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Chapter 1
FPGA Express with Verilog HDL

FPGA Express translates and optimizes a Verilog HDL description into an 
internal gate-level equivalent, then compiles this representation to produce 
an optimized gate-level design in a given FPGA technology.

This chapter introduces the main concepts and capabilities of FPGA 
Express in the following sections:

n Hardware Description Languages
n FPGA Express and the Design Process
n Design Methodology

Hardware Description Languages

Hardware description languages (HDLs) describe the architecture and 
behavior of discrete electronic systems.  Modern HDLs and their associated 
simulators are very powerful tools for integrated circuit designers.

A typical HDL supports a mixed-level description in which gate and netlist 
constructs are used with functional descriptions.  This mixed-level 
capability enables you to describe system architectures at a very high level 
of abstraction, then incrementally refine a design’s detailed gate-level 
implementation.



HDL descriptions play an important role in modern design methodology for 
three main reasons:

n Design functionality can be verified early in the design process.  A design 
written as an HDL description can be simulated immediately.  Design 
simulation at this higher level, before implementation at the gate-level, 
allows you to evaluate architectural and design decisions.

n FPGA Express provides Verilog compilation and logic synthesis, allowing 
you to  automatically convert an HDL description to a gate-level 
implementation in a target FPGA technology.  This step eliminates the 
former gate-level design bottleneck, the majority of circuit design time, and 
the errors introduced when you hand translate an HDL specification to 
gates.

With FPGA Express logic optimization, you can automatically transform a 
synthesized design into a smaller or faster circuit.  FPGA Express provides 
both logic synthesis and optimization.  For further information, refer to the 
FPGA Express User’s Guide.

n HDL descriptions provide technology-independent documentation of a 
design and its functionality.  An HDL description is more easily read and 
understood than a netlist or schematic description.  Since the initial HDL 
design description is technology-independent, you can use it again to 
generate the design in a different technology, without having to translate 
from the original technology. 

The FPGA Express  Design Process

FPGA Express translates Verilog language hardware descriptions to a 
Synopsys internal design format.  The design can then be optimized and 
mapped to a specific FPGA technology library by FPGA Express, as shown 
in Figure 1-1.



Figure 1-1 FPGA Express Design Process 

FPGA Express supports a majority of the Verilog constructs.

Using FPGA Express to Compile a Verilog HDL Design

When a Verilog design is read into FPGA Express, it is converted to an 
internal database format so FPGA Express can synthesize and optimize the 
design.  When FPGA Express optimizes a design, it may restructure part or 
all the design.  You control the degree of restructuring.  Options include

n Fully preserving a design’s hierarchy

n Allowing full modules to be moved up or down in the hierarchy

n Allowing certain modules to be combined with others

n Compressing the entire design into one module (called flattening the 
design) if it is beneficial

The following section describes the design process that uses FPGA Express 
with a Verilog HDL Simulator.
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Design Methodology

Figure 1-2 shows a typical design process that uses FPGA Express and a 
Verilog HDL Simulator.  Each step of this design model is described in 
detail.

Figure 1-2 Design Flow

The steps in Figure 1-2 are explained below.
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1. Write a design description in the Verilog language.  This description can be 
a combination of structural and functional elements (as shown in Chapter 2, 
‘‘Description Styles“).  This description is used with both FPGA Express 
and a Verilog simulator.

2. Provide Verilog-language test drivers for the Verilog HDL simulator.  For 
information on writing these drivers, see the appropriate simulator manual.  
The drivers supply test vectors for simulation and gather output data.

3. Simulate the design by using a Verilog HDL simulator.  Verify that the 
description is correct.

4. Use FPGA Express to synthesize and optimize the Verilog design 
description into a gate-level netlist.  FPGA Express generates optimized 
netlists to satisfy timing constraints for a targeted FPGA architecture.

5. Use your FPGA development system to link the FPGA technology-specific 
version of the design to the Verilog simulator.  The development system 
includes simulation models and interfaces required for the design flow.

6. Simulate the technology-specific version of the design with the Verilog 
simulator.  You can use the original Verilog simulation drivers from Step 2 
because module and port definitions are preserved through the translation 
and optimization processes.

7. Compare the output of the gate-level simulation (Step 6) against the output 
of the original Verilog description simulation (Step 3) to verify that the 
implementation is correct.

Verilog Example

This section takes you through a sample Verilog design session, starting 
with a Verilog description (source file).  The ‘‘Count Zeros — Sequential 
Version“ example in this section is from Appendix A.  The design session 
covers the following topics:

n A description of the design problem (count the number of zeros in a 
sequentially input 8-bit value)

n A listing of a Verilog design description

Verilog Design Description

The Count Zeros example illustrates a design that takes an 8-bit value and 
determine two things: first, that the value has exactly one sequence of 0’s in 
the value; and second, the number of 0’s in that sequence (if any).



A valid value is one that contains only one consecutive series of 0s.  If more 
than one series of 0s appears, the value is invalid.  A value consisting 
entirely of 1’s is defined as a valid value.  If a value is invalid, the zero 
counter is reset (to 0).  For example, the value 00000000 is valid and has 
eight 0s; value 11000111 is valid and has three 0’s; value 00111100 is 
invalid.

The circuit accepts the 8-bit data value serially, one bit per clock cycle, by 
using the data and clk inputs.  The other two inputs are reset, which resets 
the circuit, and read, which causes the circuit to begin accepting the data 
bits.

The circuit’s three outputs are

n is_legal, which is true if the data is a valid value.

n data_ready, which is true at the first invalid bit or when all eight bits have 
been processed.

n zeros, which is the number of zeros if is_legal is true.

Example 1-1 shows the Verilog source description for the Count Zeros 
circuit.



Example 1-1 Count Zeros-Sequential Version 

module count_zeros(data,reset,read,clk,zeros,is_legal,
                   data_ready);

    parameter TRUE=1, FALSE=0;

    input  data, reset, read, clk;
    output is_legal, data_ready;
    output [3:0] zeros; 
    reg  [3:0] zeros;

    reg is_legal, data_ready;
    reg seenZero, new_seenZero;
    reg seenTrailing, new_seenTrailing;
    reg new_is_legal;
    reg new_data_ready;
    reg [3:0] new_zeros;
    reg [2:0] bits_seen, new_bits_seen;

always @ ( data or reset or read or is_legal
           or data_ready or seenTrailing or 
            seenZero ) begin
        if ( reset ) begin
            new_data_ready   = FALSE;
            new_is_legal     = TRUE;
            new_seenZero     = FALSE;
            new_seenTrailing = FALSE;
            new_zeros        = 0;
            new_bits_seen    = 0;
        end
        else begin
            new_is_legal     = is_legal;
            new_seenZero     = seenZero;
            new_seenTrailing = seenTrailing;
            new_zeros        = zeros;
            new_bits_seen    = bits_seen;
            new_data_ready   = data_ready;
             if ( read ) begin
               if ( seenTrailing  && (data == 0) )
                  begin
                  new_is_legal   = FALSE;
                  new_zeros      = 0;
                  new_data_ready = TRUE;
                  end 
               else if ( seenZero && (data == 1’b1) ) 
                  new_seenTrailing = TRUE;
               else if ( data == 1’b0 ) begin
                  new_seenZero = TRUE;
                  new_zeros = zeros + 1;
                  end

               if ( bits_seen == 7 ) 
                  new_data_ready = TRUE;
               else                  
                  new_bits_seen = bits_seen+1;
            end
        end
    end
   



always @ ( posedge clk) begin
     zeros = new_zeros;
     bits_seen = new_bits_seen;
     seenZero = new_seenZero;
     seenTrailing = new_seenTrailing;
     is_legal = new_is_legal;
     data_ready = new_data_ready;
end
endmodule



Chapter 2
Description Styles

The style of your initial Verilog description has a major effect on the 
characteristics of the resulting gate-level design synthesized by FPGA 
Express. The organization and style of a Verilog description determines the 
basic architecture of your design. Because FPGA Express automates most 
of the logic-level decisions required in your design, you can concentrate on 
architectural tradeoffs.

You can use FPGA Express to make some of the high-level architectural 
decisions. Certain Verilog constructs are well suited to synthesis. To make 
the decisions and use the constructs, you need to become familiar with the 
following concepts:

n Design Hierarchy
n Structural Descriptions
n Functional Descriptions
n Mixing Structural and Functional Descriptions
n Design Constraints
n Register Selection
n Asynchronous Designs



Design Hierarchy

FPGA Express maintains the hierarchical boundaries you define when you 
use structural Verilog. These boundaries have two major effects: 

1. Each module specified in your HDL description is synthesized separately 
and maintained as a distinct design. The constraints for the design are 
maintained, and each module can be optimized separately in FPGA 
Express. 

2. Module instantiations within HDL descriptions are maintained during 
input. The instance name you assign to user-defined components is carried 
through to the gate-level implementation. 

Chapter 3 discusses modules and module instantiations.

Note: FPGA Express does not automatically maintain (create) the 
hierarchy of other nonstructural Verilog constructs such as blocks, loops, 
functions, and tasks. These elements of an HDL description are 
translated in the context of their design.  After analyzing and 
implementing a design, you can use the FPGA Express Implementation 
Window to group the gates in a block, function, or task.  Refer to the 
FPGA Express User’s Guide for further information.

The choice of hierarchical boundaries has a significant effect on the quality 
of the synthesized design. Using FPGA Express, you can optimize a design 
while preserving these hierarchical boundaries. However, FPGA Express 
only partially optimizes logic across hierarchical modules.  Full 
optimization is possible across those parts of the design hierarchy that are 
collapsed in FPGA Express.

Structural Descriptions

The structural elements of a Verilog structural description consist of 
generic logic gates, library-specific components, and user-defined 
components connected by wires.  In one way, a structural description can 
be viewed as a simple netlist composed of nets that connect instantiations 
of gates.  However, unlike a netlist, nets in the structural description can be 
driven by an arbitrary expression that describes the value assigned to the 
net.  A statement that drives an arbitrary expression onto a net is called a 
continuous assignment.  Continuous assignments are convenient links 
between pure netlist descriptions and functional descriptions.  



A Verilog structural description can define a range of hierarchical and 
gate-level constructs, including module definitions, module instantiations, 
and netlist connections.  Refer to Chapter 3, “Structural Descriptions,” for 
more information.

Functional Descriptions

The functional elements of a Verilog description consist of function  
declarations, task  statements, and always  blocks.  These elements 
describe the function of the circuit but do not describe its physical makeup, 
layout, or choice of gates and components.

You can construct functional descriptions with the Verilog functional 
constructs described in Chapter 5.  These constructs can appear within 
functions or always  blocks.  Functions imply only combinational logic.  
always  blocks can imply either combinational or sequential logic.

Although many Verilog functional constructs appear sequential in nature 
(for example, for   loops and multiple assignments to the same variable), 
these constructs describe combinational-logic networks.  Other functional 
constructs imply sequential-logic networks.  Latches and registers are 
inferred from these constructs.  Refer to Chapter 6 for details.

Mixing Structural and Functional Descriptions

When you use a functional description style in a design, the combinational 
portions of a design are typically described in Verilog functions, always  
blocks, and assignments.  The complexity of the logic determines whether 
you use one or many functions. 

Example 2-1, shows how structural and functional description styles are 
mixed in a design specification.  In Example 2–1, the function detect_
logic  determines whether the input bit is a 0 or a 1.  After this 
determination is made, detect_logic  sets ns  to the next state of the 
machine.  An always  block infers flip-flops to hold the state information 
between clock cycles.

Elements of a design can be specified directly as module instantiations at 
the structural level.  For example, see the three-state buffer, t1 , in Example 
2-1.  (Note that three-state buffers can be inferred.  For more information, 



refer to “Three-State Inference” in Chapter 6.)  You can also use this 
description style to identify the wires and ports that carry information from 
one part of the design to another.



Example 2-1 Mixed Structural and Functional Descriptions

// This finite state machine (Mealy type) reads one
// bit per clock cycle and detects three or more
// consecutive 1s.

module three_ones( signal, clock, detect, output_
enable);
input signal, clock, output_enable;
output detect;

// Declare current state and next state variables.
reg [1:0] cs;
reg [1:0] ns;
wire ungated_detect;

// declare the symbolic names for states
parameter NO_ONES = 0, ONE_ONE = 1,
          TWO_ONES = 2, AT_LEAST_THREE_ONES = 3;

// ************* STRUCTURAL DESCRIPTION  
****************
// Instance of a three-state gate that enables output
three_state t1 (ungated_detect, output_enable, 
detect);

// **************I***  ALWAYS BLOCK  
********************
// always block infers flip-flops to hold the state 
of  
// the FSM.
always @ ( posedge clock ) begin
     cs = ns;
end

// ************* FUNCTIONAL DESCRIPTION  
****************
function detect_logic;
    input [1:0] cs; 
    input signal;

    begin
        detect_logic = 0;   // default value

        if ( signal == 0 )  // bit is zero
            ns = NO_ONES;
        else                // bit is one, increment 
state
            case (cs)
                NO_ONES: ns = ONE_ONE;
                ONE_ONE: ns = TWO_ONES;
                TWO_ONES, AT_LEAST_THREE_ONES:
                         begin
                             ns = AT_LEAST_THREE_ONES;
                             detect_logic = 1;
                         end
            endcase
    end
endfunction



// **************  assign STATEMENT  **************
assign ungated_detect = detect_logic( cs, signal );
endmodule

For a structural or functional HDL description to be synthesized, it must 
follow the Synopsys synthesis policy, which has three parts:

n Design methodology
n Description style
n Language constructs

Design Methodology

Design methodology refers to the synthesis design process described in 
Chapter 1, “Design Methodology.”

Description Style

Use the HDL design and coding style that makes the best use of the 
synthesis process to obtain high-quality results from FPGA Express.  See 
Chapter 8, “Writing Efficient Circuit Descriptions,” for guidelines.

Language Constructs

The third component of the Verilog synthesis policy is the set of Verilog 
constructs that describe your design, determine its architecture, and give 
consistently good results.

Synopsys has chosen HDL constructs that maximize coding flexibility 
while producing consistently good results.  Although FPGA Express can 
read the entire Verilog language, a few HDL constructs cannot be 
synthesized.  These constructs are unsupported, because they cannot be 
realized in logic.  For example, you cannot use simulation time as a trigger, 
because time is an element of the simulation process and cannot be 
realized.  Unsupported Verilog constructs are listed in Appendix C.



Design Constraints

You can describe the performance constraints for a design module with the 
FPGA Express Implementation Window.  Refer to the FPGA Express 
User’s Guide for further information.

Register Selection

The placement of registers and the clocking scheme are important 
architectural decisions. There are two ways to define registers in your 
Verilog description.  Each method has specific advantages.

n You can directly instantiate registers into a Verilog description, selecting 
from any element in your FPGA library.  Clocking schemes can be 
arbitrarily complex.  You can choose between a flip-flop and a latch-based 
architecture.  The main disadvantages to this approach are

• The Verilog description is specific to a given technology because you 
choose structural elements from that technology library.  However, you 
can isolate the portion of your design with directly instantiated registers 
as a separate component (module), then connect it to the rest of the 
design.

• The description is more difficult to write. 

n You can use some Verilog constructs to direct FPGA Express to infer 
registers from the description.  The advantages of this approach directly 
counter the disadvantages of the previous approach.  With register 
inference, the Verilog description is much easier to write, and it is 
technology independent.  This method allows FPGA Express to select the 
type of component inferred, based on constraints.  Therefore, if a specific 
component is necessary, instantiation should be used.  Some types of 
registers and latches cannot be inferred.

See Chapter 6 for a discussion of latch and register inference.

Asynchronous Designs

You can use FPGA Express to construct asynchronous designs that use 
multiple clocks or gated clocks.  Although these designs are logically 
(statically) correct, they might not simulate or operate correctly because of 
race conditions.



Chapter 8 describes how to write Verilog descriptions of asynchronous 
designs in the section “Synthesis Issues.”



Chapter 3
Structural Descriptions

A Verilog circuit description can be one of two types: a structural 
description or a functional description, also referred to as an Register 
Transfer Level (RTL) description.  A structural description defines the 
exact physical makeup of the circuit, detailing components and the 
connections between them.  A functional or RTL description describes a 
circuit in terms of its registers and the combinational logic between the 
registers.   

This chapter describes the construction of structural descriptions in the 
following  sections:

n Modules
n Macromodules
n Port Definitions
n Module Statements and Constructs
n Module Instantiations



Modules

The principal design entity in the Verilog language is a module.  A module 
consists of the module name, its input and output description (port 
definition), a description of the functionality or implementation for the 
module (module statements and constructs), and named instantiations.  
Figure 3-1 illustrates the basic structural parts of a module.

Figure 3-1 Structural Parts of a Module 

Example 3-1 shows a simple module that implements a 2-input NAND gate 
by instantiating an AND gate and an INV gate.  The first line of the module 
definition provides the name of the module and a list of ports.  The second 
and third lines give the direction for all ports.  (Ports are either inputs, 
outputs, or bidirectionals.)  A wire variable is created in the fourth line of 
the description.  Next, the two components are instantiated; copies named 
instance1 and instance2 of the components AND and INV are created.  
These components are connected to the ports of the module, and are finally 
connected by using the variable and_out.

Example 3-1 Module Definition

module NAND(a,b,z); 
  input  a,b;     // Inputs to nand gate 
  output z;       // Outputs from nand gate 
  wire   and_out; // Output from and gate 

  AND instance1(a,b,and_out); 
  INV instance2(and_out, z);
endmodule

Module

Module Name and 
Port List

Definitions
Port, Wire, Register, 
Parameter, Integer, Function

Module Statements and 
Constructs

Module Instantiations



macromodule Constructs

The macromodule construct makes simulation more efficient by merging 
the macromodule definition with the definition of the calling (parent) 
module.  However, FPGA Express treats the macromodule construct as a 
module construct.  Whether you use module or macromodule the synthesis 
process, the hierarchy it creates, and the end result are the same.  Example 
3-2 shows how to use the macromodule construct.

