FPGA Express
VHDL Reference Manual

September 1996

Comments?
E-mail your comments about Synopsys documentation to doc@synopsys.com

SYTIOPSYS]

Copyright Notice and Proprietary Information

Copyright © 1996 Synopsys, Inc. All rights reserved. This software and manual are owned by Synopsys, Inc., and/or its licensamd may be used only as
authorized in the license agreement controlling such use. No part of this publication may be reproduced, transmitted, or tratathin any form or by any
means, electronic, mechanical, manual, optical, or otherwise, without prior written permission of Synopsys, Inc., or as exprggstovided by the license
agreement

Right to Copy Documentation

The license agreement with Synopsys permits licensee to make copies of the documentation for its internal use only. Each copwl$tinclude all copyrights,
trademarks, service marks, and proprietary rights notices, if any. Licensee must assign sequential numbersto all copies. Thespies shall contain the
following legend on the cover page:

“This document is duplicated with the permission of Synopsys, Inc. for the exclusive use of
and its employees. Thisis copy number

Destination Control Statement
All technical data contained in this publication is subject to the export control laws of the United States of America. Discli@sto nationals of other countries
contrary to United States law is prohibited. It is the reader’ s responsibility to determine the applicable regulations and towg@y with them.

Disclaimer
SYNOPSYS, INC., AND ITSLICENSORS MAKE NO WARRANTY OF ANY KIND, EXPRESSOR IMPLIED, WITH REGARD TO THISMATERIAL,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Trademarks

Synopsys, the Synopsyslogo, BINMOS-CBA, CMOS-CBA, COSSAP, DESIGN (ARROWS), DesignPower, dont_use, ExpressModel, LM-1000, LM@120
Logic Modeling, the Logic Modeling logo, Model Access, Model Tools, SmartLicense, SmartLogic, SmartM odel, SmartM odels, SNUG, SOLTV -
SourceModel Library, Stream Driven Simulator, Synopsys VHDL Compiler, Synthetic Designs, and Synthetic Libraries are registemdlemarks of

Synopsys, Inc.

Behavioral Compiler, CBA Design System, characterize, Compiled Designs, Cyclone, Data Path Architect, Data Path Express, DC BtpBC Professional,
Design Analyzer, Design Compiler, DesignSource, DesignTime, DesignWare, DesignWare Developer, dont_touch, dont_touch_network | ECompiler,
Falcon Interface, Floorplan Manager, FoundryModel, FPGA Compiler, FPGA Express, Frame Compiler, General Purpose Post-ProcessaiPP, HDL
Advisor, HDL Compiler, Integrator, Interactive Waveform Viewer, Library Compiler, LM-1400, LM-700, LM-family, Logic Model, M egmnArchitect,
M odel Source, ModelWare, M S-3200, M S-3400, PL debug, PrimeTime, Shadow Debugger, Shortcut, Silicon Architects, SimuBus, Smartdit;cu
SmartModel Windows, Source-Level Design, SourceModel, SWIFT, SWIFT Interface, Synopsys Graphical Environment, Test Compiler,tT&smpiler
Plus, Test Manager, TestBench Manager, TestSim, 3-D Debugging, VHDL System Simulator, Visualyze, VSS Expert, and V SS Professlana
trademarks of Synopsys, Inc.

In-Sync and LEARN-IT! are service marks of Synopsys, Inc.

All other products are trademarks of their respective holders and should be treated as such.

Chapter 1
Using FPGA Express with VHDL

FPGA Express translates and optimizes a VHDL description to an internal
gate-level equivalent format. This format is then compiled for a given
FPGA technology.

To work with VHDL, familiarize yourself with the following concepts:
n Hardware Description Languages
n About VHDL
n About FPGA Express
n Using FPGA Express
» A Mode of the Design Process

The United States Department of Defense, as part of its Very-High-Speed
Integrated Circuit (VHSIC) program, developed VHSIC HDL (VHDL) in
1982. VHDL describes the behavior, function, inputs, and outputs of a
digital circuit design. VHDL issimilar in style and syntax to modern
programming languages, but includes many hardware-specific constructs.

FPGA Express reads and parses the supported VHDL syntax. Chapter 11
listsall VHDL constructs and includes the level of Synopsys support
provided for each construct.

Hardware Description Languages

Hardware description languages (HDL s) are used to describe the
architecture and behavior of discrete electronic systems.

HDL s were developed to deal with increasingly complex designs. An
analogy is often made to the history of what can be called software
description languages, from machine code (transistors and solder), to
assembly language (netlists), to high-level languages (HDLS).

Top-down, HDL -based system design is most useful in large projects,
where several designers or teams of designers are working concurrently.
HDL s provide structured development. After major architectural decisions
have been made, and major components and their connections have been
identified, work can proceed independently on subprojects.

Typical Uses for HDLs

HDL stypically support amixed-level description where structural or netlist
constructs can be mixed with behavioral or algorithmic descriptions. With
this mixed-level capability, you can describe system architectures at a high
level of abstraction; then incrementally refine a design into a particular
component-level or gate-level implementation. Alternatively, you can read
an HDL design description into FPGA Express, then direct the compiler to
synthesize a gate-level implementation automatically.

Advantages of HDLs

A design methodology that uses HDL s has several fundamental advantages
over atraditional gate-level design methodology. Among the advantages
are the following:

» Y ou can verify design functionality early in the design process, and
immediately simulate a design written as an HDL description. Design
simulation at this higher level, before implementation at the gate-level,
allows you to test architectural and design decisions.

n FPGA Express provides logic synthesis and optimization, so you can
automatically convert aVHDL description to a gate-level implementation
in a given technology. This methodology eliminates the former gate-level
design bottleneck and reduces circuit design time and errors introduced
when hand-translating aVHDL specification to gates. With FPGA Express
logic optimization, you can automatically transform a synthesized design to

asmaller and faster circuit. Y ou can apply information gained from the
synthesized and optimized circuits back to the VHDL description, perhaps
to fine-tune architectural decisions.

HDL descriptions provide technol ogy-independent documentation of a
design and its functionality. An HDL description is more easily read and
understood than a netlist or schematic description. Since the initial HDL
design description is technol ogy-independent, you can later reuse it to
generate the design in a different technol ogy, without having to translate
from the original technology.

VHDL, like most high-level software languages, provides strong type
checking. A component that expects a four-bit-wide signal type cannot be
connected to athree- or five-bit-wide signal; this mismatch causes an error
when the HDL description is compiled. If avariable’ srangeisdefined as 1
to 15, an error results from assigning it a value of 0. Incorrect use of types
has been shown to be a major source of errorsin descriptions. Type
checking catches this kind of error in the HDL description even before a
design is generated.

About VHDL

VHDL isoneof just afew HDLsin widespread use today. VHDL is
recognized as a standard HDL by the IEEE (IEEE Standard 1076, ratified
in 1987) and by the United States Department of Defense
(MIL-STD-454L).

VHDL divides entities (components, circuits, or systems) into an external
or visible part (entity name and connections) and an internal or hidden part
(entity algorithm and implementation). After you define the external
interface to an entity, other entities can use that entity when they all are
being developed. This concept of internal and external viewsis central to a
VHDL view of system design. An entity is defined, with respect to other
entities, by its connections and behavior. Y ou can explore alternate
implementations (architectures) of an entity without changing the rest of
the design.

After you define an entity for one design, you can reuse it in other designs
as needed. Y ou can develop libraries of entities for use by many designs, or

for afamily of designs.

The VHDL model of hardware is shown in Figure 1-1.

Ports

VHDL Hardware Model

Entity
(Architecture)

Process Process
Sequential red, blue Combinational
Process Process

wait ... ; :

if A (Signals) X and (Y xor 2);

then X

else Y /

end if; 0to 15 Subprogram

Component

A VHDL entity (design) has one or more input, output, or inout ports that
are connected (wired) to neighboring systems. An entity isitself composed
of interconnected entities, processes, and components, all which operate
concurrently. Each entity is defined by a particular architecture, which is
composed of VHDL constructs such as arithmetic, signal assignment, or
component instantiation statements.

In VHDL, independent processes model sequential (clocked) circuits, using
flip-flops and latches, and combinational (unclocked) circuits, using only
logic gates. Processes can define and call (instantiate) subprograms
(subdesigns). Processes communicate with each other by signals (wires).

A signal has a source (driver), one or more destinations (receivers), and a
user-defined type, such as“color” or “number between 0 and 15.”

VHDL provides a broad set of constructs. With VHDL you can describe
discrete electronic systems of varying complexity (systems, boards, chips,
modules) with varying levels of abstraction.

VHDL language constructs are divided into three categories by their level
of abstraction: behavioral, dataflow, and structural. These categories are
described as follows:

behavioral
Thefunctional or algorithmic aspects of a design, expressed in a sequential

VHDL process.

dataflow
The view of data as flowing through a design, from input to output. An
operation is defined in terms of a collection of data transformations,
expressed as concurrent statements.

structural

The view closest to hardware; a model where the components of adesign
are interconnected. Thisview is expressed by component instantiations.

FPGA Express Design Process

FPGA Express performs three functions:
n Translates VHDL to an internal format

n Optimizes the block level representation through various optimization
methods

n Mapsthe design’slogical structure for a specific FPGA technology library.

FPGA Express synthesizes VHDL descriptions according to the VHDL
synthesis policy defined in Chapter 2, “ Description Styles.” The Synopsys
VHDL synthesis policy has three parts: design methodology, design style,
and language constructs. Y ou use the VHDL synthesis policy to produce
high quality VHDL -based designs.

Using FPGA Express to Compile a VHDL Design

When aVHDL design isread into FPGA Express, it is converted to an
internal database format so FPGA Express can synthesize and optimize the
design. When FPGA Express optimizes adesign, it may restructure part or
all the design. Y ou control the degree of restructuring. Options include:

n Fully preserving adesign’s hierarchy
» Allowing full modules to be moved up or down in the hierarchy
n Allowing certain modules to be combined with others

n Compressing the entire design into one module (called flattening the
design) if it is beneficial

The following section describes the design process that uses FPGA Express
with aVHDL Simulator.

Design Methodology

Figure 1-2 shows atypical design process that uses FPGA Express and a
VHDL Simulator. Each step of this design model is described in detail.

Figure 1-2 Design Flow

VHDL
Description

€

VHDL
Caation D

Synopsys FPGA
Express

®

FPGA Vendor
Development System

@ ©

VHDL VHDL
Simulator Simulator

Simulation _ .. @Qmpﬁr_? __________ Simulation
Output Output Output

The stepsin Figure 1-2 are explained below.

. Writeadesign descriptionin VHDL. This description can be acombination
of structural and functional elements (as shown in Chapter 2, “ Description
Styles*). This description is used with both FPGA Express and the
Synopsys VHDL simulator.

Provide VHDL -language test drivers for the simulator. For information on
writing these drivers, see the appropriate simulator manual. The drivers
supply test vectors for simulation and gather output data.

Simulate the design by using aVHDL simulator. Verify that the description
is correct.

Use FPGA Express to synthesize and optimize the VHDL design
description into a gate-level netlist. FPGA EXxpress generates optimized
netlists to satisfy timing constraints for a targeted FPGA architecture.

Useyour FPGA development system to link the FPGA technol ogy-specific
version of the design to the VHDL simulator. The development system
includes simulation models and interfaces required for the design flow.

Simulate the technol ogy-specific version of the design with the VHDL
simulator. Y ou can use the original VHDL simulation drivers from Step 2
because module and port definitions are preserved through the translation
and optimization processes.

Compare the output of the gate-level simulation (Step 6) against the output
of the original VHDL description simulation (Step 3) to verify that the
implementation is correct.

Chapter 2
Description Styles

The style of your initial VHDL description has a major effect on the
characteristics of the resulting gate-level design synthesized by FPGA
Express. The organization and style of a VHDL description determines the
basic architecture of your design. Because FPGA Express automates most
of the logic-level decisionsrequired in your design, you can concentrate on
architectural tradeoffs.

Y ou can make some of the high-level architectural decisions that are
needed by using FPGA Express. Certain VHDL constructs are well suited
for synthesis. To make the decisions and use the constructs, you need to
become familiar with the following concepts:

Design Hierarchy

Data Types

Design Constraints
Register Selection
Asynchronous Designs

Language Constructs

Design Hierarchy

FPGA Express maintains the hierarchical boundaries you define when
using the structural view in VHDL. These boundaries have two major
effects:

Each design entity specified in your VHDL description is synthesized
separately and is maintained as a distinct design. The constraints for the
design are maintained, and each design entity can be optimized separately
in FPGA Express.

. Component instantiations within VHDL descriptions are maintained during

input. The instance name you give each user-defined entity is carried
through to the gate-level implementation.

Chapter 3 discusses design entities, and Chapter 7 discusses component
instantiations.

Note: FPGA Express does not automatically maintain or create a
hierarchy of other nonstructural VHDL constructs such, as blocks,
processes, loops, functions, and procedures. These elements of a VHDL
description are translated in the context of their design. After readingin
a VHDL design, you can group together the logic of a process, function,
or procedure within the FPGA Express | mplementation Window.

The choice of hierarchical boundaries has a significant effect on the quality
of the synthesized design. Using FPGA Express, you can optimize adesign
while preserving these hierarchical boundaries. However, FPGA Express
only partially optimizes logic across hierarchical modules. Full
optimization is possible across those parts of the design hierarchy that are
collapsed in FPGA Express.

Data Types

In VHDL, you must assign a data type to all ports, signals, and variables.
The data type of an object defines the operations that can be applied to it.
For example, the AND operator is defined for objects of type Bl T, but not
for objects of type | NTEGER .

Data types are also important when your design is synthesized. The data
type of an object determinesits size (bit width) and its bit organization. The
proper choice of data types greatly improves design quality and helps
minimize errors.

See Chapter 4 for a discussion of VHDL data types.

Design Constraints

Y ou can describe the performance constraints for a design module within
the FPGA Express Implementation Window. Refer to the FPGA Express
User’s Guide for further information.

Register Selection

The placement of registers and the clocking scheme are important
architectural decisions. There are two ways to define registersin your
VHDL description. Each method has specific advantages:

Y ou can directly instantiate registersinto a VHDL description, selecting
from any element in your FPGA library. Clocking schemes can be
arbitrarily complex. Y ou can choose between aflip-flop and a latch-based
architecture. The major disadvantages of this approach are

The VHDL description is now specific to a given technology because you
choose structural elements from that technology library. However, you can
isolate this portion of your design as a separate entity, which you then
connect to the remainder of the design.

The description is more difficult to write.

YoucanusetheVHDL i f andwai t statementsto direct FPGA Express
to infer latches and flip-flops from the description. The advantages of this
approach directly counter the disadvantages of the previous approach.
When using register inference, the VHDL description is

technol ogy-independent and is much easier to write. This method allows
FPGA Express to select the type of component inferred, on the basis of
constraints. Therefore, if a specific component is necessary, instantiation
should be used. Some types of registers and latches cannot be inferred.

See Chapter 8 for adiscussion of register and latch inference.

Asynchronous Designs

Y ou can use FPGA Expressto construct asynchronous designs with
multiple clocks and gated clocks. However, although these designs are
logically (statically) correct, they might not simulate or operate correctly,
because of race conditions.

Language Constructs

Design Hierarchy

Data Types

Register Selection

Another component of the VHDL synthesis policy is the set of VHDL
constructs that describe your design, determine its architecture, and give
consistently good results. The remainder of this manual discusses these
constructs and their uses.

The concepts mentioned earlier in this chapter are described in the manual
asfollows:

Chapter 3 describes the use and importance of hierarchy in VHDL designs.
Chapter 7 explains how to instantiate (apply) existing components.

Chapter 4 describes data types and their uses.

Y ou can instantiate registers with the component instantiation statement
discussed in Chapter 3 and Chapter 7. Chapter 6, and Chapter 8 describe
register inference withthe VHDL i f andwai t statements.

Chapter 3
Describing Designs

To describe adesign in VHDL, you need to be familiar with the following
concepts:

n VHDL Entities
» VHDL Constructs
n Defining Designs

n Structural Designs

VHDL Entities

Designs that are described with VHDL are composed of entities. An entity
represents one level of the design hierarchy and can consist of a complete
design, an existing hardware component, or a VHDL-defined object.

Each design hastwo parts: the entity specification and the architecture. The
specification of an entity is its external interface. The architecture of an
entity isitsinternal implementation. A design has only one entity
specification (interface), but it can have multiple architectures
(implementations). When an entity is compiled into a hardware design, a

Example 3-1

configuration specifiesthe architecture to use. An entity’s specification and
architecture can be contained in separate VHDL source files or in one
VHDL sourcefile.

Example 3-1 showsthe entity specification of asimplelogic gate (a 2-input
NAND gate).

VHDL Entity Specification
entity NAND2 is

port(A B: in BT, -- Two inputs, A and B
Z: out BIT); -- One output, Z= (A and B)’
end NAND?;

Note: In a VHDL description, a comment is prefixed by two hyphens

(- -). All characters from the hyphensto the end of theline areignored
by FPGA Express. The only exceptions to this rule are comments that
begin with - - pragmaor - - synopsys, these commentsare FPGA
Express directives.

Afteranentity statement declaresan entity specification, that entity can
be used by other entitiesin adesign. The internal architecture of an entity
determines its function.

Examples 3-2, 3-3, and 3-4 show three different architectures for the entity
NAND2 . The three examples define equivalent implementations of NAND2 .
After optimization and synthesis, each implementation produces the same
circuit, probably a 2-input NAND gate in the target technology. The
architecture description style you use for this entity depends on your own
preferences.

Example 3-2 shows how the entity NAND2 can be implemented with two
components from atechnology library. The entity inputs A and B are
connected to AND gate UD, producing anintermediate signal | . Signal | is
then connected to inverter UL, producing the entity output Z.

Example 3-2 Structural Architecture for Entity NAND2

architecture STRUCTURAL of NANDZ is
signal I: BIT;

conponent AND 2 -- Froma technol ogy
library
port(l1, 12: in BIT,;
Ql: out BIT);
end conponent ;

conponent | NVERT -- Froma technol ogy
library
port(l11: in BIT;
Ql: out BIT);
end conponent ;

begi n
W: AND 2 port map (11 =>A 12 =B Q. =>1);
UL: INVERT port map (11 =>1, QL => 2);

end STRUCTURAL;

Example 3-3 shows how you can define the entity NAND2 by itslogical
function.

Example 3-3 Dataflow Architecture for Entity NAND2

archi tecture DATAFLONof NAND? is
begi n

Z <= A nand B;
end DATAFLOW

Example 3-4 shows another implementation of NAND2.

Example 3-4 RTL Architecture for Entity NAND2

architecture RTL of NAND? is
begi n
process(A B)
begi n
if (A="1) and (B="1") then
Z<="'0;
el se
Z<="'1;
end if;
end process;
end RTL;

VHDL Constructs

Thetop-level VHDL constructs work together to describe adesign. The
description consists of

Entities

Architectures

Configurations

The interfaces to other designs.

The implementations of design entities. Architectures can specify
connection through instantiation to other entities.

The bindings of entities to architectures.

Processes
Collections of sequentially executed statements. Processes are declared
within architectures.
Subprograms
Algorithms that can be used by more than one architecture.
Packages
Collections of declarations used by one or more designs.
Entities

A VHDL design consists of one or more entities. Entities have defined
inputs and outputs, and perform a defined function. Each design has two
parts: an entity specification and an architecture. The entity specification
defines the design’ s inputs and outputs, and the architecture determinesits
function.

Y ou can describe aVHDL design in one or more files. Each file contains
entities, architectures, or packages. Packages define global information that
can be used by several entities. Y ou can often reuse VHDL design filesin
later design projects.

Figure 3-1 shows ablock diagram of a VHDL design’s hierarchical
organization into files.

Figure 3-1 Design Organization

VHDL Design

VHDL Files

Packages

Declare constants, data types, components, and subprograms
used by several designs or entities or both.

Entities Architectures
Declare the interfaces to other Define the implementations of
entities and designs. entities.

Architectures

An architecture determines the function of an entity. Figure 3-2 shows the
organization of an architecture. Not all architectures contain every

construct shown.

Figure 3-2 Architecture Organization

Architecture

Declarations

Declare signals used to communicate between concurrent statements,
and between concurrent statements and the interface ports. Declare
types, constants, components, and subprograms used in the architecture.

Concurrent Statements

Blocks

Collect concurrent statements
together.

Signal Assignments
Compute values and assign them to
signals.

Component Instantiations

Create an instance of
another entity.

Procedure Calls
Invoke a predefined algorithm.

Processes
Define a new algorithm.

An architecture consists of a declaration section where you declare signals,
types, constants, components, and subprograms, followed by a collection of
concurrent statements.

Signals connect the separate pieces of an architecture (the concurrent
statements) to each other, and to the outside world, through interface ports.
Y ou declare each signal with atype that determines the kind of data it
carries. Types, constants, components, and subprograms declared in an
architecture are local to that architecture. To use these declarationsin more
than one entity or architecture, place them in a package, as described under
"Packages" later in this chapter.

Each concurrent statement in an architecture defines a unit of computation
that reads signals, performs a computation that is based on the signal
values, and assighs computed values to signals. Concurrent statements
compute all values simultaneously. Although the order of concurrent
statements has no effect on execution order, the statements often coordinate
their processing by communicating with each other through signals.

blocks

signal assignments

procedure calls

Thefive kinds of concurrent statements are blocks, signal assignments,
procedure calls, component instantiations, and processes. They are
described as follows:

Group together a set of concurrent statements.

Assign computed values to signals or interface ports.

Call algorithms that compute and assign values to signals.

component instantiations

processes

Create an instance of an entity, connecting its interface portsto signals or
interface ports of the entity being defined. See " Structural Design” later in
this chapter.

Define sequential algorithms that read the values of signals, and compute
new valuesto assign to other signals. Processes are discussed in the next
section.

Concurrent statements are described in Chapter 7.

Configurations

A configuration specifies one combination of an entity and its associated
architecture.

Note: FPGA Express supports only configurations that associate one
top-level entity with an architecture.

Processes

Processes contain sequential statements that define algorithms. Unlike
concurrent statements, sequential statements are executed in order. The
order allows you to perform step-by-step computations. Processes read and
write signals and interface port values to communicate with the rest of the
architecture and with the enclosing system.

Figure 3-3

Figure 3-3 shows the organization of constructsin a process. Processes
need not use all the constructs listed.

Processes are unique in that they behave like concurrent statements to the
rest of the design, but they are internally sequential. In addition, only

processes can define variables to hold intermediate values in a sequence of
computations.

Because the statements in a process are sequentially executed, several
constructs are provided to control the order of execution, such asi f and
| oop statements.

Chapter 6 describes sequential statements.

Process Organization

Process

Declarations

Internal variables that hold temporary values in the sequence
of computations, as well as types, constants, components, and
subprograms used locally.

Sequential Statements

Signal Assignments loop Statements
Compute values and assign them Execute statements repeatedly.
to signals.

Procedure Calls

next Statements

Invoke predefined algorithms. Skip remainder of a loop.
Variable Assignments exit Statements

Store intermediate values Terminate the execution
in variables. of a loop.

if Statements

Conditionally execute groups of
sequential statements.

wait Statements

Wait for a clock signal.

case Statements

Select a group of sequential Perform no action; these are
statements to execute. placeholders.

null Statements

Subprograms

Subprograms, like processes, use sequential statementsto define algorithms
that compute values. Unlike processes, however, they cannot directly read
or write signals from the rest of the architecture. All communication is
through the subprogram’ sinterface; each subprogram call hasits own set of
interface signals.

The two types of subprograms are functions and procedures. A function
returns asingle value directly. A procedure returns zero or more values
through itsinterface. Subprograms are useful because you can use them to
perform repeated calculations, often in different parts of an architecture.

Chapter 6 describes subprograms.

Packages
Y ou can collect constants, data types, component declarations, and
subprogramsinto aVHDL package that can then be used by more than one
design or entity. Figure 3-4 shows the typical organization of a package.
Figure 3-4 Typical Package Organization
Package
Constant Declarations Type Declarations
Define constant values used Declare the data types used
by designs. by designs.
Component Declarations Subprograms
Declare interfaces for design Declare algorithms used by
entities. designs.

A package must contain at least one of the constructs listed in Figure 3-4.

Constants in packages often declare system-wide parameters, such as
data-path widths.

VHDL datatype declarations are often included in a package to define data
types used throughout a design. All entities in a design must use common
interface types; for example, common address bus types.

Component declarations specify the interfaces to entities that can be
instantiated in the design.

Subprograms define algorithms that can be called anywhere in adesign.

Packages are often sufficiently general so that you can use them in many
different designs. For example, thestd | ogi c_1164 package defines
datatypesstd | ogic andstd | ogi c_vector

Using a Package
Theuse statement allows an entity to use the declarationsin a package.
The supported syntax of the use statement is

use LI BRARY_NANE. PACKAGE_NAME. ALL;

LI BRARY_NAME isthe name of aVHDL library, and PACKAGE_NAME s
the name of the included package. A use statement is usually the first
statement in a package or entity specification source file. Synopsys does
not support different packages with the same name when they exist in
different libraries. No two packages can have the same name.

Package Structure
Packages have two parts, the declaration and the body:

package declaration

package body

Holds public information, including constant, type, and
subprogram declarations.

Holds private information, including local types and subprogram
implementations (bodies).

Note: When a package declaration contains subprogram declarations, a
corresponding package body must define the subprogram bodies.

Package Declarations

Package declarations collect information needed by one or more entitiesin
adesign. Thisinformation includes data type declarations, signal
declarations, subprogram declarations, and component declarations.

Note: Signals declared in packages cannot be shared across entities. | f
two entities both use a signal from a given package, each entity hasits
own copy of that signal.

