
FPGA Express
HDL Reference Manual

September 1996

Comments?
E-mail your comments about Synopsys documentation to doc@synopsys.com

Copyright Notice and Proprietary Information
Copyright © 1996 Synopsys, Inc. All rights reserved. This software and manual are owned by Synopsys, Inc., and/or its licensors and may be used only as
authorized in the license agreement controlling such use. No part of this publication may be reproduced, transmitted, or translated, in any form or by any
means, electronic, mechanical, manual, optical, or otherwise, without prior written permission of Synopsys, Inc., or as expressly provided by the license
agreement

Right to Copy Documentation
The license agreement with Synopsys permits licensee to make copies of the documentation for its internal use only. Each copy shall include all copyrights,
trademarks, service marks, and proprietary rights notices, if any. Licensee must assign sequential numbers to all copies. These copies shall contain the
following legend on the cover page:

“This document is duplicated with the permission of Synopsys, Inc. for the exclusive use of ______________________________
____________ and its employees. This is copy number __________.”

Destination Control Statement
All technical data contained in this publication is subject to the export control laws of the United States of America. Disclosure to nationals of other countries
contrary to United States law is prohibited. It is the reader’s responsibility to determine the applicable regulations and to comply with them.

Disclaimer
SYNOPSYS, INC., AND ITS LICENSORS MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Trademarks
Synopsys, the Synopsys logo, BiNMOS-CBA, CMOS-CBA, COSSAP, DESIGN (ARROWS), DesignPower, dont_use, ExpressModel, LM-1000, LM-1200,

Logic Modeling, the Logic Modeling logo, ModelAccess, ModelTools, SmartLicense, SmartLogic, SmartModel, SmartModels, SNUG, SOLV-IT!,
SourceModel Library, Stream Driven Simulator, Synopsys VHDL Compiler, Synthetic Designs, and Synthetic Libraries are registered trademarks of
Synopsys, Inc.

Behavioral Compiler, CBA Design System, characterize, Compiled Designs, Cyclone, Data Path Architect, Data Path Express, DC Expert, DC Professional,
Design Analyzer, Design Compiler, DesignSource, DesignTime, DesignWare, DesignWare Developer, dont_touch, dont_touch_network, ECL Compiler,
Falcon Interface, Floorplan Manager, FoundryModel, FPGA Compiler, FPGA Express, Frame Compiler, General Purpose Post-Processor, GPP, HDL
Advisor, HDL Compiler, Integrator, Interactive Waveform Viewer, Library Compiler, LM-1400, LM-700, LM-family, Logic Model, Memory Architect,
ModelSource, ModelWare, MS-3200, MS-3400, PLdebug, PrimeTime, Shadow Debugger, Shortcut, Silicon Architects, SimuBus, SmartCircuit,
SmartModel Windows, Source-Level Design, SourceModel, SWIFT, SWIFT Interface, Synopsys Graphical Environment, Test Compiler, Test Compiler
Plus, Test Manager, TestBench Manager, TestSim, 3-D Debugging, VHDL System Simulator, Visualyze, VSS Expert, and VSS Professional are
trademarks of Synopsys, Inc.

In-Sync and LEARN-IT! are service marks of Synopsys, Inc.

All other products are trademarks of their respective holders and should be treated as such.

Chapter 1
FPGA Express with Verilog HDL

FPGA Express translates and optimizes a Verilog HDL description into an
internal gate-level equivalent, then compiles this representation to produce
an optimized gate-level design in a given FPGA technology.

This chapter introduces the main concepts and capabilities of FPGA
Express in the following sections:

n Hardware Description Languages
n FPGA Express and the Design Process
n Design Methodology

Hardware Description Languages

Hardware description languages (HDLs) describe the architecture and
behavior of discrete electronic systems. Modern HDLs and their associated
simulators are very powerful tools for integrated circuit designers.

A typical HDL supports a mixed-level description in which gate and netlist
constructs are used with functional descriptions. This mixed-level
capability enables you to describe system architectures at a very high level
of abstraction, then incrementally refine a design’s detailed gate-level
implementation.

HDL descriptions play an important role in modern design methodology for
three main reasons:

n Design functionality can be verified early in the design process. A design
written as an HDL description can be simulated immediately. Design
simulation at this higher level, before implementation at the gate-level,
allows you to evaluate architectural and design decisions.

n FPGA Express provides Verilog compilation and logic synthesis, allowing
you to automatically convert an HDL description to a gate-level
implementation in a target FPGA technology. This step eliminates the
former gate-level design bottleneck, the majority of circuit design time, and
the errors introduced when you hand translate an HDL specification to
gates.

With FPGA Express logic optimization, you can automatically transform a
synthesized design into a smaller or faster circuit. FPGA Express provides
both logic synthesis and optimization. For further information, refer to the
FPGA Express User’s Guide.

n HDL descriptions provide technology-independent documentation of a
design and its functionality. An HDL description is more easily read and
understood than a netlist or schematic description. Since the initial HDL
design description is technology-independent, you can use it again to
generate the design in a different technology, without having to translate
from the original technology.

The FPGA Express Design Process

FPGA Express translates Verilog language hardware descriptions to a
Synopsys internal design format. The design can then be optimized and
mapped to a specific FPGA technology library by FPGA Express, as shown
in Figure 1-1.

Figure 1-1 FPGA Express Design Process

FPGA Express supports a majority of the Verilog constructs.

Using FPGA Express to Compile a Verilog HDL Design

When a Verilog design is read into FPGA Express, it is converted to an
internal database format so FPGA Express can synthesize and optimize the
design. When FPGA Express optimizes a design, it may restructure part or
all the design. You control the degree of restructuring. Options include

n Fully preserving a design’s hierarchy

n Allowing full modules to be moved up or down in the hierarchy

n Allowing certain modules to be combined with others

n Compressing the entire design into one module (called flattening the
design) if it is beneficial

The following section describes the design process that uses FPGA Express
with a Verilog HDL Simulator.

Verilog Description

FPGA ExpressFPGA Technology Library

Optimized
Technology-Specific

Netlist

Design Methodology

Figure 1-2 shows a typical design process that uses FPGA Express and a
Verilog HDL Simulator. Each step of this design model is described in
detail.

Figure 1-2 Design Flow

The steps in Figure 1-2 are explained below.

 Verilog HDL
 Description

 Verilog HDL
Simulator

FPGA Express

 Verilog
Test Driver

 Verilog HDL
Simulator

Simulation
Output

Simulation
Output

Compare
Output

1

2

63

5

7

4

FPGA
Development System

1. Write a design description in the Verilog language. This description can be
a combination of structural and functional elements (as shown in Chapter 2,
‘‘Description Styles“). This description is used with both FPGA Express
and a Verilog simulator.

2. Provide Verilog-language test drivers for the Verilog HDL simulator. For
information on writing these drivers, see the appropriate simulator manual.
The drivers supply test vectors for simulation and gather output data.

3. Simulate the design by using a Verilog HDL simulator. Verify that the
description is correct.

4. Use FPGA Express to synthesize and optimize the Verilog design
description into a gate-level netlist. FPGA Express generates optimized
netlists to satisfy timing constraints for a targeted FPGA architecture.

5. Use your FPGA development system to link the FPGA technology-specific
version of the design to the Verilog simulator. The development system
includes simulation models and interfaces required for the design flow.

6. Simulate the technology-specific version of the design with the Verilog
simulator. You can use the original Verilog simulation drivers from Step 2
because module and port definitions are preserved through the translation
and optimization processes.

7. Compare the output of the gate-level simulation (Step 6) against the output
of the original Verilog description simulation (Step 3) to verify that the
implementation is correct.

Verilog Example

This section takes you through a sample Verilog design session, starting
with a Verilog description (source file). The ‘‘Count Zeros — Sequential
Version“ example in this section is from Appendix A. The design session
covers the following topics:

n A description of the design problem (count the number of zeros in a
sequentially input 8-bit value)

n A listing of a Verilog design description

Verilog Design Description

The Count Zeros example illustrates a design that takes an 8-bit value and
determine two things: first, that the value has exactly one sequence of 0’s in
the value; and second, the number of 0’s in that sequence (if any).

A valid value is one that contains only one consecutive series of 0s. If more
than one series of 0s appears, the value is invalid. A value consisting
entirely of 1’s is defined as a valid value. If a value is invalid, the zero
counter is reset (to 0). For example, the value 00000000 is valid and has
eight 0s; value 11000111 is valid and has three 0’s; value 00111100 is
invalid.

The circuit accepts the 8-bit data value serially, one bit per clock cycle, by
using the data and clk inputs. The other two inputs are reset, which resets
the circuit, and read, which causes the circuit to begin accepting the data
bits.

The circuit’s three outputs are

n is_legal, which is true if the data is a valid value.

n data_ready, which is true at the first invalid bit or when all eight bits have
been processed.

n zeros, which is the number of zeros if is_legal is true.

Example 1-1 shows the Verilog source description for the Count Zeros
circuit.

Example 1-1 Count Zeros-Sequential Version

module count_zeros(data,reset,read,clk,zeros,is_legal,
 data_ready);

 parameter TRUE=1, FALSE=0;

 input data, reset, read, clk;
 output is_legal, data_ready;
 output [3:0] zeros;
 reg [3:0] zeros;

 reg is_legal, data_ready;
 reg seenZero, new_seenZero;
 reg seenTrailing, new_seenTrailing;
 reg new_is_legal;
 reg new_data_ready;
 reg [3:0] new_zeros;
 reg [2:0] bits_seen, new_bits_seen;

always @ (data or reset or read or is_legal
 or data_ready or seenTrailing or
 seenZero) begin
 if (reset) begin
 new_data_ready = FALSE;
 new_is_legal = TRUE;
 new_seenZero = FALSE;
 new_seenTrailing = FALSE;
 new_zeros = 0;
 new_bits_seen = 0;
 end
 else begin
 new_is_legal = is_legal;
 new_seenZero = seenZero;
 new_seenTrailing = seenTrailing;
 new_zeros = zeros;
 new_bits_seen = bits_seen;
 new_data_ready = data_ready;
 if (read) begin
 if (seenTrailing && (data == 0))
 begin
 new_is_legal = FALSE;
 new_zeros = 0;
 new_data_ready = TRUE;
 end
 else if (seenZero && (data == 1’b1))
 new_seenTrailing = TRUE;
 else if (data == 1’b0) begin
 new_seenZero = TRUE;
 new_zeros = zeros + 1;
 end

 if (bits_seen == 7)
 new_data_ready = TRUE;
 else
 new_bits_seen = bits_seen+1;
 end
 end
 end

always @ (posedge clk) begin
 zeros = new_zeros;
 bits_seen = new_bits_seen;
 seenZero = new_seenZero;
 seenTrailing = new_seenTrailing;
 is_legal = new_is_legal;
 data_ready = new_data_ready;
end
endmodule

Chapter 2
Description Styles

The style of your initial Verilog description has a major effect on the
characteristics of the resulting gate-level design synthesized by FPGA
Express. The organization and style of a Verilog description determines the
basic architecture of your design. Because FPGA Express automates most
of the logic-level decisions required in your design, you can concentrate on
architectural tradeoffs.

You can use FPGA Express to make some of the high-level architectural
decisions. Certain Verilog constructs are well suited to synthesis. To make
the decisions and use the constructs, you need to become familiar with the
following concepts:

n Design Hierarchy
n Structural Descriptions
n Functional Descriptions
n Mixing Structural and Functional Descriptions
n Design Constraints
n Register Selection
n Asynchronous Designs

Design Hierarchy

FPGA Express maintains the hierarchical boundaries you define when you
use structural Verilog. These boundaries have two major effects:

1. Each module specified in your HDL description is synthesized separately
and maintained as a distinct design. The constraints for the design are
maintained, and each module can be optimized separately in FPGA
Express.

2. Module instantiations within HDL descriptions are maintained during
input. The instance name you assign to user-defined components is carried
through to the gate-level implementation.

Chapter 3 discusses modules and module instantiations.

Note: FPGA Express does not automatically maintain (create) the
hierarchy of other nonstructural Verilog constructs such as blocks, loops,
functions, and tasks. These elements of an HDL description are
translated in the context of their design. After analyzing and
implementing a design, you can use the FPGA Express Implementation
Window to group the gates in a block, function, or task. Refer to the
FPGA Express User’s Guide for further information.

The choice of hierarchical boundaries has a significant effect on the quality
of the synthesized design. Using FPGA Express, you can optimize a design
while preserving these hierarchical boundaries. However, FPGA Express
only partially optimizes logic across hierarchical modules. Full
optimization is possible across those parts of the design hierarchy that are
collapsed in FPGA Express.

Structural Descriptions

The structural elements of a Verilog structural description consist of
generic logic gates, library-specific components, and user-defined
components connected by wires. In one way, a structural description can
be viewed as a simple netlist composed of nets that connect instantiations
of gates. However, unlike a netlist, nets in the structural description can be
driven by an arbitrary expression that describes the value assigned to the
net. A statement that drives an arbitrary expression onto a net is called a
continuous assignment. Continuous assignments are convenient links
between pure netlist descriptions and functional descriptions.

A Verilog structural description can define a range of hierarchical and
gate-level constructs, including module definitions, module instantiations,
and netlist connections. Refer to Chapter 3, “Structural Descriptions,” for
more information.

Functional Descriptions

The functional elements of a Verilog description consist of function
declarations, task statements, and always blocks. These elements
describe the function of the circuit but do not describe its physical makeup,
layout, or choice of gates and components.

You can construct functional descriptions with the Verilog functional
constructs described in Chapter 5. These constructs can appear within
functions or always blocks. Functions imply only combinational logic.
always blocks can imply either combinational or sequential logic.

Although many Verilog functional constructs appear sequential in nature
(for example, for loops and multiple assignments to the same variable),
these constructs describe combinational-logic networks. Other functional
constructs imply sequential-logic networks. Latches and registers are
inferred from these constructs. Refer to Chapter 6 for details.

Mixing Structural and Functional Descriptions

When you use a functional description style in a design, the combinational
portions of a design are typically described in Verilog functions, always
blocks, and assignments. The complexity of the logic determines whether
you use one or many functions.

Example 2-1, shows how structural and functional description styles are
mixed in a design specification. In Example 2–1, the function detect_
logic determines whether the input bit is a 0 or a 1. After this
determination is made, detect_logic sets ns to the next state of the
machine. An always block infers flip-flops to hold the state information
between clock cycles.

Elements of a design can be specified directly as module instantiations at
the structural level. For example, see the three-state buffer, t1 , in Example
2-1. (Note that three-state buffers can be inferred. For more information,

refer to “Three-State Inference” in Chapter 6.) You can also use this
description style to identify the wires and ports that carry information from
one part of the design to another.

Example 2-1 Mixed Structural and Functional Descriptions

// This finite state machine (Mealy type) reads one
// bit per clock cycle and detects three or more
// consecutive 1s.

module three_ones(signal, clock, detect, output_
enable);
input signal, clock, output_enable;
output detect;

// Declare current state and next state variables.
reg [1:0] cs;
reg [1:0] ns;
wire ungated_detect;

// declare the symbolic names for states
parameter NO_ONES = 0, ONE_ONE = 1,
 TWO_ONES = 2, AT_LEAST_THREE_ONES = 3;

// ************* STRUCTURAL DESCRIPTION

// Instance of a three-state gate that enables output
three_state t1 (ungated_detect, output_enable,
detect);

// **************I*** ALWAYS BLOCK

// always block infers flip-flops to hold the state
of
// the FSM.
always @ (posedge clock) begin
 cs = ns;
end

// ************* FUNCTIONAL DESCRIPTION

function detect_logic;
 input [1:0] cs;
 input signal;

 begin
 detect_logic = 0; // default value

 if (signal == 0) // bit is zero
 ns = NO_ONES;
 else // bit is one, increment
state
 case (cs)
 NO_ONES: ns = ONE_ONE;
 ONE_ONE: ns = TWO_ONES;
 TWO_ONES, AT_LEAST_THREE_ONES:
 begin
 ns = AT_LEAST_THREE_ONES;
 detect_logic = 1;
 end
 endcase
 end
endfunction

// ************** assign STATEMENT **************
assign ungated_detect = detect_logic(cs, signal);
endmodule

For a structural or functional HDL description to be synthesized, it must
follow the Synopsys synthesis policy, which has three parts:

n Design methodology
n Description style
n Language constructs

Design Methodology

Design methodology refers to the synthesis design process described in
Chapter 1, “Design Methodology.”

Description Style

Use the HDL design and coding style that makes the best use of the
synthesis process to obtain high-quality results from FPGA Express. See
Chapter 8, “Writing Efficient Circuit Descriptions,” for guidelines.

Language Constructs

The third component of the Verilog synthesis policy is the set of Verilog
constructs that describe your design, determine its architecture, and give
consistently good results.

Synopsys has chosen HDL constructs that maximize coding flexibility
while producing consistently good results. Although FPGA Express can
read the entire Verilog language, a few HDL constructs cannot be
synthesized. These constructs are unsupported, because they cannot be
realized in logic. For example, you cannot use simulation time as a trigger,
because time is an element of the simulation process and cannot be
realized. Unsupported Verilog constructs are listed in Appendix C.

Design Constraints

You can describe the performance constraints for a design module with the
FPGA Express Implementation Window. Refer to the FPGA Express
User’s Guide for further information.

Register Selection

The placement of registers and the clocking scheme are important
architectural decisions. There are two ways to define registers in your
Verilog description. Each method has specific advantages.

n You can directly instantiate registers into a Verilog description, selecting
from any element in your FPGA library. Clocking schemes can be
arbitrarily complex. You can choose between a flip-flop and a latch-based
architecture. The main disadvantages to this approach are

• The Verilog description is specific to a given technology because you
choose structural elements from that technology library. However, you
can isolate the portion of your design with directly instantiated registers
as a separate component (module), then connect it to the rest of the
design.

• The description is more difficult to write.

n You can use some Verilog constructs to direct FPGA Express to infer
registers from the description. The advantages of this approach directly
counter the disadvantages of the previous approach. With register
inference, the Verilog description is much easier to write, and it is
technology independent. This method allows FPGA Express to select the
type of component inferred, based on constraints. Therefore, if a specific
component is necessary, instantiation should be used. Some types of
registers and latches cannot be inferred.

See Chapter 6 for a discussion of latch and register inference.

Asynchronous Designs

You can use FPGA Express to construct asynchronous designs that use
multiple clocks or gated clocks. Although these designs are logically
(statically) correct, they might not simulate or operate correctly because of
race conditions.

Chapter 8 describes how to write Verilog descriptions of asynchronous
designs in the section “Synthesis Issues.”