Example 3-2 macromodule Construct

macromodule adder (in1,in2,out1);
input [3:0] in1,in2;
output [4:0] out1;

assign out1 = in1 + in2;
endmodule

Note: When a macromodule is instantiated, a new level of hierarchy is 
created.  You can ungroup this new level of hierarchy in the FPGA 
Express Implementation Window.

Port Definitions

A port list consists of port expressions that describe the input and output 
interface for a module.  Define the port list in parentheses after the module 
name, as shown below.

module name ( port_list ) ;

A port expression in a port list can be any of the following:

n An identifier

n A single bit selected from a bit vector declared within the module

n A group of bits selected from a bit vector declared within the module

n A concatenation of any of the above

Concatenation is the process of combining several single-bit or multiple-bit 
operands into one large bit vector.  For more information on concatenation, 
refer to the section “Concatenations” in Chapter 4.



Each port in a port list must be declared explicitly as input, output, or 
bidirectional in the module with an input, output, or inout statement.  (See 
“Port Declarations” later in this chapter.)  For example, the module 
definition in Example 3–1 shows that module NAND has three ports, a, b, 
and z, connected to 1-bit nets a, b, and z.  These connections are declared in 
the input and output statements.

Port Names

Some port expressions are identifiers.  If the port expression is an identifier, 
the port name is the same as the identifier.  A port expression is not an 
identifier if the expression is a single bit or group of bits selected from a 
vector of bits, or a concatenation of signals.  In these cases, the port is 
unnamed unless you explicitly name it.

Example 3-3 shows some module definition fragments that illustrate the 
use of port names.  The ports for module ex1 are named a, b, and z, and are 
connected to nets a, b, and z, respectively.  The first two ports of module 
ex2 are unnamed; the third port is named z.  The ports are connected to nets 
a[1], a[0], and z respectively.  Module ex3 has two ports: the first port is 
unnamed and is connected to a concatenation of nets a and b; the second 
port, named z, is connected to net z. 

Example 3-3 Module Port Lists

module ex1( a, b, z ); 
input a, b; 
output z; 
endmodule 

module ex2( a[1], a[0], z ); 
input [1:0] a; 
output z; 
endmodule 

module ex3( {a,b}, z ); 
input a,b; 
output z; 
endmodule

You can rename a port by explicitly assigning a name to a port expression 
with the dot (.) operator.  The module definition fragments in Example 3-4 
show how to rename ports.  The ports for module ex4 are explicitly named 
in_a, in_b, and out These ports are connected to nets a, b, and z.  Module 
ex5 shows ports named i1, i0, and z connected to nets a[1], a[0], and z, 
respectively.  The first port for module ex6 (the concatenation of nets a and 
b) is named i.



Example 3-4 Naming Ports in Modules

module ex4( .in_a(a), .in_b(b), .out(z) ); 
  input a, b; 
  output z; 
endmodule 

module ex5( .i1(a[1]), .i0(a[0]), z ); 
  input [1:0] a; 
  output z; 
endmodule 

module ex6( .i({a,b}), z ); 
  input a,b; 
  output z; 
endmodule

Module Statements and Constructs

FPGA Express recognizes the following Verilog statements and constructs 
when they are used in a Verilog module:

n parameter declarations
n wire, wand, wor, tri, supply0, and supply1 declarations
n reg declarations
n input declarations 
n output declarations
n inout declarations
n Continuous assignments 
n Module instantiations
n Gate instantiations
n Function definitions
n always blocks
n task statements

Data declarations and assignments are described in this section.  Module 
and gate instantiations are described later in this chapter.  Function 
definitions, task statements, reg variables, and always blocks are described 
in Chapter 5, “Functional Descriptions.”



Structural Data Types

Verilog structural data types include wire, wand, wor, tri, supply0, and 
supply1. Although parameter does not fall into the category of structural 
data types, it is presented here because it is used with structural data types.

You can define an optional range for all the data types presented in this 
section.  The range provides a means for creating a bit-vector.  The syntax 
for a range specification is

[msb : lsb]

Expressions for msb (most significant bit) and lsb (least significant bit) 
must be nonnegative constant-valued expressions.  Constant-valued 
expressions are composed only of constants, Verilog parameters, and 
operators.

parameter Definitions
Verilog parameters allow you to customize each instantiation of a module.  
By setting different values for the parameter when you instantiate the 
module, you can cause different logic to be constructed.  For more 
information, see “Building Parameterized Designs,” later in this chapter.

A parameter definition represents constant values symbolically.  The 
definition for a parameter consists of the parameter name and the value 
assigned to it.  The value can be any constant-valued expression of integer 
or Boolean type, but not of type real.  If you do not set the size of the 
parameter with a range definition or a sized constant, the parameter is 
unsized and defaults to a 32-bit quantity.  Refer to Appendix C for a 
discussion of constant formats.

You can use a parameter wherever a number is allowed, and you can define 
a parameter anywhere within a module definition.  However, the Verilog 
language requires that you define the parameter before you use it.

Example 3–5 shows two parameter declarations.  Parameters TRUE and 
FALSE are unsized, and have values of 1 and 0, respectively.  Parameters 
S0, S1, S2, and S3 have values 3, 1, 0, and 2, respectively, and are stored as 
2-bit quantities.

Example 3-5 parameter Declarations

parameter TRUE=1, FALSE=0;
parameter [1:0] S0=3, S1=1, S2=0, S3=2;



wire Data Types
A wire data type in a Verilog description represents the physical wires in a 
circuit.  A wire connects gate-level instantiations and module instantiations.  
The Verilog language allows you to read a wire value from within a 
function or a begin...end block, but you cannot assign a wire value from 
within a function or a begin...end block.     (An always block is a specific 
type of begin...end block).

A wire does not store its value.  It must be driven in one of two ways:
n By connecting the wire to the output of a gate or module.
n By assigning a value to the wire in a continuous assignment.

In the Verilog language, an undriven wire defaults to a value of Z (high 
impedance).  However, FPGA Express leaves undriven wires unconnected.  
Multiple connections or assignments to a wire short the wires together.

In Example 3–6, two wire data types are declared: a and b.  a is a single-bit 
wire, while b is a 3-bit vector of wires (the most significant bit (MSB) has 
an index of 2 and the least significant bit (LSB) has an index of 0.)

Example 3-6 wire Declarations

wire a; 
wire [2:0] b;

You can assign a delay value in a wire declaration, and you can use the 
Verilog keywords scalared and vectored for simulation.  FPGA Express 
accepts the syntax of these constructs, but they are ignored when the circuit 
is synthesized.

Note: You can use delay information for modeling, but FPGA Express 
ignores this delay information.  If the functionality of your circuit 
depends on the delay information, FPGA Express might create logic with 
behavior that does not agree with the behavior of the simulated circuit.

wand Data Types
The wand (wired AND) data type is a specific type of wire data type.

In Example 3–7, two variables drive the variable c. The value of c is 
determined by the logical AND of a and b.



Example 3-7 wand (wired AND) Data Types

module wand_test(a, b, c);
  input a, b; 
  output c; 

  wand c;

  assign c = a;
  assign c = b;
 endmodule

You can assign a delay value in a wand declaration, and you can use the 
Verilog keywords scalared and vectored for simulation. FPGA Express 
accepts the syntax of these constructs, but they are ignored when the circuit 
is synthesized.

wor Data Types
The wor (wired OR) data type is a specific type of wire data type.

In Example 3–8, two variables drive the variable c.  The value of c is 
determined by the logical OR of a and b.

Example 3-8 wor (wired-OR) Data Types

module wor_test(a, b, c);
  input a, b; 
  output c; 

  wor c;

  assign c = a;
  assign c = b;
 endmodule

tri Data Types
The tri (three-state) data type is a specific type of wire data type.  Only one 
of the variables that drive the tri data type can have a non-Z 
(high-impedance) value. This single variable determines the value of the tri 
data type

Note: FPGA Express does not enforce the above condition.  You must 
ensure that no more than one variable driving a tri data type has a value 
other than Z.

In Example 3-9, three variables drive the variable out.



Example 3-9 tri (Three-State) Data Types

module tri_test (out, condition);
  input [1:0] conditon;
  output out; 

  reg a, b, c;
  tri out;

  always @ ( condition ) begin
    a = 1’bz;// set all variables to Z
    b = 1’bz;
    c = 1’bz;
     case ( condition )   // set only one variable to 
non-Z
      2’b00 : a = 1’b1;
      2’b01 : b = 1’b0;
      2’b10 : c = 1’b1;
    endcase
  end

  assign out = a;         // make the tri connection
  assign out = b;
  assign out = c;
endmodule

supply0 / supply1 Data Types
The supply0 and supply1 data types define wires tied to logic 0 (ground) 
and logic 1 (power).  Using supply0 and supply1 is the same as declaring a 
wire and assigning a 0 or a 1 to it.  In Example 3–10, power is tied to logic 
1 and gnd is tied to logic 0.

Example 3-10 supply0 and supply1 Constructs

supply0 gnd;
supply1 power;

reg Data Types
A reg represents a variable in Verilog.  A reg can be a 1-bit quantity or a 
vector of bits.  For a vector of bits, the range indicates the most significant 
bit (MSB) and least significant bit (LSB) of the vector.  Both bits must be 
nonnegative constants, parameters, or constant-valued expressions.  
Example 3–11 shows some reg declarations.

Example 3-11 reg Declarations

reg x;// single bit
reg a,b,c;// 3 1-bit quantities
reg [7:0] q;// an 8-bit vector



Port Declarations

You must explicitly declare the direction (whether input, output, or 
bidirectional) of each port that appears in the port list of a port definition.  
Use the input, output, and inout statements, as described in the following 
sections.

input Declarations
All input ports of a module are declared with an input statement.  An input 
is a type of wire and is governed by the syntax of wire.  You can use a range 
specification to declare an input that is a vector of signals, as for input b in 
the following example.  The input statements can appear in any order in the 
description but must be declared before they are used.  For example:

input a;
input [2:0] b; 

output Declarations
All output ports of a module are declared with an output statement.  Unless 
otherwise defined by a reg, wand, wor, or tri declaration, an output is a type 
of wire and is governed by the syntax of wire.  An output statement can 
appear in any order in the description, but you must declare it before you 
use it.

You can use a range specification to declare an output value that is a vector 
of signals.  If you use a reg declaration for an output, the reg must have the 
same range as the vector of signals.  For example:

output a;
output [2:0]b;
reg [2:0] b;

inout Declarations
You can declare bidirectional ports with the inout statement.  An inout is a 
type of wire and is governed by the syntax of wire.  FPGA Express allows 
you to connect only inout ports to module or gate instantiations.  You must 
declare an inout before you use it.  For example:

inout a;
inout [2:0]b;

Continuous Assignment

If you want to drive a value onto a wire, wand, wor, or tri, use a continuous 
assignment to specify an expression for the wire value. You can specify a 
continuous assignment in two ways: 



n Use an explicit continuous assignment statement after the wire, wand, wor, 
or tri declaration.

n Specify the continuous assignment in the same line as the declaration for a 
wire.

Example 3–12 shows two equivalent methods for specifying a continuous 
assignment for wire a.

Example 3-12 Two Equivalent Continuous Assignments

wire a;             // declare 
assign a = b & c;   // assign

wire a = b & c;     // declare and assign 

The left side of a continuous assignment can be
n A wire, wand, wor, or tri.
n One or more bits selected from a vector.
n A concatenation of any of these.

The right side of the continuous assignment statement can be any supported 
Verilog operator, or any arbitrary expression that uses previously declared 
variables and functions. Note that you cannot assign a value to a reg in a 
continuous assignment.

Verilog allows you to assign drive strength for each continuous assignment 
statement. FPGA Express accepts drive strength, but it does not affect the 
synthesis of the circuit. Keep this in mind when you use drive strength in 
your Verilog source.

Assignments are performed bit-wise, with the low bit on the right side 
assigned to the low bit on the left side. If the number of bits on the right 
side is greater than the number on the left side, the high-order bits on the 
right side are discarded. If the number of bits on the left side is greater than 
the number on the right side, operands on the right side are zero-extended. 

Module Instantiations

Module instantiations are copies of the logic that define component 
interconnections in a module.

module_name instance_name1 (terminal1, terminal2),
            instance_name2 (terminal1, terminal2);



A module instantiation consists of the name of the module (module_name), 
followed by one or more instantiations.  An instantiation consists of an 
instantiation name (instance_name) and a connection list.  A connection list 
is a list of expressions called terminals, separated by commas.  These 
terminals are connected to the ports of the instantiated module.

Terminals connected to input ports can be any arbitrary expression.   
Terminals connected to output and inout ports can be identifiers, single-bit 
or multiple-bit slices of an array, or a concatenation of these.   The bit 
widths for a terminal and its module port must be the same.

If you use an undeclared variable as a terminal, the terminal is implicitly 
declared as a scalar (1-bit) wire.  After the variable is implicitly declared as 
a wire, it can appear wherever a wire is allowed.

Example 3–13 shows the declaration for the module SEQ with two 
instances (SEQ_1 and SEQ_2).

Example 3-13 Module Instantiations

module SEQ(BUS0,BUS1,OUT); // description of module SEQ
  input BUS0, BUS1; 
  output OUT; 
  ... 
endmodule 

module top( D0, D1, D2, D3, OUT0, OUT1 );
  input  D0, D1, D2, D3;
  output OUT0, OUT1;

  SEQ SEQ_1(D0,D1,OUT0), // instantiations of module SEQ
      SEQ_2(.OUT(OUT1),.BUS1(D3),.BUS0(D2));
endmodule

Named and Positional Notation

Module instantiations can use either named or positional notation to specify 
the terminal connections.

In name-based module instantiation, you explicitly designate which port is 
connected to each terminal in the list.  Undesignated ports in the module are 
unconnected.

In position-based module instantiation, you list the terminals and specify 
connections to the module according to the terminal’s position in the list.  
The first terminal in the connection list is connected to the first module 
port, the second terminal to the second module port, and so on.  Omitted 
terminals indicate that the corresponding port on the module is 
unconnected. 



In Example 3-13, SEQ_2 is instantiated with named notation, as follows:
n Signal OUT1 is connected to port OUT of the module SEQ.
n Signal D3 is connected to port BUS1.
n Signal D2 is connected to port BUS0.

SEQ_1 is instantiated by using positional notation, as follows:   
n Signal D0 is connected to port BUS0 of module SEQ.
n Signal D1 is connected to port BUS1.
n Signal OUT0 is connected to port OUT.

Building Parameterized Designs

The Verilog language allows you to create parameterized designs by 
overriding parameter values in a module during instantiation.  In Verilog, 
you can do this with the defparam statement or with the following syntax.

module_name #(parameter_value,parameter_value,...)  

instance_name 
(terminal_list)

FPGA Express does not support the defparam statement but does support 
the syntax above.

The module in Example 3-14 contains a parameter declaration.

Example 3-14 parameter Declaration in a Module

module foo (a,b,c);

parameter width = 8;

input [width-1:0] a,b;
output [width-1:0] c;

assign c = a & b;

endmodule

In Example 3–14, the default value of the parameter width is 8, unless you 
override the value when the module is instantiated.  When you change the 
value, you build a different version of your design.  This type of design is 
called a parameterized design.



FPGA Express reads parameterized designs as templates.  These designs 
are stored in an intermediate format so that they can be built with different 
(nondefault) parameter values when they are instantiated.

If your design contains parameters, you can indicate that the design should 
be read in as a template by adding the pseudo comment //synopsys template 
to your code.

If you use parameters as constants that never change, do not read in your 
design as a template.  One way to build a template into your design is by 
instantiating it in your Verilog code.  Example 3–15 shows how to do this.

Example 3-15 Instantiating a Parameterized Design in your Verilog Code

module param (a,b,c);

input [3:0] a,b;
output [3:0] c;

foo #(4) U1(a,b,c); // instantiate foo

endmodule

Example 3–15 instantiates the parameterized design, foo, which has one 
parameter that is assigned the value 4.

Because module foo is defined outside the scope of module param, errors 
such as port mismatches and invalid parameter assignments are not 
detected until the design is linked. When FPGA Express links module 
param, it searches for template foo in memory. If foo is found, it is 
automatically built with the specified parameters. FPGA Express checks 
that foo has at least one parameter and three ports, and that the bit widths of 
the ports in foo match the bit-widths of ports a, b, and c.  If template foo is 
not found, the link fails.

Templates instantiated with different parameter values are different designs 
and require unique names.  Three variables control the naming convention 
for the templates:

n template_naming_style = “%s_%p”
n template_parameter_style = “%s%d”
n template_separator_style = “_”

The template_naming_style variable is the master variable for renaming a 
template.  The %s field is replaced by the name of the original design, and 
the %p field is replaced by the names of all the parameters.



The template_parameter_style variable determines how each parameter is 
named.   The %s field is replaced by the parameter name, and the %d field 
is replaced by the value of the parameter.

The template_separator_style variable contains a string that separates 
parameter names. This variable is used only for templates that contain more 
than one parameter.

When a template is renamed, only the parameters you select when you 
instantiate the parameterized design are used in the template name.  For 
example, template ADD contains parameters N, M, and Z. You can build a 
design where N = 8, M = 6, and Z is the default value. The name assigned 
to this design is ADD_N8_M6.  If no parameters are selected, the template 
is built with default values, and the name of the created design is the same 
as the name of the template.

Gate-Level Modeling

Verilog provides a number of basic logic gates that enable modeling at the 
gate level. Gate-level modeling is a special case of positional notation for 
module instantiation that uses a set of predefined module names. FPGA 
Express supports the following gate types:

n and
n nand
n or 
n nor
n xor
n xnor
n buf
n not
n tran

Connection lists for instantiations of a gate-level model use positional 
notation.  In the connection lists for and, nand, or, nor, xor, and xnor gates, 
the first terminal connects to the output of the gate, and the remaining 
terminals connect to the inputs of the gate.  You can build arbitrarily wide 
logic gates with as many inputs as you want. 

Connection lists for buf, tran, and not gates also use positional notation.  
You can have as many outputs as you want, followed by only one input.  
Each terminal in a gate-level instantiation can be a 1-bit expression or 
signal.