Although you can declare al this information explicitly in each design
entity or architecture in asystem, it is often easier to declare system
information in a separate package. Each design entity in the system can
then use the system’s package.

The syntax of a package declaration is

package package name is
{ package declarative item}
end [package nane | ;

where package_nane isthe name of this package.

A package_decl arative_itemisany of these:
use clause (to include other packages)

Type declaration

Subtype declaration

Constant declaration

Signal declaration

Subprogram declaration

Component declaration

Example 3-5 shows some package declarations.

Example 3-5 Sample Package Declarations
package EXAMPLE i s

type BYTE is range 0 to 255;
subtype N BBLE is BYTE range 0 to 15;

constant BYTE FF: BYTE : = 255;
si gnal ADDEND. N BBLE;

conponent BYTE ADDER
port (A, B: i n BYTE;
C out BYTE;
OVERFLOWN out BOOLEAN);
end conponent ;

function MY_FUNCTION (A in BYTE) return BYTE

end EXAMPLE;

To use the example declarations above, add ause statement at the
beginning of your design description as follows:

use WIRK EXAMPLE. ALL;
entity .

architecture .

Further examples of packages and their declarations are given in the
packages supplied by Synopsys. These packages are listed in Appendix B.

Package Bodies

Package bodies contain the implementations of subprograms listed in the
package declaration. However, thisinformation is never seen by designs or
entities that use the package. Package bodies can include the
implementations (bodies) of subprograms declared in the package
declaration and in internal support subprograms.

The syntax of a package body is
package body package nane is

{ package_body declarative_item}
end [package nane | ;

where package_nane isthe name of the associated package.

A package _body_decl arati ve_it emisany of these:

use clause
Subprogram declaration
Subprogram body
Type declaration
Subtype declaration
Constant declaration

For an example of a package declaration and body, seethestd | ogi c_
ari t h package supplied with FPGA Express. This package islisted in
Appendix B.

Defining Designs

The high-level constructs discussed earlier in this chapter involve
Entity specifications (interfaces)
Entity architectures (implementations)

Subprograms

Entity Specifications

An entity specification defines the characteristics of an entity that must be
known before that entity can be connected to other entities and
components.

For example, before you can connect a counter to other entities, you must
specify the number and types of itsinputs and outputs. The entity
specification defines the ports (inputs and outputs) of an entity.

The syntax of an entity specification is

entity entity name is
[generic(generic_declarations) ;]
[port(port_declarations) ;]

end [entity name] ;

enti ty_nane isthe name of the entity, generi c_decl arati ons
determine local constants used for sizing or timing the entity, and port _
decl ar at i ons determine the number and type of inputs and outputs.
Other declarations are not supported in the entity specification.

Entity Generic Specifications
Generic specifications are entity parameters. Generics can specify the bit
widths of components (such as adders) or provide internal timing values.

A generic can have a default value. A generic is assigned a nondefault
value only when the entity isinstantiated (see ‘‘ Component Instantiation
Statement," later in this chapter) or configured (see "Entity
Configurations," later in this chapter). Inside an entity, agenericisa
constant value.

Thesyntax of generi c_decl arati ons is

generi c(
[constant_name : type [:= value]
{ ; constant_nanme : type [:=value] }

)

const ant _nane isthe name of ageneric constant, t ype isapreviously
defined data type, and the optional val ue isthe default value of
const ant _nane.

Note: FPGA Express supports only | NTEGERtype generics.

Entity Port Specifications
Thesyntax of port _decl arati onsis

port (
[port _nane : node port_type
{ ; port_name : node port_type}]

port _name isthe name of aport; node iseitherin,out ,inout ,or
buffer ;andport type isapreviously defined datatype.

Thefour port modes are
i nCan only be read.
out Can only be assigned a value.

i nout

Can beread and assigned avalue. The value read is that of the port’s
incoming value, not the assigned value (if any).

buf f er

Similar to out, but can be read. The value read is the assigned value. It can
have only one driver. For more information on drivers, see "Driving
Signals' in Chapter 7.

Example 3-6

Example 3-6 shows an entity specification for a 2-input N-bit comparator,
with a default bit width of 8.

Interface for an N-Bit Counter

-- Define an entity (design) called COW
-- that has 2 Nbit inputs and one out put.

entity COW is
generic(N |INTEGER : = 8); -- default is 8 bits

port(X, Y: in BIT VECTOROto N1);

EQUAL: out BOOLEAN);
end COVP;

Entity Architectures

Each entity architecture defines one implementation of the entity’s
function. An architecture can range in abstraction from an algorithm (a set
of sequential statements within a process) to astructural netlist (a set of
component instantiations).

The syntax of an architectureis

architecture architecture_nane of entity name is
{ block declarative item}

begi n
{ concurrent_statenment }

end [architecture_nane | ;

ar chi t ect ur e_nane isthe name of the architecture, andentity
name isthe name of the entity being implemented.

A bl ock_decl arative_itemisany of these:
use clause

Subprogram declaration

Subprogram body

Type declaration

Subtype declaration

Constant declaration

Signal declaration

Component declaration

Concurrent statements are described in Chapter 7.

Example 3-7 shows a complete circuit description for athree-bit counter,
entity specification (COUNTERS), and an architecture (MY_ARCH). This
example also includes a schematic of the resulting synthesized circuit.

Example 3-7 An Implementation of a Three-Bit Counter

entity CONTER3 is
port (CLK: in bit;

RESET: in bit;
COUNT: out integer range O to 7);
end COUNTERS;

architecture MY ARCH of COUNTER3 i s
signal COUNT tnp : integer range O to 7;
begi n
process
begi n
wait until (CLK event and CLK = "1");
-- wait for the clock
if RESET =1 or CONT tnp = 7 then
-- k. for RESET or nax. count
CONT _tnmp <= 0;
else CONT tnp <= CONT _tnp + 1;
-- Keep counting
end if;

end process;
COUNT <= CGOUNT _t np;

end MY_ARCH
Figure 3-5 Three-Bit Counter Schematic
Cscoun)
oK [Epts p—-
oo
Scan

Note: In an architecture, you must not declare constants or signals with
the same name as any of the entity’ s ports. If you declare a constant or
signal with a port’s name, the new declaration hides that port name. I f

the new declaration isincluded in the architecture declaration (as shown
in Example 3-8) and not in an inner block, FPGA EXxpress reports an
error.

Example 3-8 Incorrect Use of a Port Name when Declaring Signals or Constants

entity Xis
port(SIG CONST: in BIT;
QJrl, QJr2: out BIT);

end X

architecture EXAMPLE of X is
si gnal SIG : BIT;
constant CONST: BIT :='1";

begi n

end EXAMPLE;

The error nessages generated for Exanple 3-8 are:
si gnal SIG : BIT;
N

Error: (VHDL-1872) line 13
Illegal redeclaration of SIG

constant CONST: BIT :="'1";
N

Error: (VHDL-1872) line 14
Illegal redeclaration of CONST.

Entity Configurations

A configuration defines one combination of an entity and architecture for a
design.

Note: FPGA EXxpress supports only configurations that associate one
top-level entity with an architecture.

The supported syntax for aconfiguration is

configuration configuration _name of entity nanme is
for architecture_name
end for;

end [configuration_nane]

confi gurati on_nane isthe name of this configuration,entity
name isthe name of atop-level entity, and ar chi t ect ur e_nane isthe
name of the architecturetouseforentity_ nane.

Example 3-9

Example 3-9 shows a configuration for the three-bit counter in Example
3-7. This configuration associates the counter’ s entity specification
(COUNTERS) with an architecture (MY_ARCH).

Configuration of Counter in Example 3-7

configuration MY CONFI G of COUNTER3 i s
for MY_ARCH
end for;

end W_CONFI G

Note: If you do not specify a configuration for an entity with multiple
architectures, |[EEE VHDL specifiesthat the last architectureread is
used. Thisisdetermined fromthe. nr a (most recently analyzed) file.

Subprograms

procedures

functions

declaration

body

Subprograms describe algorithms that are meant to be used more than once
in adesign. Unlike component instantiation statements, when a subprogram
isused by an entity or another subprogram, a new level of design hierarchy
is not automatically created. However, you can manually define a
subprogram as anew level of design hierarchy in the FPGA Express
Implementation Window.

Two types of subprograms, procedures and functions, can contain zero or
more parameters:

Procedures have no return value, but can return information to their callers
by changing the values of their parameters.

A function has a single value that it returns to the caller, but it cannot
change the value of its parameters.

Like an entity, a subprogram has two parts—its declaration and its body:

Declares the interface to a subprogram: its name, its parameters, and its
return value (if any).

Defines an algorithm that gives the subprogram’s expected results.

When you declare a subprogram in a package, the subprogram declaration
must be in the package declaration, and the subprogram body must bein the
package body. A subprogram defined inside an architecture has a body, but
does not have a corresponding subprogram declaration.

Subprogram Declarations
A subprogram declaration lists the names and types of its parameters and,
for functions, the type of its return value.

The syntax of a procedure declaration is

procedure proc_nanme [(paraneter_declarations)] ;

pr oc_narme isthe name of the procedure.

The syntax of afunction declaration is

function func_name [(paraneter_declarations)]
return type_nane ;

f unc_nane isthe name of the function, andt ype_nane isthe type of
the function’ s returned value.

The syntax of par armret er _decl ar at i ons isthe same as the syntax of
port decl arati ons:

[paraneter_nane . node paraneter_type
{ ; paranmeter_nane : node paraneter_type}]

par amet er _narmne isthe name of a parameter; node iseitheri n, out
i nout ,or buffer ;andpar anet er _t ype isapreviously defined data

type.

Procedure parameters can use any mode. Function parameters must use
only modei n. Signal parameters of type range cannot be passed to a
subprogram.

Example 3-10 shows sample subprogram declarations for a function and a
procedure.

Example 3-10

Example 3-11

Two Subprogram Declarations

type BYTE is array (7 downto 0) of BIT;
type NBBLE is array (3 downto 0) of BIT;

function IS EVEN(NUM in INTEGER) return BOOLEAN
-- Returns TRE if NUMis even.

procedure BYTE TO N BBLES(B: i n BYTE;
UPPER, LOMER out N BBLE);
-- Splits a BYTE i nto UPPER and LONER hal ves.

Note: When you call a subprogram, actual parameters are substituted for
the declared formal parameters. Actual parameters are either constant
values or signal, variable, constant, or port names. An actual parameter
must support the formal parameter’s type and mode. For example, an
input port cannot be used as an out actual parameter, and a constant
can beused only asan i n actual parameter.

Example 3-11 shows some calls to the subprogram declarations from
Example 3-10.

Two Subprogram Calls

signal INT : | NTEGER
vari abl e EVEN : BOOLEAN

|NT<: 7;
EVEN : = | S EVEN(I NT);

vari able TCP, BOT: N BBLE;

BYTE TO N BBLES("00101101", TCOP, BON:

Subprogram Bodies
A subprogram body defines an implementation of a subprogram’s
algorithm.

The syntax of a procedure body is

procedure procedure_nanme [(paraneter_decl arations)
] is
{ subprogram declarative_ item}
begi n
{ sequential statenent }
end [procedure_name | ;

The syntax of afunction body is

function function_name [(paraneter_decl arations)]
return type_nane is
{ subprogram declarative_ item}
begi n
{ sequential statenent }
end [function_nane] ;

A subprogram decl arati ve_it emisany of these:
n use clause
n Type declaration
n Subtype declaration
n Constant declaration
n Variable declaration
n Attribute declaration
n Attribute specification
n Subprogram declaration

n Subprogram body

Example 3-12 shows subprogram bodies for the sample subprogram
declarations in Example 3-10.

Example 3-12 Two Subprogram Bodies

function IS EVEN(NUM in | NTEGER)
return BOOLEAN i s
begi n
return ((NMrem?2) = 0);
end | S EVEN

procedure BYTE TO N BBLES(B: in BYTE
UPPER, LOMER out N BBLE) is
begi n
UPPER : = NI BBLE(B(7 downto 4));
LOAER : = N BBLE(B(3 downto 0));
end BYTE _TO N BBLES;

Subprogram Overloading

Y ou can overload subprograms; more than one subprogram can have the
same name. Each subprogram that uses a given name must have a different
parameter profile.

Example 3-13

Example 3-14

A parameter profile specifies a subprogram’s number and type of
parameters. This information determines which subprogram is called when
more than one subprogram has the same name. Overloaded functions are
also distinguished by the type of their return values.

Example 3-13 shows two subprograms with the same name, but different
parameter profiles.

Subprogram Overloading

type SMALL is range O to 100;
type LARCE is range O to 10000;

function IS CDD(NUM SMNALL) return BOOLEAN
function IS CDD(NUM LARGE) return BOOLEAN

signal A NUMBER SMALL;
signal B: BOOLEAN

B <= 1S CDD(ANIMBER): -- WII call the first
-- function above

Operator Overloading

Predefined operators such as +, and, and nod can also be overloaded. By
using overloading, you can adapt predefined operators to work with your
own data types.

For example, you can declare new logic types, rather than use the
predefined types Bl T and | NTEGER . However, you cannot use predefined
operators with these new types unless you declare overloaded operators for
the new logic type.

Example 3-14 shows how some predefined operators are overloaded for a
new logic type.

Operator Overloading

type NEWBIT is ("0, "1, "X);
-- New logic type
function "and" (11, 12: in NEWBIT) return NEWBIT,;
function "or" (11, 12: in NEWBIT) return NEWBIT,;
-- Declare overl oaded operators for new | ogi c type

signal A B, C NEWBIT;

C<=(Aand B) or C

VHDL requires overloaded operator declarations to enclose the operator
name or symbol in double quotation marks, because they are infix operators
(they are used between operands). If you declared the overloaded operators
without quotation marks, aVVHDL tool considersthem functions rather than
operators.

Type Declarations

Type declarations define the name and characteristics of atype. Types and
type declarations are fully described in Chapter 4. A typeis anamed set of
values, such asthe set of integers, or theset (red, green, blue) .An
object of agiven type, such asasignal, can have any value of that type.

Example 3-14 shows a type declaration for type NEW Bl T , and some
functions and variables of that type.

Type declarations are allowed in architectures, packages, entities, blocks,
processes, and subprograms.

Subtype Declarations

Use subtype declarations to define the name and characteristics of a
constrained subset of another type or subtype. A subtypeisfully
compatible with its parent type, but only over the subtype's range. Subtype
declarations are described in Chapter 4.

The following subtype declaration (NEW LOGQ C) is asubrange of the type
declaration in Example 3-14.

subtype NEWLOA Cis NEWBIT range "0 to '1’;

Subtype declarations are allowed wherever type declarations are allowed:
in architectures, packages, entities, blocks, processes, and subprograms.

Constant Declarations

Constant declarations create named values of a given type. The value of a
constant can be read but not changed.

Constant declarations are allowed in architectures, packages, entities,
blocks, processes, and subprograms.

Example 3-15 shows some constant declarations.

Example 3-15

Constant Declarations

constant WDTH | NTEGER :
constant X : NEWBIT :

8,
lxl;

Y ou can use constants in expressions, as described in Chapter 5, and as
source values in assignment statements, as described in Chapter 6.

Signal Declarations

Example 3-16

Signal declarations create new hamed signals (wires) of a given type.
Signals can be given default (initial) values. However, these initial values
are not used for synthesis.

Signals with multiple drivers (signals driven by wired logic) can have
associated resolution functions, as described in the next section.

Example 3-16 showstwo signal declarations.

Signal Declarations

signal A B BIT;
signal INT: INTEGER := -1;

Note: Portsare also signals, with therestriction that out ports cannot be
read, and i n ports cannot be assigned a value. You create signals either
by port declarations or by signal declarations. You create ports only by
port declarations.

Y ou can declare signals in architectures, entities, and blocks, and use them
in processes and subprograms. Processes and subprograms cannot declare
signalsfor internal use.

Y ou can use signals in expressions, as described in Chapter 5. Signals are
assigned values by signal assignment statements, as described in Chapter 6.

Resolution Functions

Resolution functions are used with signals that can be connected (wired
together). For example, if two driversare directly connected to asignal, the
resolution function determines whether the signal valueisthe AND, OR, or
three-state function of the driving values.

Useresolution functionsto assign the driving value when there are multiple
drivers. For simulation, you can write an arbitrary function to resolve bus
conflicts.

Note: A resolution function might change the value of a resolved signal,
even if all drivers have the same value.

The resolution function for asignal is part of that signal’s subtype
declaration. Y ou create aresolved signal in four steps:

-- Step 1

type SIGNAL_TYPE is ...

-- signal’s base type is SI GNAL_TYPE

-- Step 2

subtype res_type is res_function SI GNAL_TYPE;

-- name of the subtype is res_type

-- name of function is res_function

-- signal typeis res_type (a subtype of SIGNAL_TYPE)

-- Step 3

function res_function (DATA ARRAY_TYPE)
return SIGNAL_TYPE is

-- declaration of the resolution function

-- ARRAY_TYPE nust be an unconstrained array of

SI GNAL_TYPE

-- Step 4
si gnal resol ved_signal _name:res_type;
-- resolved _signal _nane is a resol ved signal

The signal’s base type is declared.

The resolved signal’ s subtype is declared as a subtype of the base type and
includes the name of the resolution function.

The resolution function itself is declared (and later defined).

Resolved signals are declared as resolved subtypes.

FPGA Express does not support arbitrary resolution functions. Only wired
AND, wired OR, and three-state functions are allowed. FPGA Express
requires that you mark all resolution functions with a special directive
indicating the kind of resolution performed.

Note: FPGA Express considers the directive only when creating
hardware. The body of the resolution function is parsed but ignored.
Using unsupported VHDL constructs (see Appendix C) generates errors.

Do not connect signals that use different resolution functions. FPGA
Express supports only one resolution function per network.

The three resolution function directives are

-- synopsys resol uti on_nethod wred_and
-- synopsys resol uti on_nethod wired_or

-- synopsys resolution_nethod three_state

Note: Pre-synthesis and post-synthesis simulation results might not
match if the body of the resolution function used by the smulator does
not match the directive used by the synthesizer.

Example 3-17 shows how to create and use resolved signals, and how to
use compiler directives for resolution functions. The signal’ s base typeis
the predefined type Bl T.

Example 3-17 Resolved Signal and Its Resolution Function

package RES PACK is
function RES FUNQ(DATA: in BIT VECTOR) return BIT,;
subtype RESOLVED BIT is RES FUNC BI T;

end;

package body RES PACK is
function RES FUNQ(DATA: in BIT VECTCR) return BI T

is
-- pragnma resol uti on_net hod wired_and
begi n
-- The code in this function is ignored by FPGA
Expr ess
-- but parsed for correct VHDL syntax
for I in DATA range | oop
if DATA(l) =0 then
return '0;
end if;
end | oop;
return '1’;
end;
end;

use work. RES PAXK al | ;

entity WAND VHDL i s

port(X, Y: inBIT, Z out RESOLVED BIT);
end WAND VHDL;

architecture WAND VHDL of WAND VHDL i s
begi n

Z <= X

Z <=Y,
end WAND VHDL;

S
C— ‘

< X

Variable Declarations

Variable declarations define a named value of a given type.

Y ou can use variables in expressions, as described in Chapter 5. Variables
are assigned values by variable assignment statements, as described in
Chapter 6.

Example 3-18

Example 3-18 shows some variable declarations.

Variable Declarations

variable A, B: BIT;
variable INT: NEWBIT,;

Note: Variables are declared and used only in processes and
subprograms, because processes and subprograms cannot declare signals
for internal use.

Structural Design

FPGA Express works with one or more designs. Each entity (and
architecture) in aVHDL description is translated to asingle design in
FPGA Express. Designs can also originate from formats other than VHDL,
such as equations, Programmable Logic Arrays (PLAS), state machines,
other HDLS, or netlists.

A design can contain instances of lower-level designs, connected by nets
(signals) to the lower-level design’s ports. These lower-level designs can
consist of other entities from a VHDL design, designs represented in some
other Synopsys format, or cells from atechnology library. By instantiating
designs within designs, you create a hierarchy.

Hierarchy in VHDL is specified by using component declarations and
component instantiation statements. To include a design, you must specify
its interface with a component declaration. Y ou can then create an instance
of that design by using the component instantiation statement.

If your design consists only of VHDL entities, every component
declaration statement corresponds to an entity in the design. If your design
uses designs or technology library cells not described in VHDL, create
component declarations without corresponding entities. Y ou can then use
FPGA Expressto associate the VHDL component with the non-VHDL
design or cell.

Note: To simulate your VHDL design, you must provide entity and
architecture descriptions for all component declarations.

Using Hardware Components

VHDL includes constructs to use existing hardware components. These
structural constructs can be used to define a netlist of components.

The following sections describe how to use components and how FPGA
Express configures these components.

Component Declaration

Example 3-19

Example 3-20

Y ou must declare acomponent in an architecture or package before you can
use (instantiate) it. A component declaration statement is similar to the
entity specification statement described earlier, in that it defines the
component’s interface.

The syntax for a component declaration is

conponent identifier
[generic(generic_declarations)]
[port(port_declarations)]

end conponent ;

wherei dent i f i er isthe name of thistype of component, and the syntax
of generi c_decl arati onsandport_decl arati ons isthesame
as defined previously for entity specifications.

Example 3-19 shows a simple component declaration statement.

Component Declaration of a Two-Input AND Gate

conponent AND2
port(l1, 12: in BIT,
QaL: out BIT);
end conponent;

Example 3-20 shows a component declaration statement that uses ageneric
parameter.

Component Declaration of an N-Bit Adder

conponent ADD
generic(N PCSITIVE);

port (X Y: in BIT VECTCRIN-1 downto 0);
Z out BIT VECTOR(N-1 downto 0);
CARRY: out BIT)
end conponent;

Although the component declaration statement is similar to the entity
specification, it serves a different purpose. The component declaration is
required to make the design entity AND2 or ADD usable, or visible, within
an architecture. After acomponent is declared, it can be used in adesign.

Sources of Components

A declared component can come from the same VHDL sourcefile, from a
different VHDL sourcefile, from another format such as Electronic Data
Interchange Format (EDIF) or state table, or from atechnology library. If
the component is not in one of the current VHDL source files, it must
already be compiled by FPGA Express.

When adesign that uses components is compiled by FPGA Express,
previously compiled components are searched for by name in the following
order:

In the current design.

In the input source file or filesidentified in the FPGA Express
Implementation Window.

3. Inthelibraries of technology-specific FPGA components.

Consistency of Component Ports
FPGA Express checks for consistency among its VHDL entities. For other
entities, the port names are taken from the original design description.

» For componentsin atechnology library, the port names are the input and
output pin names.

» For EDIF designs, the port names are the EDIF port names.

The bit widths of each port must also match. FPGA Express verifies
matching for VHDL components, because the port types must be identical.
For components from other sources, FPGA Express checks when linking
the component to the VHDL description.

Component Instantiation Statement

The component instantiation statement instantiates and connects
components to form a netlist (structural) description of adesign. A
component instantiation statement can create a new level of design
hierarchy.

The syntax of the component instantiation statement is

i nstance_name : conmponent _nane
[generic map (
generi c_name => expression
{ , generic_nanme => expression }
) 1
port map (
[port_name =>] expression
{ , [port_nane =>] expression }

i nst ance_nane isthe name of thisinstance of component type
conponent _nane.

The optional generi ¢ nmap assigns nondefault values to generics. Each
generi c_nane isthe name of ageneric, exactly as declared in the
corresponding component declaration statement. Each expr essi on
evaluates to an appropriate value.

Theport nmap assignsthe component’'s ports to connections. Each

port _name isthe name of aport, exactly asdeclared in the corresponding
component declaration statement. Each expr essi on evaluatesto asignal
value.

FPGA Express uses the following two rules to decide which entity and
architecture are to be associated with a component instantiation:

Each component declaration must have an entity with the same name: a
VHDL entity, adesign from another source (format), or alibrary
component. This entity is used for each component instantiation associated
with the component declaration.

If aVHDL entity has more than one architecture, the last architecture input
is used for each component instantiation associated with that entity. The
. nt a file determines the last architecture analyzed.

Mapping Generic Values

When you instantiate a component with generics, you can map generics to
values. A generic without a default value must be instantiated with a
generic map vaue.

For example, afour-bit instantiation of the component ADD from Example
3-20 might use the following generic map .

Ul: ADD generic map (N => 4)
port map (X, Y, Z CARRY...);

Theport nmap assigns component portsto actual signals; it is described
in the next section.

Mapping Port Connections

Y ou can specify port connections in component instantiation statements
with either named or positional notation. With named notation, the port _
name => construct identifies the specific ports of the component. With
positional notation, the expressions for the component ports are simply
listed in the declared port order.

Example 3-21 shows named and positional notation for the Us component
instantiation statement in Example 3-22.

Example 3-21

Equivalent Named and Positional Association

Wb: or2 port map (O =>n6, 11 =>n3, 12 => nl);
-- Named associ ati on

W: or2 port map (n3, nl, n6);
-- Positional association

Note: When you use positional association, the instantiated port
expressions (signals) must be in the same order asthe declared ports.

Example 3-22 shows a structural (netlist) description for the COUNTER3
design entity from Example 3-7.