Chapter 3
Structural Descriptions

A Verilog circuit description can be one of two types: a structural
description or a functional description, also referred to as an Register
Transfer Level (RTL) description. A structural description defines the
exact physical makeup of the circuit, detailing components and the
connections between them. A functional or RTL description describes a
circuit in terms of its registers and the combinational logic between the
registers.

This chapter describes the construction of structural descriptions in the
following sections:

n Modules
n Macromodules
n Port Definitions
n Module Statements and Constructs
n Module Instantiations

Modules

The principal design entity in the Verilog language is a module. A module
consists of the module name, its input and output description (port
definition), a description of the functionality or implementation for the
module (module statements and constructs), and named instantiations.
Figure 3-1 illustrates the basic structural parts of a module.

Figure 3-1 Structural Parts of a Module

Example 3-1 shows a simple module that implements a 2-input NAND gate
by instantiating an AND gate and an INV gate. The first line of the module
definition provides the name of the module and a list of ports. The second
and third lines give the direction for all ports. (Ports are either inputs,
outputs, or bidirectionals.) A wire variable is created in the fourth line of
the description. Next, the two components are instantiated; copies named
instance1 and instance2 of the components AND and INV are created.
These components are connected to the ports of the module, and are finally
connected by using the variable and_out.

Example 3-1 Module Definition

module NAND(a,b,z);
 input a,b; // Inputs to nand gate
 output z; // Outputs from nand gate
 wire and_out; // Output from and gate

 AND instance1(a,b,and_out);
 INV instance2(and_out, z);
endmodule

Module

Module Name and
Port List

Definitions
Port, Wire, Register,
Parameter, Integer, Function

Module Statements and
Constructs

Module Instantiations

macromodule Constructs

The macromodule construct makes simulation more efficient by merging
the macromodule definition with the definition of the calling (parent)
module. However, FPGA Express treats the macromodule construct as a
module construct. Whether you use module or macromodule the synthesis
process, the hierarchy it creates, and the end result are the same. Example
3-2 shows how to use the macromodule construct.

Example 3-2 macromodule Construct

macromodule adder (in1,in2,out1);
input [3:0] in1,in2;
output [4:0] out1;

assign out1 = in1 + in2;
endmodule

Note: When a macromodule is instantiated, a new level of hierarchy is
created. You can ungroup this new level of hierarchy in the FPGA
Express Implementation Window.

Port Definitions

A port list consists of port expressions that describe the input and output
interface for a module. Define the port list in parentheses after the module
name, as shown below.

module name (port_list) ;

A port expression in a port list can be any of the following:

n An identifier

n A single bit selected from a bit vector declared within the module

n A group of bits selected from a bit vector declared within the module

n A concatenation of any of the above

Concatenation is the process of combining several single-bit or multiple-bit
operands into one large bit vector. For more information on concatenation,
refer to the section “Concatenations” in Chapter 4.

Each port in a port list must be declared explicitly as input, output, or
bidirectional in the module with an input, output, or inout statement. (See
“Port Declarations” later in this chapter.) For example, the module
definition in Example 3–1 shows that module NAND has three ports, a, b,
and z, connected to 1-bit nets a, b, and z. These connections are declared in
the input and output statements.

Port Names

Some port expressions are identifiers. If the port expression is an identifier,
the port name is the same as the identifier. A port expression is not an
identifier if the expression is a single bit or group of bits selected from a
vector of bits, or a concatenation of signals. In these cases, the port is
unnamed unless you explicitly name it.

Example 3-3 shows some module definition fragments that illustrate the
use of port names. The ports for module ex1 are named a, b, and z, and are
connected to nets a, b, and z, respectively. The first two ports of module
ex2 are unnamed; the third port is named z. The ports are connected to nets
a[1], a[0], and z respectively. Module ex3 has two ports: the first port is
unnamed and is connected to a concatenation of nets a and b; the second
port, named z, is connected to net z.

Example 3-3 Module Port Lists

module ex1(a, b, z);
input a, b;
output z;
endmodule

module ex2(a[1], a[0], z);
input [1:0] a;
output z;
endmodule

module ex3({a,b}, z);
input a,b;
output z;
endmodule

You can rename a port by explicitly assigning a name to a port expression
with the dot (.) operator. The module definition fragments in Example 3-4
show how to rename ports. The ports for module ex4 are explicitly named
in_a, in_b, and out These ports are connected to nets a, b, and z. Module
ex5 shows ports named i1, i0, and z connected to nets a[1], a[0], and z,
respectively. The first port for module ex6 (the concatenation of nets a and
b) is named i.

Example 3-4 Naming Ports in Modules

module ex4(.in_a(a), .in_b(b), .out(z));
 input a, b;
 output z;
endmodule

module ex5(.i1(a[1]), .i0(a[0]), z);
 input [1:0] a;
 output z;
endmodule

module ex6(.i({a,b}), z);
 input a,b;
 output z;
endmodule

Module Statements and Constructs

FPGA Express recognizes the following Verilog statements and constructs
when they are used in a Verilog module:

n parameter declarations
n wire, wand, wor, tri, supply0, and supply1 declarations
n reg declarations
n input declarations
n output declarations
n inout declarations
n Continuous assignments
n Module instantiations
n Gate instantiations
n Function definitions
n always blocks
n task statements

Data declarations and assignments are described in this section. Module
and gate instantiations are described later in this chapter. Function
definitions, task statements, reg variables, and always blocks are described
in Chapter 5, “Functional Descriptions.”

Structural Data Types

Verilog structural data types include wire, wand, wor, tri, supply0, and
supply1. Although parameter does not fall into the category of structural
data types, it is presented here because it is used with structural data types.

You can define an optional range for all the data types presented in this
section. The range provides a means for creating a bit-vector. The syntax
for a range specification is

[msb : lsb]

Expressions for msb (most significant bit) and lsb (least significant bit)
must be nonnegative constant-valued expressions. Constant-valued
expressions are composed only of constants, Verilog parameters, and
operators.

parameter Definitions
Verilog parameters allow you to customize each instantiation of a module.
By setting different values for the parameter when you instantiate the
module, you can cause different logic to be constructed. For more
information, see “Building Parameterized Designs,” later in this chapter.

A parameter definition represents constant values symbolically. The
definition for a parameter consists of the parameter name and the value
assigned to it. The value can be any constant-valued expression of integer
or Boolean type, but not of type real. If you do not set the size of the
parameter with a range definition or a sized constant, the parameter is
unsized and defaults to a 32-bit quantity. Refer to Appendix C for a
discussion of constant formats.

You can use a parameter wherever a number is allowed, and you can define
a parameter anywhere within a module definition. However, the Verilog
language requires that you define the parameter before you use it.

Example 3–5 shows two parameter declarations. Parameters TRUE and
FALSE are unsized, and have values of 1 and 0, respectively. Parameters
S0, S1, S2, and S3 have values 3, 1, 0, and 2, respectively, and are stored as
2-bit quantities.

Example 3-5 parameter Declarations

parameter TRUE=1, FALSE=0;
parameter [1:0] S0=3, S1=1, S2=0, S3=2;

wire Data Types
A wire data type in a Verilog description represents the physical wires in a
circuit. A wire connects gate-level instantiations and module instantiations.
The Verilog language allows you to read a wire value from within a
function or a begin...end block, but you cannot assign a wire value from
within a function or a begin...end block. (An always block is a specific
type of begin...end block).

A wire does not store its value. It must be driven in one of two ways:
n By connecting the wire to the output of a gate or module.
n By assigning a value to the wire in a continuous assignment.

In the Verilog language, an undriven wire defaults to a value of Z (high
impedance). However, FPGA Express leaves undriven wires unconnected.
Multiple connections or assignments to a wire short the wires together.

In Example 3–6, two wire data types are declared: a and b. a is a single-bit
wire, while b is a 3-bit vector of wires (the most significant bit (MSB) has
an index of 2 and the least significant bit (LSB) has an index of 0.)

Example 3-6 wire Declarations

wire a;
wire [2:0] b;

You can assign a delay value in a wire declaration, and you can use the
Verilog keywords scalared and vectored for simulation. FPGA Express
accepts the syntax of these constructs, but they are ignored when the circuit
is synthesized.

Note: You can use delay information for modeling, but FPGA Express
ignores this delay information. If the functionality of your circuit
depends on the delay information, FPGA Express might create logic with
behavior that does not agree with the behavior of the simulated circuit.

wand Data Types
The wand (wired AND) data type is a specific type of wire data type.

In Example 3–7, two variables drive the variable c. The value of c is
determined by the logical AND of a and b.

Example 3-7 wand (wired AND) Data Types

module wand_test(a, b, c);
 input a, b;
 output c;

 wand c;

 assign c = a;
 assign c = b;
 endmodule

You can assign a delay value in a wand declaration, and you can use the
Verilog keywords scalared and vectored for simulation. FPGA Express
accepts the syntax of these constructs, but they are ignored when the circuit
is synthesized.

wor Data Types
The wor (wired OR) data type is a specific type of wire data type.

In Example 3–8, two variables drive the variable c. The value of c is
determined by the logical OR of a and b.

Example 3-8 wor (wired-OR) Data Types

module wor_test(a, b, c);
 input a, b;
 output c;

 wor c;

 assign c = a;
 assign c = b;
 endmodule

tri Data Types
The tri (three-state) data type is a specific type of wire data type. Only one
of the variables that drive the tri data type can have a non-Z
(high-impedance) value. This single variable determines the value of the tri
data type

Note: FPGA Express does not enforce the above condition. You must
ensure that no more than one variable driving a tri data type has a value
other than Z.

In Example 3-9, three variables drive the variable out.

Example 3-9 tri (Three-State) Data Types

module tri_test (out, condition);
 input [1:0] conditon;
 output out;

 reg a, b, c;
 tri out;

 always @ (condition) begin
 a = 1’bz;// set all variables to Z
 b = 1’bz;
 c = 1’bz;
 case (condition) // set only one variable to
non-Z
 2’b00 : a = 1’b1;
 2’b01 : b = 1’b0;
 2’b10 : c = 1’b1;
 endcase
 end

 assign out = a; // make the tri connection
 assign out = b;
 assign out = c;
endmodule

supply0 / supply1 Data Types
The supply0 and supply1 data types define wires tied to logic 0 (ground)
and logic 1 (power). Using supply0 and supply1 is the same as declaring a
wire and assigning a 0 or a 1 to it. In Example 3–10, power is tied to logic
1 and gnd is tied to logic 0.

Example 3-10 supply0 and supply1 Constructs

supply0 gnd;
supply1 power;

reg Data Types
A reg represents a variable in Verilog. A reg can be a 1-bit quantity or a
vector of bits. For a vector of bits, the range indicates the most significant
bit (MSB) and least significant bit (LSB) of the vector. Both bits must be
nonnegative constants, parameters, or constant-valued expressions.
Example 3–11 shows some reg declarations.

Example 3-11 reg Declarations

reg x;// single bit
reg a,b,c;// 3 1-bit quantities
reg [7:0] q;// an 8-bit vector

Port Declarations

You must explicitly declare the direction (whether input, output, or
bidirectional) of each port that appears in the port list of a port definition.
Use the input, output, and inout statements, as described in the following
sections.

input Declarations
All input ports of a module are declared with an input statement. An input
is a type of wire and is governed by the syntax of wire. You can use a range
specification to declare an input that is a vector of signals, as for input b in
the following example. The input statements can appear in any order in the
description but must be declared before they are used. For example:

input a;
input [2:0] b;

output Declarations
All output ports of a module are declared with an output statement. Unless
otherwise defined by a reg, wand, wor, or tri declaration, an output is a type
of wire and is governed by the syntax of wire. An output statement can
appear in any order in the description, but you must declare it before you
use it.

You can use a range specification to declare an output value that is a vector
of signals. If you use a reg declaration for an output, the reg must have the
same range as the vector of signals. For example:

output a;
output [2:0]b;
reg [2:0] b;

inout Declarations
You can declare bidirectional ports with the inout statement. An inout is a
type of wire and is governed by the syntax of wire. FPGA Express allows
you to connect only inout ports to module or gate instantiations. You must
declare an inout before you use it. For example:

inout a;
inout [2:0]b;

Continuous Assignment

If you want to drive a value onto a wire, wand, wor, or tri, use a continuous
assignment to specify an expression for the wire value. You can specify a
continuous assignment in two ways:

n Use an explicit continuous assignment statement after the wire, wand, wor,
or tri declaration.

n Specify the continuous assignment in the same line as the declaration for a
wire.

Example 3–12 shows two equivalent methods for specifying a continuous
assignment for wire a.

Example 3-12 Two Equivalent Continuous Assignments

wire a; // declare
assign a = b & c; // assign

wire a = b & c; // declare and assign

The left side of a continuous assignment can be
n A wire, wand, wor, or tri.
n One or more bits selected from a vector.
n A concatenation of any of these.

The right side of the continuous assignment statement can be any supported
Verilog operator, or any arbitrary expression that uses previously declared
variables and functions. Note that you cannot assign a value to a reg in a
continuous assignment.

Verilog allows you to assign drive strength for each continuous assignment
statement. FPGA Express accepts drive strength, but it does not affect the
synthesis of the circuit. Keep this in mind when you use drive strength in
your Verilog source.

Assignments are performed bit-wise, with the low bit on the right side
assigned to the low bit on the left side. If the number of bits on the right
side is greater than the number on the left side, the high-order bits on the
right side are discarded. If the number of bits on the left side is greater than
the number on the right side, operands on the right side are zero-extended.

Module Instantiations

Module instantiations are copies of the logic that define component
interconnections in a module.

module_name instance_name1 (terminal1, terminal2),
 instance_name2 (terminal1, terminal2);

A module instantiation consists of the name of the module (module_name),
followed by one or more instantiations. An instantiation consists of an
instantiation name (instance_name) and a connection list. A connection list
is a list of expressions called terminals, separated by commas. These
terminals are connected to the ports of the instantiated module.

Terminals connected to input ports can be any arbitrary expression.
Terminals connected to output and inout ports can be identifiers, single-bit
or multiple-bit slices of an array, or a concatenation of these. The bit
widths for a terminal and its module port must be the same.

If you use an undeclared variable as a terminal, the terminal is implicitly
declared as a scalar (1-bit) wire. After the variable is implicitly declared as
a wire, it can appear wherever a wire is allowed.

Example 3–13 shows the declaration for the module SEQ with two
instances (SEQ_1 and SEQ_2).

Example 3-13 Module Instantiations

module SEQ(BUS0,BUS1,OUT); // description of module SEQ
 input BUS0, BUS1;
 output OUT;
 ...
endmodule

module top(D0, D1, D2, D3, OUT0, OUT1);
 input D0, D1, D2, D3;
 output OUT0, OUT1;

 SEQ SEQ_1(D0,D1,OUT0), // instantiations of module SEQ
 SEQ_2(.OUT(OUT1),.BUS1(D3),.BUS0(D2));
endmodule

Named and Positional Notation

Module instantiations can use either named or positional notation to specify
the terminal connections.

In name-based module instantiation, you explicitly designate which port is
connected to each terminal in the list. Undesignated ports in the module are
unconnected.

In position-based module instantiation, you list the terminals and specify
connections to the module according to the terminal’s position in the list.
The first terminal in the connection list is connected to the first module
port, the second terminal to the second module port, and so on. Omitted
terminals indicate that the corresponding port on the module is
unconnected.

In Example 3-13, SEQ_2 is instantiated with named notation, as follows:
n Signal OUT1 is connected to port OUT of the module SEQ.
n Signal D3 is connected to port BUS1.
n Signal D2 is connected to port BUS0.

SEQ_1 is instantiated by using positional notation, as follows:
n Signal D0 is connected to port BUS0 of module SEQ.
n Signal D1 is connected to port BUS1.
n Signal OUT0 is connected to port OUT.

Building Parameterized Designs

The Verilog language allows you to create parameterized designs by
overriding parameter values in a module during instantiation. In Verilog,
you can do this with the defparam statement or with the following syntax.

module_name #(parameter_value,parameter_value,...)

instance_name
(terminal_list)

FPGA Express does not support the defparam statement but does support
the syntax above.

The module in Example 3-14 contains a parameter declaration.

Example 3-14 parameter Declaration in a Module

module foo (a,b,c);

parameter width = 8;

input [width-1:0] a,b;
output [width-1:0] c;

assign c = a & b;

endmodule

In Example 3–14, the default value of the parameter width is 8, unless you
override the value when the module is instantiated. When you change the
value, you build a different version of your design. This type of design is
called a parameterized design.

FPGA Express reads parameterized designs as templates. These designs
are stored in an intermediate format so that they can be built with different
(nondefault) parameter values when they are instantiated.

If your design contains parameters, you can indicate that the design should
be read in as a template by adding the pseudo comment //synopsys template
to your code.

If you use parameters as constants that never change, do not read in your
design as a template. One way to build a template into your design is by
instantiating it in your Verilog code. Example 3–15 shows how to do this.

Example 3-15 Instantiating a Parameterized Design in your Verilog Code

module param (a,b,c);

input [3:0] a,b;
output [3:0] c;

foo #(4) U1(a,b,c); // instantiate foo

endmodule

Example 3–15 instantiates the parameterized design, foo, which has one
parameter that is assigned the value 4.

Because module foo is defined outside the scope of module param, errors
such as port mismatches and invalid parameter assignments are not
detected until the design is linked. When FPGA Express links module
param, it searches for template foo in memory. If foo is found, it is
automatically built with the specified parameters. FPGA Express checks
that foo has at least one parameter and three ports, and that the bit widths of
the ports in foo match the bit-widths of ports a, b, and c. If template foo is
not found, the link fails.

Templates instantiated with different parameter values are different designs
and require unique names. Three variables control the naming convention
for the templates:

n template_naming_style = “%s_%p”
n template_parameter_style = “%s%d”
n template_separator_style = “_”

The template_naming_style variable is the master variable for renaming a
template. The %s field is replaced by the name of the original design, and
the %p field is replaced by the names of all the parameters.

The template_parameter_style variable determines how each parameter is
named. The %s field is replaced by the parameter name, and the %d field
is replaced by the value of the parameter.

The template_separator_style variable contains a string that separates
parameter names. This variable is used only for templates that contain more
than one parameter.

When a template is renamed, only the parameters you select when you
instantiate the parameterized design are used in the template name. For
example, template ADD contains parameters N, M, and Z. You can build a
design where N = 8, M = 6, and Z is the default value. The name assigned
to this design is ADD_N8_M6. If no parameters are selected, the template
is built with default values, and the name of the created design is the same
as the name of the template.