In gate-level modeling, instance names are optional.  Drive strengths and 
delays are allowed, but they are ignored by FPGA Express. Example 3–16 
shows two gate-level instantiations. 

Example 3-16 Gate-Level Instantiations

buf (buf_out,e); 
and and4(and_out,a,b,c,d); 

Note: Delay options for gate primitives are parsed but ignored by FPGA 
Express.  Because FPGA Express ignores the delay information, it might 
create logic whose behavior does not agree with the simulated behavior of 
the circuit.  See Chapter 6 for more information.

Three-State Buffer Instantiation

FPGA Express supports the following gate types for instantiation of 
three-state gates:

n bufif0 (active low enable line)
n bufif1 (active high enable line)
n notif0 (active low enable line; output inverted)
n notif1 (active high enable line; output inverted)

Connection lists for bufif and notif gates use positional notation.  Specify 
the order of the terminals as follows:

n The first terminal connects to the output of the gate.
n The second terminal connects to the input of the gate.
n The third terminal connects to the control line.

Example 3–17 shows a three-state gate instantiation with an active high 
enable and no inverted output.

Example 3-17 Three-State Gate Instantiation

module three_state (in1,out1,cntrl1);
input in1,cntrl1;
output out1;

bufif1 (out1,in1,cntrl1);

endmodule



Chapter 4
Expressions

In Verilog, expressions consist of a single operand or multiple operands 
separated by operators.  Use expressions where a value is required in 
Verilog.  

This chapter explains how to build and use expressions in the following 
sections:

n Constant-Valued Expressions
n Operators
n Operands
n Expression Bit Widths

Constant-Valued Expressions

A constant-valued expression is an expression whose operands are either 
constants or parameters.  FPGA Express determines the value of these 
expressions.

In Example 4–1, size-1  is a constant-valued expression. The expression 
(op == ADD) ? a+b : a-b  is not a constant-valued expression, 
because the value depends on the variable op .  If the value of op  is 1, b is 
added to a; otherwise, b is subtracted from a.



Example 4-1 Valid Expressions

// all expressions are constant-valued, 
// except in the assign statement.
module add_or_subtract( a, b, op, s ); 
 // performs  s = a+b  if op is ADD 
 //           s = a-b  if op is not ADD 
parameter size=8; 
parameter ADD=1’b1; 

 input  op; 
 input  [size-1:0] a, b; 
 output [size-1:0] s;
 assign s = (op == ADD) ? a+b : a-b; // not a 
constant-
// valued expression
endmodule

The operators and operands used in an expression influence the way a 
design is synthesized.  FPGA Express evaluates constant-valued 
expressions and does not synthesize circuitry to compute their value.  If an 
expression contains constants, they are propagated to reduce the amount of 
circuitry required.  FPGA Express does synthesize circuitry for an 
expression that contains variables, however.

Operators

Operators represent an operation to be performed on one or two operands to 
produce a new value.  Most operators are either unary operators that apply 
to only one operand, or binary operators that apply to two operands.  Two 
exceptions are conditional operators, which take three operands and 
concatenation operators, which take any number of operands. The Verilog 
language operators supported by FPGA Express are listed in Table 4–1.  A 
description of the operators and their order of precedence is given in the 
following sections.

Table 4-1 Verilog Operators Supported by FPGA Express

Operator Description

{  } concatenation

+   -   *   / arithmetic

% modulus

>      >=      <      <= relational

! logical NOT



In the following descriptions, the terms variable and variable operand refer 
to operands or expressions that are not constant-valued expressions.  This 
group includes wires and registers, bit-selects and part-selects of wires and 
registers, function calls, and expressions that contain any of these elements.

Arithmetic Operators

Arithmetic operators perform simple arithmetic on operands.  The Verilog 
arithmetic operators are

n addition (+)
n subtraction (-)

&& logical AND

|  | logical OR

== logical equality

!  = logical inequality

~ bit-wise NOT

& bit-wise AND

|  bit-wise OR

^ bit-wise XOR

^~          ~^ bit-wise XNOR

& reduction AND

| reduction OR

~ & reduction NAND

~  | reduction NOR

^ reduction XOR

~^          ^~ reduction XNOR

<< left shift

>   > right shift

? : conditional

Operator Description



n multiplication (*)
n division (/)
n modulus (%)

You can use the addition (+), subtraction (-), and multiplication (*) 
operators with any operand form (constants or variables).  The addition (+)  
and subtraction (-)  operators can be used as either unary or binary 
operators.  FPGA Express requires that division (/) and modulus (%) 
operators have constant-valued operands.

Example 4-2 shows three forms of the addition operator.  The circuitry built 
for each addition operation is different because of the different operand 
types.  The first addition requires no logic, the second synthesizes an 
incrementer, and the third synthesizes an adder.

Example 4-2 Addition Operator

parameter size=8; 
wire [3:0] a,b,c,d,e; 

assign c = size + 2; // constant + constant
assign d = a + 1;    // variable + constant
assign e = a + b;    // variable + variable

Relational Operators

Relational operators compare two quantities and yield a 0 or 1 value.  A 
true comparison evaluates to 1; a false comparison evaluates to 0 .  All 
comparisons assume unsigned quantities.  The circuitry synthesized for 
relational operators is a bit-wise comparator whose size is based on the 
sizes of the two operands.

The Verilog relational operators are
n less than  (<)
n less than or equal to (<=)
n greater than (>)
n greater than or equal to (>=)

Example 4-3 shows the use of a relational operator.

Example 4-3 Relational Operator

function [7:0] max( a, b ); 
input  [7:0] a,b; 
   if ( a >= b )  max = a; 
   else           max = b; 
endfunction 



Equality Operators

Equality operators generate a 0 if the expressions being compared are not 
equal and a 1 if the expressions are equal.  Equality and inequality 
comparisons are performed bit-wise.

The Verilog equality operators are
n equality (==)  
n inequality (!=)

Example 4–4 shows the equality operator used to test for a JMP  instruction.  
The output signal jump  is set to 1 if the two high-order bits of 
instruction are equal to the value of parameter JMP ; otherwise, 
jump  is set to 0.

Example 4-4 Equality Operator

module is_jump_instruction ( instruction, jump );
   parameter JMP = 2’h3;

   input  [7:0] instruction; 
   output jump; 
   assign jump = (instruction[7:6] == JMP);

endmodule 

Handling Comparisons to X or Z

Comparisons to an X or a Z are always ignored.  If your code contains a 
comparison to an X or a Z, a warning message is displayed indicating that 
the comparison is always evaluated to false, which might cause simulation 
to disagree with synthesis.

For example, the variable B in the following code (from a file called 
test2.v ) is always assigned to the value 1, because the comparison to X 
is ignored.



Example 4-5 Comparison to X Ignored

always begin
if (A == 1’bx)   // this is line 10
B = 0;
else
B = 1;
end

When FPGA Express reads this code, the following warning message is 
generated.

Warning:Comparisons to a “don’t care” are treated as 
always being false in routine test2 line 10 in file 
‘test2.v’. This may cause simulation to disagree with 
synthesis. (HDL-170)

For an alternate method of handling comparisons to X or Z, insert the // 
synopsys translate_off directive before the comparison and 
insert the // synopsys translate_on directive after the 
comparison.  Inserting these directives might cause simulation to disagree 
with synthesis.

Logical Operators

Logical operators generate a 1 or a 0, according to whether an expression 
evaluates to true  (1) or false  (0).  The Verilog logical operators are

n logical NOT (!)
n logical AND (&&)
n logical OR (||)

The logical not  operator produces a value of 1 if its operand is zero and a 
value of 0 if its operand is nonzero.  The logical and  operator produces a 
value of 1 if both operands are nonzero.  The logical or  operator produces 
a value of 1 if either operand is nonzero.

Example 4-6 shows some logical operators.



Example 4-6 Logical Operators

module is_valid_sub_inst(inst,mode,valid,unimp);

   parameter IMMEDIATE=2’b00, DIRECT=2’b01;
   parameter SUBA_imm=8’h80, SUBA_dir=8’h90,
             SUBB_imm=8’hc0, SUBB_dir=8’hd0;
   input  [7:0] inst;
   input  [1:0] mode;
   output valid, unimp;

   assign valid = (((mode == IMMEDIATE) && ( 
                 (inst == SUBA_imm) || 
                 (inst == SUBB_imm))) ||
                 ((mode == DIRECT) && ( 
                     (inst == SUBA_dir) || 
                     (inst == SUBB_dir)))); 

   assign unimp = !valid; 

endmodule 

Bit-Wise Operators

Bit-wise operators act on the operand bit by bit.  The Verilog bit-wise 
operators are

n unary negation (~)
n binary AND (&)
n binary OR (|)
n binary  XOR (^)
n binary  XNOR (^~  or ~^)

Example 4-7 shows some bit-wise operators.

Example 4-7 Bit-Wise Operators

module full_adder( a, b, cin, s, cout ); 
  input  a, b, cin; 
  output s, cout; 

  assign s    = a ^ b ^ cin; 
  assign cout = (a&b) | (cin & (a|b)); 
endmodule



Reduction Operators

Reduction operators take one operand and return a single bit.  For example, 
the reduction and  operator takes the and  value of all the bits of the 
operand and returns a 1-bit result.  The Verilog reduction operators are

n reduction AND (&)
n reduction OR (|)
n reduction NAND (~&)
n reduction NOR (~|)
n reduction XOR (^)
n reduction XNOR (^~  or ~^)

Example 4-8 shows the use of some reduction operators.

Example 4-8 Reduction Operators

module check_input ( in, parity, all_ones ); 
  input  [7:0] in; 
  output parity, all_ones; 

  assign parity   = ^ in; 
  assign all_ones = & in; 
endmodule 

Shift Operators

The Verilog shift operators are
n shift left (<<) 
n shift right (>>) 

A shift operator takes two operands and shifts the value of the first operand 
right or left by the number of bits given by the second operand.

After the shift, vacated bits are filled with zeros.  Shifting by a constant 
results in trivial circuitry (because only rewiring is required).  Shifting by a 
variable causes a general shifter to be synthesized.  Example 4-9 shows 
how a right-shift operator is used to perform a division by 4.



Example 4-9 Shift Operator 

module divide_by_4( dividend, quotient ); 
  input  [7:0] dividend; 
  output [7:0] quotient; 

  assign quotient = dividend >> 2; // shift right 2 
bits
endmodule 

Conditional Operators

Conditional operators (? : ) evaluate an expression and return a value that 
is based on the truth of the expression.  Example 4-10 shows how to use 
conditional operators.  If the expression (op == ADD)  evaluates to 
true , the value a+b  is assigned to result ; otherwise, the value a-b  is 
assigned to result .

Example 4-10 Conditional Operator

module add_or_subtract( a, b, op, result ); 

  parameter ADD=1’b0; 
  input  [7:0] a, b; 
  input  op; 
  output [7:0] result; 

    assign result = (op == ADD) ? a+b : a-b; 
endmodule 

Conditional operators can be nested to produce an if  . . .  else if  
construct.  Example 4-11 shows the conditional operators ? :  used to 
evaluate the value of op  successively and perform the correct operation.

Example 4-11 Nested Conditional Operator

module arithmetic( a, b, op, result ); 

  parameter ADD=3’h0,SUB=3’h1,AND=3’h2,
            OR=3’h3, XOR=3’h4; 

  input  [7:0] a,b; 
  input  [2:0] op; 
  output [7:0] result; 

  assign result = ((op == ADD) ? a+b : ( 
                   (op == SUB) ? a-b : ( 
                   (op == AND) ? a&b : ( 
                   (op ==  OR) ? a|b : ( 
                   (op == XOR) ? a^b : (a)))))); 
endmodule 



Concatenations

Concatenation combines one or more expressions to form a larger vector.  
In the Verilog language, you indicate concatenation by listing all 
expressions to be concatenated, separated by commas, in curly braces ({}).  
Any expression except an unsized constant is allowed in a concatenation.  
For example, the concatenation {1’b1,1’b0,1’b0}  yields the value 
3’b100 .

You can also use a constant-valued repetition multiplier to repeat the 
concatenation of an expression.  The concatenation {1’b1,1’b0,1’b0}  
can also be written as {1’b1,{2{1’b0}}}  to yield 3’b100 .  The 
expression {2{expr}}within the concatenation repeats expr two times.

Example 4-12 shows a concatenation that forms the value of a 
condition-code register.

Example 4-12 Concatenation Operator

output [7:0] ccr; 
wire  half_carry, interrupt, negative, zero, 
               overflow, carry;
... 
assign ccr = { 2’b00, half_carry, interrupt, 
               negative, zero, overflow, carry };

Example 4-13 shows an equivalent description for the concatenation.

Example 4-13 Concatenation Equivalent

output [7:0] ccr; 
... 
assign ccr[7] = 1’b0; 
assign ccr[6] = 1’b0; 
assign ccr[5] = half_carry; 
assign ccr[4] = interrupt; 
assign ccr[3] = negative; 
assign ccr[2] = zero; 
assign ccr[1] = overflow; 
assign ccr[0] = carry; 

Operator Precedence

Table 4-2 lists the precedence of all operators, from highest to lowest.  All 
operators at the same level in the table are evaluated from left to right, 
except the conditional operator (?:), which is evaluated from right to left.



Table 4-2 Operator Precedence 

Operands

The following kinds of operands can be used in an expression: 
n Numbers
n Wires and registers 
n Bit-selects 
n Part-selects 
n Function calls 

Operator Description

[   ] bit-select or part-select

(  ) parentheses

!,   ~ logical and bit-wise 
negation

&,   |,   ~&,   ~|,  ^,  ~^,   ^~ reduction operators

 +,   - unary arithmetic

{   } concatenation

*,   /,   % arithmetic

+,   - arithmetic

<<,       >> shift

>,    >=   ,    <, <= relational

==,      != logical equality

& bit-wise AND

^,    ^~   , ~^ bit-wise XOR and XNOR

| bit-wise OR

& & logical AND

|   | logical OR

? : conditional



Each of these operands is explained in the following subsections.

Numbers

A number is either a constant value or a value specified as a parameter.  
The expression size-1  in Example 4-1 illustrates how you can use both a 
parameter and a constant in an expression.

You can define constants as sized or unsized, in binary, octal, decimal, or 
hexadecimal bases.  The default size of an unsized constant is 32 bits.  
Refer to Appendix C for a discussion of the format for numbers.

Wires and Registers

Variables that represent both wires and registers are allowed in an 
expression.  (Wires are described in the section “Module Statements and 
Constructs” in Chapter 3.  Registers are described in “Function 
Declarations” in Chapter 5.) If the variable is a multibit vector, and you use 
only the name of the variable, the entire vector is used in the expression.  
Bit-selects and part-selects allow you to select single or multiple bits, 
respectively, from a vector.  These are described in the next two sections.

In the Verilog fragment shown in Example 4-14, a, b, and c are 8-bit 
vectors of wires.  Because only the variable names appear in the expression, 
the entire vector of each wire  is used in evaluating the expression.

Example 4-14 Wire Operands

wire [7:0] a,b,c; 
assign c = a & b; 

Bit-Selects
A bit-select is the selection of a single bit from a wire , register , or 
parameter  vector.  The value of the expression in brackets ([]) selects 
the bit you want from the vector.  The selected bit must be within the 
declared range of the vector.  Example 4-15 shows a simple example of a 
bit-select with an expression.

Example 4-15 Bit-Select Operands

wire [7:0] a,b,c; 
assign c[0] = a[0] & b[0];



Part-Selects

A part-select is the selection of a group of bits from a wire , register , 
or parameter vector.  The part-select expression must be 
constant-valued in the Verilog language, unlike the bit-select operator.  If a 
variable is declared with ascending indices or descending indices, the 
part-select (when applied to that variable) must be in the same order.

The expression in Example 4-14 can also be written (with descending 
indices) as shown in Example 4-16.

Example 4-16 Part-Select Operands

assign c[7:0] = a[7:0] & b[7:0]

Function Calls

Verilog allows you to call one function from inside an expression and use 
the return value from the called function  as an operand.  Functions in 
Verilog return a value consisting of one or more bits.  The syntax of a 
function call is the function name followed by a comma-separated list of 
function inputs enclosed in parentheses.  Example 4-17 shows the function 
call legal  used in an expression.

Example 4-17 Function Call Used as an Operand

assign error = ! legal(in1, in2);

Functions are described in Chapter 5, ‘‘Functional Descriptions.“

Concatenation of Operands

Concatenation is the process of combining several single-bit or multiple-bit 
operands into one large bit vector.  The use of the concatenation operators, 
a pair of braces ({}), is described in the section ‘‘Concatenations“ earlier in 
this chapter.

Example 4-18 shows two 4-bit vectors (nibble1  and nibble2 ) that are 
joined to form an 8-bit vector that is assigned to an 8-bit wire vector 
(byte ).

Example 4-18 Concatenation of Operands

wire [7:0] byte;
wire [3:0] nibble1, nibble2;
assign byte = {nibble1,nibble2};



Expression Bit Widths

The bit width of an expression depends on the widths of the operands and 
the types of operators in the expression.

Table 4-3 shows the bit width for each operand and operator.  In the table, i, 
j, and k are expressions; L( i) is the bit width of expression i.

To preserve significant bits within an expression, Verilog fills in zeros for 
smaller-width operands.  The rules for this zero-extension depend on the 
operand type.  These rules are also listed in Table 4-3.

Table 4-3 Expression Bit-Widths

Expression Bit Length Comments

unsized constant 32-bit self-determined

sized constant as specified self-determined

i + j        max(L(i),L(j)) context-determined

i - j        max(L(i),L(j)) context-determined

i * j        max(L(i),L(j)) context-determined

i / j       max(L(i),L(j)) context-determined

i % j       max(L(i),L(j)) context-determined

i & j        max(L(i),L(j)) context-determined

i | j        max(L(i),L(j)) context-determined

i ^ j            max(L(i),L(j)) context-determined

i ^~ j          max(L(i),L(j)) context-determined

~i          L(i) context-determined

i == j         1-bit self-determined

i !== j         1-bit self-determined

i && j        1-bit self-determined

i || j          1-bit self-determined

i > j           1-bit self-determined

i >= j           1-bit self-determined



Verilog classifies expressions (and operands) as either self-determined or 
context-determined.  A self-determined expression is one in which the 
width of the operands is determined solely by the expression itself.  These 
operand widths are never extended.