Example 3-22 Structural Description of a Three-Bit Counter

architecture STRUCTURE of OOUNTERS i s
conponent DFF
port (CLK, DATA in BIT;
Q out BIT);
end conponent ;
conponent AND2
port(l11, 12: in BIT,;
Q out BT;
end conponent ;
conponent CR2
port(l11, 12: in BIT,;
Q out BT);
end conponent ;
conponent NAND?
port(l11, 12: in BIT,
Q out BT);
end conponent ;
conponent XNOR2
port(l11, 12: in BIT,
Q out BT);
end conponent ;
conponent | NV
port(l: in BIT;
Q out BT);
end conponent ;

signal NI, N2, N3, M, N5, N6, N7, N3, No: BIT;

begi n
ul: DFF port map(CLK, N1, N2);
u2: DFF port map(CLK, N5, N3);
u3: DFF port map(CLK, N9, MN4);
ud: TNV port map(N2, N1);
ub: CR2 port map(N3, N1, N6);
u6: NAND2 port map(NL, N3, N7);
u7: NAND2 port map(N6, N7, Nb);
u8: XNOR2 port map(N8, N4, N9);
u9: NAND2 port map(N2, N3, N8);
CONT(0) <= N2;
COUNT(1) <= Ng;
CONT(2) <= M;

end STRUCTURE

Technology-Independent Component Instantiation

When you use a structural design style, you might want to instantiate
logical components. Synopsys provides generic technology library
GIECH for this purpose. This generic technology library contains
technol ogy-independent logical components such as.

» AND, OR, and NOR gates (2, 3, 4, 5, and 8)
n one-bit adders and half adders
n 2-0f-3 majority

Example 3-23

» multiplexors
n flip-flops and latches

» multiple-level logic gates, such as AND-NOT, AND-OR,
AND-OR-INVERT

Y ou can use these simple components to create technol ogy-independent
designs. Example 3-23 shows how an N-bit ripple-carry adder can be
created from N one-bit adders.

Design That Uses Technol ogy-Independent Components

l'ibrary GIECH
use gtech. gtech _conponents. al | ;
entity RPPLE CARRY is

generi c(N NATURAL);

port (A, B: in BIT VECTCRIN-1 downto 0);
CARRY_I N inBIT,
SUWM out BIT VECTORIN-1 downto 0);

CARRY QUT: out BIT;);
end R PPLE CARRY;

architecture TECH | NDEP of RIPPLE CARRY is
signal CARRY: BI T _VECTOR(N downto 0);

begi n
CARRY(0) <= CARRY_ IN

GEN for | in Oto N1 generate
Ul: GTECH ADD port map(

A = AlI),

B = BI),

C => CARRY(1),
S = SWM),
CAUT => CARRY(I+1));

end generate CEN

CARRY_QUT <= CARRY(N);
end TECH | NDEP;

Chapter 4
Data Types

VHDL isastrongly typed language. Every constant, signal, variable,
function, and parameter is declared with a type, such as BOOLEAN or
| NTEGER , and can hold or return only avalue of that type.

VHDL predefines abstract data types, such as BOOLEAN , which are part of
most programming languages, and hardware-related types, suchasBI T,
found in most hardware languages. VHDL predefined types are declared in
the STANDARD package, which is supplied with all VHDL
implementations (see Example 4-12). Data types addresses information
about

Enumeration Types

Integer Types

Array Types

Record Types

Predefined VHDL Data Types
Unsupported Data Types
Synopsys Data Types
Subtypes

The advantage of strong typing isthat VHDL tools can catch many
common design errors, such as assigning an eight-bit valueto a
four-bit-wide signal, or incrementing an array index out of itsrange.

The following code shows the definition of anew type, BYTE, as an array
of eight bits, and a variable declaration, ADDEND , that uses this type.

type BYTE is array(7 downto 0) of BIT,;

vari abl e ADDEND: BYTE;

The predefined VHDL data types are built from the basic VHDL data
types. Some VHDL types are not supported for synthesis, such as REAL
and FI LE.

The examplesin this chapter show type definitions and associated object
declarations. Although each constant, signal, variable, function, and
parameter is declared with atype, only variable and signal declarations are
shown here in the examples. Constant, function, and parameter
declarations are shown in Chapter 3.

VHDL also provides subtypes, which are defined as subsets of other types.
Anywhere atype definition can appear, a subtype definition can also
appear. The difference between atype and a subtype isthat a subtypeisa
subset of a previously defined parent (or base) type or subtype.
Overlapping subtypes of a given base type can be compared against and
assigned to each other. All integer types, for example, are technically
subtypes of the built-in integer base type (see "Integer Types," later in this
chapter). Subtypes are described in the last section of this chapter.

Enumeration Types

An enumeration type is defined by listing (enumerating) all possible values
of that type.

The syntax of an enumeration type definition is

type type name is (enuneration_literal
{, enuneration_literal});

t ype_nane isanidentifier,and eachenuneration_literal is
either an identifier (enum 6) or acharacter literal (" A’).

Anidentifier is a sequence of letters, underscores, and numbers. An
identifier must start with aletter and cannot be aVHDL reserved word,

suchas TYPE. All VHDL reserved words are listed in Appendix C.

A character literal is any value of type CHARACTER , in single quotes.

Example 4-1

Example 4-1 shows two enumeration type definitions and corresponding
variable and signal declarations.

Enumeration Type Definitions

type COLCR is (BLUE, GREEN, YELLON RED);
type W LOACis ('0', "1, 'U, 'Z);
vari able HIEE: COLCR

signal SIG W _LGAC

HE : = BLUE
SIG<="27"

Enumeration Overloading

Example 4-2

Y ou can overload an enumeration literal by including it in the definition of
two or more enumeration types. When you use such an overloaded
enumeration literal, FPGA Express can usually determine the literal’ s type.
However, under certain circumstances determination may beimpossible. In
these cases, you must qualify the literal by explicitly stating its type (see
“‘Qualified Expressions"’ in Chapter 5). Example 4-2 shows how you can
gualify an overloaded enumeration literal.

Enumeration Literal Overloading

type OOLCR is (RED, GREEN, YELLON BLUE, VI CLET);
type PRIMARY COLCR is (RED, YELLOW BLUE);

A <= OOLCR (RED);

Enumeration Encoding

Enumeration types are ordered by enumeration value. By default, the first
enumeration literal is assigned the value 0, the next enumeration literal is
assigned the value 1, and so forth.

FPGA Express automatically encodes enumeration values into bit vectors
that are based on each value's position. The length of the encoding bit
vector is the minimum number of bits required to encode the number of
enumerated values. For example, an enumeration type with five values has
athree-bit encoding vector.

Example 4-3 shows the default encoding of an enumeration type with five
values.

Example 4-3

Example 4-4

Automatic Enumeration Encoding
type OOLOR is (RED, GREEN, YELLOW BLUE, M1 CLET);

The enumeration values are encoded as follows:

RED b "000"
GREEN Pp "001"
YELLOVN P "010"
BLUE b "011"
VI QET p "100"

Theresult is RED < GREEN < YELLOWN < BLUE <VI CLET.

Y ou can override the automatic enumeration encodings and specify your
own enumeration encodings with the ENUM ENCCDI NG attribute. This
interpretation is specific to FPGA Express.

A VHDL attribute is defined by its name and type, and is then declared
with avalue for the attributed type, as shown in Example 4-4 below.

Note: Several VHDL synthesis-related attributes are declared in the
ATTRI BUTES package supplied with FPGA Express. This packageis
listed in Appendix B. The section " Synthesis Attributes and
Constraints," in Chapter 9 describes how to use these VHDL attributes.

The ENUM ENCCODI NG attribute must be a STRI NG containing a series of
vectors, one for each enumeration literal in the associated type. The
encoding vector isspecifiedby ' 0’ 5,1’ s,"D s, U s,and’ Z' s
separated by blank spaces. The meaning of these encoding vectorsis
described in the next section. Thefirst vector in the attribute string specifies
the encoding for the first enumeration literal, the second vector specifies
the encoding for the second enumeration literal, and so on. The ENUM_
ENCODI NG attribute must immediately follow the type declaration.

Example 4-4 illustrates how the default encodings from Example 4-3 can
be changed with the ENUM ENCCDI NG attribute.

Using the ENUM_ENCODING Attribute

attribute ENUM ENCODI NG STRI NG
-- Attribute definition

type COLCR is (RED, GREEN, YELLON BLUE, W CQLET);
attribute ENUM ENCCDI NG of

OCOLCR type is "010 000 011 100 0O1";

-- Attribute declaration

The enumeration values are encoded as follows:

RED = "010"
GREEN = "000"
YELLONV= "011"
BLLE = "100"
VI QLET = "001"

The result is GREEN<VI OLET<RED<YELLOMBLUE

Note: Theinterpretation of the ENUM_ENCODI NGattribute is specific to
FPGA Express. Other VHDL tools, such as simulators, use the standard
encoding (ordering).

Enumeration Encoding Values

The possible encoding values for the ENUM ENCCDI NG attribute are;
"0’ BitvalueO

"1 Bitvauel

"D Don't-care (can be either O or 1).

"U Unknown. If Uappearsin the encoding vector for an enumeration,
you cannot use that enumeration literal except as an operand to the = and /
= operators. Y ou can read an enumeration literal encoded with aU from a
variable or signal, but you cannot assign it.

For synthesis, the = operator returns FALSE and the/ = operator returns
TRUE when either of the operandsis an enumeration literal whose
encoding contains U.

'Z" Highimpedance. See'‘Three-State Inference" in Chapter 8 for more
information.

Integer Types

The maximum range of aVHDL integer typeis- (j-¢- ¢) t0 j—¢- ¢, (- 2_
147 483 647 .. 2 147 483 647). Integer types are defined as
subranges of this anonymous built-in type. Multidigit numbersin VHDL
can include underscores (_) to make them easier to read.

FPGA Express encodes an integer value as a bit vector whose length is the
minimum necessary to hold the defined range and encodes integer ranges
that include negative numbers as 2’ s-complement bit vectors.

Example 4-5

The syntax of an integer type definition is

type type_nane is range integer_range ;

t ype_nane isthe name of the new integer type, and i nt eger _r ange
is a subrange of the anonymous integer type.

Example 4-5 shows some integer type definitions.

Integer Type Definitions

type PERCENT is range -100 to 100;
-- Represented as an 8-bit vector
-- (1 sign bit, 7 value bits)

type INTEGER i s range -2147483647 to 2147483647,
-- Represented as a 32-bit vector
-- This is the definition of the | NTEGER type

Note: You cannot directly access the bits of an | NTEGERor explicitly
state the bit width of the type. For these reasons, Synopsys provides
overloaded functionsfor arithmetic. These functions are defined in the
st d_| ogi cpackage, listed in Appendix B.

Array Types

Example 4-6

An array is an object that is a collection of elements of the same type.
VHDL supports N-dimensional arrays, but FPGA Express supports only
one-dimensional arrays. Array elements can be of any type. An array hasan
index whose value selects each element. The index range determines how
many elements are in the array and their ordering (low t o high, or high
downt o low). Anindex can be of any integer type.

Y ou can declare multidimensional arrays by building one-dimensional
arrays where the element type is another one-dimensional array, as shown
in Example 4-6.

Declaration of Array of Arrays

type BYTE is array (7 downto 0) of BIT;
type VECTCR is array (3 downto 0) of BYTE;

VHDL provides both constrained arrays and unconstrained arrays. The
difference between these two arrays comes from the index range in the
array type definition.

Constrained Array

Example 4-7

A constrained array’ s index range is explicitly defined; for example, an
integer range (1 to 4) . When you declare avariable or signal of this
type, it has the same index range.

The syntax of a constrained array type definition is

type array_type_nane is
array (integer_range) of type nane ;

array_type_nane isthe name of the new constrained array type,
i nt eger _r ange isasubrange of another integer type, andt ype_nane
isthe type of each array element.

Example 4-7 shows a constrained array definition.

Constrained Array Type Definition

type BYTE is array (7 downto 0) of BIT,
-- A constrained array whose index range is
-- (7, 6, 5 4, 3, 2, 1, 0)

Unconstrained Array

Y ou define an unconstrained array’s index range as a type, for example,

| NTEGER . This definition implies that the index range can consist of any
contiguous subset of that type's values. When you declare an array variable
or signal of thistype, you also define its actual index range. Different
declarations can have different index ranges.

The syntax of an unconstrained array type definition is

type array_type_nane is
array (range_type_name range <>)
of el enent _type_nane ;

array_type_nane isthe name of the new unconstrained array type,
range_t ype_nane isthe name of an integer type or subtype, and
el enent _t ype_nane isthetype of each array element.

Example 4-8 shows an unconstrained array type definition and a
declaration that usesiit.

Example 4-8

Unconstrained Array Type Definition

type BIT VECTCR i s array(l NTEGER range <>) of BIT;
-- An unconstrai ned array definition

variabl e MY VECTCR : BI T_VECTOR(5 downto -5):

The advantage of using unconstrained arraysisthat aVHDL tool
remembers the index range of each declaration. Y ou can use array
attributes to determine the range (bounds) of a signal or variable of an
unconstrained array type. With thisinformation, you can write routines that
use variables or signals of an unconstrained array type, independently of
any one array variable's or signal’ s bounds. The next section describes
array attributes and how they are used.

Array Attributes

Table4-1

MY_VECTCR | ef t
MY_VECTCR ri ght
MY_VECTCR hi gh

MY_VECTCR | ow

FPGA Express supports the following predefined VHDL attributes for use
with arrays:

| eft
right
hi gh

| ow

| ength
range

rever se_range

These attributes return a value corresponding to part of an array’s range.
Table 4-1 shows the values of the array attributes for the variable My _
VECTCR in Example 4-8.

Array Index Attributes

MY_VECTCR | engt h
MY_VECTCR r ange

MY_VECTCR
reverse_range

Example 4-9

11
(5 down to -5)

(-5 to 5)

Example 4-9 shows the use of array attributes in afunction that ORs
together all elements of agiven Bl T_VECTCR (declared in Example 4-8)
and returns that value.

Use of Array Attributes

function R ALL (X in BIT VECTOR) return BIT is
variable CRBIT: BIT,

begi n
ORBT:='0;
for I in X range | oop
CRBIT:=CRBITor XI);
end | oop;

return CR BIT;
end;

Note that this function worksfor aBl T_VECTCR of any size.

Record Types

A record is a set of named fields of various types, unlike an array, which is
composed of identical anonymous entries. A record’sfield can be of any
previously defined type, including another record type.

Note: Constantsin VHDL of typer ecor d are not supported for
synthesis (the initialization of recordsis not supported).

Example 4-11 shows a record type declaration (BYTE_AND | X), three
signals of that type, and some assignments.

Example 4-11 Record Type Declaration and Use
constant LEN | NTEGER : = 8;

subtype BYTE VEC is BI T _VECTOR(LEN-1 downto 0);

type BYTE AND I X is
record
BYTE: BYTE VEC
| X I NTEGER range 0 to LEN
end record;

signal X Y, Z BYTE AND I X

si gnal DATA. BYTE VEC
signal NUM | NTECER

X BYTE <= "11110000";
X1X <=2

DATA <= Y. BYTE;
NUM <= Y.IX

Z<=X

As shown in Example 4-11, you can read values from or assign values to
records in two ways.

» By individual field name
X. BYTE <= DATA
X 1X <= LEN

» From another record object of the same type
Z<=X

Note: A record type object’sindividual fields are accessed by the object
name, a period, and a field name: X. BYTEor X. | X Toaccessan
element of the BYTEfield' s array, use the array notation X. BYTE(2).

Predefined VHDL Data Types

IEEE VHDL describes two site-specific packages, each containing a
standard set of types and operations: the STANDARD package and the
TEXTI O package.

The STANDARD package of datatypesisincludedinal VHDL sourcefiles
by animplicit use clause. The TEXTI O package defines types and
operations for communication with a standard programming environment
(terminal and file 1/0). This package is not needed for synthesis, and
therefore FPGA Express does not support it.

The FPGA Expressimplementation of the STANDARD packageislistedin
Example 4-12. This STANDARD package is a subset of the IEEE VHDL
STANDARD package. Differences are described in ** Unsupported Data
Types' later in this chapter.

Example 4-12 FPGA Express STANDARD Package
package STANDARD i s

type BOOLEAN is (FALSE, TRUE);

type BITis (0", "1);

type CHARACTER is (
NUL, SCH STX, ETX, EOT, ENQ ACK, BEL,
BS, HI, LF, VI, FF, R SO 9,
DLE, DCl, DC2, DC3, D4, NAK, SYN, ETB,
CAN EM SUB, ESC FSP, GSP, RSP, USP,

’ l!! [T 1#1 |$! 1%,1&1 1y

o, "1y, 2, '3, 4, ', e, T,
[A L T T
'@, 'A, B, ’C, 'D, 'E, 'F, 'G,
H, ',), 'K, 'L, "M, 'N, 'O,
P, ’Q, 'R, 'S, 'T", U, 'V, "W,
D (A T e
"’,’a’,'b’,’c’,’d’,'e’,’f’,’g’

B e e T A 1 I o B o I
’p’,,q’,'I",’S’,’t’,'U’,’V,,’W,
X, ,y,v 'z, ’{,1’|,’ ,}" T~ IIL)a

type INTEGER i s range -2147483647 to 2147483647,
subtype NATURAL is INTEGER range O to 2147483647,
subtype POSITIVE is INTEGER range 1 to 2147483647,

type STRINGis array (PGSl Tl VE range <>)
of CHARACTER

type BIT VECTOR i s array (NATURAL range <>)
of BIT;

end STANDARD

Data Type BOOLEAN

The BOCLEAN datatypeis actually an enumerated type with two values,
FALSE and TRUE, where FALSE < TRUE. Logical functions such as
equality (=) and comparison (<) functions return a BOOLEAN value.

Convert aBl T valueto a BOOLEAN value as follows:
BOOLEAN VAR := (BIT. VAR ='1");

Data Type BIT

The Bl T datatype represents a binary value as one of two characters, ' 0’
or’' 1' . Logical operations such asand can take and return Bl T values.

Convert aBOOLEAN valueto aBIl T value asfollows:
i f (BOOLEAN VAR) then

BIT VAR :="1";
el se

BIT VAR :="'0";
end if;

Data Type CHARACTER

The CHARACTER data type enumerates the ASCII character set.
Nonprinting characters are represented by a three-letter name, such as NUL
for the null character. Printable characters are represented by themselves, in
single quotation marks, as follows:

vari abl e CHARACTER VAR CHARACTER

CHARACTER VAR := ' A ;

Data Type INTEGER

Thel NTEGER datatype represents positive and negative whole numbers
and zero.

Data Type NATURAL

The NATURAL datatypeisasubtypeof | NTEGER that isused to represent
natural (nonnegative) numbers.

Data Type POSITIVE

The PCSI Tl VE datatypeis asubtype of | NTEGER that isused to
represent positive (nonzero and nonnegative) numbers.

Data Type STRING

The STRI NG datatype is an unconstrained array of CHARACTER data
types. A STRI NG valueis enclosed in double quotation marks, as follows:

variable STRING VAR STRINH1 to 7);

STRI i\G_VAR ;= "Rosebud";

Data Type BIT_VECTOR

The Bl T_VECTOR datatype representsan array of Bl T values.

Unsupported Data Types

Some data types are either not useful for synthesis or are not supported.
Unsupported types are parsed but ignored by FPGA Express. These types
are listed and described below.

Appendix C describes the level of FPGA Express support for each VHDL
construct.

Physical Types

FPGA Express does not support physical types, such as units of measure
(for example, nS). Because physical types are relevant to the simulation
process, FPGA Express allows but ignores physical type declarations.

Floating Point Types

FPGA Express does not support floating point types, such as REAL .
Floating point literals, such as 1. 34, are allowed in the definitions of
FPGA Express-recognized attributes.

Access Types

FPGA Express does not support access (pointer) types because no
equivalent hardware construct exists.

File Types

FPGA Express does not support file (disk file) types. A hardware fileisa
RAM or ROM.

SYNOPSYS Data Types

Thestd | ogic_arith package provides arithmetic operations and
numeric comparisons on array datatypes. The package also defines two
major datatypes: UNSI GNED and S| GNED . These data types, unlike the
predefined | NTEGER type, provide accessto theindividual bits (wires) of a
numeric value. For more information, see Appendix B.

Subtypes

A subtype is defined as a subset of a previously defined type or subtype. A
subtype definition can appear wherever atype definition is allowed.

Subtypes are a powerful way to use VHDL type checking to ensure valid
assignments and meaningful data handling. Subtypes inherit all operators
and subprograms defined for their parent (base) types.

Subtypes are also used for resolved signals to associate a resolution
function with the signal type. (See "Signal Declarations' in Chapter 3 for
more information.)

For example, in Example 4-12 NATURAL and PCsl Tl VE are subtypes of
| NTEGER and they can be used with any | NTEGER function. These
subtypes can be added, multiplied, compared, and assigned to each other, as
long as the values are within the appropriate subtype’'s range. All

| NTEGER types and subtypes are actually subtypes of an anonymous
predefined numeric type.

Example 4-13 shows some valid and invalid assignments between
NATURAL and PCsI Tl VE values.

Example 4-13 Valid and Invalid Assignments between INTEGER Subtypes

vari abl e NAT: NATURAL;
vari abl e PCS: PGSl Tl VE

P

= b5;
NAT := PCS + 2;
NAT : = O;
PGS : = NAT; -- Invalid; out of range

For éxanpl e, the type BIT VECTOR is defined as
type BIT VECTCR i s array(NATURAL range <>) of BIT;

If your design uses only 16-bit vectors, you can define a subtype MY _
VECTCR as

subtype MY VECTCR is BIT VECTOCR(O to 15);

Example 4-14 shows that all functions and attributes that operateon Bl T_
VECTCR also operate on MY_VECTCR .

Example 4-14 Attributes and Functions Operating on a Subtype

type BIT VECTCR i s array(NATURAL range <>) of BIT;
subtype MY VECTCR is BIT VECTOCR(O to 15);

signal VECL, VEC2: M VECTCR
si gnal SBT BT,

vari abl e UPPER BOUND. | NTEGER
if (VECL = VEC2)

VECL(4) <= S BIT;
VEC2 <= "0000111100001111";

R GHT | NDEX : = VECL' hi gh;

Chapter 5
Expressions

B

B

Expressions perform arithmetic or logical computations by applying an
operator to one or more operands. Operators specify the computation to be
performed. Operands are the data for the computation.

Expressions are discussed as
Operators
Operands

In the following VHDL fragment, A and B are operands, + is an operator,
and A + B is an expression.

C:=A+B -- Conputes the sumof two val ues

Y ou can use expressions in many places in adesign description.
Expressions can be:

Assign to variables or signals or used as the initial values of constants.
Used as operands to other operators.

Used for the return value of functions.

Used for the I N parametersin a subprogram call.

Assigned to the QUT parameters in a procedure body.

Used to control the actions of statementslikei f , | oop, and case.

To understand expressions for VHDL, consider the individual components
of operators and operands.

Operators
n Logical operators
» Relational operators
» Adding operators
» Unary (sign) operators
» Multiplying operators

n Miscellaneous arithmetic operators

Operands
n Computable operands
n Literals
n |dentifiers
n Indexed names
n Slice names
n Aggregates
n Attributes
n Function calls
n Qualified expressions

n Type conversions

Operators

A VHDL operator is characterized by
n Name
n Computation (function)
» Number of operands
n Type of operands (such as Bool ean or Char acter)

n Type of result value

Y ou can define new operators, like functions, for any type of operand and
result value. The predefined VHDL operators are listed in Table 5-1.

Table 5-1 Predefined VHDL Operators

Type
Logical
Relational
Adding
Unary (sign)
Multiplying

Miscellaneous

Operators

and

+

+

*

* %

or

abs

Example 5-1

Precedence

nand nor xor L owest
< <= > >=
&

nmod rem

not Highest

Each row in the table lists operators with the same precedence. Each row’s
operators have greater precedence than those in the row above. An
operator’s precedence determines whether it is applied before or after
adjoining operators.

Example 5-1 shows several expressions and their interpretations.
Operator Precedence

A+B*C
not BOOL and (NUM = 4)

A+ (B* QO
(not BOOL) and (NUM = 4)

VHDL allows existing operators to be overloaded (applied to new types of
operands). For example, theand operator can be overloaded to work with a
new logic type. For more information, see ‘‘ Operator Overloading” in
Chapter 3.

Logical Operators

Operands of alogical operator must be of the same type. The logical
operatorsand, or, nand, nor, xor, and not accept operands of
type Bl T, type BOOLEAN, and one-dimensional arraysof Bl T or
BOOLEAN . Array operands must be the same size. A logical operator
applied to two array operandsis applied to pairs of the two arrays’
elements.

Example 5-2 shows some logical signal declarations and logical operations
on them.

Example 5-2

Example 5-3

Figure 5-1

Logical Operators

signal A B C Bl T_VECTOR(3 downto 0);
signal DL E F, G BIT VECTOR(1 downto 0);
signal H I, J, K BIT;

signal L, M N O P. BOOLEAN

A <= B and C

D<=Eor For G
H <= (I nand J) nand K
L <= (Mxor N and (O xor P);

Normally, to use more than two operands in an expression, you must use
parentheses to group the operands. Alternately you can combine a sequence
of and, or , or xor operators without parentheses, such as

A and B and C and D

However, sequences with different operators, such as
A or B xor C

do require parentheses.

Example 5-3 uses the declarations from Example 5-2 to show some
common errors.

Errorsin Using Logical Operators

H<=1 and J or K -- Parent hesis required;
L <= Mnand N nand Onand P, -- Parenthesis
required,

A <= B and E -- (perands nust be the sane si ze;
H<=1 or L; -- Qperands nust be the sane type;

Common Errors Using Logical Operators

Relational Operators

Relational operators, such as = or >, compare two operands of the same
base type and return a BOOLEAN value.

IEEE VHDL defines the equality (=) and inequality (/ =) operators for all
types. Two operands are equal if they represent the same value. For array
and record types, |IEEE VHDL compares corresponding elements of the
operands.

IEEE VHDL defines the ordering operators (<, <=, "" (relational
operator)">>, and ="" (relational operator)">>=) for all enumerated types,
integer types, and one-dimensional arrays of enumeration or integer types.