Gate-Level Modeling

Verilog provides a number of basic logic gates that enable modeling at the
gate level. Gate-level modeling is a special case of positional notation for
module instantiation that uses a set of predefined module names. FPGA
Express supports the following gate types:

n and
n nand
n or
n nor
n xor
n xnor
n buf
n not
n tran

Connection lists for instantiations of a gate-level model use positional
notation. In the connection lists for and, nand, or, nor, xor, and xnor gates,
the first terminal connects to the output of the gate, and the remaining
terminals connect to the inputs of the gate. You can build arbitrarily wide
logic gates with as many inputs as you want.

Connection lists for buf, tran, and not gates also use positional notation.
You can have as many outputs as you want, followed by only one input.
Each terminal in a gate-level instantiation can be a 1-bit expression or
signal.

In gate-level modeling, instance names are optional. Drive strengths and
delays are allowed, but they are ignored by FPGA Express. Example 3–16
shows two gate-level instantiations.

Example 3-16 Gate-Level Instantiations

buf (buf_out,e);
and and4(and_out,a,b,c,d);

Note: Delay options for gate primitives are parsed but ignored by FPGA
Express. Because FPGA Express ignores the delay information, it might
create logic whose behavior does not agree with the simulated behavior of
the circuit. See Chapter 6 for more information.

Three-State Buffer Instantiation

FPGA Express supports the following gate types for instantiation of
three-state gates:

n bufif0 (active low enable line)
n bufif1 (active high enable line)
n notif0 (active low enable line; output inverted)
n notif1 (active high enable line; output inverted)

Connection lists for bufif and notif gates use positional notation. Specify
the order of the terminals as follows:

n The first terminal connects to the output of the gate.
n The second terminal connects to the input of the gate.
n The third terminal connects to the control line.

Example 3–17 shows a three-state gate instantiation with an active high
enable and no inverted output.

Example 3-17 Three-State Gate Instantiation

module three_state (in1,out1,cntrl1);
input in1,cntrl1;
output out1;

bufif1 (out1,in1,cntrl1);

endmodule

Chapter 4
Expressions

In Verilog, expressions consist of a single operand or multiple operands
separated by operators. Use expressions where a value is required in
Verilog.

This chapter explains how to build and use expressions in the following
sections:

n Constant-Valued Expressions
n Operators
n Operands
n Expression Bit Widths

Constant-Valued Expressions

A constant-valued expression is an expression whose operands are either
constants or parameters. FPGA Express determines the value of these
expressions.

In Example 4–1, size-1 is a constant-valued expression. The expression
(op == ADD) ? a+b : a-b is not a constant-valued expression,
because the value depends on the variable op . If the value of op is 1, b is
added to a; otherwise, b is subtracted from a.

Example 4-1 Valid Expressions

// all expressions are constant-valued,
// except in the assign statement.
module add_or_subtract(a, b, op, s);
 // performs s = a+b if op is ADD
 // s = a-b if op is not ADD
parameter size=8;
parameter ADD=1’b1;

 input op;
 input [size-1:0] a, b;
 output [size-1:0] s;
 assign s = (op == ADD) ? a+b : a-b; // not a
constant-
// valued expression
endmodule

The operators and operands used in an expression influence the way a
design is synthesized. FPGA Express evaluates constant-valued
expressions and does not synthesize circuitry to compute their value. If an
expression contains constants, they are propagated to reduce the amount of
circuitry required. FPGA Express does synthesize circuitry for an
expression that contains variables, however.

Operators

Operators represent an operation to be performed on one or two operands to
produce a new value. Most operators are either unary operators that apply
to only one operand, or binary operators that apply to two operands. Two
exceptions are conditional operators, which take three operands and
concatenation operators, which take any number of operands. The Verilog
language operators supported by FPGA Express are listed in Table 4–1. A
description of the operators and their order of precedence is given in the
following sections.

Table 4-1 Verilog Operators Supported by FPGA Express

Operator Description

{ } concatenation

+ - * / arithmetic

% modulus

> >= < <= relational

! logical NOT

In the following descriptions, the terms variable and variable operand refer
to operands or expressions that are not constant-valued expressions. This
group includes wires and registers, bit-selects and part-selects of wires and
registers, function calls, and expressions that contain any of these elements.

Arithmetic Operators

Arithmetic operators perform simple arithmetic on operands. The Verilog
arithmetic operators are

n addition (+)
n subtraction (-)

&& logical AND

| | logical OR

== logical equality

! = logical inequality

~ bit-wise NOT

& bit-wise AND

| bit-wise OR

^ bit-wise XOR

^~ ~^ bit-wise XNOR

& reduction AND

| reduction OR

~ & reduction NAND

~ | reduction NOR

^ reduction XOR

~^ ^~ reduction XNOR

<< left shift

> > right shift

? : conditional

Operator Description

n multiplication (*)
n division (/)
n modulus (%)

You can use the addition (+), subtraction (-), and multiplication (*)
operators with any operand form (constants or variables). The addition (+)
and subtraction (-) operators can be used as either unary or binary
operators. FPGA Express requires that division (/) and modulus (%)
operators have constant-valued operands.

Example 4-2 shows three forms of the addition operator. The circuitry built
for each addition operation is different because of the different operand
types. The first addition requires no logic, the second synthesizes an
incrementer, and the third synthesizes an adder.

Example 4-2 Addition Operator

parameter size=8;
wire [3:0] a,b,c,d,e;

assign c = size + 2; // constant + constant
assign d = a + 1; // variable + constant
assign e = a + b; // variable + variable

Relational Operators

Relational operators compare two quantities and yield a 0 or 1 value. A
true comparison evaluates to 1; a false comparison evaluates to 0 . All
comparisons assume unsigned quantities. The circuitry synthesized for
relational operators is a bit-wise comparator whose size is based on the
sizes of the two operands.

The Verilog relational operators are
n less than (<)
n less than or equal to (<=)
n greater than (>)
n greater than or equal to (>=)

Example 4-3 shows the use of a relational operator.

Example 4-3 Relational Operator

function [7:0] max(a, b);
input [7:0] a,b;
 if (a >= b) max = a;
 else max = b;
endfunction

Equality Operators

Equality operators generate a 0 if the expressions being compared are not
equal and a 1 if the expressions are equal. Equality and inequality
comparisons are performed bit-wise.

The Verilog equality operators are
n equality (==)
n inequality (!=)

Example 4–4 shows the equality operator used to test for a JMP instruction.
The output signal jump is set to 1 if the two high-order bits of
instruction are equal to the value of parameter JMP ; otherwise,
jump is set to 0.

Example 4-4 Equality Operator

module is_jump_instruction (instruction, jump);
 parameter JMP = 2’h3;

 input [7:0] instruction;
 output jump;
 assign jump = (instruction[7:6] == JMP);

endmodule

Handling Comparisons to X or Z

Comparisons to an X or a Z are always ignored. If your code contains a
comparison to an X or a Z, a warning message is displayed indicating that
the comparison is always evaluated to false, which might cause simulation
to disagree with synthesis.

For example, the variable B in the following code (from a file called
test2.v) is always assigned to the value 1, because the comparison to X
is ignored.

Example 4-5 Comparison to X Ignored

always begin
if (A == 1’bx) // this is line 10
B = 0;
else
B = 1;
end

When FPGA Express reads this code, the following warning message is
generated.

Warning:Comparisons to a “don’t care” are treated as
always being false in routine test2 line 10 in file
‘test2.v’. This may cause simulation to disagree with
synthesis. (HDL-170)

For an alternate method of handling comparisons to X or Z, insert the //
synopsys translate_off directive before the comparison and
insert the // synopsys translate_on directive after the
comparison. Inserting these directives might cause simulation to disagree
with synthesis.

Logical Operators

Logical operators generate a 1 or a 0, according to whether an expression
evaluates to true (1) or false (0). The Verilog logical operators are

n logical NOT (!)
n logical AND (&&)
n logical OR (||)

The logical not operator produces a value of 1 if its operand is zero and a
value of 0 if its operand is nonzero. The logical and operator produces a
value of 1 if both operands are nonzero. The logical or operator produces
a value of 1 if either operand is nonzero.

Example 4-6 shows some logical operators.

Example 4-6 Logical Operators

module is_valid_sub_inst(inst,mode,valid,unimp);

 parameter IMMEDIATE=2’b00, DIRECT=2’b01;
 parameter SUBA_imm=8’h80, SUBA_dir=8’h90,
 SUBB_imm=8’hc0, SUBB_dir=8’hd0;
 input [7:0] inst;
 input [1:0] mode;
 output valid, unimp;

 assign valid = (((mode == IMMEDIATE) && (
 (inst == SUBA_imm) ||
 (inst == SUBB_imm))) ||
 ((mode == DIRECT) && (
 (inst == SUBA_dir) ||
 (inst == SUBB_dir))));

 assign unimp = !valid;

endmodule

Bit-Wise Operators

Bit-wise operators act on the operand bit by bit. The Verilog bit-wise
operators are

n unary negation (~)
n binary AND (&)
n binary OR (|)
n binary XOR (^)
n binary XNOR (^~ or ~^)

Example 4-7 shows some bit-wise operators.

Example 4-7 Bit-Wise Operators

module full_adder(a, b, cin, s, cout);
 input a, b, cin;
 output s, cout;

 assign s = a ^ b ^ cin;
 assign cout = (a&b) | (cin & (a|b));
endmodule

Reduction Operators

Reduction operators take one operand and return a single bit. For example,
the reduction and operator takes the and value of all the bits of the
operand and returns a 1-bit result. The Verilog reduction operators are

n reduction AND (&)
n reduction OR (|)
n reduction NAND (~&)
n reduction NOR (~|)
n reduction XOR (^)
n reduction XNOR (^~ or ~^)

Example 4-8 shows the use of some reduction operators.

Example 4-8 Reduction Operators

module check_input (in, parity, all_ones);
 input [7:0] in;
 output parity, all_ones;

 assign parity = ^ in;
 assign all_ones = & in;
endmodule

Shift Operators

The Verilog shift operators are
n shift left (<<)
n shift right (>>)

A shift operator takes two operands and shifts the value of the first operand
right or left by the number of bits given by the second operand.

After the shift, vacated bits are filled with zeros. Shifting by a constant
results in trivial circuitry (because only rewiring is required). Shifting by a
variable causes a general shifter to be synthesized. Example 4-9 shows
how a right-shift operator is used to perform a division by 4.

Example 4-9 Shift Operator

module divide_by_4(dividend, quotient);
 input [7:0] dividend;
 output [7:0] quotient;

 assign quotient = dividend >> 2; // shift right 2
bits
endmodule

Conditional Operators

Conditional operators (? :) evaluate an expression and return a value that
is based on the truth of the expression. Example 4-10 shows how to use
conditional operators. If the expression (op == ADD) evaluates to
true , the value a+b is assigned to result ; otherwise, the value a-b is
assigned to result .

Example 4-10 Conditional Operator

module add_or_subtract(a, b, op, result);

 parameter ADD=1’b0;
 input [7:0] a, b;
 input op;
 output [7:0] result;

 assign result = (op == ADD) ? a+b : a-b;
endmodule

Conditional operators can be nested to produce an if . . . else if
construct. Example 4-11 shows the conditional operators ? : used to
evaluate the value of op successively and perform the correct operation.

Example 4-11 Nested Conditional Operator

module arithmetic(a, b, op, result);

 parameter ADD=3’h0,SUB=3’h1,AND=3’h2,
 OR=3’h3, XOR=3’h4;

 input [7:0] a,b;
 input [2:0] op;
 output [7:0] result;

 assign result = ((op == ADD) ? a+b : (
 (op == SUB) ? a-b : (
 (op == AND) ? a&b : (
 (op == OR) ? a|b : (
 (op == XOR) ? a^b : (a))))));
endmodule

Concatenations

Concatenation combines one or more expressions to form a larger vector.
In the Verilog language, you indicate concatenation by listing all
expressions to be concatenated, separated by commas, in curly braces ({}).
Any expression except an unsized constant is allowed in a concatenation.
For example, the concatenation {1’b1,1’b0,1’b0} yields the value
3’b100 .

You can also use a constant-valued repetition multiplier to repeat the
concatenation of an expression. The concatenation {1’b1,1’b0,1’b0}
can also be written as {1’b1,{2{1’b0}}} to yield 3’b100 . The
expression {2{expr}}within the concatenation repeats expr two times.

Example 4-12 shows a concatenation that forms the value of a
condition-code register.

Example 4-12 Concatenation Operator

output [7:0] ccr;
wire half_carry, interrupt, negative, zero,
 overflow, carry;
...
assign ccr = { 2’b00, half_carry, interrupt,
 negative, zero, overflow, carry };

Example 4-13 shows an equivalent description for the concatenation.

Example 4-13 Concatenation Equivalent

output [7:0] ccr;
...
assign ccr[7] = 1’b0;
assign ccr[6] = 1’b0;
assign ccr[5] = half_carry;
assign ccr[4] = interrupt;
assign ccr[3] = negative;
assign ccr[2] = zero;
assign ccr[1] = overflow;
assign ccr[0] = carry;

Operator Precedence

Table 4-2 lists the precedence of all operators, from highest to lowest. All
operators at the same level in the table are evaluated from left to right,
except the conditional operator (?:), which is evaluated from right to left.

Table 4-2 Operator Precedence

Operands

The following kinds of operands can be used in an expression:
n Numbers
n Wires and registers
n Bit-selects
n Part-selects
n Function calls

Operator Description

[] bit-select or part-select

() parentheses

!, ~ logical and bit-wise
negation

&, |, ~&, ~|, ^, ~^, ^~ reduction operators

 +, - unary arithmetic

{ } concatenation

*, /, % arithmetic

+, - arithmetic

<<, >> shift

>, >= , <, <= relational

==, != logical equality

& bit-wise AND

^, ^~ , ~^ bit-wise XOR and XNOR

| bit-wise OR

& & logical AND

| | logical OR

? : conditional

Each of these operands is explained in the following subsections.

Numbers

A number is either a constant value or a value specified as a parameter.
The expression size-1 in Example 4-1 illustrates how you can use both a
parameter and a constant in an expression.

You can define constants as sized or unsized, in binary, octal, decimal, or
hexadecimal bases. The default size of an unsized constant is 32 bits.
Refer to Appendix C for a discussion of the format for numbers.

Wires and Registers

Variables that represent both wires and registers are allowed in an
expression. (Wires are described in the section “Module Statements and
Constructs” in Chapter 3. Registers are described in “Function
Declarations” in Chapter 5.) If the variable is a multibit vector, and you use
only the name of the variable, the entire vector is used in the expression.
Bit-selects and part-selects allow you to select single or multiple bits,
respectively, from a vector. These are described in the next two sections.

In the Verilog fragment shown in Example 4-14, a, b, and c are 8-bit
vectors of wires. Because only the variable names appear in the expression,
the entire vector of each wire is used in evaluating the expression.

Example 4-14 Wire Operands

wire [7:0] a,b,c;
assign c = a & b;

Bit-Selects
A bit-select is the selection of a single bit from a wire , register , or
parameter vector. The value of the expression in brackets ([]) selects
the bit you want from the vector. The selected bit must be within the
declared range of the vector. Example 4-15 shows a simple example of a
bit-select with an expression.

Example 4-15 Bit-Select Operands

wire [7:0] a,b,c;
assign c[0] = a[0] & b[0];

Part-Selects

A part-select is the selection of a group of bits from a wire , register ,
or parameter vector. The part-select expression must be
constant-valued in the Verilog language, unlike the bit-select operator. If a
variable is declared with ascending indices or descending indices, the
part-select (when applied to that variable) must be in the same order.

The expression in Example 4-14 can also be written (with descending
indices) as shown in Example 4-16.

Example 4-16 Part-Select Operands

assign c[7:0] = a[7:0] & b[7:0]

Function Calls

Verilog allows you to call one function from inside an expression and use
the return value from the called function as an operand. Functions in
Verilog return a value consisting of one or more bits. The syntax of a
function call is the function name followed by a comma-separated list of
function inputs enclosed in parentheses. Example 4-17 shows the function
call legal used in an expression.

Example 4-17 Function Call Used as an Operand

assign error = ! legal(in1, in2);

Functions are described in Chapter 5, ‘‘Functional Descriptions.“

Concatenation of Operands

Concatenation is the process of combining several single-bit or multiple-bit
operands into one large bit vector. The use of the concatenation operators,
a pair of braces ({}), is described in the section ‘‘Concatenations“ earlier in
this chapter.

Example 4-18 shows two 4-bit vectors (nibble1 and nibble2) that are
joined to form an 8-bit vector that is assigned to an 8-bit wire vector
(byte).

Example 4-18 Concatenation of Operands

wire [7:0] byte;
wire [3:0] nibble1, nibble2;
assign byte = {nibble1,nibble2};

Expression Bit Widths

The bit width of an expression depends on the widths of the operands and
the types of operators in the expression.

Table 4-3 shows the bit width for each operand and operator. In the table, i,
j, and k are expressions; L(i) is the bit width of expression i.

To preserve significant bits within an expression, Verilog fills in zeros for
smaller-width operands. The rules for this zero-extension depend on the
operand type. These rules are also listed in Table 4-3.

Table 4-3 Expression Bit-Widths

Expression Bit Length Comments

unsized constant 32-bit self-determined

sized constant as specified self-determined

i + j max(L(i),L(j)) context-determined

i - j max(L(i),L(j)) context-determined

i * j max(L(i),L(j)) context-determined

i / j max(L(i),L(j)) context-determined

i % j max(L(i),L(j)) context-determined

i & j max(L(i),L(j)) context-determined

i | j max(L(i),L(j)) context-determined

i ^ j max(L(i),L(j)) context-determined

i ^~ j max(L(i),L(j)) context-determined

~i L(i) context-determined

i == j 1-bit self-determined

i !== j 1-bit self-determined

i && j 1-bit self-determined

i || j 1-bit self-determined

i > j 1-bit self-determined

i >= j 1-bit self-determined

Verilog classifies expressions (and operands) as either self-determined or
context-determined. A self-determined expression is one in which the
width of the operands is determined solely by the expression itself. These
operand widths are never extended.

Example 4-19 shows a self-determined expression that is a concatenation of
variables with known widths.