Example 4-19 shows a self-determined expression that is a concatenation of 
variables with known widths.

Example 4-19 Self-Determined Expression

output [7:0] result;
wire   [3:0] temp;

assign temp = 4’b1111;
assign result = {temp,temp};

The concatenation has two operands.  Each operand has a width of four bits 
and a value of 4’b1111 .  The resulting width of the concatenation is eight 
bits, which is the sum of the width of the operands.  The value of the 
concatenation is 8’b11111111 .

i < j           1-bit self-determined

i <= j          1-bit self-determined

&i           1-bit self-determined

|i            1-bit self-determined

^i            1-bit self-determined

~&i            1-bit self-determined

~|i         1-bit self-determined

~^i           1-bit self-determined

i >> j             L(i) j is self-determined

{i{j}}        i*L(j) j is self-determined

i << j          L(i) j is self-determined

i ? j : k        Max(L(j),L(k)) j is self-determined

{i,...,j}         L(i)+...+L(j)  self-determined

{i {j,...,k}}               /*(L(j)+...+L(k))   self-determined

Expression Bit Length Comments



A context-determined expression is one in which the width of the 
expression depends on all operand widths in the expression.  For example, 
Verilog defines the resulting width of an addition as the greater of the 
widths of its two operands.  The addition of two 8-bit quantities produces 
an 8-bit value; however, if the result of the addition is assigned to a 9-bit 
quantity, the addition produces a 9-bit result.  Because the addition 
operands are context-determined, they are zero-extended to the width of the 
largest quantity in the entire expression.

Example 4-20 shows context-determined expressions.

Example 4-20 Context-Determined Expressions

if ( ((1’b1 << 15) >> 15) == 1’b0 )
  // This expression is ALWAYS true.

if ( (((1’b1 << 15) >> 15) | 20’b0) == 1’b0 )
  // This expression is NEVER true.

The expression ((1’b1 << 15) >> 15)  produces a one-bit 0 value 
(1’b0) .  The 1 is shifted off the left end of the vector, producing a value 
of 0.  The right shift has no additional effect.  For a shift operator, the first 
operand (1’b1 ) is context-dependent; the second operand (15) is 
self-determined.

The expression (((1’b1 << 15) >> 15) | 20’b0)  produces a 
20-bit 1 value (20’b1) .  20’b1  has a 1 in the least significant bit 
position and 0s in the other 19 bit positions.  Because the largest operand 
within the expression has a width of 20, the first operand of the shift is 
zero-extended to a 20-bit value.  The left shift of 15 does not drop the 1 
value off the left end; the right shift brings the 1 value back to the right end, 
resulting in a 20-bit 1 value (20’b1) .



Chapter 5
Functional Descriptions

A Verilog circuit description can be one of two types: a structural 
description or a functional description, also referred to as a Register 
Transfer Level (RTL ) description.  A structural description explains the 
exact physical makeup of the circuit, detailing components and the 
connections between them.  A functional or RTL description describes a 
circuit in terms of its registers and the combinational logic between the 
registers.

This chapter describes the construction and use of functional descriptions in 
the following sections:

n Using Sequential Constructs
n function Declarations
n Function Statements
n task Statements
n always Blocks

Using Sequential Constructs 

Although many Verilog constructs appear sequential in nature, they 
describe combinational circuitry.  A simple description that appears to be 
sequential is shown in Example 5-1.



Example 5-1 Sequential Statements

x = b; 
if (y)   
x = x + a; 

FPGA Express determines the combinational equivalent of this description.  
In fact, FPGA Express treats the statements in Example 5-1 the same way it 
treats the statements in Example 5-2.

Example 5-2 Equivalent Combinational Description

if (y)   
x = b + a; 
else 
x = b; 

To describe combinational logic, you write a sequence of statements and 
operators to generate the output values you want.  For example, suppose the 
+ operator is not supported, and you want to create a combinational, 
ripple-carry adder.  The easiest way to describe this circuit is as a cascade 
of full adders, as in Example 5-3.  The example has eight full adders, with 
each adder following the one before.  From this description, FPGA Express 
generates a fully combinational adder.

Example 5-3 Combinational Ripple-Carry Adder

function [7:0] adder;
input [7:0] a, b;
    reg c;
    integer i;
    begin
        c = 0; 
        for (i = 0; i <= 7; i = i + 1) begin 
            adder[i] = a[i] ^ b[i] ^ c;
            c = a[i] & b[i] | a[i] & c | b[i] & c;
        end
    end
endfunction

function Declarations

Verilog function declarations are one of the two primary methods for 
describing combinational logic.  The other method is the always  block, 
described later in this chapter.  You must declare and use Verilog functions 
within a module.  You can call functions from the structural part of a 
Verilog description by using them in a continuous assignment statement or 
as a terminal in a module instantiation.  You can also call functions from 
other functions or from always  blocks.



FPGA Express supports the following Verilog function declarations:
n input  declarations
n reg  declarations
n memory declarations
n parameter  declarations
n integer  declarations

Functions begin with the keyword function  and end with the keyword 
endfunction .  The width of the function’s return value (if any) and the 
name of the function follow the function  keyword, as shown in the 
syntax below.

function [ range] name_of_function ;
            [ func_declaration]*
            statement_or_null
endfunction

Defining the bit range of the return value is optional.  Specify range 
inside square brackets ([ ]).  If you do not define range, a 1-bit quantity is 
returned by default.  The function’s output is set by assigning it to the 
function name.  A function can contain one or more statements.  If you use 
multiple statements, enclose the statements between a begin...end  
pair.

A simple function  declaration is shown in Example 5-4.

Example 5-4 Simple Function Declaration

function [7:0] scramble; 
input [7:0] a; 
input [2:0] control; 
integer i; 
    begin 
        for (i = 0; i <= 7; i = i + 1) 
            scramble[i] = a[ i ^ control ]; 
    end 
endfunction 

Function statements supported by FPGA Express are discussed under 
“Function Statements” later in this chapter.

input Declarations 

Verilog input declarations specify the input signals for a function.



You must declare the inputs to a Verilog function immediately after you 
declare the function name.  The syntax of input  declarations for a 
function is the same as the syntax of input  declarations for a module, as 
shown below.

input [ range] list_of_variables ;

The optional range  specification declares an input as a vector of signals.  
Specify range  inside square brackets ([ ]).

Note: The order in which you declare the inputs must match the order of 
the inputs in the function call.

Function Output 

The output from a function is assigned to the function name.  A Verilog 
function has only one output, which can be a vector.  For multiple outputs 
from a function, use the concatenation operation to bundle several values 
into one return value.  This single return value can then be unbundled by 
the caller.  Example 5-5 shows how unbundling is done.

Example 5-5 Many Outputs from a Function

function [9:0] signed_add; 
input [7:0] a, b; 
    reg [7:0] sum; 
    reg carry, overflow; 

    begin 
        ... 
        signed_add = {carry, overflow, sum}; 
    end 
endfunction 
... 
assign {C, V, result_bus} = signed_add(busA, busB); 

The signed_add  function bundles the values of carry , overflow , 
and sum  into one value.  This new value is returned in the assign  
statement following the function.  The original values are then unbundled 
by the function that called the signed_add  function.



reg Declarations 

A register represents a variable in Verilog.  The syntax for a register 
declaration is

reg [ range] list_of_register_variables ;

A reg  declaration can be a single-bit quantity or a vector of bits.  The 
range parameter specifies the most significant bit (msb ) and least 
significant bit (lsb ) of the vector.  Both must be nonnegative constants, 
parameters, or constant-valued expressions, and are enclosed in square 
brackets ([ ]).  Example 5-6 shows some reg  declarations.

Example 5-6 Register Declarations

reg x;              /* single bit */ 
reg a, b, c;        /* 3 single-bit quantities */ 
reg [7:0] q;        /* an 8-bit vector */ 

The Verilog language allows you to assign a value to a reg  variable only 
within a function or an always  block.

In the Verilog simulator, reg  variables can hold state information.  A reg  
variable can hold its value across separate calls to a function.  In some 
cases, FPGA Express emulates this behavior by inserting flow-through 
latches.  In other cases, this behavior is emulated without a latch.  The 
concept of holding state is elaborated in Chapter 6 and in several examples 
in Appendix A.

Memory  Declarations

The memory construct models a bank of registers or memory.  In Verilog, 
the memory construct is actually a two-dimensional array of reg  variables.  
Sample memory declarations are shown in Example 5-7.

Example 5-7 Memory Declarations

reg [7:0] byte_reg;
reg [7:0] mem_block [255:0];

In Example 5-7, byte_reg  is an 8-bit register and mem_block  is an 
array of 256 registers, each of which is eight bits wide.  You can index the 
array of registers to access individual registers, but you cannot access 



individual bits of a register directly.  Instead, you must copy the appropriate 
register into a temporary one-dimensional register.  For example, to access 
the fourth bit of the eighth register in mem_block , enter

byte_reg = mem_block [7];
individual_bit = byte_reg [3];

parameter Declarations 

Parameter variables are local or global variables that hold values.  The 
syntax for a parameter declaration is

parameter [ range] identifier = expression,
identifier = expression;

The range specification is optional.

You can declare parameter variables as local to a function.  However, you 
cannot use a local variable outside of that function.  Parameter declarations 
in a function are identical to parameter declarations in a module.  (See 
Chapter 3 for more information.)  The function in Example 5-8 contains a 
parameter  declaration.

Example 5-8 Parameter Declaration in a Function

function gte;
parameter width = 8;
input [width-1:0] a,b;
gte = (a >= b);
endfunction

integer Declarations

Integer variables are local or global variables that hold numeric values.  
The syntax for an integer declaration is

integer identifier_list;

You can declare integer variables locally at the function level or 
globally at the module level.  The default size for integer variables is 
32 bits.  FPGA Express determines bit widths, except in the case of a 
dont-care resulting from a compile.

Example 5-9 illustrates integer declarations.



Example 5-9 Integer Declarations

integer a;       /* single 32 bit integer */ 
integer b, c;    /* two integers */ 

Function Statements

The function statements supported by FPGA Express are
n Procedural assignments
n RTL assignments
n begin . . .  end  block statements
n if. . .  else  statements 
n case , casex , and casez  statements 
n for  loops
n while  loops
n forever  loops
n disable  statements

Procedural Assignments 

Procedural assignments are assignment statements used inside a function.  
They are similar to the continuous assignment statements described in 
Chapter 3, “Module Statements and Constructs”, except that the left side of 
a procedural assignment can contain only reg  variables and integers.  
Assignment statements set the value of the left side to the current value of 
the right side.  The right side of the assignment can contain any arbitrary 
expression of the data types described in Chapter 3, including simple 
constants and variables.

The left side of the procedural assignment statement can contain only the 
following data types: 

n reg  variables
n Bit-selects of reg  variables
n Part-selects of reg  variables
n Integers
n Concatenations of the above

The expressions in the part-select of a left side must be constant-valued.



Assignments are made bit-wise, with the low bit on the right side assigned 
to the low bit on the left side.  If the number of bits on the right side is 
greater than the number on the left side, the high-order bits on the right side 
are discarded.  If the number of bits on the left side is greater than the 
number on the right side, the right side bits are zero-extended.  Multiple 
procedural assignments are allowed.

Some examples of procedural assignments are shown in Example 5-10.

Example 5-10 Procedural Assignments

sum = a + b; 
control[5] = (instruction == 8’h2e); 
{carry_in, a[7:0]} = 9’h 120; 

RTL Assignments

Procedural assignments in Verilog can be blocking in nature. For example, 
you can assign a delay of five time units with the following  statement.

rega = #5 arg1 + arg2;

The expression, arg1 + arg2 is evaluated, then execution is suspended for 
five time units before the assignment is performed and the next statement is 
processed. Execution of the next statement is blocked until the current 
statement’s execution is completed.

On the other hand, RTL assignments let you define nonblocking procedural 
assignments with timing controls. If you use a nonblocking RTL 
assignment statement instead of the procedural assignment, the sum is 
computed immediately, but the assignment is done after the five time-unit 
delay.

rega <= #5 arg1 + arg2;

However, execution proceeds without waiting for the assignment to finish. 
FPGA Express ignores intra-assignment and interassignment delays; 
therefore, the RTL assignment behaves like the blocking procedural 
assignment in this case.

To illustrate the difference in behavior between RTL assignments and 
blocking procedural assignments, consider Example 5-11 and Example 
5-12, where there are multiple assignments.



Example 5-11 RTL Assignments

always @(posedge clk) begin
regc <= data;
regd <= regc;
end

Figure 5-1 Schematic of RTL Assignments 

Example 5-11 is a description of a serial register implemented with RTL 
assignments. The recently assigned value of regc , which is data, is 
assigned to regd as the schematic indicates. If blocking assignments are 
used, as in Figure 5-2, a serial register is not synthesized, because 
assignments are executed before proceeding. 

Example 5-12 Blocking Assignment

always @(posedge clk) begin
 rega = data;
 regb = rega;
end 

Figure 5-2 Schematic of Blocking Assignment 

The following restrictions apply to RTL assignments:
n •You cannot use procedural assignments with blocking delays and RTL 

assignments at the same time.  The following example is not allowed.

reg b,c;

always begin
b <= #4a; // RTL assignment
c = #3b; // procedure assignment with 
// blocking delay
end

n Because FPGA Express ignores delay information, synthesis might not 
agree with simulation.



n If you first assign a value to a reg  variable with a procedural assignment, 
you cannot use an RTL assignment on that reg  anywhere in the module.

n If you first assign a value to a reg  variable with an RTL assignment, you 
cannot use a procedural assignment on that reg  anywhere in the module.

begin . . . end Block Statements 

Block statements are a way of syntactically grouping several statements 
into a single statement.

In Verilog, sequential blocks are delimited by the keywords begin  and 
end .  These begin...end blocks are commonly used in conjunction 
with if , case , and for statements to group several statements together.  
Functions and always blocks that contain more than one statement 
require a begin...end block to group the statements.  Verilog also 
provides a construct called a named block, as shown in Example 5-13.

Example 5-13 Block Statement with a Named Block

begin : block_name 
   reg local_variable_1; 
integer local_variable_2; 
parameter local_variable_3;
    ... statements ...
end

In Verilog, no semicolon (;) follows the begin  or end  keywords.  You 
identify named blocks by following the begin  keyword with a colon (:) 
and a block_name, as shown.  Verilog syntax allows you to declare 
variables locally in a named block.  You can include reg , integer , and 
parameter  declarations within a named block, but not in an unnamed 
block.  Named blocks allow you to use the disable  statement.

if . . . else Statements 

if...else  statements execute a block of statements according to the 
value of one or more expressions.



The syntax of an if...else  statement is

if ( e xpr )
     begin
     ... statements ...
     end
else 
     begin
     ... statements ...
     end

The if statement consists of the keyword if , followed by an expression 
enclosed in parentheses.  This expression is followed by a statement or 
block of statements enclosed with the begin and end keywords.  If the 
value of the expression is nonzero, it is true , and the statement block that 
follows is executed.  If the value of the expression is zero, it is false , and 
the statement block that follows is not executed.

An optional else statement can follow an if statement.  If the 
expression following the if keyword is false , the statement or block 
of statements following the else keyword is executed.

The if...else statement can cause registers to be synthesized.  
Registers are synthesized when you do not assign a value to the same reg 
variable in all branches of a conditional construct.  Information on registers 
is provided in Chapter 6.

FPGA Express synthesizes multiplexer logic (or similar select logic) from a 
single if statement.  The conditional expression in an if  statement is 
synthesized as a control signal to a multiplexer, which determines the 
appropriate path through the multiplexer.  For example, the statements in 
Example 5-14 create multiplexer logic controlled by c  and places either a 
or b in the variable x .

Example 5-14 if Statement that Synthesizes Multiplexer Logic

if (c)
x = a;
else
x = b;

Example 5-15 illustrates how if and else can be used to create an 
arbitrarily long if...else if...else  structure.



Example 5-15 if . . . else if . . . else  Structure

if (instruction == ADD) 
    begin 
        carry_in = 0; 
        complement_arg = 0; 
    end 
else if (instruction == SUB) 
    begin 
        carry_in = 1; 
        complement_arg = 1; 
    end 
else 
    illegal_instruction = 1;

Example 5-16 shows how to use nested if and else statements.

Example 5-16 Nested if and else Statements

if (select[1]) 
    begin 
        if (select[0])  out = in[3]; 
        else out = in[2]; 
    end 
else 
    begin 
        if (select[0])  out = in[1]; 
        else  out = in[0]; 
    end 

Conditional Assignments

FPGA Express can synthesize a latch for a conditionally assigned variable.  
If a path exists that does not explicitly assign a value to a variable, the 
variable is conditionally assigned.  See the section on “Latch Inference” in 
Chapter 6 for more information.

In Example 5-17, the variable value is conditionally driven.  If c is not 
true , value  is not assigned and retains its previous value.

Example 5-17 Synthesizing a Latch for a Conditionally Driven Variable

always begin
if ( c ) begin
value = x;
end
Y = value; //causes a latch to be synthesized for 
value
end



case Statements 

The case  statement is similar in function to the if...else...  
conditional statement.  The case statement allows a multipath branch in 
logic that is based on the value of an expression.  One way to describe a 
multicycle circuit is with a case statement (see Example 5-18).  Another 
way is with multiple @ (clock-edge) statements, which are discussed later in 
this section.

The syntax for a case statement is shown below.

case ( expr )
     case_item1 : begin

     ... statements ...

     end
     case_item2 : begin

     ... statements ...

     end
     default : begin

     ... statements ...
     end
endcase

The case statement consists of the keyword case , followed by an 
expression in parentheses, followed by one or more case-items (and 
associated statements to be executed), followed by the keyword endcase .  
A case-item consists of an expression (usually a simple constant) or a list of 
expressions separated by commas, followed by a colon (:).