Theinternal order of atype’s values determines the result of the ordering
operators. Integer values are ordered from negative infinity to positive
infinity. Enumerated values are in the same order as they were declared,
unless you have changed the encoding.

Note: |f you set the encoding of your enumerated types (see
‘“Enumeration Encoding" in Chapter 4), the ordering operators compare
your encoded value ordering, not the declaration ordering. Because this
interpretation is specific to FPGA Express, a VHDL simulator continues
to use the declaration’s order of enumerated types.

Arrays are ordered like words in a dictionary. The relative order of two
array values is determined by comparing each pair of elementsin turn,
beginning from the left bound of each array’sindex range. If apair of array
elementsis not equal, the order of the different el ements determines the
order of the arrays. For example, bit vector 101011 islessthan 1011
because the fourth bit of each vector is different, and O islessthan 1.

If the two arrays have different lengths and the shorter array matches the

first part of the longer array, the shorter one is ordered before the longer.

Thus, the bit vector 101 islessthan 101000 . Arrays are compared from
left to right, regardless of their index ranges (t o or downt o).

Example 5-4 shows several expressions that evaluate to TRUE.

Example 5-4 TRUE Relational Expressions

1 1! = 1 11
n 101" = n lolll

1" > "011" -- Array conparison
n 101" < n lloll

To interpret bit vectors such as 011 as signed or unsigned binary numbers,
use the relational operators defined in the FPGA Expressstd_| ogi ¢c_
arith package (listed in Appendix B). The third line in Example 5-4
evaluates to FALSE if the operands are of type UNSI GNED .

UNSI G\NED "1" < UNSI G\ED " 011" -- Nuneric
conpari son

Example 5-5 shows some relational expressions and the resulting
synthesized circuits.

Example 5-5 Relational Operators

signal A B BIT VECTOR(3 downto 0);
signal C D BIT VECTOR(1 downto 0);
signal EL F, G H I, J; BOOLEAN

G <= (A = B);
H<= (C<D;
| <= (C>=D;
J<=(E>F);

AlL] -
BI1] -

Al2Z] -
BIZ] -

o]

A3l e
B3] T

o W wl e

Aral [
BIA] [

o1 [

ci1l DJ'I_D)_"—[:DF

cral [r
;Dg_}’

Diel [

F >

EL>

7y
Ef

Y

Adding Operators

Adding operators include arithmetic and concatenation operators.

Example 5-6

The arithmetic operators + and - are predefined by FPGA Expressfor all
integer operands. These addition and subtraction operators perform
conventional arithmetic, as shown in Example 5-6. For adders and
subtracters more than four bits wide, a synthetic library component is used
(see Chapter 9).

Theconcatenation (&) operator is predefined for all one-dimensional array
operands. The concatenation operator builds arrays by combining the
operands. Each operand of & can be an array or an element of an array. Use
& to add a single element to the beginning or end of an array, to combine
two arrays, or to build an array from elements, as shown in Example 5-6.

Adding Operators
signal A D BI T VECTOR(3 downto 0);

signal BB C G BIT VECTOR(1 downto 0);
signal E BI T_VECTCR(2 downto 0);
signal F, H I: BIT;

signal J, K L: INTEGER range 0 to 3;
A<=not B¬ C -- Array & array
D<=not E¬ F, -- Array & el enent
G<=not H& not |I; -- Henent & el enent

J <= K+ L; -- Sinple addition

Figure 5-2

Adding Operators

—

ciel O Dc [Coalal
It
MOR Dc [CwALl)
I
aie) > Dc [Toalz)
i
Bt C» Dc Coatal
It
F» Dc [C»0ia)
I
Elg) > Dc el
i
£l Co Dc Coi21
T
E12] > Dc [C»013]
I
i - Dc el
i
H Dc oGl
Ligl Di
Kiel s

K1l
Lol

JI1]

Unary (Sign) Operators

Example 5-7

A unary operator has only one operand. FPGA Express predefines unary
operators + and - for all integer types. The + operator has no effect. The -
operator negates its operand. For example,

5 = +5
5=-(-5

Example 5-7 shows how unary negation is synthesized.

)

Unary (Signed) Operators

signal A B:

A <= -B;

I NTEGER range -8 to 7;

Figure 5-3

BIgl [>

Unary (Signed) Operators

- [>AlR]

\E
] SAlL]

Bl1l >

BI2] [

CR

EQ

B3l [>

Multiplying Operators

FPGA Express predefines the multiplying operators (*, / , nod, and r em)
for all integer types.

FPGA Express places some restrictions on the supported values for the
right operands of the multiplying operators, as follows:

* |nteger multiplication: no restrictions.
A multiplication operator isimplemented as a synthetic library cell.

/ Integer division: The right operand must be a computable power of 2 (see
"Computable Operands,” later in this chapter). Neither operand can be
negative.

This operator isimplemented as a bit shift.

nod Modulus: Sameas / .

remRemainder: Sameas / .

Example 5-8 shows some uses of the multiplying operators whose right

operands are all powers of 2. The resulting synthesized circuit is also
shown.

Example 5-8 Multiplying Operators with Powers of 2
signal A B, C D E F, G H INTEGERrange 0 to 15;

A<= B* 4
C<=D/ 4
E <= F nod 4;
G <= Hrem4;

G [31
G121

E [3]
E [Z]
C[3]
L [2]
AL1]
A L3

el o [»ai2]
Br1 Cw—watm
Ceaiz

[»Blal
orel O il
oAl C— el

C»oiel

(-5 1 88
FLB] [»E (@]
Foil C»— e

C»Fiz1

[Z»Fial
HEB] [C»———— »a 10l
HO1 C——[»ai1

CeHIz]
[CwHral

Example 5-9 shows two multiplication operations, one with a four-bit
operand times atwo-bit constant (B * 3), and one with two five-bit
operands (X * Y). Because the synthetic library is enabled by defaullt,
these multiplications are implemented as synthetic library cells.

Example 5-9 Multiply Operator (*) Using Synthetic Cells

signal A B INTEGER range 0 to 15;
signal Y, Z INTEGER range 0 to 31;

signal X | NTEGER range 0 to 1023;
A<=B* 3;
X<=Y * Z1
EEE [- ——1 >8]
Brz1 C>— —— LAl
Br31 [C»— :sa_muEDQ:EE:
1a¥lc_1 M
ZIA] D—I_
z I:>"I__ T iml
zlzl D‘I_: Tt
ztal £ || 121
Z[“PUE?‘E_ | | — 131
4 — %141
S esenu BT 5
Y[R DJ__ o
Yri1 DJ__ L s
vzl] o x 8
¥[a1 DJ__ | ewim
Y41 DJ—:

Miscellaneous Arithmetic Operators

FPGA Express predefines the absolute value (abs) and exponentiation
(**) operators for all integer types. One FPGA Express restriction placed
on** asfollows:

** Exponentiation: Left operand must have a computable value of 2 (see
‘* Computable Operands," later in this chapter).

Example 5-10 shows how these operators are used and synthesized.

Example 5-10

Miscellaneous Arithmetic Operators
signal A, B INTEGER range -8 to 7;

signal C | NTEGCER range O to 15;
signal D INTEGER range 0 to 3;
A <= abs(B);

C <= 2 ** D;

=ALB]1

%A[l]
Bral [N
5
Bl1l [>—
BL3]1 [>% 7

=AL3]

U

T

BL21 [-

“:D‘—DC[B]
Dri1 [MR

cCr11

Dral = NI
L= D—DCEZJ
R
Cr[31
9

e

Y

Operands

Operands determine the data used by the operator to compute its value. An
operand is said to return its value to the operator.

There are many categories of operands. The simplest operand isaliteral,
such asthe number 7, or an identifier, such asavariable or signal name. An
operand itself can be an expression. Y ou create expression operands by
surrounding an expression with parentheses.

The operand categories are
Expressions.(A nand B)

Literals’ 0, "101", 435, 16#FF3E#
Identifiers. ny_var, ny_sig

Indexed names. ny_array(7)
Slicenames. ny_array(7 to 11)
Fields: ny record.a field

Aggregatesiny_array_type' (others => 1)
Attributes: ny_array’ range

Function calls: LOOKUP_VAL(ny_var_1, ny var_2)
Qualified expressions:BIl T VECTCR ('1' & '0")
Type conversions. THREE STATE(’ 0')

The next two sections discuss operand bit widths and explain computable
operands. Subsequent sections describe the operand types listed above.

Operand Bit Width

FPGA Express usesthe bit width of the largest operand to determine the bit
width needed to implement an operator in hardware. For example, an

| NTEGER operand is 32 bits wide by default. An addition of two

| NTEGER operands causes FPGA Express to build a 32-bit adder.

To use hardware resources efficiently, always indicate the bit width of
numeric operands. For example, use a subrange of | NTEGER when
declaring types, variables, or signals.

type ENCQUGH | NTECER range O to 255;

vari abl e WDE: | NTEGER range -1024 to 1023;
si gnal NARRON | NTEGER range O to 7;

Note: During optimization, FPGA Expressremoves hardware for unused
bits.

Computable Operands

Some operators, such as the division operator, restrict their operands to be
computable. A computable operand is one whose value can be determined
by FPGA Express. Computability isimportant because noncomputable
expressions can require logic gates to determine their value.

Following are examples of computable operands:
n Literal values
» for ... |loop parameters, whentheloop’'srangeiscomputable
n Variables assigned a computable expression
n Aggregates that contain only computable expressions
» Function calls with a computable return value

n Expressions with computable operand

Qualified expressions, where the expression is computable
Type conversions, when the expression is computable

Value of theand or nand operators when one of the operandsisa
computable 0

Valueof theor or nor operators when one of the operandsisa
computable 1

Additionally, avariable is given a computable value if it isan QUT or
| NOUT parameter of a procedure that assigns it a computable value.

Following are examples of honcomputable operands:
Signals
Ports

Variables that are assigned different computable values that depend on a
noncomputable condition

V ariables assigned noncomputable values

Example 5-11 shows some definitions and declarations, followed by
several computable and noncomputable expressions.

Example 5-11

Computable and Noncomputable Expressions
signal S BIT;

function MIX(A B, C BIT) return BIT is
begi n
if (C="1") then
return(A);
el se
return(B);
end if;
end;

procedure COMP(A BIT, B out BIT) is
begi n

B :=not A
end;

process(S)
variable VO, V1, V2: BIT;
variable V_INT: | NTECER,

subtype MY_ARRAY is BIT VECTOR(O to 3);
vari abl e V_ARRAY: MY_ARRAY;

begi n

VO :='1"; -- Conputable (value is '1')
V1 := \O; -- Conputable (value is '1')
V2 := not Vi, -- Conputable (value is '0")
for I in0to 3 loop

VINT :=1; -- Conput abl e (val ue depends
end | oop; -- on iteration)
V_ARRAY : = MY_ARRAY (V1, V2, 'O, '0");

-- Conputabl e ("1000")

V1 .= MIX(VO, V1, V2); -- Conputable (value is '1")
COWP(V1, V2);
V1 = V2 -- Conputable (value is '0")
VO :=Sand ' 0; -- Conputable (value is '0")
V91:=MIXS "1, '0);-- Conputable (value is "1")
V1i:=MX"'1, 'l, §;-- Conputable (value is '1")
if (S="1) then

V2 ='0; -- Conputable (value is '0")
el se

V2 ='1; -- Conputable (value is '1")
end if;
VO = V2; -- Nonconput abl e; V2 depends

-- on S

Vi:= S -- Nonconputable; Sis signal
V2 = Vi; -- Noncomput abl e; V1 is no

-- | onger conput abl e

end process;

Literals

Example 5-12

A literal (constant) operand can be a numeric literal, a character literal, an
enumeration literal, or astring literal. The following sections describe these
four kinds of literals.

Numeric Literals

Numeric literals are constant integer values. The two kinds of numeric
literals are decimal and based. A decimal literal iswritten in base 10. A
based literal can be written in a base from 2 to 16 and is composed of the
base number, an octothorpe (#), the value in the given base, and another
octothorpe (#); for example, 2#101# isdecimal 5.

Thedigitsin either kind of numeric literal can be separated by an
underscore (_) character. Example 5-12 shows several different numeric
literals, all representing the same value.

Numeric Literals

170
170
10#170#
2#1010_1010#
16HANF

Character Literals

Character literals are single characters enclosed in single quotation marks,
for example, A. Character literals can be used as values for operators and
to define enumerated types, such as CHARACTER and Bl T. See Chapter 4
for more information about the legal character types.

Enumeration Literals

Enumeration literals are values of enumerated types. The two kinds of
enumeration literals are character literals and identifiers. Character literals
were described previously. Enumeration identifiers are those literals listed
in an enumeration type definition. For example:

type SOVE ENMis (ENMID 1, ENMID 2, ENOMID 3);

If two enumerated types use the same literals, those literals are said to be
overloaded. Y ou must qualify overloaded enumeration literals (see
"Qualified Expressions,” later in this chapter) when you use them in an
expression unless their type can be determined from context. See Chapter 4
for more information.

Example 5-13

Example 5-14

Example 5-13 defines two enumerated types and shows some enumeration
literal values.

Enumeration Literals

type ENOM1 is (AAMA BBB, 'A, 'B, Z72);
type ENIM2 is (COC, DOD, 'C, 'D, ZZ2);

AAA -- BEnuneration identifier of type ENUM 1
'B -- Character literal of type ENUM 1
ccC -- BEnuneration identifier of type ENUM 2
"D -- Character literal of type ENUM 2
ENM 1' (ZZZ) -- Qualified because overl oaded

String Literals

String literals are one-dimensional arrays of characters, enclosed in double
guotes (" "). The two kinds of string literals are character strings and bit
strings. Character strings are sequences of characters in double quotes; for
example, " ABCD' . Bit strings are similar to character strings, but represent
binary, octal, or hexadecimal values; for example, B' 1101" , 0O'15" , and
X'D' all represent decimal value 13.

A string value' stype is a one-dimensional array of an enumerated type.
Each of the characters in the string represents one element of the array.

Example 5-14 shows some character-string literals.

Character-String Literals

"10101"
" ABCDEF"

nn

Note: Null string literals (" ") are not supported.

Bit strings, like based numeric literals, are composed of a base specifier
character, a double quotation mark, a sequence of numbersin the given
base, and another double quotation mark. For example, B'0101"
represents the bit vector 0101. A hit-string literal consists of the base
specifier B, O, or X, followed by a string literal. The bit-string literal is
interpreted as a bit vector, a one-dimensional array of the predefined type
Bl T. The base specifier determines the interpretation of the bit string as
follows:

B (binary)
Thevalueisin binary digits (bits, 0 or 1). Each bit in the string represents
one Bl T in the generated bit vector (array).

O(octal)

Thevalueisin octal digits (0 to 7). Each octal digit in the string represents
three Bl Tsin the generated bit vector (array).

Example 5-15

X (hexadecimal)
Thevalueisin hexadecimal digits (0to 9 and A to F). Each hexadecimal
digit in the string represents four Bl T'sin the generated bit vector (array).

Y ou can separate the digitsin a bit-string literal value with underscores ()
for readability. Example 5-15 shows several bit-string literals that represent
the same value.

Bit-String Literals
X' AAA!
B'1010_1010 _1010"

0'5252"
B'101_010_101_010"

Identifiers

Example 5-16

Identifiers are probably the most common operand. An identifier isthe
name of a constant, variable, signal, entity, port, subprogram, or parameter
and returns the object’ s value to an operand.

Example 5-16 shows several kinds of identifiers and their usage. All
identifiers are shown in boldface.

Identifiers

entity EXAMPLE is
port (| NT_PORT: i n | NTEGER,
BI T _PORT: out BIT);
end;

signal BIT.SIG BT

si gnal I NT_SI G | NTEGER

i N.T_.SI G <= | NT_PORT, -- Signal assignnent from
port

BIT PORT <= BIT_SIG -- Signal assignnent to port

function FUNQ | NT_PARAM | NTEGER)
return | NTECER
end functi on;

constant CONST: INTEGER : = 2:
vari able VAR | NTECER,

VAR := FUNQ(| NT_PARAM=> CONST); -- Function call

Indexed Names

Anindexed name identifies one element of an array variable or signal. Sice
names identify a sequence of elementsin an array variable or signal;
aggregates create array literals by giving a value to each element of an
instance of an array type. Slice names and aggregates are described in the
next two sections.

The syntax of an indexed nameis

identifier (expression)

i denti fi er must name asignal or variable of an array type. The
expr essi on must return avalue within the array’ s index range. The
value returned to an operator is the specified array element.

If expr essi on iscomputable (see ‘* Computable Operands,” earlier in
this chapter), the operand is synthesized directly. If the expression is not
computable, hardware that extracts the specified element from the arrayis
synthesized.

Example 5-17 shows two indexed names—one computable and one not
computable.

Example 5-17

Indexed Name Operands

signal AL B BIT VECTOR(O to 3);
signal |I: | NTEGER range 0 to 3;
signal Y, Z BIT;

Y <= A(l); -- Nonconputabl e i ndex expression
Z <= B(3); -- Conputable index expression

[C>ria]
[>Br11
AlLB] [>Br2]

[2]

>
[1]
\:>—|; -
>

AL3] 11

TI1] D—‘
>
[>

> >

H

(81

B3]

Y ou can also use indexed names as assignment targets; see "Indexed Name
Targets' in Chapter 6.

Slice Names

Slice names return a sequence of elementsin an array. The syntax is

identifier (expression direction expression)

i denti fi er must name asignal or variable of an array type. Each
expr essi on must return avalue within the array’ sindex range, and must
be computable. See ‘* Computable Operands,” earlier in this chapter.

Thedirecti on must be eithert 0 or downt o . The direction of adlice
must be the same asthe direction of i dent i fi er array type. If the left
and right expressions are equal, define a single element.

The value returned to an operator is a subarray containing the specified
array elements.

Example 5-18 uses slices to assign an eight-bit input to an eight-bit output,
exchanging the lower and upper four bits.

Example 5-18 Slice Name Operands
signal A Z BIT VECTOR(0 to 7);

Z(0 to 3) <= A(4 to 7);
Z(4 to 7) <= A(0 to 3);

Al4l [>—1 >718]
AlS1T [>—1 >7111
ALBl [>—1 >712)]
AL71 [>—T1 >713]
ALBl [>—1>7141
AL1l [>—1 >7I15]
ALzl [>—1 >z181
Al3l [>—1 >717)

In Example 5-18, slices are also used as assignment targets. Thisusageis
described in Chapter 6, under ** Slice Targets."

Limitations on Null Slices

FPGA Express does not support null slices. A null sliceisindicated by a
null range, suchas(4 to 3) , or arange with the wrong direction, such
asUP_VAR(3 downto 2) when thedeclared range of UP_VAR is
ascending (Example 5-19).

Example 5-19 shows three null slices and one noncomputable slice.

Example 5-19

Null and Noncomputable Slices

subtype DOM is BI T_VECTOR(4 downto 0);
subtype UP is BIT VECTOR(O to 7);

variable lP VAR UP;
vari abl e DO VAR DOM;

.LPI_VAR(4 to 3) -- Null slice (null range)
UP_VAR(4 downto 0) -- Null slice (wong direction)
DOM VAR(O to 1) -- Null slice (wong direction)
variable |: INTEGER range O to 7;

.LPI_VAR(I to | +1) -- Nonconput abl e slice

Limitations on Noncomputable Slices
IEEE VHDL does not allow noncomputable slices—slices whose range
contains a noncomputable expression.

Records and Fields

Records are composed of named fields of any type. For more information,
see ‘*Record Types" in Chapter 4.

In an expression, you can refer to arecord as awhole, or you can refer to a
single field. The syntax of field namesis

record name . field nane

r ecor d_nane isthe name of the record variable or signal, andfi el d__
name isthe name of afield in that record type. A fi el d_nane is
separated from the record name by aperiod (.). Notethatar ecord_
name isdifferent for each variable or signal of that record type. A

fi el d_name isthefield name defined for that record type.

Example 5-20 shows a record type definition, and record and field access.

Example 5-20 Record and Field Access
type BYTE AND I X is
record
BYTE: BI T_VECTCR(7 downto 0);
| X I NTEGER range O to 7;
end record;
signal X BYTE AND I X;
X o -- record
X BYTE -- field: 8-bit array
X I X -- field: integer
A field can be of any type—including an array, record, or aggregate type.
Refer to an element of afield with that type’s notation, for example:
X BYTE(2) -- one elerment fromarray field
BYTE
X BYTE(3 downto 0) -- 4-elerent slice of array field
BYTE
Aggregates

Aggregates can be considered array literals, because they specify an array
type and the value of each array element. The syntax is

type_nane’ ([choi ce =>] expression
{, [choice =>] expression})

Note that the syntax is more restrictive than the syntax in the Library
Reference Manual (LRM). t ype_name must be a constrained array type.
Theoptional choi ce specifiesan element index, a sequence of indexes, or
ot hers . Eachexpr essi on provides a value for the chosen elements,
and must evaluate to a value of the element’ s type.

Example 5-21 shows an array type definition and an aggregate representing
aliteral of that array type. The two sets of assignments have the same
result.

Example 5-21

Simple Aggregate

subtype MY VECTCR is BIT VECTOR(1 to 4);

si gnal

X

MY_VECTOR,

variable A B BT

X <= MY_VECTCR (’ 1’ ,

X(1) <=
X(2) <=
X(3) <=
X(4) <=

EiE
A nand
"

A or B;

B;

Example 5-22

Example 5-23

A nand B,

"1, Aor B) -- Aggregate
-- assi gnment

-- Hement
-- assi gnnent

Y ou can specify an element’s index with either positional or named
notation. With positional notation, each element is given the value of its
expression in order, as shown in Example 5-21.

By using named notation, the choi ce => construct specifies one or more
elements of the array. The choice can contain an expression (such as

(1 nmod 2) =>)toindicate asingle e ement index, or arange (such as
3to 5 =>o0r 7 downto 0 =>) toindicate a sequence of element
indexes.

An aggregate can use both positional and named notation, but positional
expressions must appear before named (choi ce) expressions.

It is not necessary to specify all element indexesin an aggregate. All
unassigned values are given avalue by including
others => expression asthelast element of thelist.

Example 5-22 shows several aggregates representing the same value.

Equivalent Aggregates
subtype MY VECTCR is BIT VECTOR(1 to 4);

MY _VECTOR ('1', '1', 'O, '0");

MW VECTCR (2 =>'1'", 3 =="'0", 1 =>"1, 4 =>"0);
MY VECTOR ("1', '1', others =>"'0");

MW VECTOR (3 =>'0", 4 =>"'0, others =>"'1");
MY_VECTCR (3 to 4 =>"'0", 2 downto 1 =>"1");

Theot hers expression must be the only expression in the aggregate.
Example 5-23 shows two equivalent aggregates.

Equivalent Aggregates Using the others Expression

MY_VECTCR (others =>"1");
W_VECT(R(!]_I, Yll’ lll, !1!);

To use an aggregate as the target of an assignment statement, see
‘* Aggregate Targets' in Chapter 6.

Attributes

VHDL defines attributes for various types. A VHDL attribute takes a
variable or signal of a given type and returns avalue. The syntax of an
attribute is

object’attribute

FPGA Express supports the following predefined VHDL attributes for use
with arrays, as described under ** Array Types' in Chapter 4:

| eft
right
hi gh

| ow

| ength
range

rever se_range

FPGA Express also supports the following predefined VHDL attributes for
usewithwai t andif statements, as described in Chapter 8, "Register and
Three-State Inference”:

event

st abl e

In addition to supporting predefined VHDL attributes listed above, FPGA
Express has a defined set of synthesis-related attributes. These FPGA
Express-specific attributes can be placed in your VHDL design description
to direct optimization. See *‘ Synthesis Attributes and Constraints" in
Chapter 9 for more information.

Function Calls

A function call executes anamed function with the given parameter values.
The value returned to an operator is the function’s return value. The syntax
of afunction cal is

function_nanme ([paraneter_nane =>] expression
{ , [paraneter_name =>] expression })

functi on_narne isthe name of adefined function. The optional

par amet er _nane isan expression of formal parameters, as defined by
the function. Each expr essi on provides avalue for its parameter, and
must evaluate to atype appropriate for that parameter.

Y ou can specify parametersin positional or named notation, like aggregate
values.

In positional notation, the par anet er _nane => construct is omitted.
Thefirst expression provides a value for the function’sfirst parameter, the
second expression provides avalue for the second parameter, and so on.

In named notation, par anmet er _nanme => is specified before an
expression; the named parameter gets the value of that expression.

Y ou can mix positional and named expressionsin the same function call, as
long as all positional expressions appear before a named parameter
expressions.

Function calls are implemented by logic unlessyou usethemap_to_
entity compiler directive. For more information, see "Mapping
Subprograms to Components" in Chapter 6, and "Component Implication
Directives" in Chapter 9.

Example 5-24 shows a function declaration and several equivalent function
cals.

Example 5-24 Function Calls
function FUNOQOA B, C INTECER) return BIT,
FUNQ(1, 2, 3)

FINO(B => 2, A=>1 C=>7 nod 4)
FUNO(1, 2, C => -3+6)

Qualified Expressions

Qualified expressions state the type of an operand to resolve ambiguitiesin
an operand’ s type. Y ou cannot use qualified expressions for type
conversion (see "Type Conversions').

The syntax of aqualified expression is

type_nane’ (expression)

t ype_nane isthe name of a defined type. expr essi on must evaluate
to avalue of an appropriate type.

Note: A single quote, or tick, must appear betweent ype nanmeand
(expr essi on). If thesingle quote is omitted, the construction is
interpreted as a type conversion (see" Type Conversions").

Example 5-25 shows a qualified expression that resolves an overloaded
function by qualifying the type of adecimal literal parameter.