Example 4-19 Self-Determined Expression

output [7:0] result;
wire [3:0] temp;

assign temp = 4’b1111;
assign result = {temp,temp};

The concatenation has two operands. Each operand has a width of four bits
and a value of 4’b1111 . The resulting width of the concatenation is eight
bits, which is the sum of the width of the operands. The value of the
concatenation is 8’b11111111 .

i < j 1-bit self-determined

i <= j 1-bit self-determined

&i 1-bit self-determined

|i 1-bit self-determined

^i 1-bit self-determined

~&i 1-bit self-determined

~|i 1-bit self-determined

~^i 1-bit self-determined

i >> j L(i) j is self-determined

{i{j}} i*L(j) j is self-determined

i << j L(i) j is self-determined

i ? j : k Max(L(j),L(k)) j is self-determined

{i,...,j} L(i)+...+L(j) self-determined

{i {j,...,k}} /*(L(j)+...+L(k)) self-determined

Expression Bit Length Comments

A context-determined expression is one in which the width of the
expression depends on all operand widths in the expression. For example,
Verilog defines the resulting width of an addition as the greater of the
widths of its two operands. The addition of two 8-bit quantities produces
an 8-bit value; however, if the result of the addition is assigned to a 9-bit
quantity, the addition produces a 9-bit result. Because the addition
operands are context-determined, they are zero-extended to the width of the
largest quantity in the entire expression.

Example 4-20 shows context-determined expressions.

Example 4-20 Context-Determined Expressions

if (((1’b1 << 15) >> 15) == 1’b0)
 // This expression is ALWAYS true.

if ((((1’b1 << 15) >> 15) | 20’b0) == 1’b0)
 // This expression is NEVER true.

The expression ((1’b1 << 15) >> 15) produces a one-bit 0 value
(1’b0) . The 1 is shifted off the left end of the vector, producing a value
of 0. The right shift has no additional effect. For a shift operator, the first
operand (1’b1) is context-dependent; the second operand (15) is
self-determined.

The expression (((1’b1 << 15) >> 15) | 20’b0) produces a
20-bit 1 value (20’b1) . 20’b1 has a 1 in the least significant bit
position and 0s in the other 19 bit positions. Because the largest operand
within the expression has a width of 20, the first operand of the shift is
zero-extended to a 20-bit value. The left shift of 15 does not drop the 1
value off the left end; the right shift brings the 1 value back to the right end,
resulting in a 20-bit 1 value (20’b1) .

Chapter 5
Functional Descriptions

A Verilog circuit description can be one of two types: a structural
description or a functional description, also referred to as a Register
Transfer Level (RTL) description. A structural description explains the
exact physical makeup of the circuit, detailing components and the
connections between them. A functional or RTL description describes a
circuit in terms of its registers and the combinational logic between the
registers.

This chapter describes the construction and use of functional descriptions in
the following sections:

n Using Sequential Constructs
n function Declarations
n Function Statements
n task Statements
n always Blocks

Using Sequential Constructs

Although many Verilog constructs appear sequential in nature, they
describe combinational circuitry. A simple description that appears to be
sequential is shown in Example 5-1.

Example 5-1 Sequential Statements

x = b;
if (y)
x = x + a;

FPGA Express determines the combinational equivalent of this description.
In fact, FPGA Express treats the statements in Example 5-1 the same way it
treats the statements in Example 5-2.

Example 5-2 Equivalent Combinational Description

if (y)
x = b + a;
else
x = b;

To describe combinational logic, you write a sequence of statements and
operators to generate the output values you want. For example, suppose the
+ operator is not supported, and you want to create a combinational,
ripple-carry adder. The easiest way to describe this circuit is as a cascade
of full adders, as in Example 5-3. The example has eight full adders, with
each adder following the one before. From this description, FPGA Express
generates a fully combinational adder.

Example 5-3 Combinational Ripple-Carry Adder

function [7:0] adder;
input [7:0] a, b;
 reg c;
 integer i;
 begin
 c = 0;
 for (i = 0; i <= 7; i = i + 1) begin
 adder[i] = a[i] ^ b[i] ^ c;
 c = a[i] & b[i] | a[i] & c | b[i] & c;
 end
 end
endfunction

function Declarations

Verilog function declarations are one of the two primary methods for
describing combinational logic. The other method is the always block,
described later in this chapter. You must declare and use Verilog functions
within a module. You can call functions from the structural part of a
Verilog description by using them in a continuous assignment statement or
as a terminal in a module instantiation. You can also call functions from
other functions or from always blocks.

FPGA Express supports the following Verilog function declarations:
n input declarations
n reg declarations
n memory declarations
n parameter declarations
n integer declarations

Functions begin with the keyword function and end with the keyword
endfunction . The width of the function’s return value (if any) and the
name of the function follow the function keyword, as shown in the
syntax below.

function [range] name_of_function ;
 [func_declaration]*
 statement_or_null
endfunction

Defining the bit range of the return value is optional. Specify range
inside square brackets ([]). If you do not define range, a 1-bit quantity is
returned by default. The function’s output is set by assigning it to the
function name. A function can contain one or more statements. If you use
multiple statements, enclose the statements between a begin...end
pair.

A simple function declaration is shown in Example 5-4.

Example 5-4 Simple Function Declaration

function [7:0] scramble;
input [7:0] a;
input [2:0] control;
integer i;
 begin
 for (i = 0; i <= 7; i = i + 1)
 scramble[i] = a[i ^ control];
 end
endfunction

Function statements supported by FPGA Express are discussed under
“Function Statements” later in this chapter.

input Declarations

Verilog input declarations specify the input signals for a function.

You must declare the inputs to a Verilog function immediately after you
declare the function name. The syntax of input declarations for a
function is the same as the syntax of input declarations for a module, as
shown below.

input [range] list_of_variables ;

The optional range specification declares an input as a vector of signals.
Specify range inside square brackets ([]).

Note: The order in which you declare the inputs must match the order of
the inputs in the function call.

Function Output

The output from a function is assigned to the function name. A Verilog
function has only one output, which can be a vector. For multiple outputs
from a function, use the concatenation operation to bundle several values
into one return value. This single return value can then be unbundled by
the caller. Example 5-5 shows how unbundling is done.

Example 5-5 Many Outputs from a Function

function [9:0] signed_add;
input [7:0] a, b;
 reg [7:0] sum;
 reg carry, overflow;

 begin
 ...
 signed_add = {carry, overflow, sum};
 end
endfunction
...
assign {C, V, result_bus} = signed_add(busA, busB);

The signed_add function bundles the values of carry , overflow ,
and sum into one value. This new value is returned in the assign
statement following the function. The original values are then unbundled
by the function that called the signed_add function.

reg Declarations

A register represents a variable in Verilog. The syntax for a register
declaration is

reg [range] list_of_register_variables ;

A reg declaration can be a single-bit quantity or a vector of bits. The
range parameter specifies the most significant bit (msb) and least
significant bit (lsb) of the vector. Both must be nonnegative constants,
parameters, or constant-valued expressions, and are enclosed in square
brackets ([]). Example 5-6 shows some reg declarations.

Example 5-6 Register Declarations

reg x; /* single bit */
reg a, b, c; /* 3 single-bit quantities */
reg [7:0] q; /* an 8-bit vector */

The Verilog language allows you to assign a value to a reg variable only
within a function or an always block.

In the Verilog simulator, reg variables can hold state information. A reg
variable can hold its value across separate calls to a function. In some
cases, FPGA Express emulates this behavior by inserting flow-through
latches. In other cases, this behavior is emulated without a latch. The
concept of holding state is elaborated in Chapter 6 and in several examples
in Appendix A.

Memory Declarations

The memory construct models a bank of registers or memory. In Verilog,
the memory construct is actually a two-dimensional array of reg variables.
Sample memory declarations are shown in Example 5-7.

Example 5-7 Memory Declarations

reg [7:0] byte_reg;
reg [7:0] mem_block [255:0];

In Example 5-7, byte_reg is an 8-bit register and mem_block is an
array of 256 registers, each of which is eight bits wide. You can index the
array of registers to access individual registers, but you cannot access

individual bits of a register directly. Instead, you must copy the appropriate
register into a temporary one-dimensional register. For example, to access
the fourth bit of the eighth register in mem_block , enter

byte_reg = mem_block [7];
individual_bit = byte_reg [3];

parameter Declarations

Parameter variables are local or global variables that hold values. The
syntax for a parameter declaration is

parameter [range] identifier = expression,
identifier = expression;

The range specification is optional.

You can declare parameter variables as local to a function. However, you
cannot use a local variable outside of that function. Parameter declarations
in a function are identical to parameter declarations in a module. (See
Chapter 3 for more information.) The function in Example 5-8 contains a
parameter declaration.

Example 5-8 Parameter Declaration in a Function

function gte;
parameter width = 8;
input [width-1:0] a,b;
gte = (a >= b);
endfunction

integer Declarations

Integer variables are local or global variables that hold numeric values.
The syntax for an integer declaration is

integer identifier_list;

You can declare integer variables locally at the function level or
globally at the module level. The default size for integer variables is
32 bits. FPGA Express determines bit widths, except in the case of a
dont-care resulting from a compile.

Example 5-9 illustrates integer declarations.

Example 5-9 Integer Declarations

integer a; /* single 32 bit integer */
integer b, c; /* two integers */

Function Statements

The function statements supported by FPGA Express are
n Procedural assignments
n RTL assignments
n begin . . . end block statements
n if. . . else statements
n case , casex , and casez statements
n for loops
n while loops
n forever loops
n disable statements

Procedural Assignments

Procedural assignments are assignment statements used inside a function.
They are similar to the continuous assignment statements described in
Chapter 3, “Module Statements and Constructs”, except that the left side of
a procedural assignment can contain only reg variables and integers.
Assignment statements set the value of the left side to the current value of
the right side. The right side of the assignment can contain any arbitrary
expression of the data types described in Chapter 3, including simple
constants and variables.

The left side of the procedural assignment statement can contain only the
following data types:

n reg variables
n Bit-selects of reg variables
n Part-selects of reg variables
n Integers
n Concatenations of the above

The expressions in the part-select of a left side must be constant-valued.

Assignments are made bit-wise, with the low bit on the right side assigned
to the low bit on the left side. If the number of bits on the right side is
greater than the number on the left side, the high-order bits on the right side
are discarded. If the number of bits on the left side is greater than the
number on the right side, the right side bits are zero-extended. Multiple
procedural assignments are allowed.

Some examples of procedural assignments are shown in Example 5-10.

Example 5-10 Procedural Assignments

sum = a + b;
control[5] = (instruction == 8’h2e);
{carry_in, a[7:0]} = 9’h 120;

RTL Assignments

Procedural assignments in Verilog can be blocking in nature. For example,
you can assign a delay of five time units with the following statement.

rega = #5 arg1 + arg2;

The expression, arg1 + arg2 is evaluated, then execution is suspended for
five time units before the assignment is performed and the next statement is
processed. Execution of the next statement is blocked until the current
statement’s execution is completed.

On the other hand, RTL assignments let you define nonblocking procedural
assignments with timing controls. If you use a nonblocking RTL
assignment statement instead of the procedural assignment, the sum is
computed immediately, but the assignment is done after the five time-unit
delay.

rega <= #5 arg1 + arg2;

However, execution proceeds without waiting for the assignment to finish.
FPGA Express ignores intra-assignment and interassignment delays;
therefore, the RTL assignment behaves like the blocking procedural
assignment in this case.

To illustrate the difference in behavior between RTL assignments and
blocking procedural assignments, consider Example 5-11 and Example
5-12, where there are multiple assignments.

Example 5-11 RTL Assignments

always @(posedge clk) begin
regc <= data;
regd <= regc;
end

Figure 5-1 Schematic of RTL Assignments

Example 5-11 is a description of a serial register implemented with RTL
assignments. The recently assigned value of regc , which is data, is
assigned to regd as the schematic indicates. If blocking assignments are
used, as in Figure 5-2, a serial register is not synthesized, because
assignments are executed before proceeding.

Example 5-12 Blocking Assignment

always @(posedge clk) begin
 rega = data;
 regb = rega;
end

Figure 5-2 Schematic of Blocking Assignment

The following restrictions apply to RTL assignments:
n •You cannot use procedural assignments with blocking delays and RTL

assignments at the same time. The following example is not allowed.

reg b,c;

always begin
b <= #4a; // RTL assignment
c = #3b; // procedure assignment with
// blocking delay
end

n Because FPGA Express ignores delay information, synthesis might not
agree with simulation.

n If you first assign a value to a reg variable with a procedural assignment,
you cannot use an RTL assignment on that reg anywhere in the module.

n If you first assign a value to a reg variable with an RTL assignment, you
cannot use a procedural assignment on that reg anywhere in the module.

begin . . . end Block Statements

Block statements are a way of syntactically grouping several statements
into a single statement.

In Verilog, sequential blocks are delimited by the keywords begin and
end . These begin...end blocks are commonly used in conjunction
with if , case , and for statements to group several statements together.
Functions and always blocks that contain more than one statement
require a begin...end block to group the statements. Verilog also
provides a construct called a named block, as shown in Example 5-13.

Example 5-13 Block Statement with a Named Block

begin : block_name
 reg local_variable_1;
integer local_variable_2;
parameter local_variable_3;
 ... statements ...
end

In Verilog, no semicolon (;) follows the begin or end keywords. You
identify named blocks by following the begin keyword with a colon (:)
and a block_name, as shown. Verilog syntax allows you to declare
variables locally in a named block. You can include reg , integer , and
parameter declarations within a named block, but not in an unnamed
block. Named blocks allow you to use the disable statement.

if . . . else Statements

if...else statements execute a block of statements according to the
value of one or more expressions.

The syntax of an if...else statement is

if (e xpr)
 begin
 ... statements ...
 end
else
 begin
 ... statements ...
 end

The if statement consists of the keyword if , followed by an expression
enclosed in parentheses. This expression is followed by a statement or
block of statements enclosed with the begin and end keywords. If the
value of the expression is nonzero, it is true , and the statement block that
follows is executed. If the value of the expression is zero, it is false , and
the statement block that follows is not executed.

An optional else statement can follow an if statement. If the
expression following the if keyword is false , the statement or block
of statements following the else keyword is executed.

The if...else statement can cause registers to be synthesized.
Registers are synthesized when you do not assign a value to the same reg
variable in all branches of a conditional construct. Information on registers
is provided in Chapter 6.

FPGA Express synthesizes multiplexer logic (or similar select logic) from a
single if statement. The conditional expression in an if statement is
synthesized as a control signal to a multiplexer, which determines the
appropriate path through the multiplexer. For example, the statements in
Example 5-14 create multiplexer logic controlled by c and places either a
or b in the variable x .

Example 5-14 if Statement that Synthesizes Multiplexer Logic

if (c)
x = a;
else
x = b;

Example 5-15 illustrates how if and else can be used to create an
arbitrarily long if...else if...else structure.

Example 5-15 if . . . else if . . . else Structure

if (instruction == ADD)
 begin
 carry_in = 0;
 complement_arg = 0;
 end
else if (instruction == SUB)
 begin
 carry_in = 1;
 complement_arg = 1;
 end
else
 illegal_instruction = 1;

Example 5-16 shows how to use nested if and else statements.

Example 5-16 Nested if and else Statements

if (select[1])
 begin
 if (select[0]) out = in[3];
 else out = in[2];
 end
else
 begin
 if (select[0]) out = in[1];
 else out = in[0];
 end

Conditional Assignments

FPGA Express can synthesize a latch for a conditionally assigned variable.
If a path exists that does not explicitly assign a value to a variable, the
variable is conditionally assigned. See the section on “Latch Inference” in
Chapter 6 for more information.

In Example 5-17, the variable value is conditionally driven. If c is not
true , value is not assigned and retains its previous value.

Example 5-17 Synthesizing a Latch for a Conditionally Driven Variable

always begin
if (c) begin
value = x;
end
Y = value; //causes a latch to be synthesized for
value
end

case Statements

The case statement is similar in function to the if...else...
conditional statement. The case statement allows a multipath branch in
logic that is based on the value of an expression. One way to describe a
multicycle circuit is with a case statement (see Example 5-18). Another
way is with multiple @ (clock-edge) statements, which are discussed later in
this section.

The syntax for a case statement is shown below.

case (expr)
 case_item1 : begin

 ... statements ...

 end
 case_item2 : begin

 ... statements ...

 end
 default : begin

 ... statements ...
 end
endcase

The case statement consists of the keyword case , followed by an
expression in parentheses, followed by one or more case-items (and
associated statements to be executed), followed by the keyword endcase .
A case-item consists of an expression (usually a simple constant) or a list of
expressions separated by commas, followed by a colon (:).

The expression following the case keyword is compared against each
case-item expression, one by one. When the expressions are equal, the
condition evaluates to true . Multiple expressions separated by commas
can be used in each case-item. When multiple expressions are used, the
condition is said to be true if any of the expressions in the case-item
match the expression following the case keyword.

The first case-item that evaluates to true determines the path. All
subsequent case-items are ignored, even if they are true . If no case-item
is true , no action is taken. You can define a default case-item with the
expression default , which is used when no other case-item is true .

An example of a case statement is shown in Example 5-18.

Example 5-18 case Statement

case (state)
 IDLE: begin
 if (start)
 next_state = STEP1;
 else
 next_state = IDLE;
 end
 STEP1: begin
 /* do first state processing here */
 next_state = STEP2;
 end
 STEP2: begin
 /* do second state processing here */
 next_state = IDLE;
 end
endcase

Full Case and Parallel Case

FPGA Express automatically determines whether a case statement is
full or parallel. A case statement is referred to asfull case if all possible
branches are specified. If you do not specify all possible branches, but you
know that one or more branches can never occur, you can declare a case
statement as full case with the // synopsys full_case directive.
Otherwise, FPGA Express synthesizes a latch. See “ full_case Directive”
in Chapter 9 for more information.

FPGA Express synthesizes optimal logic for the control signals of a case
statement. If FPGA Express cannot statically determine that branches are
parallel, it synthesizes hardware that includes a priority encoder. If FPGA
Express can determine that no cases overlap (parallel case), a multiplexer
is synthesized, because a priority encoder is not necessary. You can also
declare a case statement as parallel case with the //synopsys
parallel_case directive. Refer to the section “parallel_case
Directive” in Chapter 9.

Example 5-19 does not result in either a latch or a priority encoder.

Example 5-19 A case Statement that is Both Full and Parallel

input [1:0] a;
always @(a or w or x or y or z) begin
case (a)
2’b11:
 b = w ;
2’b10:
 b = x ;
2’b01:
 b = y ;
2’b00:
 b = z ;
endcase
end

Example 5-20 shows a case statement that is missing branches for the cases
2’b01 and 2’b10. Example 5-20 infers a latch for b.

