statements
	casez Statements
	for Loops
	while Loops
	forever Loops
	disable Statements

	task Statements
	always Blocks
	Incomplete Event Specification

	Register and Three-State Inference
	Latch Inference
	Simple Flip-Flop Inference
	Flip-Flop Inference with Asynchronous Reset
	Restrictions on Register Capabilities

	Additional Types of Register Inference
	Directives
	async_set_reset Directive
	sync_set_reset Directive
	async_set_reset_local Directive
	sync_set_reset_local Directive
	async_set_reset_local_all Directive
	sync_set_reset_local_all Directive
	one_hot Directive
	one_cold Directive

	FPGA Express Latch and Flip-Flop Inference

	Delays in Registers
	Efficient Use of Registers
	Three-State Inference
	Registered and Latched Three-State Enables

	FPGA Express Directives
	Notation for FPGA Express Directives
	translate_off and translate_on Directives
	parallel_case Directive
	full_case Directive
	Component Implication

	Flip-Flops
	Translating Flip-flops

	Verilog Syntax
	Syntax
	BNF Syntax Formalism
	BNF Syntax

	Lexical Conventions
	White Space
	Comments
	Numbers
	Identifiers
	Operators
	Macro Substitutions
	include Construct
	Simulation Directives
	Verilog System Functions

	Verilog Keywords
	Unsupported Verilog Language Constructs
	Unsupported Definitions and Declarations
	Unsupported Statements
	Unsupported Operators
	Unsupported Gate-Level Constructs
	Unsupported Miscellaneous Constructs