Example 5-25 A Qualified Decimal Literal
type R1is range 0 to 10; -- Integer O to 10
type R2 is range 0 to 20; -- Integer O to 20

function FUNOQCA R 1) return BIT,;
function FUNOQOA R 2) return BIT,;

FUNC(5) -- Anbi guous; could be of type R 1,
-- R 2, or |INTEGER

FUNO(R 1’ (5)) - - Unanbi guous

Example 5-26 shows how qualified expressions resolve ambiguitiesin
aggregates and enumeration literals.

Example 5-26 Qualified Aggregates and Enumeration Literals

type ARR 1 is array(0 to 10) of BIT;
type ARR 2 is array(0 to 20) of BIT;

.(oi hérs ="'0) -- Anbi guous; coul d be of
-- type ARR 1 or ARR?2

ARR 1' (others =>'0") -- Qalified; unanbi guous

type ENM1 is (A B);
type ENMM 2 is (B, O;

B -- Anbi guous; coul d be of
-- type ENUOM 1 or ENUM 2

ENUM 1’ (B) -- Qualified; unanbi guous

Type Conversions

Type conversions change an expression’ s type. Type conversions are
different from qualified expressions because they change the type of their
expression; whereas qualified expressions simply resolve the type of an
expression.

The syntax of atype conversionis

type_name(expressi on)

t ype_nane isthe name of a defined type. The expr essi on must
evaluate to avalue of atype that can be converted into typet ype_nane.

n Type conversions can convert between integer types or between similar
array types.

n Two array types are similar if they have the same length and if they have
convertible or identical element types.

» Enumerated types cannot be converted.

Example 5-27 shows some type definitions and associated signal
declarations, followed by legal and illegal type conversions.

Example 5-27 Legal and Illegal Type Conversions

type INT_1 is range O to 10;
type INT_2 is range 0 to 20;

type ARRAY 1 is array(l to 10) of INT 1;
type ARRAY 2 is array(1ll to 20) of |INT 2;

subtype WY BIT VECTOR is BIT VECTOR(1 to 10);
type BIT _ARRAY 10 is array(1l1l to 20) of BIT;
type BIT ARRAY 20 is array(0 to 20) of BIT;

signal S INT: I NT_1;
signal S ARRAY: ARRAY 1;
signal SBIT_ VEC W _BIT_VECTCR
signal SBIT: BT,

-- Legal type conversions
I NT_2(S_I NT)

-- Integer type conversion

Bl T_ARRAY_10(S_BI T_VEQ
-- Simlar array type conversion

-- Illegal type conversions

BOCLEAN(S BI T);

-- Can't convert between enunerated types

INT_ 1(SBIT);
-- Can’t convert enunerated types to other types

Bl T_ARRAY_20(S BIT_VEQ);
-- Array lengths not equal

ARRAY 1(S BIT_VEQ);
-- HE ement types cannot be converted

Chapter 6
Sequential Statements

Sequential statementslike A : = 3 areinterpreted one after another, in the
order in which they are written. VHDL sequential statements can appear
only in a process or subprogram. A VHDL processis a group of sequential
statements; a subprogram is a procedure or function.

To familiarize yourself with sequential statements, consider the following:
Assignment Statements
Variable Assignment Statement
Signal Assignment Statement

if Statement

case Statement

loop Statements

next Statement

exit Statement

Subprograms

return Statement

wait Statement

null Statement

Processes are composed of sequential statements, but processes are
themselves concurrent statements (see Chapter 7). All processesin adesign
execute concurrently. However, at any given time only one sequential
statement is interpreted within each process.

A process communicates with the rest of a design by reading or writing
values to and from signals or ports declared outside the process.

Sequential algorithms can be expressed as subprograms and can be called
sequentially (as described in this chapter) or concurrently (as described in
Chapter 7).

Sequential statements are

assignment statements

that assign values to variables and signals.

flow control statements

that conditionally execute statements (i f and case), repeat statements
(for. ..l oop), and skip statements (next and exi t).

subprograms

that define sequential algorithmsfor repeated usein adesign (pr ocedur e
andf uncti on).

wait statement

to pause until an event occurs (wai t).

null statement

to note that no action is necessary (nul |).

Assignment Statements

An assignment statement assigns avalue to avariable or signal. The syntax
is

target := expression; -- Variable assignnent
target <= expression; -- Signal assignment

target isavariable or signal (or part of avariable or signal, such asa
subarray) that receives the value of the expr essi on . The expression
must evaluate to the same type as the target. See Chapter 5 for more
information on expressions.

The difference in syntax between variable assignments and signal
assignmentsisthat variablesuse : = and signalsuse <=. The basic
semantic difference is that variables are local to a process or subprogram,
and their assignments take effect immediately.

Signals need not be local to a process or subprogram, and their assignments
take effect at the end of a process. Signals are the only means of
communication between processes. For more information on semantic
differences, see ‘* Signal Assignment,- later in this chapter.

Assignment Targets

Assignment statements have five kinds of targets:
n Simple names, such asny_var
n Indexed names, suchas ny_array_var (3)
n Slices,suchas ny_array_var(3 to 6)
n Field names, suchas ny record.a field

n Aggregates, suchas(ny_varl, ny_var?2)

A assignment target can be either a variable or asignal; the following
descriptions refer to both.

Simple Name Targets

The syntax for an assignment to asimple nametarget is

identifier := expression; -- Variable assignnent
i dentifier <= expression; -- Signal assignment

i denti fi er isthe name of asignal or variable. The assigned expression
must have the same type as the signal or variable. For array types, all
elements of the array are assigned values.

Example 6-1 shows some assignments to simple name targets.

Example 6-1 Simple Name Targets

variable A, B BIT;
si gnal C BIT VECTOR(1 to 4);

-- Target Expr essi on
='1; -- Variable Ais assigned ' 1’
B ='0; -- Variable Bis assigned 'O’
C = -1100"; -- Signal array Cis assigned

-- -1100"

Indexed Name Targets

The syntax for an assignment to an indexed nametarget is
i dentifier(index_expression) := expression;
-- Variabl e assi gnnent

i dentifier(index_expression) <= expression;
-- Signal assignment

i denti fi er isthe name of an array type signal or variable. i ndex__
expr essi on must evaluate to an index value for thei denti fi er
array’ s index type and bounds but does not have to be computable (see

‘* Computable Operands- in Chapter 5), but more hardwareis synthesized if
itisnot.

The assigned expr essi on must contain the array’ s element type.

In Example 6-2, the elements for array variable A are assigned values as
indexed names.

Example 6-2 Indexed Name Targets
variable A° BIT VECTOR(1 to 4);

-- Target Expr essi on;

A1) =1 -- Assigns '1 to the first
-- element of array A

A(2) ='1; -- Assigns '1 to the second
-- element of array A

A(3) ='0; -- Assigns "0 to the third
-- element of array A

A(4) =0 -- Assigns 'O’ to the fourth

-- element of array A

Example 6-3 shows two indexed name targets. One of the targetsis
computable and the other is not. Note the differences in the hardware
generated for each assignment.

Example 6-3 Computable and Noncomputable Indexed Name Targets

signal AL B BIT VECTOR(O to 3);
signal |: INTEGER range 0 to 3;
signal Y, Z BIT;

A <= -0000";
B <= -0000";
A(l) <=Y; -- Nonconputabl e i ndex expression
B(3) <= Z -- Conputable index expression

AlB]

v >

AN3J :
I ANS
I01] > AlL]
AN3 :
AN3 :

AlZ]

T
Iel > >c

— AlL3]
Lbgic_H@
BlZ]
Bl1l]
BlB]
Z et >»Bl3]

Slice Targets

The syntax for aslicetarget is

i dentifier(index_expr_1 direction index_expr_2)

i denti fi er isthe name of an array type signal or variable. Each

i ndex_expr expression must evaluate to an index value for the

i denti fier array’sindex type and bounds. Bothi ndex_expr
expressions must be computable (see -Computable Operands- in

Chapter 5), and must lie within the bounds of the array. di r ect i on must
match thei denti fi er array type' sdirection—either t o or downt o .

The assigned expression must contain the array’ s element type.

In Example 6-4, array variables A and B are assighed the same value.

Example 6-4 Slice Targets
variable A, B. BIT VECTOR(1 to 4);

-- Target Expr essi on;
A(lto?2) :=-11"; -- Assigns -11" to the first
-- two elenments of array A
A(3to 4) :=-00"; -- Assigns -00" to the |ast
-- two elenments of array A
B(1to 4) :=-1100";-- Assigns -1100" to array B

Field Targets

The syntax for afield target is

identifier.field name

i denti fi er isthe name of arecord type signal or variable, andfi el d_
name isthe name of afield in that record type, preceded by a period (.).
The assigned expression must contain the identified field’ s type. A field
can be of any type, including an array, record, or aggregate type.

Example 6-5 assigns values to the fields of record variables A and B.

Example 6-5 Field Targets

type RECis
record
NUM Fl ELD. | NTEGER range -16 to 15;
ARRAY FIELD. BIT VECTCR(3 to 0);
end record;

variable A, B REC

-- Target Expr essi on;

ANMFED :=-12; -- Assigns -12 to record A's
-- field NUMFIELD

A ARRAY FIELD := -0011"; -- Assigns -0011" to record
-- A's field ARRAY_FI ELD

A ARRAY FIELD(3) :='1"; -- Assigns 'l to the nost-
-- significant bit of record
-- A's field ARRAY_FI ELD

B = A -- Assigns values of record
-- Ato corresponding fields
-- of B

For more information about field targets see -Record Types- in Chapter 4.

Aggregate Targets

The syntax for an assignment to an aggregate target is
([choice =>] identifier

{,[choice =>] identifier}) := array_expression;
-- Variabl e assi gnnent

([choice =>] identifier
{,[choice =>] identifier}) <= array_expression;
-- Signal assignment

An aggregate assignment assignsar r ay_expr essi on’selement values
to one or more variable or signal i denti fi ers.

Each choi ce (optional) is an index expression selecting an element or a
slice of theassigned ar r ay _expr essi on. Eachi denti fi er must
have the element type of arr ay_expressi on. Ani denti fi er can
be an array type.

Example 6-6 shows some aggregate targets.

Example 6-6 Aggregate Targets

signal A B C D BIT;
signal S BIT VECTOR(1 to 4);

variable E F BT
variable G BIT VECTOR(1 to 2);
variable H BIT VECTOR(1 to 4);

-- Positional notation

S <= (0, "1, "0, '0);

(A, B C D <=§ -- Assigns "0 to A
-- Assigns "1’ to B
-- Assigns "0 to C
-- Assigns "0 to D

-- Naned not ati on

(3 => E 4 => F,

2=>d1, 1=>(2) :=H
-- Assigns H1) to 0 2)
-- Assigns H2) to 1)
-- Assigns H3) to E
-- Assigns H4) to F

Y ou can assign array element values to the identifiers by position or by
name. In positional notation, the choi ce => construct is not used.
Identifiers are assigned array element values in order, from the left array
bound to the right array bound.

In named notation, thechoi ce => construct identifies specific elements
of the assigned array. A choi ce index expression indicates asingle
element, such as 3. Thetypeof i denti f i er must match the assigned
expression’ s element type.

Positional and named notation can be mixed, but positional associations
must appear before named associations.

Variable Assignment Statement

A variable assignment changes the value of avariable. The syntax is

target := expression;

expr essi on determines the assigned value; its type must be compatible
witht ar get . See Chapter 5 for further information about expressions.

t ar get names the variables that receive the value of expr essi on. See
-Assignment Targets- in the previous section for a description of variable
assignment targets.

When avariable is assigned a value, the assignment takes place
immediately. A variable keeps its assigned value until it is assigned a new
value.

Signal Assignment Statement

A signal assignment changes the value being driven on asignal by the
current process. The syntax is

target <= expression;

expr essi on determines the assigned value; its type must be compatible
witht ar get . See Chapter 5 for further information about expressions.

t ar get names the signalsthat receive the value of expr essi on. See
-Assignment Targets- in this chapter for a description of signal assignment
targets.

Signals and variables behave differently when they are assigned values.
The differences liein the way the two kinds of assignments take effect, and
how that affects the values read from either variables or signals.

Variable Assignment

When avariable is assigned a value, the assignment takes place
immediately. A variable keeps its assigned value until it is assigned a new
value.

Signal Assignment

When asignal is assigned a value, the assignment does not necessarily take
effect because the value of asignal is determined by the processes (or other
concurrent statements) that driveit.

n |f several values are assigned to a given signal in one process, only the last
assignment is effective. Even if asignal in aprocessis assigned, read, and
reassigned, the value read (either inside or outside the process) is the last
assignment value.

n |f several processes (or other concurrent statements) assign values to one
signal, the drivers are wired together. The resulting circuit depends on the
expressions and the target technology. It may beinvalid, wired AND,
wired OR, or athree-state bus. Refer to ** Driving Signals- in Chapter 7 for
more information.

Example 6-7 shows the different effects of variable and signal assignments.

Example 6-7 Signal and Variable Assignments
signal S1, S2: BIT;
signal S QUT: BIT VECTOR(1 to 8);

brbcéss(S1, S2)
variable V1, V2: BIT;

begi n

Vi:="'1; -- This sets the value of V1
V2 :="1"; -- This sets the value of V2
Sl <='1"; -- This assignment is the driver for Sl
2 <="'1"; -- This has no effect because of the

-- assignment later in this process
S AJT(1) <=V1; -- Assigns '1', the val ue assigned above
S AUT(2) <=V2; -- Assigns '1', the val ue assigned above
S AJT(3) <= S1; -- Assigns '1', the val ue assigned above
S AUT(4) <= S2; -- Assigns '0’, the val ue assigned bel ow
Vi:='0; -- This sets the new val ue of V1
V2 :="'0"; -- This sets the new val ue of V2
2 <='0"; -- This assi gnnent overrides the

- - previous one since it is the |ast

-- assignment to this signal in this

-- pr ocess
S AJT(5) <= V1, -- Assigns '0, the val ue assigned above
S AJT(6) <= V2; -- Assigns 'O, the val ue assigned above
S AUI(7) <= S1; -- Assigns '1', the val ue assigned above
S AUT(8) <= S2; -- Assigns '0’, the val ue assigned above

end process;

if Statement

Thei f statement executes a sequence of statements. The sequence
depends on the value of one or more conditions. The syntax is

if condition then

{ sequential statenment }
{ elsif condition then

{ sequential _statenent } }
[else

{ sequential _statenment }]
end if;

Each condi t i on must be aBoolean expression. Each branch of ani f
statement can have oneor moresequent i al _st at enent s.

Evaluating condition

Ani f statement evaluates each condi ti on in order. Thefirst (and only
the first) TRUE condition causes the execution of its branch’s statements.
Theremainder of thei f statement is skipped.

If none of the conditionsar e TRUE , andtheel se clauseis present, those
statements are executed.

If none of the conditionsar e TRUE , and no el se ispresent, none of the
statements is executed.

Example 6-8 showsan i f statement and a corresponding circuit.

Example 6-8 if Statement
signal A B C Pl, P2, Z BIT,

if (PL="1) then

Z <= A

elsif (P2 ="0") then
Z <= B;

el se

Z <= C

end if;

5 >
C WZI_—'L
P2 >—‘

AD ™ 21_¢4|:>Z

Pl

i

Using the if Statement to Imply Registers and Latches

Some forms of thei f statement can be used likethewai t statement, to
test for signal edges and therefore imply synchronous logic. This usage
causes FPGA Expressto infer registers or latches, as described in
Chapter 8, ‘‘ Register and Three-State I nference.-

case Statement

Thecase statement executes one of several sequences of statements,
depending on the value of a single expression. The syntax is
case expression is
when choi ces =>
{ sequential statenment }
{ when choi ces =>

{ sequential_statenent } }
end case;

expressi on must evaluateto an | NTEGER or an enumerated type, or
an array of enumerated types, such asBl T_VECTCR . Each of the
choi ces must be of the form

choice { | choice }

Each choi ce can beeither astatic expression (such as 3) or astatic range
(suchas1 to 3).Thetypeof choi ce_expressi on determinesthe
type of each choi ce. Each valuein the range of the choi ce_

expr essi on type must be covered by one choi ce.

Thefinal choi ce canbeot hers , which matchesall remaining
(unchosen) values in the range of the expr essi on type. Theot hers
choice, if present, matches expr essi on only if no other choices match.

Thecase statement evaluates expr essi on and compares that value to
each choi ce value. The statements following each when clauseis
evaluated only if thechoi ce value matchesthe expr essi on value.

The following restrictions are placed on choices:
No two choices can overlap.

If noot her s choiceispresent, all possible valuesof expr essi on must
be covered by the set of choices.

Using Different Expression Types

Example 6-9 showsacase statement that selects one of four signal
assignment statements by using an enumerated expression type.

Example 6-9 case Statement That Uses an Enumerated Type

type ENMMis (PPICKA PICK B PICK C PICKD;
signal VALUE ENUWM

signal A BB C D Z BIT;

case VALLE is
when PICK A =>
Z<=A
when PICK B =>
Z <= B;
when PICK C =>
Z<=C

end case;

£

41

VALUE[A] D—‘

VALUELL] [>——

Example 6-10 shows acase statement again used to select one of four
signal assignment statements, this time by using an integer expression type
with multiple choices.

Example 6-10 case Statement with Integers

signal VALLE is INTEGER range O to 15;
signal Z1, Z2, Z3, Z4: BIT,

71 <='0";
722 <='0";
Z3 <='0";
Z4 <='0";

case VALLE is
when 0 => -- Matches O
71 <=1,
when 1 | 3 => -- Matches 1 or 3
72 <=1,
when 4 to 7| 2 => -- Matches 2, 4, 5, 6, or 7
Z3 <=1,
when ot hers => -- Matches renai ni ng val ues,
-- 8 through 15
Z4 <=1,
end case;

N
Z1
YALUE [Z] >)
VALUE[1] b

VALUE (@] D*%C wza
>

VALUE [3] b

Invalid case Statements

Example 6-11 shows four invalid case statements.

Example 6-11

Invalid case Statements
signal VALUE |INTEGER range 0 to 15;
signal QUT_1: BIT;

case VALLE i s -- Must have at | east one when
end case; -- cl ause

case VALLE is -- Values 2 to 15 are not

when 0 => -- covered by choi ces
Qur_ 1 <="'1;
when 1 =>
QUr 1 <='0";
end case;

case VALLE is
when 0 to 10 =>

-- Choices 5 to 10 overlap

aur 1 <="'1";
when 5 to 15 =>
aur 1 <='0;

end case;

loop Statements

A | oop statement repeatedly executes a sequence of statements. The
syntax is
[label :] [iteration_schene] |oop

{ sequential statenment }

{ next [label] [when condition] ; }

{ exit [label 1 [when condition] ; }
end | oop [abel];

Theoptional | abel namestheloop and is useful for building nested loops.
Eachtypeof i t er ati on_schene isdescribed in this section.

Thenext andexit statementsare sequential statements used only within
loops. The next statement skips the remainder of the current loop and
continues with the next loop iteration. The exi t statement skipsthe
remainder of the current loop and continues with the next statement after
the exited loop.

VHDL provides three types of loop statements, each with a different
iteration scheme:

loop
Thebasicl oop statement has no iteration scheme. Enclosed statementsare
executed repeatedly forever until anexi t or next statement is
encountered.

Caution

while .. loop
Thewhile .. loop statement hasaBoolean iteration scheme. If the
iteration condition evaluates to TRUE, enclosed statements are executed
once. The iteration condition is then reevaluated. While the iteration
condition remainstrue, the loop is repeatedly executed. When the iteration
condition evaluatesto FALSE, the loop is skipped, and execution continues
with the next statement after the loop.

for .. loop
Thefor .. |oop statement hasan integer iteration scheme, where the
number of repetitions is determined by an integer range. The loop is
executed once for each value in the range. After the last value in the
iteration rangeis reached, the loop is skipped, and execution continues with
the next statement after the loop.

Noncomputable loops (I oop andwhi | e. . | oop statements) must have at
least onewai t statement in each enclosed logic branch. Otherwise, a
combinational feedback loop is created. See ‘‘ wait Statement,- later in
this chapter, for more information.

Conversely, computable loops (f or . . | oop statements) must not contain
wai t statements. Otherwise, a race condition might result.

| oop Statement

Thel oop statement, with no iteration scheme, repeats enclosed statements
indefinitely. The syntax is
[label :] loop

{ sequential statenment }
end | oop [l abel];

The optional | abel names thisloop.

sequenti al _st at ement can be any statement described in this chapter.
Two sequential statements are used only with loops: the next statement,
which skips the remainder of the current loop iteration, and the exi t
statement, which terminates the loop. These statements are described in the
next two sections.

Note: A | oop statement must have at least onewai t statement in each
enclosed logic branch. See ‘‘wait Statement,- later in this chapter, for an
example.

while .. loop Statement

Thewhile .. |oop statement repeats enclosed statements as long as
its iteration condition evaluates to TRUE. The syntax is
[label :] while condition |Ioop

{ sequential statenment }
end | oop [abel];

The optional | abel namesthisloop. condi ti on isany Boolean
expression,suchas((A ="'1") or (X <Y))

sequenti al _st at enment can be any statement described in this
chapter. Two sequential statements are used only with loops: the next
statement, which skips the remainder of the current loop iteration, and the
exi t statement, which terminatesthe loop. These statements are described
in the next two sections.

Note: Awhi | e. . | oopstatement must have at least onewai t
statement in each enclosed logic branch. See -wait Statement,- later in
this chapter, for an example.

for .. loop Statement

Thefor .. |oop statement repeats enclosed statements once for each
value in an integer range. The syntax is
[label :] for identifier in range |oop

{ sequential statenment }
end | oop [abel];

The optional | abel names thisloop.

Theuseof i dentifier isspecifictothefor .. |oop statement:

n i dentifier isnotdeclared elsewhere. It is automatically declared by
the loop itself and islocal to the loop. A loop identifier overrides any other
identifier with the same name but only within the loop.

n Thevalueofi denti fi er canbereadonlyinsideitsloop
(i denti fi er doesnot exist outside the loop). Y ou cannot assign avalue
to aloop identifier.

FPGA Express currently requiresthat r ange must be acomputable integer
range(see ‘' Computable Operands- in Chapter 5), in either of two forms:

i nt eger _expression to integer_expression

i nt eger _expressi on downt o i nteger_expressi on

Eachi nt eger _expr essi on evaluatesto an integer.

sequenti al _st at enment can be any statement described in this
chapter. Two sequential statements are used only with loops: the next
statement, which skips the remainder of the current loop iteration, and the
exi t statement, which terminatesthe loop. These statements are described
in the next two sections.

Note: Af or . . | oopstatement must not contain any wai t statements.

Afor .. loop statement executesasfollows:
A new, local, integer variable is declared with the name identifier.

i denti fi er isassigned thefirst value of r ange, and the sequence of
statements is executed once.

i denti fi er isassigned the next valueinr ange, and the sequence of
statements is executed once more.

Step 3isrepeated until i dent i fi er isassigned to thelast value in range.
The sequence of statements isthen executed for the last time, and execution
continues with the statement following end | oop . Theloop isthen
inaccessible.

Example 6-12 shows two equivalent code fragments.

Example 6-12 for..loop Statement with Equivalent Fragment
variable A, B. BIT VECTOR(1 to 3);
-- First fragment is a | oop statenent
for I in1to 3 1loop
A(l) <= B(1);
end | oop;
-- Second fragment is three equival ent statenents
A1) <= B(1);
A2) <= B(2);
A(3) <= B(3);
Br1l [>—_ >ATl1]
Biz2l [>—1 >Al12]
Brdl [>—_ >Ar3]
Youcanuseal oop statement to operate on all elements of an array
without explicitly depending on the size of the array. Example 6-13 shows
how the VHDL array attribute’ r ange can be used—in this case to invert
each element of bit vector A.
Example 6-13 for..loop Statement Operating on an Entire Array

variable A, B. BIT VECTOR(1 to 10);

Brt1

arz1

aral

BL41

Bs1

arel

arzi

BIB]

=111

Briel

or |

—_ -

in A range |oop
A(l) :=not B(I1);
end | oop;

ALL]

-ALZ]

ALT]

AL4]

ALS]

ALE]

AL7]

ALB]

ALD]

AL1E]

YT

Unconstrained arrays and array attributes are described under *‘ Array
Types- in Chapter 4.

next Statement

Thenext statement terminates the current iteration of aloop, then
continues with the first statement in the loop. The syntax is

next [label] [when condition] ;

A next statement withnol abel terminatesthe current iteration of the
innermost enclosing loop. When you specify aloop | abel , the current
iteration of that named loop is terminated.

The optional when clause executesitsnext statement when its
condi ti on (aBoolean expression) evaluates to TRUE.

Example 6-14 uses the next statement to copy bits conditionally from bit
vector B to bit vector A only when the next condition evaluates to TRUE.

Example 6-14 next Statement
signal A B, OOPY_ENABLE: BI T_VECTCR (1 to 8);
A <= -00000000";

- B. i s assigned a val ue, such as -01011011"
-- CCPY_ENABLE is assigned a val ue, such as

-11010011"
for I inlto8 | oop
next when CCPY_ENABLE(1) ='0;
Al <= B(I);
end | oop;
COPY_ENABRLE [11 [ANZ
Bl1]l [= [>Al1]

Blz]
COPY_ENABLE [2]

ALZ]

;

Bl3]

[>AI13]
COPY_ENABLE [3]

=
Z|
o

Blt]
COPY_ENABLE [4]

;

AL4]

>
Z|
¥

COPY_ENABLE [5]

[>AILS]
BI5]

BIB]

[>»AIlB]
COPY_ENABLE [B]

=
Z|
)

BI7]
COPY_ENABLE[7]

ALT7]

;

>
Z|
¥

COPY_ENABLE [B]
BlB]

[>AIB]

Example 6-15 shows the use of nested next statementsin named loops.
This example processes:

n Thefirst element of vector X against the first element of vector Y,

Example 6-15

n The second element of vector X against each of the first two elements of

vector Y,

The third element of vector X against each of the first three elements of
vector Y,

The processing continues in this fashion until it is completed.
Named next Statement
signal X, Y. BIT VECTOR(O to 7);
A LOCP:. for | in X range |oop
. B_LGZP: for J in Y range | oop
he;<t.A_L(IZP when | < J;
end iobp B LOCP;

énd ioop A LOOP;

exit Statement

Theexit statement terminates aloop. Execution continues with the
statement following end | oop . The syntax is

exit [label] [when condition] ;

An exit statementwithnol abel terminatestheinnermost enclosing
loop. When you identify aloop | abel , that named loop is terminated, as
shown earlier in Example 6-15.