The expression following the case keyword is compared against each 
case-item expression, one by one.  When the expressions are equal, the 
condition evaluates to true .  Multiple expressions separated by commas 
can be used in each case-item.  When multiple expressions are used, the 
condition is said to be true  if any of the expressions in the case-item 
match the expression following the case keyword.

The first case-item that evaluates to true  determines the path.  All 
subsequent case-items are ignored, even if they are true .  If no case-item 
is true , no action is taken.  You can define a default case-item with the 
expression default , which is used when no other case-item is true .

An example of a case statement is shown in Example 5-18.



Example 5-18 case Statement

case (state) 
    IDLE: begin 
        if (start) 
            next_state = STEP1; 
        else 
            next_state = IDLE; 
    end 
    STEP1: begin 
        /* do first state processing here */ 
        next_state = STEP2; 
    end 
    STEP2: begin 
        /* do second state processing here */ 
        next_state = IDLE; 
    end 
endcase 

Full Case and Parallel Case

FPGA Express automatically determines whether a case statement is 
full or parallel.  A case statement is referred to asfull case if all possible 
branches are specified.  If you do not specify all possible branches, but you 
know that one or more branches can never occur, you can declare a case 
statement as full case with the // synopsys full_case directive.  
Otherwise, FPGA Express synthesizes a latch.  See “ full_case Directive” 
in Chapter 9 for more information.

FPGA Express synthesizes optimal logic for the control signals of a case 
statement.  If FPGA Express cannot statically determine that branches are 
parallel, it synthesizes hardware that includes a priority encoder.  If FPGA 
Express can determine that no cases overlap (parallel case), a multiplexer 
is synthesized, because a priority encoder is not necessary.  You can also 
declare a case statement as parallel case with the //synopsys 
parallel_case  directive.  Refer to the section “parallel_case 
Directive” in Chapter 9.

Example 5-19 does not result in either a latch or a priority encoder.



Example 5-19 A case Statement that is Both Full and Parallel

input [1:0] a;
always @(a or w or x or y or z) begin
case (a)
2’b11:
    b = w ;
2’b10:
    b = x ;
2’b01: 
    b = y ;
2’b00:
    b = z ;
endcase
end

Example 5-20 shows a case statement that is missing branches for the cases 
2’b01 and 2’b10.  Example 5-20 infers a latch for b.

Example 5-20 A case Statement that is Parallel but Not Full

input [1:0] a;
always @(a or w or z) begin
case (a)
2’b11:
    b = w ;
2’00:
    b = z ;
endcase
end

The case statement in Example 5-21 is not parallel or full because the 
input values of w and x cannot be determined.  However, if you know 
that only one of the inputs equals 2’b11 at a given time, you can use the 
// synopsys parallel_case directive to avoid synthesizing a 
priority encoder.  If you know that either w or x always equals 2’b11  
(a situation known as a one-branch tree), you can use the // synopsys 
full_case directive to avoid synthesizing a latch.

Example 5-21 A case Statement that is Not Full or Parallel

always @( w or x) begin
case (2’b11)
w:
b = 10 ;
x:
    b = 01 ;
endcase
end



casex Statements 

The casex statement is a type of case statement.  The casex 
statement allows a multipath branch in logic according to the value of an 
expression, just like the case statement.  The differences between the 
case statement and the casex statement are the keyword and the 
processing of the expressions.

The syntax for a casex statement is shown below.

casex ( expr )
     case_item1 : begin
     ... statements ...
     end
     case_item2 : begin
     ... statements ...
     end
     default : begin
     ... statements ...
     end
endcase

A case-item can have expressions consisting of
n A simple constant
n A list of identifiers or expressions separated by commas, followed by a 

colon (:)
n Concatenated, bit-selected, or part-selected expressions
n A constant containing z, x, or ?

When a z, x,  or ? appears in a case-item expression, it means that the 
corresponding bit of the casex  expression is not compared.  For example:

Example 5-22 casex Statement with x

reg [3:0] cond;
casex (cond) 
    4’b100x: out = 1;
    default: out = 0;
endcase 

In Example 5-22, out is set to 1 if cond is equal to 4’b1000 or 
4’b1001 , because the last bit of cond is defined as x .

Example 5-23 shows a complicated section of code that can be simplified 
with a casex statement that uses the ? value.



Example 5-23 Before Using casex with ?

if (cond[3]) out = 0;
else if (!cond[3] & cond[2] ) out = 1;
else if (!cond[3] & !cond[2] & cond[1] ) out = 2;
else if (!cond[3] & !cond[2] & !cond[1] & cond[0] ) 
out = 3;
else if (!cond[3] & !cond[2] & !cond[1] & !cond[0] ) 
out = 4;

Example 5-24 shows the simplified version of the same code.

Example 5-24 After Using casex with ?

casex (cond) 
 4’b1???: out = 0; 
  4’b01??: out = 1; 
  4’b001?: out = 2; 
  4’b0001: out = 3;
4’b0000: out = 4;
endcase 

?, z , and x bits are allowed in case-item expressions, but are not 
allowed in casex expressions.  Example 5-25 shows comparison in an 
illegal expression.

Example 5-25 Illegal casex Expression

express = 3’bxz?;
    ...
casex (express) /* illegal testing of an expression 
*/ 
    ...
endcase 

casez Statements

The casez statement is a type of case statement.  The casez 
statement allows a multipath branch in logic according to the value of an 
expression, just like the case statement.  The differences between the 
case statement and the casez statement are the keyword and the way 
the expressions are processed. The casez statement acts exactly the same 
as the casex statement, except that x is not allowed in case-item 
expressions.  Only z and ? are accepted as special characters.



The syntax for a casez statement is shown below.

casez ( expr )
     case_item1 : begin
     ... statements ...
     end
     case_item2 : begin
     ... statements ...
     end
default : begin
     ... statements ...
     end
endcase

A case-item can have expressions consisting of
n A simple constant
n A list of identifiers or expressions separated by commas, followed by a 

colon (:)
n Concatenated, bit-selected, or part-selected expressions
n A constant containing a z or ?
n When a casez statement is evaluated, the value z in the case-item 

expression is ignored.  An example of a casez statement with z in the 
case-item is shown in Example 5-26.

Example 5-26 casez Statement with z

casez (what_is_it) 
  2’bz0: begin 
     /* accept anything with least significant bit 
zero */ 
     it_is = even;
  end 
  2’bz1: begin 
     /* accept anything with least significant bit 
one */ 
     it_is = odd; 
  end 
endcase 

? and z bits are allowed in case-items, but are not allowed in casez 
expressions.  Example 5-27 shows an illegal expression in a casez 
statement.

Example 5-27 Illegal casez Expression

express = 1’bz;
    ...
casez (express) /* illegal testing of an expression 
*/ 
    ...
endcase 



for Loops 

The for loop repeatedly executes a single statement or block of 
statements.  The repetitions are performed over a range determined by the 
range expressions assigned to an index.  Two range expressions are used in 
each for loop: low_range and high_range .  Note that in the 
syntax lines that follow, high_range is greater than or equal to low_
range .  FPGA Express recognizes both incrementing and decrementing 
loops.  The statement to be duplicated is surrounded by begin and end 
statements.

Note: FPGA Express allows four syntax forms for a for loop. They are

for (index= low_range;index < high_range;index= index 
+ step)
for (index= high_range;index > low_range;index= index 
- step)
for (index= low_range;index <= high_range;index= 
index + step)
for (index= high_range;index >= low_range;index= 
index - step)  

Example 5-28 shows a simple for  loop.

Example 5-28 A Simple for Loop

for (i = 0; i <= 31; i = i + 1) begin 
    s[i] = a[i] ^ b[i] ^ carry; 
    carry = a[i] & b[i]  |  a[i] & carry  |
                            b[i] & carry; 
end 

Note that for loops can be nested, as shown in Example 5-29.

Example 5-29 Nested for Loops

for (i = 6; i >= 0; i = i - 1) 
    for (j = 0; j <= i; j = j + 1) 
        if (value[j] > value[j+1]) begin 
            temp = value[j+1]; 
            value[j+1] = value[j]; 
            value[j] = temp; 
        end 

You can use for loops as duplicating statements.  Example 5-30 shows a for 
loop that is expanded into its longhand equivalent in Example 5-31.

Example 5-30 Example for Loop

for ( i=0; i < 8; i=i+1 ) 
    example[i] = a[i] & b[7-i]; 



Example 5-31 Expanded for Loop

example[0] = a[0] & b[7]; 
example[1] = a[1] & b[6]; 
example[2] = a[2] & b[5]; 
example[3] = a[3] & b[4]; 
example[4] = a[4] & b[3]; 
example[5] = a[5] & b[2]; 
example[6] = a[6] & b[1]; 
example[7] = a[7] & b[0]; 

while Loops

The while loop executes a statement until the controlling expression 
evaluates to false .  A while loop creates a conditional branch that 
must be broken by one of the following statements to prevent 
combinational feedback

@ (posedge clock) or @ (negedge clock)

FPGA Express supports while  loops, if you insert one of the following 
expressions in every path through the loop

@ (posedge clock) or @ (negedge clock)

Example 5-32 shows an unsupported while  loop that has no 
event-expression.

Example 5-32 Unsupported while Loop

always
while (x < y)
x = x + z;

If you add @ (posedge clock) expressions after the while loop in Example 
5-32, you get the supported version shown in Example 5-33.

Example 5-33 Supported while Loop

always
begin @ (posedge clock)
while (x < y)
begin
@ (posedge clock);
x = x + z;
end
end;



forever Loops

Infinite loops in Verilog use the keyword forever .  You must break up 
an infinite loop with an @ (posedge clock) or @ (negedge 
clock) expression to prevent combinational feedback, as shown in 
Example 5-34.

Example 5-34 Supported forever Loop

always
forever
begin
@ (posedge clock);
x = x + z;
end

You can use forever  loops with a disable  statement to implement 
synchronous resets for flip-flops.  The disable statement is described in the 
next section.  See Chapter 6, “Register and Three-State Inference,” for 
more information on synchronous resets.  

The style illustrated in Example 5-34 is not recommended because it is not 
testable.  The synthesized state machine does not reset to a known state.  
Therefore, it is impossible to create a test program for the state machine.  
Example 5-36 illustrates how a synchronous reset for the state machine can 
be synthesized. 

disable Statements

FPGA Express supports the disable statement when you use it in 
named blocks.  When a disable statement is executed, it causes the 
named block to terminate.  A comparator description that uses disable 
is shown in Example 5-35.



Example 5-35 Comparator Using disable

begin : compare 
for (i = 7; i >= 0; i = i - 1) begin
    if (a[i] != b[i]) begin 
         greater_than = a[i]; 
         less_than = ~a[i]; 
         equal_to = 0; 
         /* comparison is done so stop looping */ 
         disable compare; 
      end 
end

/* If we get here a == b 
If the disable statement is executed, the next three 
       lines will not be executed */
   greater_than = 0; 
   less_than = 0; 
   equal_to = 1; 
end 

Note that Example 5-35 describes a combinational comparator.  Although 
the description appears sequential, the generated logic runs in a single clock 
cycle.

You can also use a disable statement to implement a synchronous 
reset, as shown in Example 5-36.

Example 5-36 Synchronous Reset of State Register Using disable in a forever Loop

always
forever
begin: reset_label
@ (posedge clock);
if (reset) disable reset_label;
z = a;

@ (posedge clock);
if (reset) disable reset_label;
z = b;
end

The disable statement in Example 5-36 causes the block reset_
label to immediately terminate and return to the beginning of the block.  
Therefore, the first state in the loop is synthesized as the reset state.  



task Statements

The task  statements are similar to functions in Verilog, except they can 
have output and inout ports.  You can use the task statement to 
structure your Verilog code so that a portion of code can be reused.

In Verilog, task  statements can have timing controls, and they can take a 
nonzero time to return.  However, FPGA Express ignores all timing 
controls, so synthesis might disagree with simulation if the timing controls 
are critical to the function of the circuit.

Example 5–37 shows how a task construct is used to define an adder 
function.

Example 5-37 Using the task Statement

module task_example (a,b,c);
input [7:0] a,b;
output [7:0] c;
reg [7:0] c;

task adder;
input [7:0] a,b;
output [7:0] adder;
reg c;
integer i;

begin
c = 0;
for (i = 0; i <= 7; i = i+1) begin
adder[i] = a[i] ^ b[i] ^ c;
c = (a[i] & b[i]) | (a[i] & c) | (b[i] & c);
end
end
endtask
always
adder (a,b,c); // c is a reg

endmodule

Note: Only reg variables can receive output values from a task; 
wire variables cannot.



always Blocks

An always block can imply latches or flip-flops, or it can specify purely 
combinational logic.  An always block can contain logic triggered in 
response to a change in a level or the rising or falling edge of a signal.  The 
syntax of an always block is

always @ ( event-expression [or event-expression*] )    
begin
    ... statements ...
end

The event-expression declares the triggers, or timing controls.  The 
word or groups several triggers together.  The Verilog language specifies 
that if triggers in the event-expression occur, the block is executed.  
Only one trigger in a group of triggers needs to occur for the block to be 
executed.  However, FPGA Express ignores the event-expression 
unless it is a synchronous trigger that infers a register.  Refer to Chapter 6 
for details.

A simple example of an always block with triggers is

Example 5-38 A Simple always Block

always @ ( a or b or c ) begin
    f = a & b & c
end

In Example 5-38, a , b , and c  are asynchronous triggers.  If any triggers 
change, the simulator resimulates the always block and recalculates the 
value of f .   FPGA Express ignores the triggers in this example because 
they are not synchronous.  However,  you must indicate all variables that 
are read in the always block as triggers.  If you do not indicate all the 
variables as triggers, FPGA Express gives a warning message similar to the 
following.

Warning: Variable ‘foo’ is being read in block ‘bar’
declared on line 88 but does not occur in the
timing control of the block.

For a synchronous always block, FPGA Express does not require all 
variables to be listed.

An always block is triggered by any of the following types of 
event-expressions:



n The change in a specified value.  For example:

always @ ( identifier ) begin
   ...  statements ...
end

In the example above, FPGA Express ignores the trigger.
n The rising edge of a clock.  For example:

always @ ( posedge event ) begin
   ... statements ...
end

n The falling edge of a clock.  For example:

always @ ( negedge event ) begin
   ... statements ...
end

n A clock or an asynchronous preload condition.  For example:

always @ ( posedge CLOCK or negedge reset ) begin
   if ! reset begin
    ... statements ...
   end
   else begin
    ... statements ...
   end
end

n An asynchronous preload that is based on two events joined by the word 
or .  For example:

always @ ( posedge CLOCK or posedge event1 or 
           negedge event2 ) begin
    if ( event1 ) begin
     ... statements ...
    end
    else if ( ! event2 ) begin
     ... statements ...
    end
    else begin
     ... statements ...
    end
end

When the event-expression does not contain posedge or negedge, 
combinational logic (no registers) is usually generated, although 
flow-through latches can be generated.  Refer to the section “Latch 
Inference” in Chapter 6.

Note: The statements @ (posedge clock) and @ (negedge 
clock) are not supported in functions or tasks.



Incomplete Event Specification

An always  block can be misinterpreted if you do not list all signals 
entering an always block in the event specification.

As expected, FPGA Express builds a 3-input AND gate for the description 
in Example 5-39.

Example 5-39 Incomplete Event List

always @(a or b) begin
   f = a & b & c;
end

When this description is simulated, f is not recalculated when c changes, 
because c is not listed in the event-expression.  The simulated 
behavior is not that of a 3-input AND gate.

The simulated behavior of the description in Example 5-40 is correct 
because it includes all signals in event-expression.

Example 5-40 Complete Event List

always @(a or b or c) begin
    f = a & b & c;
end

In some cases, you cannot list all signals in the event specification.  
Example 5-41 illustrates this problem.

Example 5-41 Incomplete Event List for Asynchronous Preload Condition

always @ (posedge c or posedge p)
if (p)
z = d;
else
z = a;

In the logic synthesized for Example 5-41, if data (d) changes while p is 
high, the change is reflected immediately in the output (z).  However, when 
this description is simulated, z is not recalculated when d changes 
because d is not listed in the event specification.  As a result, synthesis 
might not match simulation.

Asynchronous preloads can be correctly modeled only when you want 
changes in the load data to be immediately reflected in the output.  In 
Example 5-41, data d must change to the preload value before preload 



condition p transits from low to high.  If you attempt to read a value in an 
asynchronous preload, FPGA Express prints a warning similar to the one 
shown below.

Warning: Variable ‘d’ is being read asynchronously in
          routine reset line 21 in file 
          ‘/usr/tests/hdl/asyn.v’. This might cause
          simulation-synthesis mismatches.
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Chapter 6
Register and Three-State Inference

FPGA Express can infer latches and flip-flops.  A register is a simple, 
one-bit memory device, either a flip-flop or a latch.  A flip-flop is an 
edge-triggered memory device.  A latch is a level-sensitive memory device.  
Register inference allows you to use sequential logic in your design 
descriptions and keep your designs technology independent.

This chapter discusses different types of register and three-state inference 
in the following sections:

n Latch Inference
n Simple Flip-Flop Inference
n Flip-Flop Inference with Asynchronous Reset
n Additional Types of Register Inference
n FPGA Express Latch and Flip-Flop Inference
n Delays in Registers
n Efficient Use of Registers
n Three-State Inference
n Registered and Latched Three-State Enables
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Latch Inference 

Because variables can hold state over time in simulation, FPGA Express 
needs to duplicate this condition in hardware.  It does this by inserting a 
D-type flow-through latch.  The latch allows a variable to hold its value 
(state) until that value is reassigned.

A variable must hold its state when its previous value might change 
because of a condition in an if statement.  When the condition is true , 
the value is reassigned.  Because the condition might be false , the 
variable must be able to hold its state.  Therefore, a latch is created to hold 
the previous value of the variable.  For example:

Example 6-1 Creating a Latch

always @ ( PHI_1 or A ) begin
   if ( PHI_1 ) begin
      Y = A;
   end
end

In Example 6-1, the variable Y is not assigned a new value when PHI_1  is 
false .  A latch is synthesized with its D input connected to A , its Q 
output connected to Y , and its gate controlled by PHI_1 .