Example 5-20 A case Statement that is Parallel but Not Full

input [1:0] a;
always @(a or w or z) begin
case (a)
2’b11:
 b = w ;
2’00:
 b = z ;
endcase
end

The case statement in Example 5-21 is not parallel or full because the
input values of w and x cannot be determined. However, if you know
that only one of the inputs equals 2’b11 at a given time, you can use the
// synopsys parallel_case directive to avoid synthesizing a
priority encoder. If you know that either w or x always equals 2’b11
(a situation known as a one-branch tree), you can use the // synopsys
full_case directive to avoid synthesizing a latch.

Example 5-21 A case Statement that is Not Full or Parallel

always @(w or x) begin
case (2’b11)
w:
b = 10 ;
x:
 b = 01 ;
endcase
end

casex Statements

The casex statement is a type of case statement. The casex
statement allows a multipath branch in logic according to the value of an
expression, just like the case statement. The differences between the
case statement and the casex statement are the keyword and the
processing of the expressions.

The syntax for a casex statement is shown below.

casex (expr)
 case_item1 : begin
 ... statements ...
 end
 case_item2 : begin
 ... statements ...
 end
 default : begin
 ... statements ...
 end
endcase

A case-item can have expressions consisting of
n A simple constant
n A list of identifiers or expressions separated by commas, followed by a

colon (:)
n Concatenated, bit-selected, or part-selected expressions
n A constant containing z, x, or ?

When a z, x, or ? appears in a case-item expression, it means that the
corresponding bit of the casex expression is not compared. For example:

Example 5-22 casex Statement with x

reg [3:0] cond;
casex (cond)
 4’b100x: out = 1;
 default: out = 0;
endcase

In Example 5-22, out is set to 1 if cond is equal to 4’b1000 or
4’b1001 , because the last bit of cond is defined as x .

Example 5-23 shows a complicated section of code that can be simplified
with a casex statement that uses the ? value.

Example 5-23 Before Using casex with ?

if (cond[3]) out = 0;
else if (!cond[3] & cond[2]) out = 1;
else if (!cond[3] & !cond[2] & cond[1]) out = 2;
else if (!cond[3] & !cond[2] & !cond[1] & cond[0])
out = 3;
else if (!cond[3] & !cond[2] & !cond[1] & !cond[0])
out = 4;

Example 5-24 shows the simplified version of the same code.

Example 5-24 After Using casex with ?

casex (cond)
 4’b1???: out = 0;
 4’b01??: out = 1;
 4’b001?: out = 2;
 4’b0001: out = 3;
4’b0000: out = 4;
endcase

?, z , and x bits are allowed in case-item expressions, but are not
allowed in casex expressions. Example 5-25 shows comparison in an
illegal expression.

Example 5-25 Illegal casex Expression

express = 3’bxz?;
 ...
casex (express) /* illegal testing of an expression
*/
 ...
endcase

casez Statements

The casez statement is a type of case statement. The casez
statement allows a multipath branch in logic according to the value of an
expression, just like the case statement. The differences between the
case statement and the casez statement are the keyword and the way
the expressions are processed. The casez statement acts exactly the same
as the casex statement, except that x is not allowed in case-item
expressions. Only z and ? are accepted as special characters.

The syntax for a casez statement is shown below.

casez (expr)
 case_item1 : begin
 ... statements ...
 end
 case_item2 : begin
 ... statements ...
 end
default : begin
 ... statements ...
 end
endcase

A case-item can have expressions consisting of
n A simple constant
n A list of identifiers or expressions separated by commas, followed by a

colon (:)
n Concatenated, bit-selected, or part-selected expressions
n A constant containing a z or ?
n When a casez statement is evaluated, the value z in the case-item

expression is ignored. An example of a casez statement with z in the
case-item is shown in Example 5-26.

Example 5-26 casez Statement with z

casez (what_is_it)
 2’bz0: begin
 /* accept anything with least significant bit
zero */
 it_is = even;
 end
 2’bz1: begin
 /* accept anything with least significant bit
one */
 it_is = odd;
 end
endcase

? and z bits are allowed in case-items, but are not allowed in casez
expressions. Example 5-27 shows an illegal expression in a casez
statement.

Example 5-27 Illegal casez Expression

express = 1’bz;
 ...
casez (express) /* illegal testing of an expression
*/
 ...
endcase

for Loops

The for loop repeatedly executes a single statement or block of
statements. The repetitions are performed over a range determined by the
range expressions assigned to an index. Two range expressions are used in
each for loop: low_range and high_range . Note that in the
syntax lines that follow, high_range is greater than or equal to low_
range . FPGA Express recognizes both incrementing and decrementing
loops. The statement to be duplicated is surrounded by begin and end
statements.

Note: FPGA Express allows four syntax forms for a for loop. They are

for (index= low_range;index < high_range;index= index
+ step)
for (index= high_range;index > low_range;index= index
- step)
for (index= low_range;index <= high_range;index=
index + step)
for (index= high_range;index >= low_range;index=
index - step)

Example 5-28 shows a simple for loop.

Example 5-28 A Simple for Loop

for (i = 0; i <= 31; i = i + 1) begin
 s[i] = a[i] ^ b[i] ^ carry;
 carry = a[i] & b[i] | a[i] & carry |
 b[i] & carry;
end

Note that for loops can be nested, as shown in Example 5-29.

Example 5-29 Nested for Loops

for (i = 6; i >= 0; i = i - 1)
 for (j = 0; j <= i; j = j + 1)
 if (value[j] > value[j+1]) begin
 temp = value[j+1];
 value[j+1] = value[j];
 value[j] = temp;
 end

You can use for loops as duplicating statements. Example 5-30 shows a for
loop that is expanded into its longhand equivalent in Example 5-31.

Example 5-30 Example for Loop

for (i=0; i < 8; i=i+1)
 example[i] = a[i] & b[7-i];

Example 5-31 Expanded for Loop

example[0] = a[0] & b[7];
example[1] = a[1] & b[6];
example[2] = a[2] & b[5];
example[3] = a[3] & b[4];
example[4] = a[4] & b[3];
example[5] = a[5] & b[2];
example[6] = a[6] & b[1];
example[7] = a[7] & b[0];

while Loops

The while loop executes a statement until the controlling expression
evaluates to false . A while loop creates a conditional branch that
must be broken by one of the following statements to prevent
combinational feedback

@ (posedge clock) or @ (negedge clock)

FPGA Express supports while loops, if you insert one of the following
expressions in every path through the loop

@ (posedge clock) or @ (negedge clock)

Example 5-32 shows an unsupported while loop that has no
event-expression.

Example 5-32 Unsupported while Loop

always
while (x < y)
x = x + z;

If you add @ (posedge clock) expressions after the while loop in Example
5-32, you get the supported version shown in Example 5-33.

Example 5-33 Supported while Loop

always
begin @ (posedge clock)
while (x < y)
begin
@ (posedge clock);
x = x + z;
end
end;

forever Loops

Infinite loops in Verilog use the keyword forever . You must break up
an infinite loop with an @ (posedge clock) or @ (negedge
clock) expression to prevent combinational feedback, as shown in
Example 5-34.

Example 5-34 Supported forever Loop

always
forever
begin
@ (posedge clock);
x = x + z;
end

You can use forever loops with a disable statement to implement
synchronous resets for flip-flops. The disable statement is described in the
next section. See Chapter 6, “Register and Three-State Inference,” for
more information on synchronous resets.

The style illustrated in Example 5-34 is not recommended because it is not
testable. The synthesized state machine does not reset to a known state.
Therefore, it is impossible to create a test program for the state machine.
Example 5-36 illustrates how a synchronous reset for the state machine can
be synthesized.

disable Statements

FPGA Express supports the disable statement when you use it in
named blocks. When a disable statement is executed, it causes the
named block to terminate. A comparator description that uses disable
is shown in Example 5-35.

Example 5-35 Comparator Using disable

begin : compare
for (i = 7; i >= 0; i = i - 1) begin
 if (a[i] != b[i]) begin
 greater_than = a[i];
 less_than = ~a[i];
 equal_to = 0;
 /* comparison is done so stop looping */
 disable compare;
 end
end

/* If we get here a == b
If the disable statement is executed, the next three
 lines will not be executed */
 greater_than = 0;
 less_than = 0;
 equal_to = 1;
end

Note that Example 5-35 describes a combinational comparator. Although
the description appears sequential, the generated logic runs in a single clock
cycle.

You can also use a disable statement to implement a synchronous
reset, as shown in Example 5-36.

Example 5-36 Synchronous Reset of State Register Using disable in a forever Loop

always
forever
begin: reset_label
@ (posedge clock);
if (reset) disable reset_label;
z = a;

@ (posedge clock);
if (reset) disable reset_label;
z = b;
end

The disable statement in Example 5-36 causes the block reset_
label to immediately terminate and return to the beginning of the block.
Therefore, the first state in the loop is synthesized as the reset state.

task Statements

The task statements are similar to functions in Verilog, except they can
have output and inout ports. You can use the task statement to
structure your Verilog code so that a portion of code can be reused.

In Verilog, task statements can have timing controls, and they can take a
nonzero time to return. However, FPGA Express ignores all timing
controls, so synthesis might disagree with simulation if the timing controls
are critical to the function of the circuit.

Example 5–37 shows how a task construct is used to define an adder
function.

Example 5-37 Using the task Statement

module task_example (a,b,c);
input [7:0] a,b;
output [7:0] c;
reg [7:0] c;

task adder;
input [7:0] a,b;
output [7:0] adder;
reg c;
integer i;

begin
c = 0;
for (i = 0; i <= 7; i = i+1) begin
adder[i] = a[i] ^ b[i] ^ c;
c = (a[i] & b[i]) | (a[i] & c) | (b[i] & c);
end
end
endtask
always
adder (a,b,c); // c is a reg

endmodule

Note: Only reg variables can receive output values from a task;
wire variables cannot.

always Blocks

An always block can imply latches or flip-flops, or it can specify purely
combinational logic. An always block can contain logic triggered in
response to a change in a level or the rising or falling edge of a signal. The
syntax of an always block is

always @ (event-expression [or event-expression*])
begin
 ... statements ...
end

The event-expression declares the triggers, or timing controls. The
word or groups several triggers together. The Verilog language specifies
that if triggers in the event-expression occur, the block is executed.
Only one trigger in a group of triggers needs to occur for the block to be
executed. However, FPGA Express ignores the event-expression
unless it is a synchronous trigger that infers a register. Refer to Chapter 6
for details.

A simple example of an always block with triggers is

Example 5-38 A Simple always Block

always @ (a or b or c) begin
 f = a & b & c
end

In Example 5-38, a , b , and c are asynchronous triggers. If any triggers
change, the simulator resimulates the always block and recalculates the
value of f . FPGA Express ignores the triggers in this example because
they are not synchronous. However, you must indicate all variables that
are read in the always block as triggers. If you do not indicate all the
variables as triggers, FPGA Express gives a warning message similar to the
following.

Warning: Variable ‘foo’ is being read in block ‘bar’
declared on line 88 but does not occur in the
timing control of the block.

For a synchronous always block, FPGA Express does not require all
variables to be listed.

An always block is triggered by any of the following types of
event-expressions:

n The change in a specified value. For example:

always @ (identifier) begin
 ... statements ...
end

In the example above, FPGA Express ignores the trigger.
n The rising edge of a clock. For example:

always @ (posedge event) begin
 ... statements ...
end

n The falling edge of a clock. For example:

always @ (negedge event) begin
 ... statements ...
end

n A clock or an asynchronous preload condition. For example:

always @ (posedge CLOCK or negedge reset) begin
 if ! reset begin
 ... statements ...
 end
 else begin
 ... statements ...
 end
end

n An asynchronous preload that is based on two events joined by the word
or . For example:

always @ (posedge CLOCK or posedge event1 or
 negedge event2) begin
 if (event1) begin
 ... statements ...
 end
 else if (! event2) begin
 ... statements ...
 end
 else begin
 ... statements ...
 end
end

When the event-expression does not contain posedge or negedge,
combinational logic (no registers) is usually generated, although
flow-through latches can be generated. Refer to the section “Latch
Inference” in Chapter 6.

Note: The statements @ (posedge clock) and @ (negedge
clock) are not supported in functions or tasks.

Incomplete Event Specification

An always block can be misinterpreted if you do not list all signals
entering an always block in the event specification.

As expected, FPGA Express builds a 3-input AND gate for the description
in Example 5-39.

Example 5-39 Incomplete Event List

always @(a or b) begin
 f = a & b & c;
end

When this description is simulated, f is not recalculated when c changes,
because c is not listed in the event-expression. The simulated
behavior is not that of a 3-input AND gate.

The simulated behavior of the description in Example 5-40 is correct
because it includes all signals in event-expression.

Example 5-40 Complete Event List

always @(a or b or c) begin
 f = a & b & c;
end

In some cases, you cannot list all signals in the event specification.
Example 5-41 illustrates this problem.

Example 5-41 Incomplete Event List for Asynchronous Preload Condition

always @ (posedge c or posedge p)
if (p)
z = d;
else
z = a;

In the logic synthesized for Example 5-41, if data (d) changes while p is
high, the change is reflected immediately in the output (z). However, when
this description is simulated, z is not recalculated when d changes
because d is not listed in the event specification. As a result, synthesis
might not match simulation.

Asynchronous preloads can be correctly modeled only when you want
changes in the load data to be immediately reflected in the output. In
Example 5-41, data d must change to the preload value before preload

condition p transits from low to high. If you attempt to read a value in an
asynchronous preload, FPGA Express prints a warning similar to the one
shown below.

Warning: Variable ‘d’ is being read asynchronously in
 routine reset line 21 in file
 ‘/usr/tests/hdl/asyn.v’. This might cause
 simulation-synthesis mismatches.

Chapter 6 Register and Three-State Inference –1

Chapter 6
Register and Three-State Inference

FPGA Express can infer latches and flip-flops. A register is a simple,
one-bit memory device, either a flip-flop or a latch. A flip-flop is an
edge-triggered memory device. A latch is a level-sensitive memory device.
Register inference allows you to use sequential logic in your design
descriptions and keep your designs technology independent.

This chapter discusses different types of register and three-state inference
in the following sections:

n Latch Inference
n Simple Flip-Flop Inference
n Flip-Flop Inference with Asynchronous Reset
n Additional Types of Register Inference
n FPGA Express Latch and Flip-Flop Inference
n Delays in Registers
n Efficient Use of Registers
n Three-State Inference
n Registered and Latched Three-State Enables

–2 Chapter 6 Register and Three-State Inference
Latch Inference

Latch Inference

Because variables can hold state over time in simulation, FPGA Express
needs to duplicate this condition in hardware. It does this by inserting a
D-type flow-through latch. The latch allows a variable to hold its value
(state) until that value is reassigned.

A variable must hold its state when its previous value might change
because of a condition in an if statement. When the condition is true ,
the value is reassigned. Because the condition might be false , the
variable must be able to hold its state. Therefore, a latch is created to hold
the previous value of the variable. For example:

Example 6-1 Creating a Latch

always @ (PHI_1 or A) begin
 if (PHI_1) begin
 Y = A;
 end
end

In Example 6-1, the variable Y is not assigned a new value when PHI_1 is
false . A latch is synthesized with its D input connected to A , its Q
output connected to Y , and its gate controlled by PHI_1 .

A latch can also be created when you use a case statement. For
example, the code in Example 6-2 creates a latched binary-coded decimal
(BCD) decoder.

Example 6-2 Creating a Latch with a case Statement

module decoder(I,decimal);
input [3:0] I;
output [9:0] decimal;
reg [9:0] decimal;

always @(I) begin
case(I)
4’h0: decimal= 10’b0000000001;
4’h1: decimal= 10’b0000000010;
4’h2: decimal= 10’b0000000100;
4’h3: decimal= 10’b0000001000;
4’h4: decimal= 10’b0000010000;
4’h5: decimal= 10’b0000100000;
4’h6: decimal= 10’b0001000000;
4’h7: decimal= 10’b0010000000;
4’h8: decimal= 10’b0100000000;
4’h9: decimal= 10’b1000000000;
endcase
end
endmodule

Chapter 6 Register and Three-State Inference –3
Latch Inference

The four bits from the input are passed to the case statement. The case
statement assigns an appropriate binary expression of the input’s decimal
value to the decimal output and latches that value in register
decimal .

To avoid creating latches, assign a value to all variables. The code in
Example 6-2 does not create latches if you add the following statement to
the case statement.

default: decimal= 10’b0000000000;

Variables declared within a function do not hold their values over time
because every time a function is called, its variables are reinitialized.
Therefore, FPGA Express does not infer latches for these variables. In
Example 6-3, no latches are inferred.

Example 6-3 Variable Declared within a Function—No Latches Inferred

function my_func;
input data, gate;
reg state;
begin
if (gate) begin
state = data;
end
my_func = state;
end

endfunction

Both Example 6-4 and Example 6-5 assign all their variables under all
circumstances and avoid creating latches in FPGA Express.

Example 6-4 Avoiding Latch Inference

always @ (PHI_1 or A) begin
Y = 0;
if (PHI_1) begin
Y = A;
end
end

Example 6-5 Another Way to Avoid Creating Latches

always @ (PHI_1 or A) begin
if(PHI_1) begin
Y = A;
end else begin
Y = 0;
end
end

–4 Chapter 6 Register and Three-State Inference
Simple Flip-Flop Inference

Simple Flip-Flop Inference

A flip-flop is implied when you use the posedge or negedge clock
constructs in an always block, as shown below.

always @ (posedge clock) begin
 ...
end

A variable that is assigned a value in this always block is synthesized as
a D-type edge-triggered flip-flop. The flip-flop is clocked on the rising (or
falling) edge of the signal (clock) following the posedge (or
negedge) keyword. With simple flip-flops (with no asynchronous set or
reset), the block’s event-expression may contain only one
posedge (or negedge) statement, as shown in Example 6-6.

Example 6-6 Creating a Flip-Flop

always @ (posedge CLK) begin
Y = A & B;
end

This code is synthesized into a D-type positive-edge triggered flip-flop with
the D input connected to A & B , the Q output connected to Y , and the
clock input connected to CLK .

Flip-Flop Inference with Asynchronous Reset

The actual clock used for flip-flops is derived from the
event-expression for the always block. In the
event-expression, test for the posedge or negedge edges for
all reset conditions and your clock.

When you build an asynchronous reset, the always block has a specific
format. Each reset condition must be a single-bit quantity.

To reset when the condition is high, follow these steps:

1. Use the clause posedge condition in the event-expression
at the beginning of the always block.

2. Test the condition in an if or else if statement. For example:

if (condition)

Chapter 6 Register and Three-State Inference –5
Flip-Flop Inference with Asynchronous Reset

To reset when the condition is low, follow these steps:

3. Use the clause negedge condition in the event-expression at the
beginning of the always block.

4. Test the condition’s complement in an if or else if statement. For
example:

if (! condition)

The first reset condition must appear in the first if statement. This
statement must be of the form

if (condition)

if (condition == 1’b1)

if (~ condition)

if (condition == 1’b0)

or

if (! condition)

In the first two cases, a corresponding posedge condition clause
must appear in the event-expression at the beginning of the
always block. In the following cases, a corresponding negedge
condition must appear there.