The optional when clause executesitsexi t statement when its
condi ti on (aBoolean expression) evaluates TRUE.

Theexit and next statementsare equivalent constructs. Both statements
use identical syntax, and both skip the remainder of the enclosing (or
named) loop. The only difference between the two statementsisthat exi t
terminates its loop, and next continues with the next loop iteration (if

any).

Example 6-16 compares two bit vectors. Anexi t statement exits the
comparison loop when a difference is found.

Example 6-16 Comparator Using the exit Statement
signal A B BIT VECTOR(1 downto 0);
signal A LESS THAN B: Bool ean ;
A LESS THAN B <= FALSE:
for I in 1 dowto O | oop
if (A1) =1 and B(l) ="0") then
A LESS THAN B <= FALSE;
exit;
elsif (Al) ='0 and B(l1) ='1") then
A LESS THAN B <= TRUE;
exit;
el se
nul | ; -- Continue conparing
end if;
end | oop;
ALl
e A_LESS_THAN_H

BrAl D_Do_r

BL11

Subprograms

Subprograms are independent, named algorithms. A subprogram is either a
procedure (zeroormorei n,inout ,or out parameters) or a
function (zeroor morei n parametersand oner et urn value).
Subprograms are called by name from anywhere within aVHDL
architecture or a package body. Subprograms can be called sequentially (as
described later in this chapter) or concurrently (as described in Chapter 7).

In hardware terms, a subprogram call is similar to module instantiation,
except that a subprogram call becomes part of the current circuit, whereas
module instantiation adds a level of hierarchy to the design. A synthesized
subprogram is always a combinational circuit (use apr ocess to create a
sequential circuit).

Subprograms, like packages, have subprogram declarations and
subprogram bodies. A subprogram declaration specifies its name,
parameters, and return value (for functions). A subprogram body then
implements the operation you want.

Example 6-17

Often, a package contains only type and subprogram declarations for use by
other packages. The bodies of the declared subprograms are then
implemented in the bodies of the declaring packages.

The advantage of the separation between declarations and bodies is that
subprogram interfaces can be declared in public packages during system
development. One group of developers can use the public subprograms as
another group develops the corresponding bodies. Y ou can modify package
bodies, including subprogram bodies, without affecting existing users of
that package' s declarations. Y ou can also define subprogramslocally inside
an entity, block, or process.

FPGA Express implements procedure and function calls with
combinational logic, unlessyou usethemap to _entity compiler
directive (see ‘‘Mapping Subprograms to Components),- later in this
chapter). FPGA Express does not allow inference of sequential devices,
such as latches or flip-flops, in subprograms.

Example 6-17 shows a package containing some procedure and function
declarations and bodies. The example itself is not synthesizable; it just
creates atemplate. Designs that instantiate procedure P, however, compile
normally.

Subprogram Declarations and Bodies

package EXAMPLE i s
procedure P (A in INTEGER B: inout |NTECGER);
-- Declaration of procedure P

function INVERT (A0 BIT) return BIT;
-- Declaration of function | NVERT
end EXAMPLE;

package body EXAMPLE is
procedure P (A in INTEGER B: inout INTEGER) is
-- Body of procedure P
begi n
B:=A+ B
end;

function INVERT (A0 BIT) return BIT is
-- Body of function | NVERT
begi n
return (not A);
end;
end EXAMPLE;

For more information about subprograms, see ‘* Subprograms- in
Chapter 3.

Subprogram Calls

Subprograms can have zero or more parameters. A subprogram declaration
defines each parameter’ s name, mode, and type. These are a subprogram’s
formal parameters. When the subprogram is called, each formal parameter
isgiven avalue, termed the actual parameter. Each actual parameter’s
value (of an appropriate type) can come from an expression, avariable, or a
signal.

The mode of a parameter specifies whether the actual parameter can be read
from (modei n), written to (mode out), or both read from and written to
(modei nout). Actual parameters that use modesout andi nout must
be variables or signals, including indexed names (A(1)) and slices (A(1

t o 3)), but cannot be constants or expressions.

Procedures and functions are two kinds of subprograms:

procedure
Can have multiple parameters that use modesi n, i nout , and out . Does
not itself return avalue.

Procedures are used when you want to update some parameters (modes
out andi nout), or when you do not need areturn value. An example
might be a procedure with onei nout bit vector parameter that inverted
each bit in place.

function
Can have multiple parameters, but only parameters that use modei n.
Returnsits own function value. Part of afunction definition specifiesits
return value type (also called the function type).

Functions are used when you do not need to update the parameters and you
want a single return value. For example, the arithmetic function ABS
returns the absolute value of its parameter.

Procedure Calls
A procedure call executes the named procedure with the given parameters.
Thesyntax is

procedure_nane [([nane =>] expression
{ , [name =>] expression})] ;

Each expr essi on iscalled an actual parameter; expr essi on isoften
just an identifier. If aname is present (positional notation), it isaformal
parameter name associated with the actual parameter’s expression.

Formal parameters are matched to actual parameters by positional or named
notation. Named and positional notation can be mixed, but positional
parameters must appear before named parameters.

Conceptually, a procedure call is performed in three steps. First, the values
of thei n andi nout actual parameters are assigned to their associated
formal parameters. Second, the procedure is executed. Third, the values of
thei nout and out formal parameters are assigned to the actual
parameters.

In the synthesized hardware, the procedure’s actual inputs and outputs are
wired to the procedure’ sinternal logic.

Example 6-18 shows alocal procedure named SWAP that compares two
elements of an array and exchanges these elements if they are out of order.
SWAP isrepeatedly called to sort an array of three numbers.

Example 6-18 Procedure Call to Sort an Array

package DATA TYPES is

type DATA ELEMENT is range O to 3;

type DATA ARRAY is array (1 to 3) of DATA ELEMENT;
end DATA TYPES,

use WIRK DATA TYPES. ALL;
entity SCRT is
port (1 N_ARRAY: i n DATA ARRAY;
QUT_ARRAY: out DATA ARRAY);

end SCRT;

architecture EXAMPLE of SORT is
begi n

process(| N ARRAY)
procedur e SWAP(DATA: i nout DATA ARRAY;
LON HGH in INTEGER) is
vari abl e TEMP: DATA ELEMENT;
begi n
|f(DATA(LCW > DATAH&)) then -- Check data
TEMP : = DATA(LOW;

DATA(LON : = DATA(H &H); -- Swap data
DATA(H G&H) : = TEMP;
end if;
end SWAP;

vari abl e MY_ARRAY: DATA ARRAY;

begi n
MY_ARRAY : = | N_ARRAY; -- Read input to variable
-- Pair-wse sort
SWAP(MY_ARRAY, 1, 2); -- Swap first and second
SWAP(MWY_ARRAY, 2, 3); -- Swap second and third
SWAP(MY_ARRAY, 1, 2); -- Swap first and second
agai n
QUT_ARRAY <= MY_ARRAY; -- Wite result to output
end process;
end EXAMVPLE;
P D | H—g—
THARRAYILI 1] D-:DT:D""' _—D D— ADJV
C Ol >
i 0L _ARRATL11 11
m:;:;;::; g s S QUT_ARAYLE] [B]
G "
P 0 ! il
LD D—' J:Dﬂn—w_mswm m
TH_AMATEDI [N -2 .._,,l,lTl'—J,—DG\JT_mn[sJ[n
S ™y s

Example 6-19

Function Calls
A function call is similar to a procedure call, except that afunction call isa
type of expression because it returns a value.

Example 6-19 shows a simple function definition and two calls to that
function.

Function Call
function INVERT (A: BIT) return BITis
begi n
return (not A);
end;
pr ocess
variable V1, V2, V3: BIT;
begi n
vi:='1;
V2 := I NVERT(V1) xor 1,
V3 := INVERT(' 0");

end process;

For more information, see ‘‘ Function Calls,- under ‘* Operands- in
Chapter 5.

return Statement

Ther et urn statement terminates a subprogram. This statement is
required in function definitions and is optional in procedure definitions.
Thesyntax is

return expression ; -- Functions
return ; -- Procedures

Therequired expr essi on provides the function’s return value. Every
function must have at least oner et ur n statement. The expression’ stype
must match the declared function type. A function can have more than one
ret urn statement. Only oner et ur n statement is reached by agiven
function call.

A procedure can have one or morer et ur n statements, but no
expr essi onisalowed. A return statement, if present, isthe last
statement executed in a procedure.

In Example 6-20, the function OPERATE returns either the AND or the OR
of its parameters A and B. The return depends on the value of its parameter
CPERATI ON .

Example 6-20

OFERATION | >

Use of Multiple return Statements

functi on CPERATE(A, B, CPERATION BIT) return BIT is
begi n
if (CPERATION = '1') then
return (A and B);
el se
return (A or B);
end if;
end CPERATE;

{ »RETURNED_VALUE

Mapping Subprograms to Components (Entities)

In VHDL, entities cannot be invoked from within behaviora code.
Procedures and functions cannot exist as entities (components), but must be
represented by gates. Y ou can overcome this limitation with the compiler
directive map_to_entity ,whichcauses FPGA Expresstoimplement a
function or procedure as a component instantiation. Procedures and
functionsthat use map_to _entity arerepresented ascomponentsin
designs in which they are called.

Y ou can also use the FPGA Express |mplementation Window to create a
new level of hierarchy from a VHDL subprogram, as described in the
FPGA Express User’s Guide.

Whenyouaddamap_to_entity directiveto asubprogram definition,
FPGA Express assumes the existence of an entity with the identified name
and the same interface. FPGA Express does not check this assumption until
it links the parent design. The matching entity must have the same input
and output port names. If the subprogram is a function, you must also
provideareturn_port name directive, where the matching entity has
an output port of the same name.

These two directives are called component implication directives:

-- pragrma map_to entity entity name
-- pragma return_port_nane port _name

Caution

Insert these directives after the function or procedure definition. For
example:
function MIX FUNO(A'B: in TMOBIT, C in BIT)

return
TWOBITis

-- pragnma map_to entity MJUX ENTITY
-- pragma return_port_name Z

When FPGA Express encountersthenap_to_entity directive, it parses
but ignores the contents of the subprogram definition. Use

-- pragma translate off and-- pragma translate_on tohide
simulation-specific constructsinanmap_to_entity subprogram.

Note: The matching entity (ent i t y_nane) does not need to be written in
VHDL. It can bein any format that FPGA Express supports.

The behavioral description of the subprogram is not checked against the
functionality of the entity overloading it. Presynthesis and post-synthesis
simulation results might not match if differencesin functionality exist
between the VHDL subprogram and the overloaded entity.

Example 6-21 shows a function that uses the component implication
directives.

Example 6-21

Using Component Implication Directives on a Function

package MY PACK is
subtype TWOBITis BIT VECTOR(1 to 2);
function MIX FUNO(A/B: in TMOBIT, C in BIT)
return
TW BIT;
end;

package body MY PACK is

function MIX FUNO(A/B: in TMOBIT, C in BIT)
return
TWOBITis

-- pragnma map_to entity MJIX ENTI TY
-- pragma return_port_name Z

-- contents of this function are ignored but should
-- match the functionality of the nodul e MUX ENTI TY
-- so pre- and post simulation will natch

begi n
if(C="1) then
return(A);
el se
return(B);
end if;
end;
end;

use WORK. WY _PACK. ALL;

entity TEST is
port(A in TWDBIT, C in BIT, TEST QUT: out TWD_
BIT);

end;

architecture ARCH of TEST is
begi n

process

begi n

TEST QUT <= MX FUNO(nhot A, A O;
- - Conponent

i nplication call

end process;
end;
use WORK. MY _PACK. ALL;

-- the following entity ’overloads’ the function
-- MJX_FUNC above

entity MIX ENTITY is
port(A B in TWOBIT, C inBIT, Z out TWDBIT);
end;

architecture ARCH of MUX ENTITY is
begi n

pr ocess

begi n

case Cis
when '1'" => 7 <= A
when '0" => Z <=
end case;
end process;
end;

m

AlLLl

ALZ]

MUX_ENTIT] “»711]
—>»z121

Example 6-22 shows the same design as Example 6-21, but without the

creation of an entity for the function. The compiler directives have been
removed.

Example 6-22 Using Gates to Implement a Function

package MY PACK is
subtype TWOBITis BIT VECTOR(1 to 2);
function MIX FUNO(A/B: in TMOBIT, C in BIT)
return TWO BI T,
end;

package body MY PACK is

function MIX FUNO(A/B: in TMOBIT, C in BIT)
return TMDBIT is

begi n
if(C="1) then
return(A);
el se
return(B);
end if;
end;
end;

use WORK. MY _PACK. ALL;

entity TEST is
port(A in TWOBIT, C inBIT, Z out TWOBIT);
end;

architecture ARCH of TEST is
begi n
process
begi n
Z <= MX FUNOnot A, A O;
end process;
end;

ALLT [
ZI[11
c Dj. =
AlLZl
S

wait Statement

A wai t statement suspends a process until a positive-going edge or
negative-going edge is detected on a signal. The syntax is

wait until signal = value ;
wait until signal’ event and signal = value ;

wait until not signal’ stable
and signal = value ;

si gnal isthe name of asingle-hit signal—asignal of an enumerated type
encoded with one bit (see ‘* Enumeration Encoding- in Chapter 4). val ue
must be one of the literals of the enumerated type. If the signal typeisBI T,
the awaited val ue iseither’ 1' for apositive-going edgeor’ 0’ for a
negative-going edge.

Note: Thethree forms of thewai t statement, a subset of IEEE VHDL,
are specific to the current implementation of FPGA Express.

Inferring Synchronous Logic

Example 6-23

A wait statement implies synchronouslogic, wheresi gnal isusually a
clock signal. The next section describes how FPGA Express infers and
implements this logic.

Example 6-23 showsthree equivalent wai t statements (all positive-edge
triggered).

Equivalent wait Statements

wait until LK = "1';
wait until CLK event and LK = "1';
wait until not CLK stable and CLK = '1";

When acircuit is synthesized, the hardware in the three forms of wai t
statements does not differ.

Example 6-24 showsawai t statement used to suspend a process until the
next positive edge (a 0-to-1 transition) on signal CLK.

Example 6-24

Example 6-25

Example 6-26

wait for a Positive Edge
signal QLK BIT;
b?bcess

begi n

wait until CLK event and CLK = '1’;
-- Wit for positive transition (edge)

end process;

Note: IEEE VHDL specifiesthat a process containingawai t statement
must not have a sensitivity list. See*‘ Process Statements- in Chapter 7 for
more information.

Example 6-25 shows how awai t statement is used to describe a circuit
where avalue is incremented on each positive clock edge.

Loop Using await Statement

pr ocess
begi n

y <= 0;

wait until (clk’event and clk ="1");
while (y < MAX) | oop

wait until (clk’event and clk ="1");
X <=Yy;

y <=y + 1

end | oop;

end process;

Example 6-26 shows how multiplewai t statements describe a multicycle
circuit. The circuit provides an average value of itsinput A over four clock
cycles.

Using Multiple wait Statements

pr ocess
begi n
wait until CLK event and LK = "1’;
AVE <= A

wait until CLK event and CLK = "1’ ;
AVE <= AVE + A
wait until CLK event and CLK = '"1’;
AVE <= AVE + A
wait until CLK event and CLK = '1’;
AVE <= (AVE + A/ 4,

end process;

Example 6-27 showstwo equivalent descriptions. Thefirst description uses
implicit state logic, and the second uses explicit state logic.

Example 6-27

wai t Statements and State Logic

-- Inplicit State Logic
pr ocess
begi n
wait until CLOCK event and CLOCK = "1’ ;
if (CONDTIQN) then
X <= A
el se
wait until CLOCK event and CLOK = "1';
end if;
end process;

-- Explicit State Logic

type STATE TYPE is (SO S1);
vari abl e STATE : STATE TYPE
process
begi n
wait until CLOCK event and CLOCK = "1’ ;
case STATE i s
when SO =>
if (CONDITIQN) then
X <= A
STATE := S0; -- Set STATE here to avoid an
-- extra feedback loop in the
-- synthesi zed | ogi c.
el se
STATE :
end if;
when S1 =>
STATE : = S0;
end case
end process;

S1;

Note: wai t statements can be used anywherein a process except in

f or. .| oopstatements or subprograms. However, if any path through
thelogic containsoneor morewai t statements, all paths must contain at
least onewai t statement.

Example 6-28 shows how a circuit with synchronous reset can be described
withwai t statementsin an infinite loop. The reset signal must be checked
immediately after each wai t statement. The assignment statementsin
Example 6-28 (X <= A; andY <= B;) simply represent the sequential
statements used to implement your circuit.

Example 6-28

Example 6-29

Synchronous Reset Using wait Statements

process
begi n
RESET _LQOCP: | oop
wait until CLOCK event and CLOK = "1';
next RESET LOOP when (RESET ='1');
X <= A
wait until CLOCK event and CLOK = "1';
next RESET LOCP when (RESET ='1");
Y <= B;
end | oop RESET LQOCP;
end process;

Example 6-29 shows two invalid uses of wai t statements. These
limitations are specific to FPGA Express.

Invalid Uses of the wait Statement

type OOLCR is (RED, GREEN BLUE):
attribute ENUM ENCODI NG : STRI NG
attribute ENUM ENCCDI NG of COLCR : type is -100 010
001";
signal ALK : COLCR
b?bcess

begi n

wait until CLK event and CLK = RED
-- Illegal: clock type is not encoded with one

bi t
end;
pr ocess
begi n
if (X=Y) then
wait until CLK event and LK = "1’ ;
end. | f
-- Illegal: not all paths contain wai t
statenent s
end;

Combinational vs. Sequential Processes

If aprocesshasnowai t statements, the processis synthesized with
combinational logic. Computations performed by the process react
immediately to changes in input signals.

If aprocess uses one or morewai t statements, it is synthesized with
sequential logic. The process computations are performed only once for
each specified clock edge (positive or negative edge). The results of these
computations are saved until the next edge by storing them in flip-flops.

The following values are stored in flip-flops:

Signals driven by the process; see ‘‘ Signal Assignment Statement- at the
beginning of this chapter.

State vector values, where the state vector can be implicit or explicit (asin
Example 6-27).

Variables that may be read before they are set.

Note: Likethewai t statement, some uses of thei f statement can also
imply synchronous logic, causing FPGA Expressto infer registers or
latches. These methods are described in Chapter 8, under ‘‘ Register and
Three-State | nference.-

Example 6-30 usesawai t statement to store values across clock cycles.
The example code compares the parity of a data value with a stored value.
The stored value (called CORRECT _PARI TY) is set from the NEW.
CCORRECT_PARI TY signal if the SET_PARI TY signal isTRUE.

Example 6-30 Parity Tester Using the wait Statement

signal CLOK: BIT;
signal SET PARITY, PARTY X Bool ean ;
signal NEWCOORRECT PARITY: BIT;
signal DATA BIT VECTOR(O0 to 3);
pr ocess
vari abl e CORRECT _PARI TY, TEMP. BIT;
begi n
wait until CLOCK event and CLOCK = "1’ ;

-- Set new correct parity value if requested
if (SET_PARTY) then

CORRECT_PARI TY : = NEW CORRECT_PARI TY;
end if;

-- Conpute parity of DATA

TEMP :="'0";

for | in DATA range | oop
TEMP : = TEMP xor DATA(I);

end | oop;

-- Conpare conputed parity with the correct val ue
PARI TY (K <= (TEMP = CCRRECT PARITY);
end process;

Fll1>
MEW_CORRECT_PARITY [»—m

SET_PARITY [C—
DATALE] [7

DATALE] [i
DATAIL] [C>—
DATALZ] Co—

cLock [Elfs B

T »PARITY_OK

Note that two flip-flops are in the synthesized schematic for Example 6-30.
Thefirst (input) flip-flop holds the value of CORRECT PARI TY . A
flip-flop is needed here because CORRECT _PARI TY isread (whenitis
compared to TEMP) beforeitisset (if SET_PARI TY isFALSE). The
second (output) flip-flop stores the value of PARI TY_COK between clock
cycles. The variable TEMP is not given a flip-flop because it is always set
beforeitisread.

null Statement

Example 6-31

CONTROL [11 [t ARET ™
CONTROL [B] [%.7'-)_/

A >
CONTROL [2] [

Thenul | statement explicitly states that no action is required. The nul |
statement is often used in case statements because all choices must be
covered, even if some of the choices are ignored. The syntax is

nul | ;

Example 6-31 shows atypical usage of thenul | statement.

null Statement

signal CONTRCL: | NTEGER range O to 7;
signal A Z BIT,

Z <= A
case OONTRCL i s
when 0 | 7 => -- If Oor 7, then invert A
Z <= not A
when ot hers =>
nul | ; -- If not 0 or 7, then do not hing
end case;

>,
NI

:

g,

Chapter 7
Concurrent Statements

A VHDL architecture contains a set of concurrent statements. Each
concurrent statement defines one of the interconnected blocks or processes
that describe the overall behavior or structure of adesign. Concurrent
statements in a design execute continuously, unlike sequential statements
(see Chapter 6), which execute one after another.

The two main concurrent statements are

process statement
A process statement defines a process. Processes are composed of
sequential statements (see Chapter 6), but processes are themselves
concurrent statements. All processes in a design execute concurrently.
However, at any given time only one sequential statement is interpreted
within each process. A process communicates with the rest of a design by
reading or writing values to and from signals or ports declared outside the
process.

block statement
A block statement defines a block. Blocks are named collections of
concurrent statements, optionally using locally defined types, signals,
subprograms, and components.

VHDL provides two concurrent versions of sequential statements:
concurrent procedure calls and concurrent signal assignments.

The component instantiation statement references a previously defined
hardware component.

Finally, the gener at e statement creates multiple copies of any
concurrent statement.

The concurrent statements consist of
process Statements

block Statement

Concurrent Procedure Calls
Concurrent Signal Assignments
Component Instantiations

generate Statements

process Statements

A process statement contains an ordered set of sequential statements.
Thesyntax is
[label:] process [(sensitivity list)]
{ process_declarative item}
begi n
{ sequential statenent }
end process [label] ;

Anoptional | abel namesthe process. Thesensitivity |ist isa
list of all signals (including ports) read by the process, in the following
format:

si gnal _nanme {, signal _nane}

The hardware synthesized by FPGA Expressis sensitive to all signals read
by the process. To guarantee that aVHDL simulator sees the same results
as the synthesized hardware, a process sensitivity list must contain all
signals whose changes require resimulation of that process. FPGA Express
checks sensitivity lists for completeness and issues warning messages for
any signals that are read inside a process but are not in the sensitivity list.
Anerror isissued if aclock signal isread as datain a process.

Note: IEEE VHDL does not allow a sensitivity list if the process includes
awai t statement.

A process_decl arati ve_it emdeclares subprograms, types,
constants, and variables local to the process. These items can be any of the
following items:;

n use clause

n Subprogram declaration
n Subprogram body

n Type declaration

n Subtype declaration

n Constant declaration

n Variable declaration
Each sequenti al _st at enment isdescribed in Chapter 6.

Conceptually, the behavior of aprocess is defined by the sequence of its
statements. After the last statement in a process is executed, execution
continues with the first statement. The only exception is during simulation:
if aprocess has a sensitivity list, the process is suspended (after its last
statement) until a change occursin one of the signalsin the sensitivity list.

If aprocess has one or morewai t statements (and therefore no sensitivity
list), the processis suspended at the first wai t statement whose wait
condition is FALSE .

The hardware synthesized for a process is either combinational (not
clocked) or sequential (clocked). If aprocessincludesawait or

if signal’ event statement, itshardware contains sequential
components. Thewait andi f statements are described in Chapter 6.

Note: The pr ocess statements provide a natural means for describing
conceptually sequential algorithms. If the values computed in a process
areinherently parallel, consider using concurrent signal assignment
statements (see ‘* Concurrent Signal Assignments," later in this chapter).

Combinational Process Example

Example 7-1 shows a process that implements a simple modul 0-10 counter.
The example processis sensitive to (reads) two signals: CLEAR and | N_
COUNT . It drivesone signal, QUT_COUNT . If CLEAR is’ 1" or I N_
COUNT is9, then QUT_COUNT s set to zero. Otherwise, QUT_COUNT is
set to one morethan | N_COUNT .

Example 7-1

THLCOUNT [2] [

M odulo-10 Counter Process

entity CONTER i s
port (CLEAR in BT,
| N_COUNT: in INTEGER range O to 9;
QUT_COUNT: out |INTEGER range O to 9);
end COUNTER

architecture EXAMPLE of COUNTER i s
begi n
process(|I N COUNT, CLEAR
begi n
if (CLEAR ='1 or IN CONT = 9) then
QUT_CONT <= 0;
el se
QUT_COUNT <= I N CONT + 1;
end if;
end process;
end EXAMPLE;

THLCOUNT I8 [
TMEOUNT 1] o

TH.COUNT (3]

cLesr O

Sequential Process Example

Because the process in Example 7-1 containsno wai t statements, it is
synthesized with combinational logic. An alternate implementation of the
counter isto retain the count value internally in the process with awai t
Statement.