A latch can also be created when you use a case statement.  For 
example, the code in Example 6-2 creates a latched binary-coded decimal 
(BCD) decoder.

Example 6-2 Creating a Latch with a case Statement

module decoder(I,decimal);
input [3:0] I;
output [9:0] decimal;
reg  [9:0] decimal;

always @(I) begin
case(I)
4’h0: decimal= 10’b0000000001;
4’h1: decimal= 10’b0000000010;
4’h2: decimal= 10’b0000000100;
4’h3: decimal= 10’b0000001000;
4’h4: decimal= 10’b0000010000;
4’h5: decimal= 10’b0000100000;
4’h6: decimal= 10’b0001000000;
4’h7: decimal= 10’b0010000000;
4’h8: decimal= 10’b0100000000;
4’h9: decimal= 10’b1000000000;
endcase
end
endmodule
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The four bits from the input are passed to the case statement.  The case 
statement assigns an appropriate binary expression of the input’s decimal 
value to the decimal output and latches that value in register 
decimal .

To avoid creating latches, assign a value to all variables.  The code in 
Example 6-2 does not create latches if you add the following statement to 
the case statement.

default: decimal= 10’b0000000000;

Variables declared within a function do not hold their values over time 
because every time a function is called, its variables are reinitialized.  
Therefore, FPGA Express does not infer latches for these variables.  In 
Example 6-3, no latches are inferred.

Example 6-3 Variable Declared within a Function—No Latches Inferred

function my_func;
input data, gate;
reg state;
begin
if (gate) begin
state = data;
end
my_func = state;
end

endfunction

Both Example 6-4 and Example 6-5 assign all their variables under all 
circumstances and avoid creating latches in FPGA Express.

Example 6-4 Avoiding Latch Inference

always @ ( PHI_1 or A ) begin
Y = 0;
if ( PHI_1 ) begin
Y = A;
end
end

Example 6-5 Another Way to Avoid Creating Latches

always @ ( PHI_1 or A ) begin
if( PHI_1 ) begin
Y = A;
end else begin
Y = 0;
end
end
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Simple Flip-Flop Inference

A flip-flop is implied when you use the posedge  or negedge  clock  
constructs in an always block, as shown below.

always @ ( posedge clock ) begin 
    ... 
end

A variable that is assigned a value in this always block is synthesized as 
a D-type edge-triggered flip-flop.  The flip-flop is clocked on the rising (or 
falling) edge of the signal (clock) following the posedge (or 
negedge ) keyword.  With simple flip-flops (with no asynchronous set or 
reset), the block’s event-expression may contain only one 
posedge (or negedge) statement, as shown in Example 6-6.

Example 6-6 Creating a Flip-Flop

always @ ( posedge CLK ) begin
Y = A & B;
end

This code is synthesized into a D-type positive-edge triggered flip-flop with 
the D input connected to A & B , the Q output connected to Y , and the 
clock input connected to CLK .

Flip-Flop Inference with Asynchronous Reset

The actual clock used for flip-flops is derived from the 
event-expression for the always block.  In the 
event-expression, test for the posedge or negedge edges for 
all reset conditions and your clock.

When you build an asynchronous reset, the always block has a specific 
format.  Each reset condition must be a single-bit quantity.

To reset when the condition is high, follow these steps:

1. Use the clause posedge condition in the event-expression 
at the beginning of the always block.

2. Test the condition in an if or else if statement.  For example:

if ( condition)
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To reset when the condition is low, follow these steps:

3. Use the clause negedge condition  in the event-expression at the 
beginning of the always  block.

4. Test the condition’s complement in an if  or else if  statement.  For 
example:

if (! condition)

The first reset condition must appear in the first if statement.  This 
statement must be of the form

if ( condition )

if ( condition == 1’b1)

if ( ~ condition )

if ( condition == 1’b0)

or 

if ( ! condition )

In the first two cases, a corresponding posedge condition clause 
must appear in the event-expression at the beginning of the 
always block.  In the following cases, a corresponding negedge 
condition must appear there.

If subsequent optional reset conditions are used, they are placed in else 
if  clauses of the form

else if ( condition2 )

or

else if ( ! condition2 )

These conditions also require corresponding posedge and negedge 
entries in the event-expression at the beginning of the always block. 
More information about this type of flip-flop is provided in the section 
"Additional Types of Register Inference."

The clock for the flip-flop is determined by default when FPGA Express 
reaches the final else clause.  Remember that this clause has no 
condition to test.  The clocked event is assumed.  The flip-flop is clocked 
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on the rising (falling) edge of the signal following the posedge 
(negedge ) keyword in the event-expression at the beginning of 
the always block.  See Example 6-7.

Example 6-7 Flip-Flop with Asynchronous Reset

module example (a,b,clk,reset,c);
input a,b,clk,reset;
output c;
reg c;

always @ (posedge clk or negedge reset) begin
if (!reset) // asynchronous reset
c = 0;
else // posedge clk is assumed
c = a & b;

end
endmodule

Refer to Examples A–3 and A–4  in Appendix A for more examples of 
register use.

Restrictions on Register Capabilities

Indexed expressions are not allowed in the predicate of an 
event-expression.  The following example shows an indexed 
expression and the error message generated by FPGA Express.

always @ (posedge clk[1])

Error: In an event expression with ‘posedge’ and 
‘negedge’
 qualifiers, only simple identifiers are allowed %s. 
(VE-91)
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n Set and reset conditions must be 1-bit variables.  If you use an expression 
for a multibit variable (a bus), FPGA Express generates an error message, 
as shown in the following example.

always @ (posedge clk or negedge reset_bus) begin
if (!reset_bus[1])
.
.
end

Error: The expression for the reset condition of the 
‘if’ statement in this ‘always’ block can only be a 
simple identifier or its negation (%s). (VE-92)

You can use an expression for the reset condition, such as

if (reset == 1’b0)

or

if (~reset)

but you cannot use a complex expression, such as

if (reset == (1-1))

n Use an if statement at the top level of an always block.  The 
following example results in an error message.

always @ (posedge clk or posedge reset) begin
#1;
if (reset) ...
.
.
end

Error: The statements in this ‘always’ block are 
outside the scope of the synthesis policy (%s). Only 
an ‘if’ statement is allowed at the top level in this 
‘always’ block. Please refer to the FPGA Express  
Verilog Reference Manual  for ways to infer flip-flops 
and latches from ‘always’ blocks. (VE-93)

n To correctly model the loading of asynchronous data to a flip-flop, make 
the load condition false every time the asynchronous data changes, 
then return the load condition to true  to latch the new data.  See Example 
5-41.

Additional Types of Register Inference

For examples describing various types of latches and flip-flops that use 
directives and variables introduced in the following sections, see the HDL 
Coding Style: Sequential Devices Application Note.
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Directives

The following FPGA Express directives can assist with the inference of 
more complex sequential devices.

// synopsys async_set_reset 
// synopsys sync_set_reset 
// synopsys async_set_reset_local
// synopsys sync_set_reset_local
// synopsys async_set_reset_local_all
// synopsys sync_set_reset_local_all
// synopsys one_hot
// synopsys one_cold
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async_set_reset Directive

async_set_reset  takes one argument of a double-quoted list of 
single-bit signals separated by commas. FPGA Express checks whether an 
object specified by the async_set_reset  directive asynchronously sets 
or resets a latch or flip-flop in the entire design. 

The syntax of async_set_reset  is 

// synopsys async_set_reset "object_name,..." 

Example 6-8 Asynchronous Set/Reset of a Design

module async_set_reset(reset, set, d, gate, y, t) ;

input reset, set, gate, d ;
output y, t ;

// synopsys async_set_reset "reset, set"

reg y, t ;

always @ (reset or set)
begin : direct_set_reset
    if (reset)
      y = 1’b0; // asynchronous reset
    else if (set)
      y = 1’b1; // synchronous set
end

always @ (gate or reset) // for set : (gate or set)

    if (reset) // for set : if (set)
      t = 1’b0; // for set : t = 1’b1
    else if (gate)
      t = d ;

endmodule
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Figure 6-1 Asynchronous Set/Reset of a Design
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sync_set_reset Directive

The sync_set_reset  directive takes one argument of a double-quoted 
list of single-bit signals separated by commas. FPGA Express checks 
whether an object specified by the sync_set_reset  directive 
synchronously sets or resets a latch or flip-flop in the entire design. 

The syntax of sync_set_reset  is

// synopsys sync_set_reset "object_name,..."

Example 6-9 Synchronous Set/Reset of a Design

module sync_set_reset(clk, reset, set, d1, d2, y, t) 
;

input clk, reset, set, d1, d2 ;
output y, t ;

// synopsys sync_set_reset "reset, set"

reg y, t ;

always @ (posedge clk)
begin : synchronous_reset

    if (reset)
      y = 1’b0; // synchronous reset
    else
      y = d1;
end

always @ (posedge clk)
begin : synchronous_set

    if (set)
      t = 1’b1; // synchronous set
    else
      t = d2;
end

endmodule
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Figure 6-2 Synchronous Set/Reset of a Design 
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async_set_reset_local  Directive

The async_set_reset_local  directive takes two arguments. The 
first argument is the label of a block.  The second is a double-quoted list of 
single-bit signals separated by commas.  Every signal in the list is treated as 
though the async_set_reset  directive is attached in the specified 
block. 

The syntax of async_set_reset_local  is

           // synopsys async_set_reset_local block_label "object_name,..."

Example 6-10 Asynchronous Set/Reset of a Single Block

module async_set_reset_local(reset, set, gate, y, t) 
;

input gate, reset, set ;
output y, t ;

// synopsys async_set_reset_local direct_set_reset 
"reset, set"

reg y, t ;

always @ (reset or set)
begin : direct_set_reset

    if (reset)
      y = 1’b0; // asynchronous reset
    else if (set)
      y = 1’b1; // asynchronous set
end

always @ (gate or reset or set)
begin : gated_data

    if (gate)
    begin
      if (reset)
        t = 1’b0; // gated data
      else if (set)
        t = 1’b1; // gated data
    end
end

endmodule
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Figure 6-3 Asynchronous Set/Reset of a Single Block
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sync_set_reset_local Directive

The sync_set_reset_local  directive takes two arguments. The first 
is the label of a block.  The second is a double-quoted list of single-bit 
signals separated by commas.  Every signal in the list is treated as though 
the sync_set_reset  directive is attached in the specified block.

The syntax of sync_set_reset_local  is

// synopsys sync_set_reset_local block_label 
"signal_name,..."

Example 6-11 Synchronous Set/Reset of a Single Block

module sync_set_reset_local(clk, reset, set, gate, d, 
y, t) ;

input clk, gate, reset, set, d ;
output y, t ;

// synopsys sync_set_reset_local clocked_set_reset 
"reset"

reg y, t ;

always @ (posedge clk)
begin : clocked_reset

    if (reset)
      y = 1’b0; // synchronous reset
    else
      y = d ;
end

always @ (posedge clk)
begin : gated_data

    if (gate)
    begin
      if (reset)
        t = 1’b0; // gated data
      else if (set)
        t = 1’b1; // gated data
    end
end

endmodule
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Figure 6-4 Synchronous Set/Reset of a Single Block
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async_set_reset_local_all Directive

The async_set_reset_local_all  directive takes only one 
argument, the list of block labels. The async_set_reset_local_
all  directive specifies that all the signals are treated as though the 
async_set_reset  directive is attached in each of the blocks.

The syntax of async_set_reset_local_all  is

// synopsys async_set_reset_local_all "block_
label,..."

Example 6-12 Asynchronous Set/Reset for Part of a Design

module async_set_reset_local_all(reset, set, gate, 
gate2, y, t, w) ;
input gate, gate2, reset, set ;
output y, t, w ;
// synopsys async_set_reset_local_all "direct_set_
reset, direct_set_reset_too"
reg y, t, w ;
always @ (reset or set)
begin : direct_set_reset
    if (reset)
      y = 1’b0; // asynchronous reset
    else if (set)
      y = 1’b1; // asynchronous set
end

always @ (gate or reset or set)
begin : direct_set_reset_too
    if (gate)
    begin
      if (reset)
        t = 1’b0; // asynchronous reset
      else if (set)
        t = 1’b1; // asynchronous set
    end
end

always @ (gate2 or reset or set)
begin : gated_data
    if (gate2)
    begin
      if (reset)
        w = 1’b0; // gated data
      else if (set)
        w = 1’b1; // gated data
    end
end
endmodule
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Figure 6-5 Asynchronous Set/Reset for Part of a Design
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sync_set_reset_local_all Directive

The sync_set_reset_local_all  directive takes only one argument, 
the list of block labels. The sync_set_reset_local_all  directive 
specifies that all the signals are treated as though the sync_set_reset  
directive is attached in each of the blocks.

The syntax of sync_set_reset_local_all  is

// synopsys sync_set_reset_local_all "block_
label,..."

Example 6-13 Synchronous Set/Reset for Part of a Design

module sync_set_reset_local_all(clk, reset, set, 
gate, gate2, y, t, w) ;
input clk, gate, gate2, reset, set ;
output y, t, w ;
// synopsys sync_set_reset_local_all "clocked_set_
reset, clocked_set_reset_too"
reg y, t, w ;
always @ (posedge clk)
begin : clocked_set_reset
    if (reset)
      y = 1’b0; // synchronous reset
    else if (set)
      y = 1’b1; // synchronous set
end
always @ (posedge clk)
begin : clocked_set_reset_too
    if (gate)
    begin
      if (reset)
        t = 1’b0; // synchronous reset
      else if (set)
        t = 1’b1; // synchronous set
    end
end
always @ (gate2 or reset or set)
begin : gated_data
    if (gate2)
    begin
      if (reset)
        w = 1’b0; // gated data
      else if (set)
        w = 1’b1; // gated data
    end
end
endmodule



–20 Chapter 6 Register and Three-State Inference
Additional Types of Register Inference

Figure 6-6 Synchronous set/reset for Part of a Design

Note: Use the one_hot and one_cold directives to implement D 
flip-flops with asynchronous set and reset signals.  These two directives 
tell FPGA Express that only one of the objects in the list are active at a 
time.  If you are defining active high signals, use the one_hot directive.  
For active low signals, use the one_cold directive.  Each directive 
specifies two objects.
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one_hot Directive

The one_hot  directive takes one argument of a double-quoted list of 
objects separated by commas. This directive indicates that the group of 
signals are one_hot . For example, no more than one signal has a Logic 1 
value. Users are responsible to ensure that the group of objects are one_
hot .  In Example 6-14, FPGA Express does not synthesize logic to check 
this assertion.

The syntax of one_hot  is

// synopsys one_hot "object_name,..."

Example 6-14 Using the  one_hot Directives for Set and Reset

module one_hot_example (reset, set, reset2, set2, y, 
t) ;
input reset, set, reset2, set2 ;
output y, t ;
// synopsys async_set_reset "reset, set"
// synopsys async_set_reset "reset2, set2"
// synopsys one_hot "reset, set"
reg y, t ;

always @ (reset or set)
begin : direct_set_reset
    if (reset)
      y = 1’b0; // asynchronous reset by "reset"
    else if (set)
      y = 1’b1; // asynchronous set by "set"
end

always @ (reset2 or set2)
begin : direct_set_reset_too
    if (reset2)
      t = 1’b0; // asynchronous reset by "reset2"
    else if (set2)
      t = 1’b1; // asynchronous set by "~reset2 set2"
end

// synopsys translate_off
always @(reset or set)
    if (reset & set)
       $write("ONE-HOT violation for ’reset’, 
’set’.");
// synopsys translate_on

endmodule
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Figure 6-7 Using the one_hot Directive for Set and Reset
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one_cold Directive

The one_cold  directive is similar to the one_hot  directive. one_cold  
indicates that no more than one object in the group has a Logic 0 value. 

The syntax of the one_cold  directive is

// synopsys one_cold " signal_name,..."

Example 6-15 Using the one_cold Directive for Set and Reset

module one_cold(reset, set, reset2, set2, y, t) ;
input reset, set, reset2, set2 ;
output y, t ;
// synopsys async_set_reset "reset, set"
// synopsys async_set_reset "reset2, set2"
// synopsys one_cold "reset, set"
reg y, t ;

always @ (reset or set)
begin : direct_set_reset
    if (~reset)
      y = 1’b0; // asynchronous reset by "~reset"
    else if (~set)
      y = 1’b1; // asynchronous set by "~set"
end

always @ (reset2 or set2)
begin : direct_set_reset_too
    if (~reset2)
      t = 1’b0; // asynchronous reset by "~reset2"
    else if (~set2)
      t = 1’b1; // asynchronous set by "reset2 ~set2"
end

// synopsys translate_off
always @(reset or set)
    if (~reset & ~set)
       $write("ONE-COLD violation for ’reset’, 
’set’.");
// synopsys translate_on

endmodule
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Figure 6-8 Using the one_cold Directive for Set and Reset

FPGA Express  Latch and Flip-Flop Inference

For latches, FPGA Express interprets each control object as synchronous.  
For a design subsequently analyzed, every constant 0 loaded on a latch is 
used for asynchronous reset, and every constant 1 loaded on a latch is used 
for asynchronous set.  FPGA Express does not limit checks for assignments 
to a constant 0 or constant 1 to a single process.  That is, FPGA Express 
performs checking across processes and provides a brief report for inferred 
latches. 

For flip-flops, FPGA Express removes all feedback loops. For example, 
feedback loops inferred from a statement such as Q=Q  are removed. With 
the state feedback removed from a simple D flip-flop, it becomes a 
synchronous loaded flip-flop. In addition, FPGA Express removes all 
inverted flip-flop feedback loops. For example, feedback loops inferred 
from a statement such as Q=Q are removed and synthesized as T flip-flops. 
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Delays in Registers

If you use delay specifications with values that may be registered, they may 
cause the simulation to behave differently from the logic synthesized by 
HDL Compiler.  For example, the module in Example 6–24 contains delay 
information that causes Design Compiler to synthesize a circuit that 
behaves unexpectedly.