If subsequent optional reset conditions are used, they are placed in else
if clauses of the form

else if (condition2)

or

else if (! condition2)

These conditions also require corresponding posedge and negedge
entries in the event-expression at the beginning of the always block.
More information about this type of flip-flop is provided in the section
"Additional Types of Register Inference."

The clock for the flip-flop is determined by default when FPGA Express
reaches the final else clause. Remember that this clause has no
condition to test. The clocked event is assumed. The flip-flop is clocked

–6 Chapter 6 Register and Three-State Inference
Flip-Flop Inference with Asynchronous Reset

on the rising (falling) edge of the signal following the posedge
(negedge) keyword in the event-expression at the beginning of
the always block. See Example 6-7.

Example 6-7 Flip-Flop with Asynchronous Reset

module example (a,b,clk,reset,c);
input a,b,clk,reset;
output c;
reg c;

always @ (posedge clk or negedge reset) begin
if (!reset) // asynchronous reset
c = 0;
else // posedge clk is assumed
c = a & b;

end
endmodule

Refer to Examples A–3 and A–4 in Appendix A for more examples of
register use.

Restrictions on Register Capabilities

Indexed expressions are not allowed in the predicate of an
event-expression. The following example shows an indexed
expression and the error message generated by FPGA Express.

always @ (posedge clk[1])

Error: In an event expression with ‘posedge’ and
‘negedge’
 qualifiers, only simple identifiers are allowed %s.
(VE-91)

Chapter 6 Register and Three-State Inference –7
Additional Types of Register Inference

n Set and reset conditions must be 1-bit variables. If you use an expression
for a multibit variable (a bus), FPGA Express generates an error message,
as shown in the following example.

always @ (posedge clk or negedge reset_bus) begin
if (!reset_bus[1])
.
.
end

Error: The expression for the reset condition of the
‘if’ statement in this ‘always’ block can only be a
simple identifier or its negation (%s). (VE-92)

You can use an expression for the reset condition, such as

if (reset == 1’b0)

or

if (~reset)

but you cannot use a complex expression, such as

if (reset == (1-1))

n Use an if statement at the top level of an always block. The
following example results in an error message.

always @ (posedge clk or posedge reset) begin
#1;
if (reset) ...
.
.
end

Error: The statements in this ‘always’ block are
outside the scope of the synthesis policy (%s). Only
an ‘if’ statement is allowed at the top level in this
‘always’ block. Please refer to the FPGA Express
Verilog Reference Manual for ways to infer flip-flops
and latches from ‘always’ blocks. (VE-93)

n To correctly model the loading of asynchronous data to a flip-flop, make
the load condition false every time the asynchronous data changes,
then return the load condition to true to latch the new data. See Example
5-41.

Additional Types of Register Inference

For examples describing various types of latches and flip-flops that use
directives and variables introduced in the following sections, see the HDL
Coding Style: Sequential Devices Application Note.

–8 Chapter 6 Register and Three-State Inference
Additional Types of Register Inference

Directives

The following FPGA Express directives can assist with the inference of
more complex sequential devices.

// synopsys async_set_reset
// synopsys sync_set_reset
// synopsys async_set_reset_local
// synopsys sync_set_reset_local
// synopsys async_set_reset_local_all
// synopsys sync_set_reset_local_all
// synopsys one_hot
// synopsys one_cold

Chapter 6 Register and Three-State Inference –9
Additional Types of Register Inference

async_set_reset Directive

async_set_reset takes one argument of a double-quoted list of
single-bit signals separated by commas. FPGA Express checks whether an
object specified by the async_set_reset directive asynchronously sets
or resets a latch or flip-flop in the entire design.

The syntax of async_set_reset is

// synopsys async_set_reset "object_name,..."

Example 6-8 Asynchronous Set/Reset of a Design

module async_set_reset(reset, set, d, gate, y, t) ;

input reset, set, gate, d ;
output y, t ;

// synopsys async_set_reset "reset, set"

reg y, t ;

always @ (reset or set)
begin : direct_set_reset
 if (reset)
 y = 1’b0; // asynchronous reset
 else if (set)
 y = 1’b1; // synchronous set
end

always @ (gate or reset) // for set : (gate or set)

 if (reset) // for set : if (set)
 t = 1’b0; // for set : t = 1’b1
 else if (gate)
 t = d ;

endmodule

–10 Chapter 6 Register and Three-State Inference
Additional Types of Register Inference

Figure 6-1 Asynchronous Set/Reset of a Design

Chapter 6 Register and Three-State Inference –11
Additional Types of Register Inference

sync_set_reset Directive

The sync_set_reset directive takes one argument of a double-quoted
list of single-bit signals separated by commas. FPGA Express checks
whether an object specified by the sync_set_reset directive
synchronously sets or resets a latch or flip-flop in the entire design.

The syntax of sync_set_reset is

// synopsys sync_set_reset "object_name,..."

Example 6-9 Synchronous Set/Reset of a Design

module sync_set_reset(clk, reset, set, d1, d2, y, t)
;

input clk, reset, set, d1, d2 ;
output y, t ;

// synopsys sync_set_reset "reset, set"

reg y, t ;

always @ (posedge clk)
begin : synchronous_reset

 if (reset)
 y = 1’b0; // synchronous reset
 else
 y = d1;
end

always @ (posedge clk)
begin : synchronous_set

 if (set)
 t = 1’b1; // synchronous set
 else
 t = d2;
end

endmodule

–12 Chapter 6 Register and Three-State Inference
Additional Types of Register Inference

Figure 6-2 Synchronous Set/Reset of a Design

Chapter 6 Register and Three-State Inference –13
Additional Types of Register Inference

async_set_reset_local Directive

The async_set_reset_local directive takes two arguments. The
first argument is the label of a block. The second is a double-quoted list of
single-bit signals separated by commas. Every signal in the list is treated as
though the async_set_reset directive is attached in the specified
block.

The syntax of async_set_reset_local is

 // synopsys async_set_reset_local block_label "object_name,..."

Example 6-10 Asynchronous Set/Reset of a Single Block

module async_set_reset_local(reset, set, gate, y, t)
;

input gate, reset, set ;
output y, t ;

// synopsys async_set_reset_local direct_set_reset
"reset, set"

reg y, t ;

always @ (reset or set)
begin : direct_set_reset

 if (reset)
 y = 1’b0; // asynchronous reset
 else if (set)
 y = 1’b1; // asynchronous set
end

always @ (gate or reset or set)
begin : gated_data

 if (gate)
 begin
 if (reset)
 t = 1’b0; // gated data
 else if (set)
 t = 1’b1; // gated data
 end
end

endmodule

–14 Chapter 6 Register and Three-State Inference
Additional Types of Register Inference

Figure 6-3 Asynchronous Set/Reset of a Single Block

Chapter 6 Register and Three-State Inference –15
Additional Types of Register Inference

sync_set_reset_local Directive

The sync_set_reset_local directive takes two arguments. The first
is the label of a block. The second is a double-quoted list of single-bit
signals separated by commas. Every signal in the list is treated as though
the sync_set_reset directive is attached in the specified block.

The syntax of sync_set_reset_local is

// synopsys sync_set_reset_local block_label
"signal_name,..."

Example 6-11 Synchronous Set/Reset of a Single Block

module sync_set_reset_local(clk, reset, set, gate, d,
y, t) ;

input clk, gate, reset, set, d ;
output y, t ;

// synopsys sync_set_reset_local clocked_set_reset
"reset"

reg y, t ;

always @ (posedge clk)
begin : clocked_reset

 if (reset)
 y = 1’b0; // synchronous reset
 else
 y = d ;
end

always @ (posedge clk)
begin : gated_data

 if (gate)
 begin
 if (reset)
 t = 1’b0; // gated data
 else if (set)
 t = 1’b1; // gated data
 end
end

endmodule

–16 Chapter 6 Register and Three-State Inference
Additional Types of Register Inference

Figure 6-4 Synchronous Set/Reset of a Single Block

Chapter 6 Register and Three-State Inference –17
Additional Types of Register Inference

async_set_reset_local_all Directive

The async_set_reset_local_all directive takes only one
argument, the list of block labels. The async_set_reset_local_
all directive specifies that all the signals are treated as though the
async_set_reset directive is attached in each of the blocks.

The syntax of async_set_reset_local_all is

// synopsys async_set_reset_local_all "block_
label,..."

Example 6-12 Asynchronous Set/Reset for Part of a Design

module async_set_reset_local_all(reset, set, gate,
gate2, y, t, w) ;
input gate, gate2, reset, set ;
output y, t, w ;
// synopsys async_set_reset_local_all "direct_set_
reset, direct_set_reset_too"
reg y, t, w ;
always @ (reset or set)
begin : direct_set_reset
 if (reset)
 y = 1’b0; // asynchronous reset
 else if (set)
 y = 1’b1; // asynchronous set
end

always @ (gate or reset or set)
begin : direct_set_reset_too
 if (gate)
 begin
 if (reset)
 t = 1’b0; // asynchronous reset
 else if (set)
 t = 1’b1; // asynchronous set
 end
end

always @ (gate2 or reset or set)
begin : gated_data
 if (gate2)
 begin
 if (reset)
 w = 1’b0; // gated data
 else if (set)
 w = 1’b1; // gated data
 end
end
endmodule

–18 Chapter 6 Register and Three-State Inference
Additional Types of Register Inference

Figure 6-5 Asynchronous Set/Reset for Part of a Design

Chapter 6 Register and Three-State Inference –19
Additional Types of Register Inference

sync_set_reset_local_all Directive

The sync_set_reset_local_all directive takes only one argument,
the list of block labels. The sync_set_reset_local_all directive
specifies that all the signals are treated as though the sync_set_reset
directive is attached in each of the blocks.

The syntax of sync_set_reset_local_all is

// synopsys sync_set_reset_local_all "block_
label,..."

Example 6-13 Synchronous Set/Reset for Part of a Design

module sync_set_reset_local_all(clk, reset, set,
gate, gate2, y, t, w) ;
input clk, gate, gate2, reset, set ;
output y, t, w ;
// synopsys sync_set_reset_local_all "clocked_set_
reset, clocked_set_reset_too"
reg y, t, w ;
always @ (posedge clk)
begin : clocked_set_reset
 if (reset)
 y = 1’b0; // synchronous reset
 else if (set)
 y = 1’b1; // synchronous set
end
always @ (posedge clk)
begin : clocked_set_reset_too
 if (gate)
 begin
 if (reset)
 t = 1’b0; // synchronous reset
 else if (set)
 t = 1’b1; // synchronous set
 end
end
always @ (gate2 or reset or set)
begin : gated_data
 if (gate2)
 begin
 if (reset)
 w = 1’b0; // gated data
 else if (set)
 w = 1’b1; // gated data
 end
end
endmodule

–20 Chapter 6 Register and Three-State Inference
Additional Types of Register Inference

Figure 6-6 Synchronous set/reset for Part of a Design

Note: Use the one_hot and one_cold directives to implement D
flip-flops with asynchronous set and reset signals. These two directives
tell FPGA Express that only one of the objects in the list are active at a
time. If you are defining active high signals, use the one_hot directive.
For active low signals, use the one_cold directive. Each directive
specifies two objects.

Chapter 6 Register and Three-State Inference –21
Additional Types of Register Inference

one_hot Directive

The one_hot directive takes one argument of a double-quoted list of
objects separated by commas. This directive indicates that the group of
signals are one_hot . For example, no more than one signal has a Logic 1
value. Users are responsible to ensure that the group of objects are one_
hot . In Example 6-14, FPGA Express does not synthesize logic to check
this assertion.

The syntax of one_hot is

// synopsys one_hot "object_name,..."

Example 6-14 Using the one_hot Directives for Set and Reset

module one_hot_example (reset, set, reset2, set2, y,
t) ;
input reset, set, reset2, set2 ;
output y, t ;
// synopsys async_set_reset "reset, set"
// synopsys async_set_reset "reset2, set2"
// synopsys one_hot "reset, set"
reg y, t ;

always @ (reset or set)
begin : direct_set_reset
 if (reset)
 y = 1’b0; // asynchronous reset by "reset"
 else if (set)
 y = 1’b1; // asynchronous set by "set"
end

always @ (reset2 or set2)
begin : direct_set_reset_too
 if (reset2)
 t = 1’b0; // asynchronous reset by "reset2"
 else if (set2)
 t = 1’b1; // asynchronous set by "~reset2 set2"
end

// synopsys translate_off
always @(reset or set)
 if (reset & set)
 $write("ONE-HOT violation for ’reset’,
’set’.");
// synopsys translate_on

endmodule

–22 Chapter 6 Register and Three-State Inference
Additional Types of Register Inference

Figure 6-7 Using the one_hot Directive for Set and Reset

Chapter 6 Register and Three-State Inference –23
Additional Types of Register Inference

one_cold Directive

The one_cold directive is similar to the one_hot directive. one_cold
indicates that no more than one object in the group has a Logic 0 value.

The syntax of the one_cold directive is

// synopsys one_cold " signal_name,..."

Example 6-15 Using the one_cold Directive for Set and Reset

module one_cold(reset, set, reset2, set2, y, t) ;
input reset, set, reset2, set2 ;
output y, t ;
// synopsys async_set_reset "reset, set"
// synopsys async_set_reset "reset2, set2"
// synopsys one_cold "reset, set"
reg y, t ;

always @ (reset or set)
begin : direct_set_reset
 if (~reset)
 y = 1’b0; // asynchronous reset by "~reset"
 else if (~set)
 y = 1’b1; // asynchronous set by "~set"
end

always @ (reset2 or set2)
begin : direct_set_reset_too
 if (~reset2)
 t = 1’b0; // asynchronous reset by "~reset2"
 else if (~set2)
 t = 1’b1; // asynchronous set by "reset2 ~set2"
end

// synopsys translate_off
always @(reset or set)
 if (~reset & ~set)
 $write("ONE-COLD violation for ’reset’,
’set’.");
// synopsys translate_on

endmodule

–24 Chapter 6 Register and Three-State Inference
Additional Types of Register Inference

Figure 6-8 Using the one_cold Directive for Set and Reset

FPGA Express Latch and Flip-Flop Inference

For latches, FPGA Express interprets each control object as synchronous.
For a design subsequently analyzed, every constant 0 loaded on a latch is
used for asynchronous reset, and every constant 1 loaded on a latch is used
for asynchronous set. FPGA Express does not limit checks for assignments
to a constant 0 or constant 1 to a single process. That is, FPGA Express
performs checking across processes and provides a brief report for inferred
latches.

For flip-flops, FPGA Express removes all feedback loops. For example,
feedback loops inferred from a statement such as Q=Q are removed. With
the state feedback removed from a simple D flip-flop, it becomes a
synchronous loaded flip-flop. In addition, FPGA Express removes all
inverted flip-flop feedback loops. For example, feedback loops inferred
from a statement such as Q=Q are removed and synthesized as T flip-flops.

Chapter 6 Register and Three-State Inference –25
Delays in Registers

Delays in Registers

If you use delay specifications with values that may be registered, they may
cause the simulation to behave differently from the logic synthesized by
HDL Compiler. For example, the module in Example 6–24 contains delay
information that causes Design Compiler to synthesize a circuit that
behaves unexpectedly.

Delays in Registers

module problem (A, C, D, clock);
input A, clock;
output C, D;
wire B;
assign B = #100 A;

flip-flop f1 (A, C, clock),
 f2 (B, D, clock);
endmodule

module flip-flop (D, Q, clock);
input D, clock
output q;
always @ (posedge clock) Q = #5 D;
endmodule

In Example 6–24, B changes 100 time units after A changes. If the clock
period is less than 100, output D is one or more clock cycles behind output
C when the circuit is simulated. However, because HDL Compiler ignores
the delay information, A and B change values at the same time, and so
do C and D. This behavior is not the same as in the simulated circuit.

When you use delay information in your designs, make sure that the delays
do not affect registered values. In general, you can safely include delay
information in your description if it does not change the value that gets
clocked into a flip-flop.

Efficient Use of Registers

All variables that are assigned values in an always block containing
either a posedge or negedge clock are synthesized with flip-flops.
To avoid the flip-flop inference, keep combinational logic in a separate
always block that does not have a posedge or negedge clock. See
the section "Minimizing Registers" in Chapter 8.

–26 Chapter 6 Register and Three-State Inference
Three-State Inference

Three-State Inference

FPGA Express can infer three-state gates from the value z (high
impedance) in the Verilog language. When a variable is assigned the value
z, the output of the three-state gate is disabled.

Example 6-16 shows a three-state gate described in Verilog.

Example 6-16 Creating a Three-State Gate in Verilog

module simple_threestate (enable, in, out);
 input in, enable;
 output out;
 reg out;

 always @(enable or in) begin
 if (enable)
 out = in;
 else
 out = 1’bz; // assigns high-impedance
 end
endmodule

Figure 6-9 shows the three-state gate from Example 6-16 in a schematic.

Figure 6-9 A Three-State Gate in a Schematic

A 4-bit-wide bus can be assigned high impedance values with 4’bzzzz
just as a bit value is assigned 1’bz in Example 6-16.

One three-state device is inferred from a single always block. Example
6-17 infers only one three-state device.

Example 6-17 One Three-State Device

always @(sela or selb or a or b) begin
 t = 1’bz;
 if (sela)
 t = a;
 if (selb)
 t = b;
end

Chapter 6 Register and Three-State Inference –27
Registered and Latched Three-State Enables

The value z can also appear in function calls, return statements, and
aggregates, although it is valid to use z in an expression such as

if (value == 1’bz)

Expressions that compare a value to z are always evaluated as false
during synthesis. This evaluation might cause a difference between
presynthesis and postsynthesis simulations.

Example 6-18 infers two three-state devices.

Example 6-18 Inferring Two Three-State Devices

always @(sel_a or a)
 if (sel_a)
 t = a
 else t = 1’bz;
always @(sel_b or b)
 if (sel_b)
 t = b;
 else t = 1’bz;

The Verilog conditional statement can also be used to infer three states.

Registered and Latched Three-State Enables

When a variable is registered (or latched) in the same process in which it is
three-stated, the enable of the three-state is also registered (or latched).
Example 6-19 shows an example of this code and Figure 6-10 shows the
schematic generated by the code.