Example 7-2 shows an implementation of a counter as a sequential
(clocked) process. On each 0-to-1 CLOCK transition, if CLEAR is’ 1’ or
COUNT is9, COUNT is set to zero; otherwise, COUNT isincremented by 1.

Example 7-2 Modulo-10 Counter Process with wait Statement

entity CONTER i s
port (CLEAR in BIT,;
LK in BIT;
CONT: buffer INTEGER range 0 to 9);
end COUNTER

architecture EXAMPLE of COUNTER i s
begi n
process
begi n
wait until CLOXK event and CLOCK = '1';

if (LEAR =1 or COUNT >= 9) then
CONT <= 0;
el se
OCOUNT <= QOUNT + 1;
end if;
end process;
end EXAMPLE;

. .
kf [—>COUNT 8]

cLock T 5 —

:Df— [»COUNT 11
A, A
. 1

N

In Example 7-2, the value of the variable COUNT isstored in four flip-flops.
These flip-flops are generated because COUNT can beread beforeit is set,
so its value must be maintained from the previous clock cycle. See ‘‘ wait
Statement" in Chapter 6 for more information.

Driving Signals

If aprocess assigns avalueto asignal, the processisadriver of that signal.
If more than one process or other concurrent statement drives a signal, that
signal has multiple drivers.

Example 7-3

Example 7-3 shows two three-state buffers driving the same signal (Sl G).
Chapter 8 shows how to describe athree-state device in
technology-independent VHDL, in the section on ** Three-State I nference.”

Multiple Drivers of a Signal

A QUT <= A when ENABLE A else ' Z;
B QUT <= B when ENABLE B else ' Z';

process(A QUT)
begi n

SIG <= A QJT;
end process;

process(B_QUT)
begi n

SIG <= B AUT;
end process;

ENABLE_B

B STIC

ENABLE_A

A

Bus resolution functions assign the value for a multiply-driven signal. See
“*Resolution Functions," under ‘* Subprograms" in Chapter 3, for more
information.

block Statement

A bl ock statement names a set of concurrent statements. Use blocks to
organize concurrent statements hierarchically.

Thesyntax is

| abel : bl ock
{ block declarative item}

begi n
{ concurrent_statenent }
end bl ock [Iabel];

Therequired | abel names the block.

A bl ock_decl arati ve_i t emdeclares objects local to the block and
can be any of the following items:

n

use clause
Subprogram declaration
Subprogram body
Type declaration
Subtype declaration
Constant declaration
Signal declaration

Component declaration

Theorder of eachconcurrent _st at enent inablock is not
significant, because each statement is always active.

Note: FPGA Express does not support guarded blocks.

Objectsdeclared in ablock are visible to that block and to all blocks nested
within. When a child block (inside a parent block) declares an object with
the same name as an object in the parent block, the child’s declaration

overrides that of the parent (inside the child block).

Example 7-4 shows the use of nested blocks.

Example 7-4 Nested Blocks
B1: bl ock
signal S BIT;, -- Declaration of "S" in block Bl
begi n
S<=Aand B, -- "S" fromBl
B2: bl ock
signal S BIT, -- Declaration of "S" in block B2
begi n
S<=Cand b -- "S" fromB2
B3: bl ock
begi n
Z <=S -- "S" fromB2
end bl ock B3;
end bl ock B2;
Y <= § -- "S" fromBl
end bl ock BI;
A > ANz y
B [>—
c > ANZ .
D [>—

Concurrent Procedure Calls

Example 7-5

A concurrent procedure call is a procedure call used as a concurrent
statement; it isused in an architecture or ablock, rather than in aprocess. A
concurrent procedure call is equivalent to a process containing asingle
sequential procedure call. The syntax is the same as that of a sequential
procedure call:

procedure_nane [([name =>] expression
{ , [name =>] expression})] ;

The equivalent processis sensitiveto all i n and i nout parameters of the
procedure. Example 7-5 shows a procedure declaration, then a concurrent
procedure call and its equivalent process.

Concurrent Procedure Call and Equivalent Process

procedure ADD(signal A B: in BIT,
signal SUM out BIT);

Ai:)b(A, B, SWNV; -- Concurrent procedure call
b.rbcess(A, B) -- The equival ent process
begi n

ADD(A, B, SUM; -- Sequential procedure call

end process;

FPGA Express implements procedure and function calls with logic, unless
you usethemap_to _entity compiler directive (see‘‘Mapping
Subprograms to Components (Entities)," in Chapter 6).

A common use for concurrent procedure callsisto obtain many copies of a
procedure. For example, assume that aclass of Bl T_VECTCR signals
must contain only one bit with value 1 and the rest of the bits value 0.
Suppose you have several signals of varying widths that you want
monitored at the same time. One approach is to write a procedure to detect
theerrorinaBl T_VECTCR signal, then make a concurrent call to that
procedure for each signal.

Example 7-6 shows a procedure CHECK that determines whether a given
bit vector contains exactly one element with value’ 1’ ; if thisis not the
case, CHECK setsitsout parameter ERRCR to TRUE.

Example 7-6 Procedure Definition for Example 7-7

procedure CHECK(signal A in BI T VECTCR,
signal ERRCR out Boolean) is

vari abl e FOUND ONE: Bool ean := FALSE;
-- Set TRUE when a ' 1’

-- is seen
begi n
for I in A range |oop -- Loop across all bits
-- in the vector
if A(1) =1 then -- Found a ' 1
if FOUND ONE then -- Have we al ready found one?
ERROR <= TRUE;, -- Found two "1's
return; -- Termnate procedure
end if;
FOUND ONE := TRUE, -- Note that we have
end if; -- seen a '1’
end | oop;
ERRCR <= not FOUND ONE; -- Error will be TRUE
-- if no'l f ound
end;
Example 7-7 shows the CHECK procedure called concurrently for four
different-sized bit vector signals.
Example 7-7 Concurrent Procedure Calls

BLK: bl ock
signal S1: BIT VECTOR(O0 to 0);
signal S2: BIT VECTOR(0 to 1);
signal S3: BIT VECTOR(0 to 2);
signal $4: BIT VECTOR(0 to 3);

signal El, B2, E3, E4: Bool ean ;

begi n
CHECK(S1, E1); -- Concurrent procedure call
CHECK(S2, B2);
CHECK(S3, E3);
CHECK(4, E4);

end bl ock BLK;

Concurrent Signal Assignments

A concurrent signal assignment is equivalent to a process containing that
sequential assignment. Thus, each concurrent signal assignment defines a
new driver for the assigned signal. The simplest form of the concurrent
signal assignment is

target <= expression;

S10d1 >

SZ011] >

Sz[d] s

538 [
53021 [>=y
S3rtl O

ﬁ ©
j ': NDZ

E3

54081 [

54011 [(>—a

cner D
54131 [

~
>

ND
E4

Example 7-8

t ar get isasignal that receives the value of expr essi on.

Example 7-8 shows the value of the expression A and B concurrently
assigned to signal Z.

Concurrent Signal Assignment

BLK: bl ock

signal AL B Z BIT;
begi n

Z <= A and B;
end bl ock BLK;

The other two forms of concurrent signal assignment are conditional signal
assignment and selected signal assignment.

Conditional Signal Assignment

Another form of concurrent signal assignment is the conditional signal
assignment. The syntax is

target <= { expression when condition else }
expr essi on;

t ar get isasignal that receives the value of an expr essi on. The
expr essi on used isthe first one whose Boolean condi ti on isTRUE.

Example 7-9

ASSIGN_A [>

Example 7-10

When a conditional signal assignment statement is executed, each

condi ti on istested in order aswritten. Thefirst condi t i on that
evaluates TRUE hasitsexpr essi on assignedtot ar get . If no

condi ti onisTRUE, thefinal expr essi onisassignedtothet ar get .
If two or morecondi t i ons are TRUE, only thefirst oneis effective, just
like thefirst TRUE branch of ani f statement.

Example 7-9 shows a conditional signal assignment, where the target isthe
signal Z. The signal Z isassigned from one of the signals A, B, or C. The
signal depends on the value of the expressions ASSI GN_A and ASSI GN_
B. Note that the assignment of A takes precedence over that of B, and the
assignment of B takes precedence over that of C, because the first TRUE
condition controls the assignment.

Conditional Signal Assignment

Z <= Awhen ASSIGN A ="1 else
B when ASSIGN B = '1' el se
C
c >
B [H

Example 7-10 shows a process equivalent to the conditional signal
assignment in Example 7-9.

Process Equivalent to Conditional Signal Assignment

process(A, ASSIGN A B, ASSSGNB, O

begi n

if ASSSGNA ="1 then
Z <= A

elsif ASSSGNB ="'1" then
Z <= B;

el se
Z<=C

end if;

end process;

Selected Signal Assignment

Thefinal kind of concurrent signal assignment is the selected signal
assignment. The syntax is
with choi ce_expression sel ect

target <= { expression when choices, }
expr essi on when choi ces;

t ar get isasignal that receives the value of an expr essi on. The
expr essi on selected isthe first one whose choi ces include the value
of choi ce_expr essi on. Thesyntax of choi ces isthe same asthat of
thecase statement:

choice { | choice }

Each choi ce can be either a static expression (such as 3) or a static range
(suchas1l to 3).Thetypeof choi ce_expressi on determinesthe
type of each choi ce. Eachvalueintherange of thechoi ce_

expr essi on type must be covered by one choi ce.

Thefinal choi ce can beot her s , which matches all remaining
(unchosen) values in the range of the choi ce_expr essi on type. The
ot hers choice, if present, matcheschoi ce_expr essi ononly if none
of the other choices match.

Thewi th..sel ect statement evaluateschoi ce_expressi onand
compares that value to each choi ce value. Thewhen clause with the
matching choi ce value hasitsexpr essi on assignedtot ar get .

The following restrictions are placed on choices:
» No two choices can overlap.

» |f noot hers choiceispresent, all possible values of choi ce_
expr essi on must be covered by the set of choices.

Example 7-11 shows target Z assigned from A, B, C, or D. The assignment
depends on the current value of CONTRCL .

Example 7-11

Selected Signal Assignment

signal A B C D zZ BIT;
signal CONTRCL: bit_vector(1l down to 0);

Wi th CONTROL sel ect
Z <= A when "00".

B when "01",
C when "10",
D when "11";

CONTROL [8] |:>—1

CONTROL[1] [>

Example 7-12

0o

Sl -

D [> HX41

Example 7-12 shows the process equivalent to the selected signal
assignment statement in Example 7-11.

Process Equivalent to Selected Signal Assignment
process(CONTRCL, A, B, C D

begi n
case OONTRCL i s
when 0 =>
Z <= A
when 1 =>
Z <= B;
when 2 =>
Z <= C
when 3 =>
Z <= D
end case;

end process;

Component Instantiations

A component instantiation references a previously defined hardware
component, in the current design, at the current level of hierarchy. Y ou can
use component instantiations to define adesign hierarchy. Y ou can also use
parts not defined in VHDL, such as components from an FPGA technology
library, parts defined in the Verilog hardware description language, or the
generic technology library. Component instantiation statements can be used
to build netlistsin VHDL.

Example 7-13

A component instantiation statement indicates
A name for this instance of the component.
The name of a component to include in the current entity.

The connection method for a component’ s ports.

Thesyntax is

i nstance_name : conponent _nanme port map (
[port_name =>] expression
{, [port_name =>] expression });

i nst ance_nane names this instance of the component type
conponent _nane.

The port map connects each port of thisinstance of conponent _nane
to asignal-valued expr essi on in the current entity. The value of

expr essi on can be asignal name, an indexed name, adlice name, or an
aggregate. If expr essi on isthe VHDL reserved word open , the
corresponding port is left unconnected.

Y ou can map ports to signals by named or positional notation. Y ou can
include both named and positional connections in the port map, but you
must place all positional connections before any named connections.

Note: For named association, the component port names must exactly
match the declared component’s port names. For positional association,
the actual port expressions must be in the same order asthe declared
component’s port order.

Example 7-13 shows a component declaration (a 2-input NAND gate)
followed by three equivalent component instantiation statements.

Component Declaration and Instantiations

conponent ND2
port(A B inBIT, C out BIT);
end conponent;

signal X Y, Z BT

UL NDR port map(X Y, 2); -- posi tional
WR2: ND2 port map(A=> X, C=>2 B =>Y);-- naned
W3: ND2 port map(X, Y, C=>2); -- m xed

Example 7-14 shows the component instantiation statement defining a
simple netlist. Thethreeinstances, U1, U2, and U3, are instantiations of the
2-input NAND gate component declared in Example 7-13.

Example 7-14

A Simple Netlist
signal TEMP_ 1, TEMP2: BIT;
© Ul: ND2 port map(A B, TEMP 1)

W2: ND2 port map(C, D, TEWP_2);
U3: ND2 port map(TEMP_ 1, TEMP 2, 2);

> m©

a0 g

AR

NDZ

generate Statements

A gener at e statement creates zero or more copies of an enclosed set of
concurrent statements. The two kinds of gener at e statements are

for... generate
the number of copiesis determined by a discrete range

if... generate

Zero or one copy is made, conditionally

for .. generate Statement

Thesyntax is

| abel: for identifier in range generate
{ concurrent_statenent }
end generate [|abel] ;

Therequired | abel namesthis statement (useful for nested gener at e
statements).

Theuse of thei denti fi er inthisconstruct issimilar to that of the
for..loop statement:

i denti fi er isnot declared elsewhere. It is automatically declared by
the gener at e statement itself and is entirely local to the loop. A loop
identifier overrides any other identifier with the same name but only within
the loop.

Example 7-15

» Thevaluei denti fi er canberead only inside its loop, but you cannot

assign avalue to aloop identifier. In addition, the value of i denti fi er
cannot be assigned to any parameter whose modeisout ori nout .

FPGA Expressrequiresthat r ange must be acomputable integer range, in
either of these forms:

i nt eger _expression to integer_expression
i nt eger _expressi on downto integer_expression

Eachi nt eger _expr essi on evaluatesto an integer.

Each concur r ent _st at enent can be any of the statements described
in this chapter, including other gener at e statements.

Afor..generate statement executesasfollows:

. A new local integer variable is declared with the namei dent i fi er.

i denti fi er isassigned thefirst value of r ange, and each concurrent
statement is executed once.

i denti fi er isassigned the next valueinr ange, and each concurrent
statement is executed once more.

Step 3isrepeated until i denti fi er isassignedthelast valueinr ange.
Each concurrent statement is then executed for the last time, and execution
continues with the statement following end gener at e . Theloop

i denti fier isdeleted.

Example 7-15 shows a code fragment that combines and interleaves two
four-bit arrays A and B into an eight-bit array C.

for..generate Statement

signal AL B: bit_vector(3 downto 0);
signal C : bit_vector (7 downto 0);
signal X : bit;

GEN LABEL: for | in 3 downto O generate
2*l +1) <= Al) nor X
c2*1) <= B(l) nor X

end generate CGEN LABEL;

The most common usage of the gener at e statement is to create multiple
copies of components, processes, or blocks. Example 7-16 demonstrates
this usage with components. Example 7-17 shows how to generate multiple
copies of processes.Example 7-16 shows VHDL array attribute’ r ange
used withthef or. . gener at e statement to instantiate a set of COWP
components that connect corresponding elements of bit vectors A and B.

0 [>ctal
BrE) [

o [>cr1)
ALBl >

O [>crz1
Bl1] >

O [>cri3n
AT >

Bl2] >
o [>cr41

X >

O [>cis1
ALZ] [>

JSALEee

O [>ci8)
BI3] [>+

O [>ci7]
A3 >

%

Example 7-16 for..generate Statement Operating on an Entire Array

conponent COWP
port (X : in bit;
Y : out bit);

end conponent;

signal A B BIT VECTORO to 7);

.GE.N.for I in A range generate
U COWw port map (X => A(l),
Y => B(1));

end generate CEN

Unconstrained arrays and array attributes are described under *‘ Array
Types' in Chapter 4. Array attributes are shown in Example 4-9.

if .. generate Statement

Thesyntax is

| abel: if expression generate
{ concurrent_statenent }
end generate [|abel] ;

| abel identifies (names) this statement. expr essi on isany expression
that evaluates to a Boolean value. A concurrent _st at ement isany of
the statements described in this chapter, including other gener at e
Statements.

Note: Unlikethei f statement described in Chapter 6, the
i f..gener at estatement hasnoel se or el si f branches.

Youcanusetheif..generate statement to generate aregular structure
that has different circuitry at itsends. Useafor..generate statementto
iterate over the desired width of adesign, and aset of i f. . generat e
statements to define the beginning, middle, and ending sets of connections.

Example 7-17 shows a technology-independent description of the
following N-bit serial-to-parallel converter. Data is clocked into an N-bit
buffer from right to left. On each clock cycle, each bit in an N-bit buffer is
shifted up one hit, and the incoming DATA bit is moved into the low-order
bit.

Example 7-17 Typical Use of if..generate Statements

entity CONVERTER i s
generic(N | NTEGER : = 8);

port (CLK, DATA in BIT;
CONVERT: buffer BI T _VECTOR(N-1 downto 0));
end CONVERTER,

architecture BEHAVI OR of CONVERTER i s
signal S: BIT_VECTOR(CONVERT range);
begi n

G for | in CONVERT range generate

Gl: -- Shift (N1) data bit into high-order bit
if (I = CONVERT | eft) generate
process begin
wait until (CLK event and CLK ="' 1");
CONVERT(1) <= S(1-1);
end process;
end generate Gl;

@: -- Shift mddle bits up
if (I > CONVERT right and
| < CONVERT' | eft) generate

S(1) <= S(1-1) and CONVERT(I);

process begin
wait until (CLK event and CLK = "1");
CONVERT(1) <= S(1-1);
end process;
end generate @;

&G: -- Mwve DATAinto loworder bit
if (I = CONVERT right) generate
process begin
wait until (CLK event and CLK ="' 1");
CONVERT(1) <= DATA
end process;
S(1) <= CONVERT(I);
end generate G3;

end generate G
end BEHAVI CR,

Example 7-17 (Continued) Typical Use of if..generate Statements

DATA [CONVERTI8]

CONVERTI11

CONVERT 21

EONVERT 3]

CONVERTI5]

CONVERT[71

Faaaad

Chapter 8
Register and Three-State Inference

Y ou can generally use several different, but logically equivalent, VHDL
descriptions to describe a circuit.

To write VHDL descriptions to produce efficient synthesized circuits,
consider the following topics:

n Register Inference

n Three-State Inference

Y ou can use VHDL to make your design more efficient in terms of the
synthesized circuit’s area and speed, as follows:

n A design that needs some, but not all, of its variables or signals stored
during operation can be written to minimize the number of latches or
flip-flops required.

n A design that is described more easily with several levels of hierarchy can
be synthesized more efficiently if part of the design hierarchy is collapsed
during synthesis.

Register Inference

FPGA Express provides register inferencing using thewai t andi f
Statements.

A register isasimple, one-bit memory device, either aflip-flop or alatch.
A flip-flop is an edge-triggered memory device. A latch isalevel-sensitive
memory device.

Usethewai t statement to imply flip-flopsin a synthesized circuit. FPGA
Express creates flip-flops for al signals, and some variables assigned
valuesin aprocesswith awai t statement.

Thei f statement can be used to imply registers (flip-flops or latches) for
signals and variables in the branches of thei f statement.

To useregister inferences, describe latches and flip-flops, and learn
efficient use of registers, familiarize yourself with

n Using register inference
n Describing latches
n Describing flip-flops

n Efficient use of registers

Using Register Inference

Using register inference involves describing clock signals and using wai t
andi f statementsfor register inferencing. Recommended models for
different types of inferred registers and current Synopsys restrictions must
also be considered.

Describing Clocked Signals

FPGA Express can infer asynchronous memory elements from VHDL
descriptions written in a natural style.

Usethewait andif statementsto test for therising or falling edge of a
signal. The most common usages are
process
begi n
wait until (edge);

end.brocess;
process (sensitivity |ist)
begi n

if (edge)

end.i.f;
end process;

Another form is
process (sensitivity |ist)
begi n
if (...) then
elsif (...)
el Slf (edge) then
en.d.i.f;
end process;

edge refersto an expression that tests for the positive or negative edge of a
signal. The syntax of an edge expressionis

S| GNAL’ event and SIGNAL = '1" -- rising edge
NOT SIGNAL' stable and SIGNAL = '1' -- rising edge
S| GNAL’ event and SIGNAL ='0" -- falling edge
NOT SIGNAL' stable and SIGNAL ='0° -- falling edge

Inawai t statement, edge can also be

si gnal
si gnal

"1l -- rising edge
"0 -- falling edge

Anedge expression must be the only condition of ani f oranel si f
statement. Y ou can have only one edge expressioninani f statement,
andthei f statement must not have an el se clause. An edge expression
cannot be part of another logical expression nor used as an argument.

if (edge and RST ='1")
-- |llegal usage; edge nust be only condition

Any function(edge);
-- |llegal usage; edge cannot be an argunent

if X>5 then
sequenti al _statenent;
elsif edge then
sequenti al _statenent;
el se
sequential _statenent;
end if;
-- Illegal usage; do not use edge as an internediate
expressi on.

These linesillustrate three incorrect uses of the edge expression. In the
first group, the edge expression is part of alarger Boolean expression. In
the second group, the edge expression is used as an argument. In the third
group, the edge expression is used as an intermediate condition.

wait vs if Statements

Sometimesyou can usethewait andi f statementsinterchangeably. The
i f statement isusually preferred, because it provides greater control over
the inferred register’s capabilities, as described in the next section.

IEEE VHDL requiresthat aprocesswith awai t statement must not havea
sensitivity list.

Anif edge statement can appear anywhere in aprocess. The sensitivity
list of the process must contain all signals read in the process, including the
edge signal. In general, the following guidelines apply:

Synchronous processes (processes that compute values only on clock
edges) must be sensitive to the clock signal.

Asynchronous processes (processes that compute values on clock edges
and when asynchronous conditions are TRUE) must be sensitive to the
clock signal (if any), and to inputs that affect asynchronous behavior.

Recommended Use of Register Inference Capabilities

The register inference capability can support styles of description other
than those described here. However, for best results:

Restrict each process to a single type of memory-element inferencing:
latch, latch with asynchronous set or reset, flip-flop, flip-flop with
asynchronous reset, or flip-flop with synchronous reset.

n Usethe following templates.

LATCH process(sensitivity |ist)
begi n
i f LATCH ENABLE t hen

end if;.
end process;

LATCH ASYNC SET:
attribute async_set;}éset of SET : signal is "true";

process(sensitivity |ist)
begi n
if SET then
Q<="1%
el sif LATCH ENABLE t hen

end if;...
end process;

FF: process(CLK)
begi n
if edge then

end if;
end process;

FF_ASYNC RESET:
process(RESET, CLK)
begi n
i f RESET then
Q<="07
elsif edge then
Q<= ...;
end if;
end process;

FF_SYNC RESET:
process(RESET, CLK)
begi n
if edge then
i f RESET then
Q<="0
el se
Q<= ...;
end if;
end if;
end process;

Examples of these templates are provided in ‘* Describing Latches" and
“‘Describing Flip-Flops," later in this chapter.

Restrictions on Register Capabilities

Do not use morethanonei f edge expression in a process.

process(CLK A, CLK B)
begi n
i f(CLK A event and CLK A
A <= B;
end if;

"1'") then

i f(CLK B event and CLK B
Il egal

1) then --

C <= B;
end if;
end process;

Do not assign avalue to avariable or signal on a FALSE branch of ani f
edge statement. This assignment is equivalent to checking for the absence
of aclock edge, which has no hardware counterpart.

process(CLK)
begi n
if(CLK event and CLK = "1") then
SIG <= B;
el se
SIG <= C -- Illegal
end if;

end process;

If avariableis assigned avalue inside an edge construct, do not read that
variable later in the same process.

process(CLK)
vari abl e EDGE VAR, ANY VAR BIT;

begi n
if (CLK event and CLK = "1") then
EDCE SIGNAL <= X

EDGE VAR =Y,

ANY_VAR .= EDCGE_ VAR -- Legal
end if;
ANY_VAR : = EDCGE VAR -- Illegal

end process;

Do not use an edge expression as an operand.
if not(CLK event and LK = "1') then -- Illegal

Delays in Registers

Example 8-1

If you use delay specifications with values that may be registered, the
simulation to behave differently from the logic synthesized by FPGA
Express. For example, the description in Example 8-1 contains delay
information that causes FPGA Express to synthesize a circuit that behaves
unexpectedly.

Delaysin Registers

conponent flip flop (
D, clock: in BIT;
out BIT;);
end conponent;

process (A, C D clock);
signal B. BIT,;

begi n

B <= A after 100ns;

F1. flip flop port map (A, C clock),
F2. flip flop port map (B, D, clock);
end process;

In Example 8-1, B changes 100 nanoseconds after A changes. If the
clock period isfewer than 100 nanoseconds, output D isone or more clock
cycles behind output C when the circuit is simulated. However, because
FPGA Expressignores the delay information, A and B change values at
the sametime, and sodo C and D. Thisbehavior isnot the same asin the
simulated circuit.

When you use delay information in your designs, make sure the delays do
not affect registered values. In general, you can safely include delay
information in your description if it does not change the value that gets
clocked into aflip-flop.

Describing Latches

FPGA Express infers latches from incompletely specified conditional
expressions. In Example 8-2, thei f statement infers alatch because there
isno el se clause:

Example 8-2 Latch Inference

process(GATE, DATA)
begi n
if (GATE ="'1") then
Q <= DATA
end if;
end process;

Figure 8-1 Latch Inference
DATA [_>— —">0
ok Y P

Theinferred latch uses CLK asits clock and DATA asits datainput, as
shown in Example 8-2.