Delays in Registers

module problem ( A, C, D, clock );
input A, clock;
output C, D;
wire B;
assign B = #100 A;

flip-flop f1 ( A, C, clock ),
          f2 ( B, D, clock );
endmodule

module flip-flop ( D, Q, clock );
input D, clock
output q;
always @ ( posedge clock ) Q = #5 D;
endmodule

In Example 6–24, B changes 100 time units after A changes.  If the clock 
period is less than 100, output D  is one or more clock cycles behind output 
C when the circuit is simulated.  However, because HDL Compiler ignores 
the delay information, A and B change values at the same time, and so 
do C and D.  This behavior is not the same as in the simulated circuit.

When you use delay information in your designs, make sure that the delays 
do not affect registered values.  In general, you can safely include delay 
information in your description if it does not change the value that gets 
clocked into a flip-flop.

Efficient Use of Registers

All variables that are assigned values in an always block containing 
either a posedge or negedge clock are synthesized with flip-flops.  
To avoid the flip-flop inference, keep combinational logic in a separate 
always block that does not have a posedge or negedge clock.  See 
the section "Minimizing Registers" in Chapter 8.
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Three-State Inference

FPGA Express can infer three-state gates from the value z (high 
impedance) in the Verilog language.  When a variable is assigned the value 
z, the output of the three-state gate is disabled.

Example 6-16 shows a three-state gate described in Verilog.

Example 6-16 Creating a Three-State Gate in Verilog

module simple_threestate ( enable, in, out );
  input  in, enable;
  output out;
  reg    out;

  always @(enable or in) begin
    if (enable)
      out = in;
    else
      out = 1’bz;  // assigns high-impedance
  end
endmodule

Figure 6-9 shows the three-state gate from Example 6-16 in a schematic.

Figure 6-9 A Three-State Gate in a Schematic

A 4-bit-wide bus can be assigned high impedance values with 4’bzzzz 
just as a bit value is assigned 1’bz in Example 6-16.  

One three-state device is inferred from a single always  block.  Example 
6-17 infers only one three-state device.

Example 6-17 One Three-State Device

always @(sela or selb or a or b) begin
  t = 1’bz;
    if (sela)
      t = a;
    if (selb)
      t = b;
end
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The value z can also appear in function calls, return statements, and 
aggregates, although it is valid to use z in an expression such as 

if (value == 1’bz)

Expressions that compare a value to z are always evaluated as false  
during synthesis.  This evaluation might cause a difference between 
presynthesis and postsynthesis simulations.

Example 6-18 infers two three-state devices.

Example 6-18 Inferring Two Three-State Devices

always @(sel_a or a)
  if (sel_a)
    t = a
  else t = 1’bz;
always @(sel_b or b)
  if (sel_b)
    t = b;
  else t = 1’bz;

The Verilog conditional statement can also be used to infer three states.

Registered and Latched Three-State Enables

When a variable is registered (or latched) in the same process in which it is 
three-stated, the enable of the three-state is also registered (or latched).  
Example 6-19 shows an example of this code and Figure 6-10 shows the 
schematic generated by the code.

Example 6-19 Three-State with Registered Enable (Inefficient Description)

module enable_ff ( clock, condition, enable, in, out 
);
  input  in, enable, condition, clock;
  output out;
  reg    out;

  always @ ( posedge clock ) begin
    if ( enable )
       out = ( ~condition ) ? in : out;
   else
       out = 1’bz;
  end
endmodule
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Figure 6-10 Schematic for a Three-State with a Registered Enable (Inefficient Version)

In Example 6-19, the three-state gate has a register on its enable.  To 
remove the register from the enable, use two always  blocks to separate 
the register inference from the three-state gate inference, and add a register 
temp .  Refer to Example 6-20 and Figure 6-11.

Example 6-20 Three-State without a Registered Enable

module no_enable_ff (clock, condition, enable, in, 
out);
  input  in, enable, condition, clock;
  output out;
  reg  out;
  reg  temp;

  always @(posedge clock) begin // flip-flop on input
    if ( condition )
      temp = in;
  end

  always @(enable or temp) begin
    if (enable)                // three-state
      out = temp;
    else
      out = 1’bz;
  end
endmodule

Figure 6-11 Schematic for a Three-State without a Registered Enable
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Chapter 7
FPGA Express Directives

FPGA Express translates a Verilog description to a Synopsys internal 
format.  Specific aspects of this process can be controlled by special FPGA 
Express directives in the Verilog source code.  These directives are treated 
as comments by  Verilog  simulators and do not affect simulation.

This chapter describes FPGA Express directives and their effect on 
translation in the following sections:

n Notation for HDL Compiler Directives
n translate_off and translate_on Directives    
n parallel_case Directive
n Full_case Directive 
n Component Implication 

Note: Begin each of the above directives with //synopsys.  You can 
also use $s in place of synopsys.

Notation for FPGA Express Directives

The special comments that make up FPGA Express directives begin, like 
all Verilog comments, with the characters //  or /* .  The //  characters 
begin a comment that fits on one line (most FPGA Express directives fit on 
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one line).  If you use the /*  characters to begin a multiline comment, you 
must end the comment with */ .  You do not need to use the /*  characters 
at the beginning of each line, only at the beginning of the first line.  The 
word synopsys  (all lowercase) following the comment characters tells 
FPGA Express to treat the text following the word synopsys  as a 
compiler directive.

Note: You cannot use // synopsys in a regular comment.  In 
addition, the compiler displays a syntax error if Verilog code is in a // 
synopsys directive.

translate_off and translate_on Directives

The // synopsys translate_off  and // synopsys 
translate_on  directives tell FPGA Express to suspend translation of 
the source code and restart translation at a later point.  Use these directives 
when your Verilog source code contains commands specific to simulation 
that are not accepted by FPGA Express.

You turn translation off with

// synopsys translate_off

or 

/* synopsys translate_off */

You turn translation back on with

// synopsys translate_on

or 

/* synopsys translate_on */

At the beginning of each Verilog file, translation is enabled.  Subsequently, 
you can use the translate_off and translate_on directives 
anywhere in the text.  These directives must be used in pairs.  Each 
translate_off  directive must appear before its corresponding 
translate_on  directive.  Example 7-1 shows a simulation driver 
protected by a translate_off  directive.
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Example 7-1 // synopsys translate_on and // synopsys translate_off Directives

module trivial (a, b, f);
input a,b;
output f;
    assign f = a & b;

    // synopsys translate_off
    initial $monitor (a, b, f);
    // synopsys translate_on
endmodule

/* synopsys translate_off */
module driver;
    reg [1:0] value_in;
    integer i;

    trivial triv1(value_in[1], value_in[0]);

    initial begin
        for (i = 0; i < 4; i = i + 1)
            #10 value_in = i;
    end
endmodule
/* synopsys translate_on */

parallel_case Directive

The // synopsys parallel_case directive affects the way logic is 
generated for the case statement.  As presented in Chapter 5, a case 
statement generates the logic for a priority encoder.  Under certain 
circumstances, you might not want to build a priority encoder to handle a 
case statement.  You can use the parallel_case directive to force 
FPGA Express to generate multiplexer logic instead.

The syntax for the parallel_case  directive is

// synopsys parallel_case

or

/* synopsys parallel_case */

In Example 9–2, the states of a state machine are encoded as one hot 
signals.  If the case statement in the example were implemented as a 
priority encoder, the generated logic would be more complex than 
necessary.
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Example 7-2 // synopsys parallel_case Directives

reg [3:0] current_state, next_state;
parameter state1 = 4’b0001, state2 = 4’b0010,
state3 = 4’b0100, state4 = 4’b1000;

case (1) //synopsys parallel_case

    current_state[0] : next_state = state2;
    current_state[1] : next_state = state3;
    current_state[2] : next_state = state4;
    current_state[3] : next_state = state1;

endcase

Use the parallel_case directive immediately after the case 
expression, as shown.  This directive makes all case-item evaluations in 
parallel.  All case items that evaluate to true are executed (not just the 
first one, which might give you unexpected results.)

In general, use parallel_case when you know that only one case 
item is executed.  If only one case item is executed, the logic generated 
from a parallel_case directive performs the same function as the 
circuit when it is simulated.  If two case items are executed, and you have 
used the parallel_case directive, the generated logic is not the same 
as the simulated description.

full_case Directive

The // synopsys full_case directive asserts that all possible 
clauses of a case statement have been covered and that no default clause 
is necessary.  This directive has two uses:  it avoids the need for default 
logic, and it can avoid latch inference from a case statement by asserting 
that all necessary conditions are covered by the given branches of the 
case statement.  As shown in Chapter 5, a latch can be inferred whenever 
a variable is not assigned a value under all conditions.

The syntax for the full_case directive is

// synopsys full_case

or

/* synopsys full_case */
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If the case statement contains a default clause, FPGA Express 
assumes that all conditions are covered.  If there is no default clause, 
and you do not want latches to be created, use the full_case directive 
to indicate that all necessary conditions are described in the case 
statement.

Example 9–3 shows two uses of the full_case  directive.  Note that the 
parallel_case and full_case directives can be combined in one 
comment.

Example 7-3 // synopsys full_case Directives

reg [1:0] in, out;
reg [3:0] current_state, next_state;
parameter state1 = 4’b0001, state2 = 4’b0010,
          state3 = 4’b0100, state4 = 4’b1000;

case (in) // synopsys full_case 
    0: out = 2;
    1: out = 3;
    2: out = 0;
endcase

case (1)  // synopsys parallel_case full_case
    current_state[0] : next_state = state2;
    current_state[1] : next_state = state3;
    current_state[2] : next_state = state4;
    current_state[3] : next_state = state1;
endcase

In the first case statement, the condition in == 3 is not covered.  
You can either use a default clause to cover all other conditions, or use 
the full_case directive (as in this example) to indicate that other 
branch conditions do not occur.  If you cover all possible conditions 
explicitly, FPGA Express recognizes the case statement as full case, so 
the full_case directive is not necessary.

The second case statement in Example 9–3 does not cover all 16 
possible branch conditions.  For example, current_state == 
4’b0101 is not covered.  The parallel_case directive is used in 
this example because only one of the four case items can evaluate to true 
and be executed.

Although you can use the full_case directive to avoid creating 
latches, using this directive does not guarantee that latches will not be built.  
You must still assign a value to each variable used in the case statement 
in all branches of the case statement.  Example 9–4 illustrates a situation 
where the full_case directive prevents a latch from being inferred for 
variable b , but not for variable a .
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Example 7-4 Latches and // synopsys full_case

reg a, b;
reg [1:0] c;
case (c)    // synopsys full_case
    0: begin a = 1; b = 0; end
    1: begin a = 0; b = 0; end
    2: begin a = 1; b = 1; end
    3: b = 1;                 // a is not assigned here
endcase

In general, use the full_case directive when you know that all 
possible branches of the case statement have been enumerated or at least 
all branches that can occur.  If all branches that can occur are enumerated, 
the logic generated from the case statement performs the same function 
as the simulated circuit.  If a case condition is not fully enumerated, the 
generated logic and the simulation are not the same.

Note: You do not need the full_case directive if you have a default 
branch or you enumerate all possible branches in a case statement 
because FPGA Express assumes that the case statement is full_
case. 

Component Implication

In Verilog, you cannot instantiate modules in behavioral code.  To include 
an embedded netlist in your behavioral code, use the directives // 
synopsys map_to_module and // synopsys return_port_
name for FPGA Express to recognize the netlist as a function being 
implemented by another module.  When this subprogram is invoked in the 
behavioral code, the module is instantiated.

The first directive, // synopsys map_to_module , flags a function 
for implementation as a distinct component.  The syntax is

// synopsys map_to_module modulename
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The second directive identifies a return port, because functions in Verilog 
do not have output ports.  A return port name must be identified to 
instantiate the function as a component.  The syntax is

// synopsys return_port_name portname

Note: Remember that if you add a map_to_module directive to a 
function, the contents of the function are parsed and ignored and the 
indicated module is instantiated.  You must ensure that the functionality 
of the module instantiated in this way and the function it replaces are the 
same; otherwise, presynthesis and postsynthesis simulation do not match.

Example 9–22 illustrates the map_to_module and return_port_
name directives.

Example 7-19 Component Implication

module mux_inst (a, b, c, d, e);
input a, b, c, d;
output e;
function mux_func;
// synopsys map_to_module mux_module
// synopsys return_port_name mux_ret
input in1, in2, cntrl;
/* 
** the contents of this function are ignored for
** synthesis, but the behavior of this function
** must match the behavior of mux_module for
** simulation purposes
*/
begin
if (cntrl) mux_func = in1;
else mux_func = in2;
end

endfunction

assign e = a & mux_func (b, c, d); // this function 
call
// actually instantiates component (module) mux_
module   

endmodule

module mux_module (in1, in2, cntrl, mux_ret);
input in1, in2, cntrl;
output mux_ret;

and and2_0 (wire1, in1, cntrl);
not not1 (not_cntrl, cntrl);
and and2_1 (wire2, in2, not_cntrl);
or or2 (mux_ret, wire1, wire2);

endmodule
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Chapter 8
Flip-Flops

This appendix is for FPGA Express users whose current design descriptions 
include hand-instantiated flip-flops.  It explains how to translate these 
flip-flops to always blocks that can be used with FPGA Express.  Read 
this appendix after you have read Chapter 5, “Functional Descriptions.”

Some of the benefits of translating your hand-instantiated flip-flops to 
always blocks are

n Clearer code.  The logic of the new module definitions is easier to 
understand.

n Continued compatibility.  The new design descriptions can use the 
expanded capabilities of future versions of FPGA Express.

n Technology independence.  Any FPGA library can be used as the target for 
synthesis of a Verilog description.

n Multiple-bit values.  Such values can be registered with a single statement, 
rather than with multiple flip-flop instantiations.

Translating Flip-flops

The first step in translating a flip-flop to the always syntax is to be sure 
that you understand the function of the module.  Next, determine what parts 
of the module description provide the flip-flop behavior.  
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Example B–1 shows a simple module that uses three manually inserted 
flip-flops.

Example 8-1 Existing Module

module simple ( d, e, f, load, clk, zero );
  input d, e, f, load, clk;
  output zero;
  reg new_a, new_b, new_c;

function zilch ;
  input load, a, b, c;

begin  
  if ( load ) begin
    new_a = d;
    new_b = e;
    new_c = f;
  end
  else begin 
    new_a = a;
    new_b = b;
    new_c = c;
  end

  if ( a==0 & b==0 & c==0 )
    zilch=1;
  else
    zilch=0;
  end

endfunction 
 
FD1S a_reg ( new_a, clk, a, );
FD1S b_reg ( new_b, clk, b, );
FD1S c_reg ( new_c, clk, c, );

assign zero = zilch ( load, a, b, c );
endmodule

This module evaluates the three state variables, a , b , and c , to determine 
whether all the values are 0.  Additional input signals are load , which 
forces a synchronous reset, and clk , which is the module’s clock.  The 
functionality of the module is described in the function zilch .  The input 
values are latched in the flip-flop described in the three statements 
beginning with dFF  (a D-type edge-triggered flip-flop).  A final assign 
statement assigns the returned value of the function zilch to the output 
zero . 

Example B–1 generates the schematic shown in Figure B–1.



Chapter 8 Flip-Flops –3
Translating Flip-flops

Figure 8-1 Schematic from Example B–1 

To translate this description, find the combinational logic and determine the 
triggering events.  In this case, the function zilch  creates combinational 
logic.

Example 8-2 Existing Module Logic

function zilch ;
input load, a, b, c;

if ( load ) begin
new_a = d;
new_b = e;
new_c = f;
end
else begin 
new_a = a;
new_b = b;
new_c = c;
end
if ( a==0 & b==0 & c==0 )
zilch=1;
else
zilch=0;
endfunction 

In Example B–2, the values of a , b , c , d , e , f , and load are the 
triggers (signals that are read).  You can rewrite this description as an 
always block with triggers, as shown in Example B–3.

a_reg

b_reg

c_reg

zero

e

f

d
load

clk
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Example 8-3 New Module Logic

always @ ( a or b or c or d or e or f or load ) begin
 if ( load ) begin
    new_a = d;
    new_b = e;
    new_c = f;
 end
 else begin
    new_a = a;
    new_b = b;
    new_c = c;
 end
   
 if ( a==0 & b==0 & c==0 )
   zero=1;
 else
   zero=0;
end

The next step is to build an always block that replaces the flip-flop 
instantiations—the three statements that begin with dFF .

Example 8-4 Existing Flip-flop Instantiations

dFF a_reg ( new_a, clk, a );
dFF b_reg ( new_b, clk, b );
dFF c_reg ( new_c, clk, c );

Use the clock signal, clk , as the event-expression of the new always 
block, as shown.

Example 8-5 First Line of the New always Block 

always @ ( posedge clk ) begin

Put the values and the registers in the body of the always block.  The Q 
output values in the old module (a, b , and c ) become the assigned values 
in the new version.  The clock from the old version is specified in the 
event-expression of the new always block.  The D input values in the old 
module (new_a , new_b , and new_c ) become the values read by the 
new version, as shown in Example B–6.

Example 8-6 New Clocked always Block 

always @ ( posedge clk ) begin
a = new_a ;
b = new_b ;
c = new_c ;
end
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Now, label the input and output signals in the module.  Look at the variable 
declarations and determine which of the wires and functions serve the 
flip-flop and which serve the logic of the module.

Example 8-7 Existing Inputs and Outputs

module simple ( d, e, f, load, clk, zero );
input d, e, f, load, clk;
output zero;
reg new_a, new_b, new_c;

In this case, as in most cases, the module’s inputs and outputs remain the 
same.  However, you must change the wire values to reg  values.  
Declare the output zero twice; once as the output and once as a reg , so 
it can be used in the always block.  Make the former function variables 
a, b , and c into reg variables, because they are now assigned within 
the second always block.  Example B–8 shows the new input and output 
declarations.