Example 6-19 Three-State with Registered Enable (Inefficient Description)

module enable_ff (clock, condition, enable, in, out
);
 input in, enable, condition, clock;
 output out;
 reg out;

 always @ (posedge clock) begin
 if (enable)
 out = (~condition) ? in : out;
 else
 out = 1’bz;
 end
endmodule

–28 Chapter 6 Register and Three-State Inference
Registered and Latched Three-State Enables

Figure 6-10 Schematic for a Three-State with a Registered Enable (Inefficient Version)

In Example 6-19, the three-state gate has a register on its enable. To
remove the register from the enable, use two always blocks to separate
the register inference from the three-state gate inference, and add a register
temp . Refer to Example 6-20 and Figure 6-11.

Example 6-20 Three-State without a Registered Enable

module no_enable_ff (clock, condition, enable, in,
out);
 input in, enable, condition, clock;
 output out;
 reg out;
 reg temp;

 always @(posedge clock) begin // flip-flop on input
 if (condition)
 temp = in;
 end

 always @(enable or temp) begin
 if (enable) // three-state
 out = temp;
 else
 out = 1’bz;
 end
endmodule

Figure 6-11 Schematic for a Three-State without a Registered Enable

Chapter 7 FPGA Express Directives –1
Notation for FPGA Express Directives

Chapter 7
FPGA Express Directives

FPGA Express translates a Verilog description to a Synopsys internal
format. Specific aspects of this process can be controlled by special FPGA
Express directives in the Verilog source code. These directives are treated
as comments by Verilog simulators and do not affect simulation.

This chapter describes FPGA Express directives and their effect on
translation in the following sections:

n Notation for HDL Compiler Directives
n translate_off and translate_on Directives
n parallel_case Directive
n Full_case Directive
n Component Implication

Note: Begin each of the above directives with //synopsys. You can
also use $s in place of synopsys.

Notation for FPGA Express Directives

The special comments that make up FPGA Express directives begin, like
all Verilog comments, with the characters // or /* . The // characters
begin a comment that fits on one line (most FPGA Express directives fit on

–2 Chapter 7 FPGA Express Directives
translate_off and translate_on Directives

one line). If you use the /* characters to begin a multiline comment, you
must end the comment with */ . You do not need to use the /* characters
at the beginning of each line, only at the beginning of the first line. The
word synopsys (all lowercase) following the comment characters tells
FPGA Express to treat the text following the word synopsys as a
compiler directive.

Note: You cannot use // synopsys in a regular comment. In
addition, the compiler displays a syntax error if Verilog code is in a //
synopsys directive.

translate_off and translate_on Directives

The // synopsys translate_off and // synopsys
translate_on directives tell FPGA Express to suspend translation of
the source code and restart translation at a later point. Use these directives
when your Verilog source code contains commands specific to simulation
that are not accepted by FPGA Express.

You turn translation off with

// synopsys translate_off

or

/* synopsys translate_off */

You turn translation back on with

// synopsys translate_on

or

/* synopsys translate_on */

At the beginning of each Verilog file, translation is enabled. Subsequently,
you can use the translate_off and translate_on directives
anywhere in the text. These directives must be used in pairs. Each
translate_off directive must appear before its corresponding
translate_on directive. Example 7-1 shows a simulation driver
protected by a translate_off directive.

Chapter 7 FPGA Express Directives –3
parallel_case Directive

Example 7-1 // synopsys translate_on and // synopsys translate_off Directives

module trivial (a, b, f);
input a,b;
output f;
 assign f = a & b;

 // synopsys translate_off
 initial $monitor (a, b, f);
 // synopsys translate_on
endmodule

/* synopsys translate_off */
module driver;
 reg [1:0] value_in;
 integer i;

 trivial triv1(value_in[1], value_in[0]);

 initial begin
 for (i = 0; i < 4; i = i + 1)
 #10 value_in = i;
 end
endmodule
/* synopsys translate_on */

parallel_case Directive

The // synopsys parallel_case directive affects the way logic is
generated for the case statement. As presented in Chapter 5, a case
statement generates the logic for a priority encoder. Under certain
circumstances, you might not want to build a priority encoder to handle a
case statement. You can use the parallel_case directive to force
FPGA Express to generate multiplexer logic instead.

The syntax for the parallel_case directive is

// synopsys parallel_case

or

/* synopsys parallel_case */

In Example 9–2, the states of a state machine are encoded as one hot
signals. If the case statement in the example were implemented as a
priority encoder, the generated logic would be more complex than
necessary.

–4 Chapter 7 FPGA Express Directives
full_case Directive

Example 7-2 // synopsys parallel_case Directives

reg [3:0] current_state, next_state;
parameter state1 = 4’b0001, state2 = 4’b0010,
state3 = 4’b0100, state4 = 4’b1000;

case (1) //synopsys parallel_case

 current_state[0] : next_state = state2;
 current_state[1] : next_state = state3;
 current_state[2] : next_state = state4;
 current_state[3] : next_state = state1;

endcase

Use the parallel_case directive immediately after the case
expression, as shown. This directive makes all case-item evaluations in
parallel. All case items that evaluate to true are executed (not just the
first one, which might give you unexpected results.)

In general, use parallel_case when you know that only one case
item is executed. If only one case item is executed, the logic generated
from a parallel_case directive performs the same function as the
circuit when it is simulated. If two case items are executed, and you have
used the parallel_case directive, the generated logic is not the same
as the simulated description.

full_case Directive

The // synopsys full_case directive asserts that all possible
clauses of a case statement have been covered and that no default clause
is necessary. This directive has two uses: it avoids the need for default
logic, and it can avoid latch inference from a case statement by asserting
that all necessary conditions are covered by the given branches of the
case statement. As shown in Chapter 5, a latch can be inferred whenever
a variable is not assigned a value under all conditions.

The syntax for the full_case directive is

// synopsys full_case

or

/* synopsys full_case */

Chapter 7 FPGA Express Directives –5
full_case Directive

If the case statement contains a default clause, FPGA Express
assumes that all conditions are covered. If there is no default clause,
and you do not want latches to be created, use the full_case directive
to indicate that all necessary conditions are described in the case
statement.

Example 9–3 shows two uses of the full_case directive. Note that the
parallel_case and full_case directives can be combined in one
comment.

Example 7-3 // synopsys full_case Directives

reg [1:0] in, out;
reg [3:0] current_state, next_state;
parameter state1 = 4’b0001, state2 = 4’b0010,
 state3 = 4’b0100, state4 = 4’b1000;

case (in) // synopsys full_case
 0: out = 2;
 1: out = 3;
 2: out = 0;
endcase

case (1) // synopsys parallel_case full_case
 current_state[0] : next_state = state2;
 current_state[1] : next_state = state3;
 current_state[2] : next_state = state4;
 current_state[3] : next_state = state1;
endcase

In the first case statement, the condition in == 3 is not covered.
You can either use a default clause to cover all other conditions, or use
the full_case directive (as in this example) to indicate that other
branch conditions do not occur. If you cover all possible conditions
explicitly, FPGA Express recognizes the case statement as full case, so
the full_case directive is not necessary.

The second case statement in Example 9–3 does not cover all 16
possible branch conditions. For example, current_state ==
4’b0101 is not covered. The parallel_case directive is used in
this example because only one of the four case items can evaluate to true
and be executed.

Although you can use the full_case directive to avoid creating
latches, using this directive does not guarantee that latches will not be built.
You must still assign a value to each variable used in the case statement
in all branches of the case statement. Example 9–4 illustrates a situation
where the full_case directive prevents a latch from being inferred for
variable b , but not for variable a .

–6 Chapter 7 FPGA Express Directives
Component Implication

Example 7-4 Latches and // synopsys full_case

reg a, b;
reg [1:0] c;
case (c) // synopsys full_case
 0: begin a = 1; b = 0; end
 1: begin a = 0; b = 0; end
 2: begin a = 1; b = 1; end
 3: b = 1; // a is not assigned here
endcase

In general, use the full_case directive when you know that all
possible branches of the case statement have been enumerated or at least
all branches that can occur. If all branches that can occur are enumerated,
the logic generated from the case statement performs the same function
as the simulated circuit. If a case condition is not fully enumerated, the
generated logic and the simulation are not the same.

Note: You do not need the full_case directive if you have a default
branch or you enumerate all possible branches in a case statement
because FPGA Express assumes that the case statement is full_
case.

Component Implication

In Verilog, you cannot instantiate modules in behavioral code. To include
an embedded netlist in your behavioral code, use the directives //
synopsys map_to_module and // synopsys return_port_
name for FPGA Express to recognize the netlist as a function being
implemented by another module. When this subprogram is invoked in the
behavioral code, the module is instantiated.

The first directive, // synopsys map_to_module , flags a function
for implementation as a distinct component. The syntax is

// synopsys map_to_module modulename

Chapter 7 FPGA Express Directives –7
Component Implication

The second directive identifies a return port, because functions in Verilog
do not have output ports. A return port name must be identified to
instantiate the function as a component. The syntax is

// synopsys return_port_name portname

Note: Remember that if you add a map_to_module directive to a
function, the contents of the function are parsed and ignored and the
indicated module is instantiated. You must ensure that the functionality
of the module instantiated in this way and the function it replaces are the
same; otherwise, presynthesis and postsynthesis simulation do not match.

Example 9–22 illustrates the map_to_module and return_port_
name directives.

Example 7-19 Component Implication

module mux_inst (a, b, c, d, e);
input a, b, c, d;
output e;
function mux_func;
// synopsys map_to_module mux_module
// synopsys return_port_name mux_ret
input in1, in2, cntrl;
/*
** the contents of this function are ignored for
** synthesis, but the behavior of this function
** must match the behavior of mux_module for
** simulation purposes
*/
begin
if (cntrl) mux_func = in1;
else mux_func = in2;
end

endfunction

assign e = a & mux_func (b, c, d); // this function
call
// actually instantiates component (module) mux_
module

endmodule

module mux_module (in1, in2, cntrl, mux_ret);
input in1, in2, cntrl;
output mux_ret;

and and2_0 (wire1, in1, cntrl);
not not1 (not_cntrl, cntrl);
and and2_1 (wire2, in2, not_cntrl);
or or2 (mux_ret, wire1, wire2);

endmodule

Chapter 8 Flip-Flops –1
Translating Flip-flops

Chapter 8
Flip-Flops

This appendix is for FPGA Express users whose current design descriptions
include hand-instantiated flip-flops. It explains how to translate these
flip-flops to always blocks that can be used with FPGA Express. Read
this appendix after you have read Chapter 5, “Functional Descriptions.”

Some of the benefits of translating your hand-instantiated flip-flops to
always blocks are

n Clearer code. The logic of the new module definitions is easier to
understand.

n Continued compatibility. The new design descriptions can use the
expanded capabilities of future versions of FPGA Express.

n Technology independence. Any FPGA library can be used as the target for
synthesis of a Verilog description.

n Multiple-bit values. Such values can be registered with a single statement,
rather than with multiple flip-flop instantiations.

Translating Flip-flops

The first step in translating a flip-flop to the always syntax is to be sure
that you understand the function of the module. Next, determine what parts
of the module description provide the flip-flop behavior.

–2 Chapter 8 Flip-Flops
Translating Flip-flops

Example B–1 shows a simple module that uses three manually inserted
flip-flops.

Example 8-1 Existing Module

module simple (d, e, f, load, clk, zero);
 input d, e, f, load, clk;
 output zero;
 reg new_a, new_b, new_c;

function zilch ;
 input load, a, b, c;

begin
 if (load) begin
 new_a = d;
 new_b = e;
 new_c = f;
 end
 else begin
 new_a = a;
 new_b = b;
 new_c = c;
 end

 if (a==0 & b==0 & c==0)
 zilch=1;
 else
 zilch=0;
 end

endfunction

FD1S a_reg (new_a, clk, a,);
FD1S b_reg (new_b, clk, b,);
FD1S c_reg (new_c, clk, c,);

assign zero = zilch (load, a, b, c);
endmodule

This module evaluates the three state variables, a , b , and c , to determine
whether all the values are 0. Additional input signals are load , which
forces a synchronous reset, and clk , which is the module’s clock. The
functionality of the module is described in the function zilch . The input
values are latched in the flip-flop described in the three statements
beginning with dFF (a D-type edge-triggered flip-flop). A final assign
statement assigns the returned value of the function zilch to the output
zero .

Example B–1 generates the schematic shown in Figure B–1.

Chapter 8 Flip-Flops –3
Translating Flip-flops

Figure 8-1 Schematic from Example B–1

To translate this description, find the combinational logic and determine the
triggering events. In this case, the function zilch creates combinational
logic.

Example 8-2 Existing Module Logic

function zilch ;
input load, a, b, c;

if (load) begin
new_a = d;
new_b = e;
new_c = f;
end
else begin
new_a = a;
new_b = b;
new_c = c;
end
if (a==0 & b==0 & c==0)
zilch=1;
else
zilch=0;
endfunction

In Example B–2, the values of a , b , c , d , e , f , and load are the
triggers (signals that are read). You can rewrite this description as an
always block with triggers, as shown in Example B–3.

a_reg

b_reg

c_reg

zero

e

f

d
load

clk

–4 Chapter 8 Flip-Flops
Translating Flip-flops

Example 8-3 New Module Logic

always @ (a or b or c or d or e or f or load) begin
 if (load) begin
 new_a = d;
 new_b = e;
 new_c = f;
 end
 else begin
 new_a = a;
 new_b = b;
 new_c = c;
 end

 if (a==0 & b==0 & c==0)
 zero=1;
 else
 zero=0;
end

The next step is to build an always block that replaces the flip-flop
instantiations—the three statements that begin with dFF .

Example 8-4 Existing Flip-flop Instantiations

dFF a_reg (new_a, clk, a);
dFF b_reg (new_b, clk, b);
dFF c_reg (new_c, clk, c);

Use the clock signal, clk , as the event-expression of the new always
block, as shown.

Example 8-5 First Line of the New always Block

always @ (posedge clk) begin

Put the values and the registers in the body of the always block. The Q
output values in the old module (a, b , and c) become the assigned values
in the new version. The clock from the old version is specified in the
event-expression of the new always block. The D input values in the old
module (new_a , new_b , and new_c) become the values read by the
new version, as shown in Example B–6.

Example 8-6 New Clocked always Block

always @ (posedge clk) begin
a = new_a ;
b = new_b ;
c = new_c ;
end

Chapter 8 Flip-Flops –5
Translating Flip-flops

Now, label the input and output signals in the module. Look at the variable
declarations and determine which of the wires and functions serve the
flip-flop and which serve the logic of the module.

Example 8-7 Existing Inputs and Outputs

module simple (d, e, f, load, clk, zero);
input d, e, f, load, clk;
output zero;
reg new_a, new_b, new_c;

In this case, as in most cases, the module’s inputs and outputs remain the
same. However, you must change the wire values to reg values.
Declare the output zero twice; once as the output and once as a reg , so
it can be used in the always block. Make the former function variables
a, b , and c into reg variables, because they are now assigned within
the second always block. Example B–8 shows the new input and output
declarations.

Example 8-8 New Input and Output Declarations

module new_simple (d, e, f, load, clk, zero);
input d, e, f, load, clk;
output zero;
reg zero;
reg a, b, c;
reg new_a, new_b, new_c;

Example B–9 shows the complete new module with always blocks.

–6 Chapter 8 Flip-Flops
Translating Flip-flops

Example 8-9 Translated Module Using always Blocks

module new_simple (d, e, f, load, clk, zero);
input d, e, f, load, clk;
output zero;
reg zero;
reg a, b, c;
reg new_a, new_b, new_c;

always @ (a or b or c or d or e or f or load) begin
if (load) begin
new_a = d;
new_b = e;
new_c = f;
end
else begin
new_a = a;
new_b = b;
new_c = c;
end

if (a==0 & b==0 & c==0)
zero=1;
else
zero=0;
end

always @ (posedge clk) begin
a = new_a ;
b = new_b ;
c = new_c ;
end
endmodule

Chapter 9 Verilog Syntax –1
Syntax

Chapter 9
Verilog Syntax

This appendix contains a syntax description of the Verilog language as
supported by FPGA Express. This appendix covers the following topics:

n Syntax
n Lexical Conventions
n Verilog Keywords
n Unsupported Verilog Language Constructs

Syntax

This section presents the syntax of the supported Verilog language in
Backus Naur Form (BNF), and presents the syntax formalism.

Note: The BNF syntax convention used in this section differs from the
Synopsys syntax convention used elsewhere in this manual.

BNF Syntax Formalism

White space separates lexical tokens.

–2 Chapter 9 Verilog Syntax
Syntax

name is a keyword.

<name> is a syntax construct definition.

<name> is a syntax construct item.

<name>? is an optional item.

<name>* is zero, one, or more items.

<name>+ is one or more items.

<port> <,<port>>* is a comma-separated list of items.

::= gives a syntax definition to an item.

||= refers to an alternative syntax construct.

BNF Syntax

<source_text>
 ::= <description>*

<description>
 ::= <module>

<module>

 ::= module <name_of_module> <list_of_ports>? ;
 <module_item>*
 endmodule

<name_of_module>

 ::= <IDENTIFIER>

<list_of_ports>

 ::= (<port> <,<port>>*)
 ||= ()

<port>

 ::= <port_expression>?
 ||= . <name_of_port> (<port_expression>?)

<port_expression>

 ::= <port_reference>
 ||= { <port_reference> <, <port_reference>>* }

Chapter 9 Verilog Syntax –3
Syntax

<port_reference>
 ::= <name_of_variable>
 ||= <name_of_variable> [<expression>]
 ||= <name_of_variable> [<expression> :
<expression>]

<name_of_port>

 ::= <IDENTIFIER>

<name_of_variable>
 ::= <IDENTIFIER>

<module_item>
 ::= <parameter_declaration>
 ||= <input_declaration>
 ||= <output_declaration>
 ||= <inout_declaration>
 ||= <net_declaration>
 ||= <reg_declaration>
 ||= <integer_declaration>
 ||= <gate_instantiation>
 ||= <module_instantiation>
 ||= <continuous_assign>
 ||= <function>

<function>

 ::= function <range>? <name_of_function> ;
 <func_declaration>*
 <statement_or_null>
 endfunction

<name_of_function>

 ::= <IDENTIFIER>

<func_declaration>

 ::= <parameter_declaration>
 ||= <input_declaration>
 ||= <reg_declaration>
 ||= <integer_declaration>

<always>

 ::= always @ (<identifier> or <identifier>)
 ||= always @ (posedge <identifier>)
 ||= always @ (negedge <identifier>)
 ||= always @ (<egde> or <edge> or ...)

<edge>

 ::= posedge <identifier>
 ||= negedge <identifier>

<parameter_declaration>

 ::= parameter <range>? <list_of_assignments> ;

–4 Chapter 9 Verilog Syntax
Syntax

<input_declaration>

 ::= input <range>? <list_of_variables> ;

<output_declaration>

 ::= output <range>? <list_of_variables> ;

<inout_declaration>

 ::= inout <range>? <list_of_variables> ;

<net_declaration>
 ::= <NETTYPE> <charge_strength>? <expandrange>?
<delay>? <list_of_variables> ;
 ||= <NETTYPE> <drive_strength>? <expandrange>?
<delay>? <list_of_assignments> ;

<NETTYPE>

 ::= wire
 ||= wor
 ||= wand
 ||= tri

<expandrange>
 ::= <range>
 ||= scalared <range>
 ||= vectored <range>

<reg_declaration>

 ::= reg <range>? <list_of_register_variables> ;

<integer_declaration>

 ::= integer <list_of_integer_variables> ;

<continuous_assign>

 ::= assign <drive_strength>? <delay>?
 <list_of_assignments>;

<list_of_variables>
 ::= <name_of_variable> <, <name_of_variable>>*

<name_of_variable>
 ::= <IDENTIFIER>

<list_of_register_variables>
 ::= <register_variable> <, <register_variable>>*

<register_variable>
 ::= <IDENTIFIER>

<list_of_integer_variables>
 ::= <integer_variable> <, <integer_variable>>*

Chapter 9 Verilog Syntax –5
Syntax

<integer_variable>
 ::= <IDENTIFIER>

<charge_strength>

 ::= (small)
 ||= (medium)
 ||= (large)

<drive_strength>

 ::= (<STRENGTH0> , <STRENGTH1>)
 ||= (<STRENGHT1> , <STRENGTH0>)

<STRENGTH0>
 ::= supply0
 ||= strong0
 ||= pull0
 ||= weak0
 ||= highz0

<STRENGTH1>
 ::= supply1
 ||= strong1
 ||= pull1
 ||= weak1
 ||= highz1

<range>

 ::= [<expression> : <expression>]

<list_of_assignments>
 ::= <assignment> <, <assignment>>*

<gate_instantiation>
 ::= <GATETYPE> <drive_strength>? <delay>?
 <gate_instance> <, <gate_instance>>* ;

<GATETYPE>

 ::= and
 ||= nand
 ||= or
 ||= nor
 ||= xor
 ||= xnor
 ||= buf
 ||= not

<gate_instance>
 ::= <name_of_gate_instance>? (<terminal>
 <, <terminal>>*)

<name_of_gate_instance>

 ::= <IDENTIFIER>

–6 Chapter 9 Verilog Syntax
Syntax

<terminal>
 ::= <identifier>
 ||= <expression>

<module_instantiation>
 ::= <name_of_module> <parameter_value_assignment>?
 <module_instance> <, <module_instance>>* ;

<name_of_module>
 ::= <IDENTIFIER>

<parameter_value_assignment>
 ::= #(<expression> <,<expression>>*)

<module_instance>

 ::= <name_of_module_instance>
 (<list_of_module_terminals>?)

<name_of_module_instance>

 ::= <IDENTIFIER>

<list_of_module_terminals>
 ::= <module_terminal>? <,<module_terminal>>*
 ||= <named_port_connection> <,<named_port_
connection>>*

<module_terminal>
 ::= <identifier>
 ||= <expression>

<named_port_connection>
 ::= . IDENTIFIER (<identifier>)
 ||= . IDENTIFIER (<expression>)

Chapter 9 Verilog Syntax –7
Syntax

<statement>
 ::= <assignment>
 ||= if (<expression>)
 <statement_or_null>
 ||= if (<expression>)
 <statement_or_null>
 else
 <statement_or_null>
 ||= case (<expression>)
 <case_item>+
 endcase
 ||= casex (<expression>)
 <case_item>+
 endcase
 ||= casez (<expression>)
 <case_item>+
 endcase
 ||= for (<assignment> ; <expression> ;
<assignment>)
 <statement>
 ||= <seq_block>
 ||= disable <IDENTIFIER> ;
 ||= forever <statement>
 ||= while (<expression>) <statement>

<statement_or_null>
 ::= statement
 ||= ;

<assignment>
 ::= <lvalue> = <expression>

<case_item>

 ::= <expression> <,<expression>>* : <statement_or_
null>
 ||= default : <statement_or_null>
 ||= default <statement_or_null>

–8 Chapter 9 Verilog Syntax
Syntax

<seq_block>
 ::= begin
 <statement>*
 end
 ||= begin : <name_of_block>
 <block_declaration>*
 <statement>*
 end

<name_of_block>

 ::= <IDENTIFIER>

<block_declaration>

 ::= <parameter_declaration>
 ||= <reg_declaration>
 ||= <integer_declaration>

<lvalue>
 ::= <IDENTIFIER>
 ||= <IDENTIFIER> [<expression>]
 ||= <concatenation>

<expression>

 ::= <primary>
 ||= <UNARY_OPERATOR> <primary>
 ||= <expression> <BINARY_OPERATOR>
 ||= <expression> ? <expression> : <expression>

<UNARY_OPERATOR>

 ::= !
 ||= ~
 ||= &
 ||= ~&
 ||= |
 ||= ~|
 ||= ^
 ||= ~^
 ||= -
 ||= +

Chapter 9 Verilog Syntax –9
Syntax

<BINARY_OPERATOR>

 ::= +
 ||= -
 ||= *
 ||= /
 ||= %
 ||= ==
 ||= !=
 ||= &&
 ||= ||
 ||= <
 ||= <=
 ||= >
 ||= >=
 ||= &
 ||= |
 ||= <<
 ||= >>

<primary>
 ::= <number>
 ||= <identifier>
 ||= <identifier> [<expression>]
 ||= <identifier> [<expression> : <expression>]
 ||= <concatenation>
 ||= <multiple_concatenation>
 ||= <function_call>
 ||= (<expression>)

<number>

 ::= <NUMBER>
 ||= <BASE> <NUMBER>
 ||= <SIZE> <BASE> <NUMBER>

<NUMBER>

A number can have any of the following characters:
0123456789abcdefxzABCDEFXZ

<SIZE>

 ::= ’b
 ||= ’B
 ||= ’o
 ||= ’O
 ||= ’d
 ||= ’D
 ||= ’h
 ||= ’H

<SIZE>

Any number of the following digits: 0123456789

–10 Chapter 9 Verilog Syntax
Lexical Conventions

<concatenation>
 ::= { <expression> <,<expression>>* }

<multiple_concatenation>
 ::= { <expression> { <expression> <,<expression>>*
} }

<function_call>
 ::= <name_of_function> (<expression>
<,<expression>>*)

<name_of_function>

 ::= <IDENTIFIER>

<identifier>

An identifier is any sequence of letters, digits, and the underscore character
(_), where the first character is a letter or underscore. Uppercase and
lowercase letters are treated as different characters. Identifiers can be any
size and all characters are significant. Escaped identifiers start with the
backslash character (\) and end with a space. The leading backslash
character (\) is not part of the identifier. Use escaped identifiers to include
any printable ASCII characters in an identifier.

<delay>

 ::= # <NUMBER>
 ||= # <identifier>
 ||= # (<expression> <,<expression>>*)

Lexical Conventions

The lexical conventions used by FPGA Express are nearly identical to those
of the Verilog language. The types of lexical tokens used by FPGA
Express are described in the following subsections:

n White Space
n Comments
n Numbers
n Identifiers
n Operators
n Macro Substitutions
n include Directive
n Simulation Directives
n Verilog System Functions

Chapter 9 Verilog Syntax –11
Lexical Conventions

White Space

White space separates words in the input description, and can contain
spaces, tabs, new lines, and form feeds. You can place white space
anywhere in the description. FPGA Express ignores white space.

Comments

You can enter comments anywhere in a Verilog description in two forms:
n Beginning with two backslashes //.

FPGA Express ignores all text between these characters and the end of the
current line.

n Beginning with the two characters /* and ending with */ .

FPGA Express ignores all text between these characters, so you can
continue comments over more than one line.

Note: You cannot nest comments.

Numbers

You can declare numbers in several different radices and bit-widths. A
radix is the base number on which a numbering system is built. For
example, the binary numbering system has a radix of 2, octal has a radix of
8, and decimal has a radix of 10.

You can use these three number formats:

1. A simple decimal number that is a sequence of digits between 0 and 9. All
constants declared in this way are assumed to be 32-bit numbers.

2. A number that specifies the bit width, as well as the radix. These numbers
are exactly the same as the previous format, except they are preceded by a
decimal number that specifies the bit width.

3. A number followed by a two-character sequence prefix that specifies the
number’s size and radix. The radix determines which symbols you can
include in the number. Constants declared this way are assumed to be
32-bit numbers. Any of these numbers can include underscores (_). The
underscores improve readability and do not affect the value of the number.
Table C–1 summarizes the available radices and valid characters for the
number.

–12 Chapter 9 Verilog Syntax
Lexical Conventions

Table B-1 Verilog Radices

Example C–1 shows some valid number declarations.

Example B-1 Valid Verilog Number Declarations

391 // 32-bit decimal number
’h3a13 // 32-bit hexadecimal number
10’o1567 // 10-bit octal number
3’b010 // 3-bit binary number
4’d9 // 4-bit decimal number
40’hFF_FFFF_FFFF // 40-bit hexadecimal number
2’bxx // 2-bits don’t care
3’bzzz // 3-bits high-impedance

Identifiers

Identifiers are user-defined words for variables, function names, module
names, and instance names. Identifiers can be composed of letters, digits,
and the underscore character (_). The first character of an identifier cannot
be a number. Identifiers can be any length. Identifiers are case-sensitive
and all characters are significant.

An identifier that contains special characters, begin with numbers, or have
the same name as a keyword can be specified as an escaped identifier. An
escaped identifier starts with the backslash character (\), followed by a
sequence of characters, followed by white space.

Some escaped identifiers are shown in Example C–2.

Example B-2 Sample Escaped Identifiers

\a+b \3state
\module \(a&b)|c

The Verilog language supports the concept of hierarchical names, which
can be used to access variables of submodules directly from a higher-level
module. Hierarchical names are partially supported by FPGA Express.

Name Character Prefix Valid Characters

binary ’b 0 1 x X z Z _ ?

octal ’o 0–7 x X z Z _ ?

decimal ’d 0–9 _

hexadecimal ’h 0–9 a–f A–F x X z Z _ ?

Chapter 9 Verilog Syntax –13
Lexical Conventions

Operators

Operators are one-character or two-character sequences that perform
operations on variables. Some examples of operators are + , ~^ , <= , and
>> . Operators are described in detail in Chapter 4.

Macro Substitutions

Macro substitution assigns a string of text to a macro variable. The string of
text is inserted into the code where the macro is encountered. The definition
begins with the back quote character (‘), followed by the keyword
define , followed by the name of the macro variable. All text from the
macro variable until the end of the line is assigned to the macro variable.

You can declare and use macro variables anywhere in the description. The
definitions can carry across several files that are read into FPGA Express at
the same time. To make a macro substitution, type a back quotation mark
(‘) followed by the macro variable name.

Some sample macro variable declarations are shown in Example C–3.

Example B-3 Macro Variable Declarations

‘define highbits 31:29
‘define bitlist {first, second, third}
wire [31:0] bus;

‘bitlist = bus[‘highbits];

include Construct

The include construct in Verilog is similar to the #include
directive in C. You can use this construct to include Verilog code, such as
type declarations and functions, from one module into another. Example
C–4 shows an application of the include construct.

–14 Chapter 9 Verilog Syntax
Lexical Conventions

Example B-4 Including a File Within a File

Contents of file1.v

‘define WORDSIZE 8
function [WORDSIZE-1:0] fastadder;
.
.
endfunction

Contents of secondfile

module secondfile (in1,in2,out)
‘include “file1.v”
wire [WORDSIZE-1:0] temp;
assign temp = fastadder (in1,in2);
.
.
endmodule

Included files can include other files, up to 24 levels of nesting. You
cannot use the include construct recursively.

Simulation Directives

Simulation directives (not to be confused with FPGA Express directives
described in Chapter 6) refer to special commands that affect the operation
of the Verilog HDL Simulator. You can include these directives in your
design description, because FPGA Express parses and ignores them.

‘accelerate ‘celldefine ‘default_nettype
‘endcelldefine ‘endprotect ‘expand_vectornets
‘noaccelerate ‘noexpand_vectornets ‘noremove_netnames
‘nounconnected_drive ‘protect ‘remove_netnames
‘resetall ‘timescale ‘unconnected_drive

Verilog System Functions

Verilog system functions are implemented by the Verilog HDL Simulators
to generate input or output during simulation. Their names start with a
dollar sign ($). These functions are parsed and ignored by FPGA Express.

Chapter 9 Verilog Syntax –15
Verilog Keywords

Verilog Keywords

Verilog uses keywords to interpret an input file. You cannot use these
words as user variable names unless you use an escaped identifier. For
more information, see the section “Identifiers,” earlier in this chapter.

always and assign begin
buf bufif0 bufif1 case
casex casez cmos deassign
default defparam disable else
end endcase endfunction endmodule
endprimitive endtable endtask event
for force forever fork
function highz0 highz1 if
initial inout input integer
join large medium module
nand negedge nmos nor
not notif0 notif1 or
output parameter pmos posedge
primitive pulldown pullup pull0
pull1 rcmos reg release
repeat rnmos rpmos rtran
rtranif0 rtranif1 scalared small
strong0 strong1 supply0 supply1
supply1 table task time
tran tranif0 tranif1 tri
triand trior trireg tri0
tri1 vectored wait wand
weak0 weak1 while wire
wor xnor xor

Unsupported Verilog Language Constructs

The following Verilog constructs are not supported by FPGA Express.
n Unsupported definitions and declarations
n Unsupported statements
n Unsupported operators
n Unsupported gate-level constructs
n Unsupported miscellaneous constructs

Constructs added to the Verilog Simulator in versions after Verilog 1.6
might not be supported.

–16 Chapter 9 Verilog Syntax
Unsupported Verilog Language Constructs

If you use an unsupported construct in a Verilog description, FPGA
Express issues a syntax error such as

event is not supported

Unsupported Definitions and Declarations

The following Verilog definitions and declarations are not supported by
FPGA Express.

n primitive definition
n time declaration
n event declaration
n triand, trior, tri1, tri0, and trireg net types
n Ranges and arrays for integers

Unsupported Statements

The following Verilog statements are not supported by FPGA Express.
n defparam statement
n initial statement
n repeat statement
n delay control
n event control
n wait statement
n fork statement
n deassign statement
n force statement
n release statement
n Assignment statement with a variable used as a bit-select on the left side of

the equal sign

Unsupported Operators

The following Verilog operators are not supported by FPGA Express.
n Case equality and inequality operators (=== and !==)
n Division and modulus operators for variables

Chapter 9 Verilog Syntax –17
Unsupported Verilog Language Constructs

Unsupported Gate-Level Constructs

The following Verilog gate-level constructs are not supported by FPGA
Express.

n nmos, pmos, cmos, rnmos, rpmos, rcmos, pullup, pulldown, tranif0, tranif1,
rtran, rtranif0, and rtranif1 gate types

Unsupported Miscellaneous Constructs

The following Verilog miscellaneous constructs are not supported by
FPGA Express.

n Hierarchical names within a module
n ‘ifdef, ‘endif and ‘else compiler directives

	HDL Reference Manual
	FPGA Express with Verilog HDL
	Hardware Description Languages
	The FPGA Express Design Process
	Using FPGA Express to Compile a Verilog HDL Design
	Design Methodology
	Verilog Example
	Verilog Design Description

	Description Styles
	Design Hierarchy
	Structural Descriptions
	Functional Descriptions
	Mixing Structural and Functional Descriptions
	Design Methodology
	Description Style
	Language Constructs

	Design Constraints
	Register Selection
	Asynchronous Designs

	Structural Descriptions
	Modules
	macromodule Constructs
	Port Definitions
	Port Names

	Module Statements and Constructs
	Structural Data Types
	Port Declarations
	Continuous Assignment

	Module Instantiations
	Named and Positional Notation
	Building Parameterized Designs
	Gate-Level Modeling
	Three-State Buffer Instantiation

	Expressions
	Constant-Valued Expressions
	Operators
	Arithmetic Operators
	Relational Operators
	Handling Comparisons to X or Z
	Logical Operators
	Bit-Wise Operators
	Reduction Operators
	Shift Operators
	Conditional Operators
	Concatenations
	Operator Precedence

	Operands
	Numbers
	Wires and Registers
	Function Calls
	Concatenation of Operands

	Expression Bit Widths

	Functional Descriptions
	Using Sequential Constructs
	function Declarations
	input Declarations
	Function Output
	reg Declarations
	Memory Declarations
	parameter Declarations
	integer Declarations

	Function Statements
	Procedural Assignments
	RTL Assignments
	begin . . . end Block Statements
	if . . . else Statements
	Conditional Assignments
	case Statements
	Full Case and Parallel Case
	casex Statements
	casez Statements
	for Loops
	while Loops
	forever Loops
	disable Statements

	task Statements
	always Blocks
	Incomplete Event Specification

	Register and Three-State Inference
	Latch Inference
	Simple Flip-Flop Inference
	Flip-Flop Inference with Asynchronous Reset
	Restrictions on Register Capabilities

	Additional Types of Register Inference
	Directives
	async_set_reset Directive
	sync_set_reset Directive
	async_set_reset_local Directive
	sync_set_reset_local Directive
	async_set_reset_local_all Directive
	sync_set_reset_local_all Directive
	one_hot Directive
	one_cold Directive

	FPGA Express Latch and Flip-Flop Inference

	Delays in Registers
	Efficient Use of Registers
	Three-State Inference
	Registered and Latched Three-State Enables

	FPGA Express Directives
	Notation for FPGA Express Directives
	translate_off and translate_on Directives
	parallel_case Directive
	full_case Directive
	Component Implication

	Flip-Flops
	Translating Flip-flops

	Verilog Syntax
	Syntax
	BNF Syntax Formalism
	BNF Syntax

	Lexical Conventions
	White Space
	Comments
	Numbers
	Identifiers
	Operators
	Macro Substitutions
	include Construct
	Simulation Directives
	Verilog System Functions

	Verilog Keywords
	Unsupported Verilog Language Constructs
	Unsupported Definitions and Declarations
	Unsupported Statements
	Unsupported Operators
	Unsupported Gate-Level Constructs
	Unsupported Miscellaneous Constructs