Example 8-8 New Input and Output Declarations

module new_simple ( d, e, f, load, clk, zero );
input d, e, f, load, clk;
output zero; 
reg zero;
reg a, b, c;
reg new_a, new_b, new_c;

Example B–9 shows the complete new module with always blocks.
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Example 8-9 Translated Module Using always Blocks

module new_simple ( d, e, f, load, clk, zero );
input d, e, f, load, clk;
output zero; 
reg zero;
reg a, b, c;
reg new_a, new_b, new_c;

always @ ( a or b or c or d or e or f or load ) begin
if ( load ) begin
new_a = d;
new_b = e;
new_c = f;
end
else begin
new_a = a;
new_b = b;
new_c = c;
end
   
if ( a==0 & b==0 & c==0 )
zero=1;
else
zero=0;
end

always @ ( posedge clk ) begin
a = new_a ;
b = new_b ;
c = new_c ;
end
endmodule
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Chapter 9
Verilog Syntax

This appendix contains a syntax description of the Verilog language as 
supported by FPGA Express.  This appendix covers the following topics:

n Syntax
n Lexical Conventions
n Verilog Keywords
n Unsupported Verilog Language Constructs

Syntax

This section presents the syntax of the supported Verilog language in 
Backus Naur Form (BNF), and presents the syntax formalism.

Note: The BNF syntax convention used in this section differs from the 
Synopsys syntax convention used elsewhere in this manual.

BNF Syntax Formalism

White space separates lexical tokens.
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name is a keyword.

<name>  is a syntax construct definition.

<name>  is a syntax construct item.

<name>?  is an optional item.

<name>*  is zero, one, or more items.

<name>+  is one or more items.

<port> <,<port>>*  is a comma-separated list of items.

::=  gives a syntax definition to an item.

||=  refers to an alternative syntax construct.

BNF Syntax

<source_text> 
   ::= <description>*

<description> 
   ::= <module>

<module>

   ::= module <name_of_module> <list_of_ports>? ;
              <module_item>*
       endmodule

<name_of_module> 

   ::= <IDENTIFIER>

<list_of_ports> 

   ::= ( <port> <,<port>>* )
   ||= ( )

<port>

   ::= <port_expression>?
   ||= . <name_of_port> ( <port_expression>? )

<port_expression>

   ::= <port_reference>
   ||= { <port_reference> <, <port_reference>>* }
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<port_reference>
   ::= <name_of_variable>
   ||= <name_of_variable> [ <expression> ]
   ||= <name_of_variable> [ <expression> : 
<expression> ]

<name_of_port>

   ::= <IDENTIFIER>

<name_of_variable>
   ::= <IDENTIFIER>

<module_item>
   ::= <parameter_declaration>
   ||= <input_declaration>
   ||= <output_declaration>
   ||= <inout_declaration>
   ||= <net_declaration>
   ||= <reg_declaration>
   ||= <integer_declaration>
   ||= <gate_instantiation>
   ||= <module_instantiation>
   ||= <continuous_assign>
   ||= <function>

<function>

   ::= function <range>? <name_of_function> ;
            <func_declaration>*
            <statement_or_null>
       endfunction

<name_of_function>

   ::= <IDENTIFIER>

<func_declaration>

   ::= <parameter_declaration>
   ||= <input_declaration>
   ||= <reg_declaration>
   ||= <integer_declaration>

<always>

   ::= always @ ( <identifier> or <identifier> )
   ||= always @ ( posedge <identifier> )
   ||= always @ ( negedge <identifier> )
   ||= always @ ( <egde> or <edge> or ... )

<edge>

   ::= posedge <identifier>
   ||= negedge <identifier>

<parameter_declaration>

   ::= parameter <range>? <list_of_assignments> ;
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<input_declaration>

   ::= input <range>? <list_of_variables> ;

<output_declaration>

   ::= output <range>? <list_of_variables> ;

<inout_declaration>

   ::= inout <range>? <list_of_variables> ;

<net_declaration>
   ::= <NETTYPE> <charge_strength>? <expandrange>? 
<delay>? <list_of_variables> ;
   ||= <NETTYPE> <drive_strength>? <expandrange>? 
<delay>? <list_of_assignments> ;

<NETTYPE>

   ::= wire
   ||= wor
   ||= wand
   ||= tri

<expandrange>
   ::= <range>
   ||= scalared <range>
   ||= vectored <range>

<reg_declaration>

   ::= reg <range>? <list_of_register_variables> ;

<integer_declaration>

   ::= integer <list_of_integer_variables> ;

<continuous_assign>

   ::= assign <drive_strength>? <delay>? 
              <list_of_assignments>;

<list_of_variables>
   ::= <name_of_variable> <, <name_of_variable>>*

<name_of_variable>
   ::= <IDENTIFIER>

<list_of_register_variables>
   ::= <register_variable> <, <register_variable>>*

<register_variable>
   ::= <IDENTIFIER>

<list_of_integer_variables>
   ::= <integer_variable> <, <integer_variable>>*
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<integer_variable>
   ::= <IDENTIFIER>

<charge_strength>

   ::= ( small )
   ||= ( medium )
   ||= ( large )

<drive_strength>

   ::= ( <STRENGTH0> , <STRENGTH1> )
   ||= ( <STRENGHT1> , <STRENGTH0> )

<STRENGTH0>
   ::= supply0
   ||= strong0
   ||= pull0
   ||= weak0
   ||= highz0

<STRENGTH1>
   ::= supply1
   ||= strong1
   ||= pull1
   ||= weak1
   ||= highz1

<range>

   ::= [ <expression> : <expression> ]

<list_of_assignments>
   ::= <assignment> <, <assignment>>*

<gate_instantiation>
   ::= <GATETYPE> <drive_strength>? <delay>?
            <gate_instance> <, <gate_instance>>* ;

<GATETYPE>

   ::= and
   ||= nand
   ||= or
   ||= nor
   ||= xor
   ||= xnor
   ||= buf
   ||= not

<gate_instance>
   ::= <name_of_gate_instance>? ( <terminal>
                       <, <terminal>>* )

<name_of_gate_instance>

   ::= <IDENTIFIER>
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<terminal>
   ::= <identifier>
   ||= <expression>

<module_instantiation>
   ::= <name_of_module> <parameter_value_assignment>? 
       <module_instance> <, <module_instance>>* ;

<name_of_module>
   ::= <IDENTIFIER>

<parameter_value_assignment>
   ::= #( <expression> <,<expression>>*)

<module_instance>

   ::= <name_of_module_instance> 
       ( <list_of_module_terminals>? )

<name_of_module_instance>

   ::= <IDENTIFIER>

<list_of_module_terminals>
   ::= <module_terminal>? <,<module_terminal>>*
   ||= <named_port_connection> <,<named_port_
connection>>*

<module_terminal>
   ::= <identifier>
   ||= <expression>

<named_port_connection>
   ::= . IDENTIFIER ( <identifier> )
   ||= . IDENTIFIER ( <expression> )
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<statement>
   ::= <assignment>
   ||= if ( <expression> )
          <statement_or_null>
   ||= if ( <expression> )
          <statement_or_null>
       else
          <statement_or_null>
   ||= case ( <expression> )
          <case_item>+
       endcase
   ||= casex ( <expression> )
          <case_item>+
       endcase
   ||= casez ( <expression> )
          <case_item>+
       endcase
   ||= for ( <assignment> ; <expression> ; 
<assignment> )
          <statement>
   ||= <seq_block>
   ||= disable <IDENTIFIER> ;
   ||= forever <statement>
   ||= while ( <expression> ) <statement>

<statement_or_null>
   ::= statement
   ||= ;

<assignment>
   ::= <lvalue> = <expression>

<case_item>

   ::= <expression> <,<expression>>* : <statement_or_
null>
   ||= default : <statement_or_null>
   ||= default <statement_or_null>
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<seq_block>
   ::= begin
           <statement>*
       end
   ||= begin : <name_of_block>
           <block_declaration>*
           <statement>*
       end

<name_of_block>

   ::= <IDENTIFIER>

<block_declaration>

   ::= <parameter_declaration>
   ||= <reg_declaration>
   ||= <integer_declaration>

<lvalue>
   ::= <IDENTIFIER>
   ||= <IDENTIFIER> [ <expression> ]
   ||= <concatenation>

<expression>

   ::= <primary>
   ||= <UNARY_OPERATOR> <primary>
   ||= <expression> <BINARY_OPERATOR>
   ||= <expression> ? <expression> : <expression>

<UNARY_OPERATOR>

   ::= !
   ||= ~
   ||= &
   ||= ~&
   ||= |
   ||= ~|
   ||= ^
   ||= ~^
   ||= -
   ||= +
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<BINARY_OPERATOR>

   ::=  +
   ||=  -
   ||=  *
   ||=  /
   ||=  %
   ||=  ==
   ||=  !=
   ||=  &&
   ||=  ||
   ||=  <
   ||=  <=
   ||=  >
   ||=  >=
   ||=  &
   ||=  |
   ||=  <<
   ||=  >>

<primary>
   ::= <number>
   ||= <identifier>
   ||= <identifier> [ <expression> ]
   ||= <identifier> [ <expression> : <expression> ]
   ||= <concatenation>
   ||= <multiple_concatenation>
   ||= <function_call>
   ||= ( <expression> )

<number>

   ::= <NUMBER>
   ||= <BASE> <NUMBER>
   ||= <SIZE> <BASE> <NUMBER>

<NUMBER>

A number can have any of the following characters:  
0123456789abcdefxzABCDEFXZ

<SIZE>

   ::= ’b
   ||= ’B
   ||= ’o
   ||= ’O
   ||= ’d
   ||= ’D
   ||= ’h
   ||= ’H

<SIZE>

Any number of the following digits:  0123456789
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<concatenation>
   ::= { <expression> <,<expression>>* }

<multiple_concatenation>
   ::= { <expression> { <expression> <,<expression>>* 
} }

<function_call>
   ::= <name_of_function> ( <expression> 
<,<expression>>*)

<name_of_function>

   ::= <IDENTIFIER>

<identifier>

An identifier is any sequence of letters, digits, and the underscore character 
( _ ), where the first character is a letter or underscore.  Uppercase and 
lowercase letters are treated as different characters.  Identifiers can be any 
size and all characters are significant.  Escaped identifiers start with the 
backslash character (\)  and end with a space. The leading backslash 
character (\) is not part of the identifier.  Use escaped identifiers to include 
any printable ASCII characters in an identifier. 

<delay>

   ::= # <NUMBER>
   ||= # <identifier>
   ||= # ( <expression> <,<expression>>* )

Lexical Conventions

The lexical conventions used by FPGA Express are nearly identical to those 
of the Verilog language.  The types of lexical tokens used by FPGA 
Express are described in the following subsections: 

n White Space
n Comments
n Numbers
n Identifiers
n Operators
n Macro Substitutions
n include Directive
n Simulation Directives
n Verilog System Functions
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White Space

White space separates words in the input description, and can contain 
spaces, tabs, new lines, and form feeds.  You can place white space 
anywhere in the description.  FPGA Express ignores white space.

Comments

You can enter comments anywhere in a Verilog description in two forms:
n Beginning with two backslashes //.

FPGA Express ignores all text between these characters and the end of the 
current line. 

n Beginning with the two characters /* and ending with */ . 

FPGA Express ignores all text between these characters, so you can 
continue comments over more than one line.    

Note: You cannot nest comments.

Numbers

You can declare numbers in several different radices and bit-widths.  A 
radix is the base number on which a numbering system is built.  For 
example, the binary numbering system has a radix of 2, octal has a radix of 
8, and decimal has a radix of 10.

You can use these three number formats:

1. A simple decimal number that is a sequence of digits between 0 and 9.  All 
constants declared in this way are assumed to be 32-bit numbers. 

2. A number that specifies the bit width, as well as the radix.  These numbers 
are exactly the same as the previous format, except they are preceded by a 
decimal number that specifies the bit width.

3. A number followed by a two-character sequence prefix that specifies the 
number’s size and radix.  The radix determines which symbols you can 
include in the number.  Constants declared this way are assumed to be 
32-bit numbers.  Any of these numbers can include underscores ( _ ).  The 
underscores improve readability and do not affect the value of the number.  
Table C–1 summarizes the available radices and valid characters for the 
number.
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Table B-1 Verilog Radices

Example C–1 shows some valid number declarations.

Example B-1 Valid Verilog Number Declarations

391               //  32-bit decimal number
’h3a13            //  32-bit hexadecimal number
10’o1567          //  10-bit octal number
3’b010            //  3-bit binary number
4’d9              //  4-bit decimal number
40’hFF_FFFF_FFFF  //  40-bit hexadecimal number
2’bxx             //  2-bits don’t care
3’bzzz            //  3-bits high-impedance

Identifiers

Identifiers are user-defined words for variables, function names, module 
names, and instance names.  Identifiers can be composed of letters, digits, 
and the underscore character ( _ ). The first character of an identifier cannot 
be a number.  Identifiers can be any length.   Identifiers are case-sensitive 
and all characters are significant.

An identifier that contains special characters, begin with numbers, or have 
the same name as a keyword can be specified as an escaped identifier.  An 
escaped identifier starts with the backslash character (\), followed by a 
sequence of characters, followed by white space. 

Some escaped identifiers are shown in Example C–2.

Example B-2 Sample Escaped Identifiers

\a+b                   \3state
\module                \(a&b)|c

The Verilog language supports the concept of hierarchical names, which 
can be used to access variables of submodules directly from a higher-level 
module.  Hierarchical names are partially supported by FPGA Express.

Name Character Prefix Valid Characters

binary ’b 0 1 x X z Z _ ?

octal ’o 0–7 x X z Z _ ?

decimal ’d 0–9 _

hexadecimal ’h 0–9 a–f A–F x X z Z _ ?
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Operators

Operators are one-character or two-character sequences that perform 
operations on variables.  Some examples of operators are + , ~^ , <= , and 
>> .   Operators are described in detail in Chapter 4.

Macro Substitutions

Macro substitution assigns a string of text to a macro variable. The string of 
text is inserted into the code where the macro is encountered. The definition 
begins with the back quote character (‘), followed by the keyword 
define , followed by the name of the macro variable. All text from the 
macro variable until the end of the line is assigned to the macro variable.

You can declare and use macro variables anywhere in the description. The 
definitions can carry across several files that are read into FPGA Express at 
the same time. To make a macro substitution, type a back quotation mark 
(‘) followed by the macro variable name.

Some sample macro variable declarations are shown in Example C–3.

Example B-3 Macro Variable Declarations

‘define highbits      31:29
‘define bitlist       {first, second, third}
wire [31:0] bus;

‘bitlist = bus[‘highbits];

include Construct

The include construct in Verilog is similar to the #include 
directive in C.  You can use this construct to include Verilog code, such as 
type declarations and functions, from one module into another.  Example 
C–4 shows an application of the include construct.
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Example B-4 Including a File Within a File

Contents of file1.v

‘define WORDSIZE 8
function [WORDSIZE-1:0] fastadder;
.
.
endfunction

Contents of secondfile

module secondfile (in1,in2,out)
‘include “file1.v”
wire [WORDSIZE-1:0] temp;
assign temp = fastadder (in1,in2);
.
.
endmodule

Included files can include other files, up to 24 levels of nesting.  You 
cannot use the include construct recursively.

Simulation Directives

Simulation directives (not to be confused with FPGA Express directives 
described in Chapter 6) refer to special commands that affect the operation 
of the Verilog HDL Simulator.  You can include these directives in your 
design description, because FPGA Express parses and ignores them.

‘accelerate ‘celldefine ‘default_nettype
‘endcelldefine ‘endprotect ‘expand_vectornets
‘noaccelerate ‘noexpand_vectornets ‘noremove_netnames
‘nounconnected_drive ‘protect ‘remove_netnames
‘resetall ‘timescale ‘unconnected_drive

Verilog System Functions

Verilog system functions are implemented by the Verilog HDL Simulators 
to generate input or output during simulation.  Their names start with a 
dollar sign ($).  These functions are parsed and ignored by FPGA Express.
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Verilog Keywords

Verilog uses keywords to interpret an input file.  You cannot use these 
words as user variable names unless you use an escaped identifier.  For 
more information, see the section “Identifiers,” earlier in this chapter.

always and assign begin
buf bufif0 bufif1 case
casex casez cmos deassign
default defparam disable else
end endcase endfunction endmodule
endprimitive endtable endtask event
for force forever fork
function highz0 highz1 if
initial inout input integer
join large medium module
nand negedge nmos nor
not notif0 notif1 or
output parameter pmos posedge
primitive pulldown pullup pull0
pull1 rcmos reg release
repeat rnmos rpmos rtran
rtranif0 rtranif1 scalared small
strong0 strong1 supply0 supply1
supply1 table task time
tran tranif0 tranif1 tri
triand trior trireg tri0
tri1 vectored wait wand
weak0 weak1 while wire
wor xnor xor

Unsupported Verilog Language Constructs

The following Verilog constructs are not supported by FPGA Express. 
n Unsupported definitions and declarations
n Unsupported statements
n Unsupported operators
n Unsupported gate-level constructs
n Unsupported miscellaneous constructs

Constructs added to the Verilog Simulator in versions after Verilog 1.6 
might not be supported.
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If you use an unsupported construct in a Verilog description, FPGA 
Express issues a syntax error such as

event is not supported

Unsupported Definitions and Declarations

The following Verilog definitions and declarations are not supported by 
FPGA Express. 

n primitive definition
n time declaration
n event declaration
n triand, trior, tri1, tri0, and trireg net types
n Ranges and arrays for integers

Unsupported Statements

The following Verilog statements are not supported by FPGA Express. 
n defparam statement
n initial statement
n repeat statement
n delay control
n event control
n wait statement
n fork statement
n deassign statement
n force statement
n release statement
n Assignment statement with a variable used as a bit-select on the left side of 

the equal sign

Unsupported Operators

The following Verilog operators are not supported by FPGA Express. 
n Case equality and inequality operators (=== and !== )
n Division and modulus operators for variables
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Unsupported Gate-Level Constructs

The following Verilog gate-level constructs are not supported by FPGA 
Express. 

n nmos, pmos, cmos, rnmos, rpmos, rcmos, pullup, pulldown, tranif0, tranif1, 
rtran, rtranif0, and rtranif1 gate types

Unsupported Miscellaneous Constructs

The following Verilog miscellaneous constructs are not supported by 
FPGA Express. 

n Hierarchical names within a module
n ‘ifdef, ‘endif and ‘else compiler directives
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