Automatic Latch Inferencing

A signal or variable that is not driven under all conditions becomes a
latched value. As shown in Example 8-3, TEMP becomes alatched value
because it isassigned only when PH is1.

Example 8-3 Automatically Inferred Latch
if(PH ="1") then
TEMP <= A
end if;
Figure 8-2 Automatically Inferred Latch
A > —_—>TE=Mr
PHT - o}

To avoid inferred latches, assign a value to the signal under all conditions,
as shown in Example 8-4.

Example 8-4 Fully Specified Signal: No Latch Inference

if (PH ='1") then
TEMP <= A

el se
TEMP <= ' 0’;

end if;
AN

P > TEMP
AL >

Restrictions on Latch Inference Capabilities

Y ou cannot read a conditionally assigned variable after thei f statement in
which it isassigned. A conditionally assigned variable is assigned a new
value under some, but not all, conditions.

Therefore, avariable must always have avalue before it is read.
signal X, Y. BIT;

process

vari able VALUE BIT;
begi n
if (condition) then
VALUE : = X
end if;
Y <= VALUE, -- Illegal
end;

In simulation, latch inference occurs because signals and variables can hold
state over time. A signal or variable holdsits value until that valueis
reassigned. FPGA Express inserts alatch to duplicate this holding of state
in hardware.

Variables declared locally within a subprogram do not hold their value over
time. Every time a subprogram is used, its variables are reinitialized.
Therefore, FPGA Express does not infer latches for variables declared in
subprograms. In Example 8-5, no latches are inferred.

Example 8-5 Function without Inferred Latch

function MY¥_FUNCQ(DATA, GATE : BIT) return BIT is
vari abl e STATE BIT;
begi n
i f GATE then
STATE : = DATA;
end if;
return STATE;
end;

Q <= MY_FUNQ(DATA, GATE):

Figure 8-3 Function without Inferred Latch

GATE
> Q
DATA

Y

Example—Design with Two-Phase Clocks

By using the latch inference capability, you can describe network
structures, such as two-phase systemsin atechnol ogy-independent manner.
Example 8-6 shows a simple two-phase system with clocks PH 1 and
PH 2.

Example 8-6 Two-Phase Clocks

entity LATCH VHDL is
port(PH 1, PH 2, A: in BIT,
t: out BIT);
end LATCH VHOL;

architecture EXAMPLE of LATCH VHDL is
signal TEMP, LOCOP_BACK BIT,;
begi n
process(PH 1, A LOCP_BACK)
begi n
if(PH_1 ="1") then
TEMP <= A and LOCP_BACK;
end if;
end process;

process(PH 2, TEMP)

begi n
if(PH 2 ="1") then

LOCP_BACK <= not TEMP,

end if;

end process;

t <= LOOP_BACK;

end EXAMPLE;

Figure 8-4 Two-Phase Clocks

AD_i:}

PHI-1 — o >

PHI_Z D

FPGA Express does not automatically infer dual-phase latches (devices
with master and slave clocks). To use these devices, you must instantiate
them as components, as described in Chapter 3.

Describing Flip- Flops
Example 8-7 shows how an edge construct creates a flip-flop.

Example 8-7 Inferred Flip-Flop

process(CLK, DATA)
begi n
if (CLK event and CLK = "1') then
Q <= DATA
end if;
end process;

Figure 8-5 Inferred Flip-Flop
DATA [>— H—[">a
Lk &> D

Flip-Flop with Asynchronous Reset

Example 8-8 shows how to specify aflip-flop with an asynchronous reset.

Example 8-8

Inferred Flip-Flop with Asynchronous Reset

process(RESET LON CLK, SYNC DATA)
begi n
if RESET_LOW= '0' then
Q<="0
elsif (CLK event and CLK = "1') then
Q <= SYNC DATA
end if;
end process;

SYNC _DATA
>

>

CLK Dﬁ

DG

RESET_LOW D

Note how the flip-flop in Example 8-8 is wired.
The Dinput of the flip-flop iswired to SYNC DATA .

If the reset condition is computable (see "Computable Operands' in
Chapter 5), either the SET or CLEAR pin of the flip-flop iswired to the
RESET (or RESET_LOW) signal, as shown in Example 8-8.

If the reset condition (ANY_SI GNAL in Example 8-9) is not computable,
SET iswired to (ANY_SI GNAL AND ASYNC DATA) and CLEAR is
wired to (ANY_SI GNAL AND NOT(ASYNC DATA)) ,asshownin
Example 8-9.

Example 8-9 shows an inferred flip-flop with an asynchronous reset, where
the reset condition is not computable.

Example 8-9 Inferred Flip-Flop with Asynchronous Set or Clear

process (CLK, ANY _SIGNAL, ASYNC DATA, SYNC DATA)
begi n
if (ANY_SIGNAL) then
Q <= ASYNC DATA;
elsif (CLK event and CLK = "1') then
Q <= SYNC DATA
end if;
end process;

SYNC_DATA -

DS

ANY_SIGNAL [

P
ASYNC_DATA D—i%):

CLK >

Example—Synchronous Design with Asynchronous Reset

Example 8-10 describes a synchronous finite state machine (FSM) with an
asynchronous reset.

Example 8-10 Synchronous Finite State M achine with Asynchronous Reset

package MY TYPES is
type STATE TYPE is (S0, Sl, S2, S3);
end MY_TYPES,

use WORK. MY_TYPES. ALL;

entity STATE MACH NE i s
port (CLK, INC, A, B. in BIT; RESET: in Bool ean ;
t: out BIT);
end STATE NACH NE

architecture EXAMPLE of STATE MMCH NE i s
si gnal CURRENT_STATE, NEXT_STATE: STATE TYPE
begi n
SYNC. process(CLK, RESET)
begi n
i f (RESET) then
CURRENT_STATE <= S0;
elsif (LK event and CLK = '1') then
CURRENT _STATE <= NEXT_STATE;
end if;
end process SYNC

FSM process(CURRENT _STATE, A B)

begi n
t <= A -- Default assi gnnent
NEXT _STATE <= S0; -- Default assignnent

if (INC="1") then
case CURRENT STATE i s

when SO =>
NEXT_STATE <= S1;

when S1 =>
NEXT_STATE <= S2;
t <= B;

when S2 =>
NEXT_STATE <= S3;

when S3 =>
nul | ;

end case;
end if;

end process FSM
end EXAMPLE;

Figure 8-6

Synchronous Finite State M achine with Asynchronous Reset

RESET -

CLK -

INC E}-ED:)—

8 [>

(=]

Attributes

New attributes used to assist register inference are discussed in this section.
The attributes are defined in aVHDL library called Synopsys Attribute’s
package.
attribute async_set _reset : string;
attribute sync_set _reset : string;
attribute async_set _reset local : string;
attribute sync_set _reset local : string;
attribute async_set _reset local _all : string;
attribute sync_set reset local _all : string;
attribute one hot : string;
attribute one cold : string;
async_set _reset
Theasync_set reset attributeis attached to single-bit signals using
the attribute construct. FPGA Express checks signals with the async_
set _reset attribute set to TRUE to determine whether these signals
asynchronously set or reset a latch in the entire design.
The syntax of async_set reset is

attribute async_set _reset of signal _name,. : signal is "true";

Latch with Asynchronous Set or Clear Inputs

The asynchronous clear signal for alatch isinferred by driving the "Q" pin
of your latch to 0. The asynchronous set signal for alatch isinferred by
driving the "Q" pin of your latch to 1. Although FPGA Express does not
require that the clear (set) be the first condition in your conditional branch,
it is best to write your VHDL in this manner.

Example 8-11 shows how to specify alatch with an asynchronous clear
input. To specify alatch with an asynchronous set, change the logic as
indicated by the comments.

Example 8-11 Inferred Latch with Asynchronous Clear Input

attribute async_set reset of clear : signal is

"true",
process(cl ear, gate, a)
begi n
if (clear = '1") then
q<="'0";
elsif (gate ='1") then
q <= &
end if;
end process;
Figure 8-7 Inferred Latch with Asynchronous Clear
> >

gate E::>————————L££ B

I
clear

sync_set_reset

Thesync_set reset attributeis attached to single-bit signals with the
attribute constructs. FPGA Express checks signalswiththesync_set
reset attribute set to TRUE to determine whether these signals
synchronously set or reset aflip-flop in the entire design.

Thesyntax of sync_set reset is

attribute sync_set reset of signal _name,... : signal is "true";

Flip-Flop with Synchronous Reset Input

Example 8-12 shows how to specify aflip-flop with a synchronous reset.

Example 8-12

Inferred Flip-Flop with Synchronous Reset I nput

attribute sync_set _reset of RESET, SET :

"true",
process(RESET, CLK)
begi n
if (CLK event and CLK = "1') then
if RESET = '1' then

Q<=0
el se
Q <= DATA A
end if;
end if;

end process;

process (SET, CLK)
begi n
if (CLK event and CLK = "1') then
if SET ='1'" then

T<="1;
el se
T <= DATA B;
end if;
end if;

end process;

RESET
B
DATA

CLK >

async_set_reset_local

Theasync_set reset | ocal attribute isattached to the label of a
process with a value of a double-quoted list of single-bit signals. Every

si gnal

is

signal in thelist istreated asthough it hastheasync_set reset

attribute attached in the specified process.

Thesyntax of async_set _reset | ocal is

attribute async_set _reset | ocal of process_| abel

| abel is
"signal _nane,...";

Example 8-13

Asynchronous Set/Reset on a Single Block

l'ibrary | EEE

l'i brary synopsys;

use | EEE std logic 1164. all
use synopsys.attributes. all;

entity e async_set _reset local is

port(reset, set, gate: in std logic; y, t: out std_
| ogi c);

end e _async_set _reset | ocal

architecture rtl of e async_set reset local is
attribute async_set _reset |ocal of direct _set reset

| abel
is "reset, set";
begi n

direct set reset: process (reset, set)
begi n
if (reset ='1") then

y <='0; -- asynchronous reset
elsif (set =’1") then

y <='1; -- asynchronous set
end if;

end process direct_set reset;

gated data: process (gate, reset, set)

begi n
if (gate ='1") then
if (reset ='1') then
t <='0; -- gated data
elsif (set =’1") then
t <='1"; -- gated data
end if;
end if;

end process gated set _reset;

end rtl;

Figure 8-8

S

Asynchronous Set/Reset on a Single Block

N
e

set
-

o1y Do | [
o

sync_set_reset_local

Thesync_set reset | ocal attributeisattached to the label of a
process with a value of a double-quoted list of single-bit signals. Every
signal inthelist istreated asthough it hasthe sync_set reset
attribute attached in the specified process.

Thesyntax of sync_set reset local is

attribute sync_set _reset | ocal of process_| abel
| abel is "signal namne,..."

Example 8-14 Synchronous Set/Reset on a Single Block

l'ibrary | EEE

l'i brary synopsys;

use | EEE std logic 1164. all
use synopsys.attributes. all;

entity e sync_set reset local is
port(clk, reset, set, gate : in std logic; y, t: out std |ogic);
end e _sync_set _reset | ocal

architecture rtl of e sync_set reset local is
attribute sync_set reset |ocal of clocked set reset : label is "reset,
begi n

cl ocked reset: process (clk, reset, set)
begi n
if (clk’event and clk ="1") then
if (reset ='1") then

y <='0; -- synchronous reset
el se
y <='1"; -- synchronous set
end if;
end if;

end process cl ocked _set reset;

gated data: process (clk, gate, reset, set)
begi n
if (clk’event and clk ="1") then
if (gate =’'1") then
if (reset =’1") then

t <='0; -- gated data
elsif (set ='1') then
t <="'1"; -- gated data
end if;
end if;
end if;

end process gated set reset;

end rtl;

set

’

Figure 8-9 Synchronous Set/Reset on a Single Block
set
> o
d2 o

reset [

clk

(- > o

di L]

= s
£ n

async_set _reset_local_all

Theasync_set reset |ocal all attributeisattached to a process
label. The attribute async_set _reset | ocal _all specifiesthat all
the signals in the process are used to detect an asynchronous set or reset
condition for inferred latches or flip-flops.

Thesyntax of async_set _reset local _all s

attribute async_set _reset local _all of process
label,... : label is "true";

Example 8-15 Asynchronous Set/Reset on Part of a Design

l'ibrary | EEE

l'i brary synopsys;

use | EEE std logic 1164. all
use synopsys.attributes. all;

entity e async_set reset local _all is
port(reset, set, gate, gate2: in std logic; y, t, w out std_|ogic);
end e _async_set _reset local _all;

architecture rtl of e async_set reset local _all is
attribute async_set reset |ocal _all of
direct_set reset, direct_set reset too: label is "true"

begi n
direct set reset: process (reset, set)
begi n
if (reset ='1") then
y <='0; -- asynchronous reset
elsif (set =’1") then
y <='1; -- asynchronous set
end if;

end process direct_set reset;

direct_set _reset _too: process (gate, reset, set)

begi n
if (gate ='1") then
if (reset ='1') then
t <=0 ; -- asynchronous reset
elsif (set =’1") then
t <='1"; -- asynchronous set
end if;
end if;

end process direct_set_reset _too;

gated data: process (gate2, reset, set)

begi n
if (gate ='1") then
if (reset ='1") then
w<="'0; -- gated data
elsif (set =’1") then
w<="1; -- gated data
end if;
end if;

end process gated set _reset;

end rtl;

Figure 8-10

gateEl -

Asynchronous Set/Reset on Part of a Design

>u

-
o
@
B
[
L

Il
,

sync_set_reset_local_all

Thesync_set reset |ocal all attributeis attached to a process
label. The attribute sync_set _reset local _all specifiesthat all
the signals in the process are used to detect a synchronous set or reset
condition for inferred latches or flip-flops.

Thesyntax of sync_set _reset local _all is

attribute sync_set reset local _all of process label,... : label is "true";

Example 8-16 Synchronous Set/Reset on a Part of a Design

l'ibrary | EEE

l'i brary synopsys;

use | EEE std logic 1164. all
use synopsys.attributes. all;

entity e sync_set reset local _all is
port(clk, reset, set, gate, gate2: in std logic; y, t, w out std |ogic);
end e sync_set _reset local _all;

architecture rtl of e sync_set reset local _all is
attribute sync_set reset |ocal _all of

cl ocked _set reset, clocked set reset _too: label is "true"
begi n

cl ocked_set reset: process (clk, reset, set)
begi n
if (clk’event and clk ="1") then
if (reset ='1") then

y <='0; -- synchronous reset
elsif (set =’1") then
y <='1; -- synchronous set
end if;
end if;

end process cl ocked _set reset;

cl ocked_set _reset _too: process (clk, gate, reset, set)
begi n
if (clk’event and clk ="1") then
if (gate =’'1") then
if (reset =’1") then

t <='0"; -- synchronous reset
elsif (set ='1") then
t <='1; -- synchronous set
end if;
end if;

end if;
end process cl ocked_set reset too;

gated data: process (clk, gate2, reset, set)
begi n
if (clk’event and clk ="1") then
if (gate ='1") then
if (reset =’1") then

w<="'0; -- gated data
elsif (set ='1') then
w<="1;: -- gated data
end if;
end if;

end if;
end process gated set _reset;

end rtl;

Figure 8-11 Synchronous Set/Reset on a Part of aDesign
L] >
gate
resetD—e
>o > »
>y
clkC> >]
O
setD
LD

HatEZD

Note: Usetheone_hot and one_col ddirectivesto implement D-type
flip-flops with asynchronous set and reset signals. These two attributes
tell FPGA Expressthat only one of the objectsin thelist are active at a

time. If you are defining active high signals, useone_hot. For active
low, useone_col d. Each attribute has two objects specified.

one_hot

Theone_hot directive takes one argument of a double-quoted list of
signals separated by commas. This attribute indicates that the group of
signalsare one_hot , in other words, at any time, no more than one signal
can havealogic 1 value. Y ou must make sure that the group of signals are
really one_hot . FPGA Express does not produce any logic to check this
assertion.

The syntax of one_hot is

attribute one_hot signal _nane,... : label is "true";

Example 8-17 Using one_hot for Set and Reset

l'ibrary | EEE

l'i brary synopsys;

use | EEE std logic 1164. all
use synopsys.attributes. all;

entity e one hot is

port(reset, set, reset2, set2: in std logic; y, t: out std |ogic);
attribute async_set _reset of reset, set : signal is "true";
attribute async_set reset of reset2, set2 : signal is "true"
attribute one hot of reset, set : signal is "true";

end e one_hot;

architecture rtl of e one hot is

begi n
direct _set reset: process (reset, set)
begi n
if (reset ='1") then
y <='0; -- asynchronous reset by "reset"
elsif (set =’1") then
y <='1; -- asynchronous set by "set"
end if;

end process direct_set reset;
direct _set reset _too: process (reset2, set2)

begi n
if (reset2 ='1") then
t <=0 -- asynchronous reset by "reset?2"
elsif (set2 ='1") then
t <=1 -- asynchronous set by "~reset2 set2"
end if;

end process direct_set_reset _too;

-- synopsys synthesis_of f

process (reset, set)

begi n

assert not (reset="1 and set="1")

report "Cne-hot violation"
severity Error;

end process;

-- synopsys synthesis_on

end rtl;

Figure 8-12 Using one_hot for Set and Reset

o
L I—|:> ,
o
o
o
| -,
set2 D‘Jt
reset2 D&D

one_cold

Theone_col d directiveissimilartotheone_hot directive. one_col d
indicates that no more than one signal in the group can have aLogic O value
at any time.

The syntax of one_col d is

attribute one _cold signal _nane,... : label is "true";

Example 8-18 Using one_col d for Set and Reset

l'ibrary | EEE

l'i brary synopsys;

use | EEE std logic 1164. all
use synopsys.attributes. all;

entity e one cold is

port(reset, set, reset2, set2: in std logic; y, t: out std |ogic);
attribute async_set _reset of reset, set : signal is "true";
attribute async_set reset of reset2, set2 : signal is "true"
attribute one cold of reset, set : signal is "true";

end e _one_col d;

architecture rtl of e one coldis

begi n
direct set reset: process (reset, set)
begi n
if (reset ='0") then
y <='0; -- asynchronous reset by "not reset”
elsif (set =’0") then
y <='1; -- asynchronous set by "not set"
end if;

end process direct_set reset;

direct _set reset _too: process (reset2, set2)

begi n
if (reset2 ='0") then
t <=0, -- asynchronous reset by "not reset?2"
elsif (set2 ='0") then
t <='1; -- asynchronous set by "(not reset2) (not set2)"
end if;

end process direct_set_reset _too;

-- synopsys synthesis_of f

process (reset, set)

begi n

assert not (reset="0" and set="0")

report "Qne-cold violation"
severity Error;

end process;

-- synopsys synthesis_on

end rtl;

Figure 8-13 Using one_col d for Set and Reset

e
reset D—D_t o)
set '_DE
) O
R
T
—
reset2 > I
=
set2 '—Dj |
D

FPGA Express Latch and Flip-Flop Inference

FPGA Expressinferes latches and flip-flops as follows:

n Asynchronous Flip-Flop Resets
FPGA Express reports asynchronous set and reset conditions of flip-flops.

n Asynchronous Latch Resets
FPGA Express interprets each control object of alatch as synchronous. If
you want to asynchronously set or reset alatch, set this variable to TRUE.

n Flip-Flop Feedback Loops
FPGA Expressremovesall flip-flop feedback loops. For example, feedback
loops inferred from a statement such as Q=Q are removed. With the state
feedback removed from asimple D flip-flop, it becomes a synchronous
loaded flip-flop.

» Flip-Flop Inverted Feedback L oops

FPGA Expressremovesall inverted flip-flop feedback loops. For example,
feedback loops inferred from a statement such as Q=Q are removed and
synthesized as T flip-flops.

n Reporting Inferred Modules

FPGA Express generates a brief report on inferred latches, flip-flops, or
three-state devices.

Efficient Use of Registers

Example 8-19

Organize your HDL description so that you build only as many flip-flops as
the design requires. Example 8-19 shows a description where too many
flip-flops are implied.

Circuit with Six Implied Registers

l'ibrary | EEE
use | EEE std logic_1164.all;
use | EEE std | ogi c_unsigned. al | ;

entity ex8 13 is
port (clk , reset : in std_|ogic;
and bits , or_bits , xor_bits : out std logic

);
end ex8 13;
architecture rtl of ex8 13 is
begi n
pr ocess
variable count : std logic vector (2 downto 0);
begi n
wait until (clk’event and clk ="'1");
if (reset ='1") then
count := "000";
el se count := count + 1;
end if;

and bits <= count(2) and count (1) and count (0);
or _bits <= count(2) or count(1) or count(0);
xor_bits <= count (2) xor count (1) xor count(0);
end process;
end rtl;

Figure 8-14 Circuit with Six Implied Registers
E_)_ _D.NND_EITS
c_c:xl} o =}
Ao o
| N - P
L= D:D s

REETD.;

L) = - : =D

{>°_.

—

L o

In Example 8-19, the outputs AND BI TS, OR BI TS, and XCR BI TS
depend solely on the value of COUNT . Because COUNT isregistered, the
three outputs do not need to be registered. To avoid implying extra
registers, assign the outputs from within a process that does not have a

wai t statement. Example 8-20 shows a description with two processes,
onewithawai t statement and one without. This description style letsyou

choose the signals that are registered and those that are not.

Example 8-20 Circuit with Three Implied Registers

use wor k. AR THVETIC al | ;
entity CONT is
port (CLOCK, RESET: in BIT;
AND BITS, CRBITS, XCRBITS : out BIT);
end COUNT;

architecture RTL of COUNT is
signal COUNT : UNSIGNED (2 downto 0);
begi n

REG process -- Registered logic
begi n
wait until CLOCK event and CLOK = "1';
if (RESET ='1") then
COUNT <= "000";
el se
COUNT <= COUNT + 1;
end if;
end process;

COMBI N process(COUNT) -- Conbi nati onal
| ogi c
begi n
AND BI TS <= COUNT(2) and COUNT(1) and GOUNT(O0);
OR BITS <= COUNT(2) or OGOUNT(1) or GOUNT(O);
XCOR BI TS <= COUNT(2) xor COUNT(1l) xor COUNT(0);
end process;
end RTL;

Figure 8-15 Circuit with Three Implied Registers

o Bhb—

LDk [+

This technique of separating combinational logic from registered or
sequential logic is useful when describing finite state machines.

See the following examplesin Appendix A:
» Moore machine
n Mealy machine

n Count zeros—sequential version

n Soft drink machine controller—state machine version

Example—Using Synchronous and Asynchronous Processes

Y ou might want to keep some of the values computed by a processin
flip-flops, while allowing other values to change between clock edges.

Y ou can do this by splitting your algorithm between two processes, one
withawai t statement and one without. Put the registered (synchronous)
assignmentsinto thewai t process. Put the other (asynchronous)
assignments into the other process. Use signals to communicate between
the two processes.

For example, suppose you want to build a design with the following
characteristics:

n InputsA 1,A 2,A 3 and A 4 change asynchronously.
n Outputt isdrivenfromoneof A 1,A 2,A 3,0rA 4.
» Input CONTRCL isvalid only on the positive edge of CLOCK . The value at

the edge determines which of the four inputs is selected during the next
clock cycle.

n Output t must always reflect changes in the value of the currently selected
signal.

The implementation of this design requirestwo processes. The process with
awai t statement synchronizesthe CONTRCL value. The other process
multiplexes the output, based on the synchronized control. The signal
SYNC OQONTRCL communicates between the two processes.

Example 8-21 shows the code and a schematic of one possible
implementation.

Example 8-21 Two Processes. One Synchronous, One Asynchronous

entity SYNC ASYNC i s
port (CLOCK in BT,
CONTRCL: in INTEGER range 0 to 3;
A in BIT VECTOR(O to 3);
t: out BIT);
end SYNC ASYNC,

architecture EXAMPLE of SYNC ASYNC i s
signal SYNC CONTRCL: |INTEGER range O to 3;
begi n

process
begi n
wait until CLOCK event and CLOK = "1';
SYNC OONTROL <= CONTRQOL;
end process;

process (A, SYNC CONTRQL)
begi n
t <= A(SYNC CONTRQL) ;
end process;
end EXAMPLE;

Figure 8-16 Two Processes. One Synchronous, One Asynchronous

ALH]
ALZ] -
Alll >—‘

ALl o Tuxad

CONTROL [11 [»—o

cLock [esE0Ts o}

CONTROL [B] -

Three-State Inference

FPGA Express can infer three-state gates (high-impedance output) from
enumeration encoding in VHDL. After inferrence, FPGA Express maps
the gates to a specified technology library. See"Enumeration Encoding" in
Chapter 4 for more information.

Example 8-22

Example 8-23

Example 8-24

When avariableis assigned the value of * Z' , the output of the three-state
gate is disabled. Example 8-22 shows the VHDL for athree-state gate

Creating a Three-State Gate in VHDL

signal QUT_VAL, IN VAL: std | ogic;

if (COND) then

QUT VAL <= I N VAL
el se

QUT VAL <= 'Z'; -- assigns high-inpedance
end if;

Y ou can assign a high impedance value to a four-bit wide bus with
"Z777" .

One three-state device isinferred from asingle process. Example 8-23
infers only one three-state device.

Inferring One Three-State Device from a Single Process

process (sela, a, selb, b) begin

t <=7
if (sela="1") then
t <= a;
if (selb ="1") then
t <= b;

end process;

Example 8-24 inferstwo three-state devices.

Inferring Two Three-State Devices

process (sela, a) begin
if (sela="'1) then
t = a;
elset ="'72";
end process;

process (selb, b) begin
if (selb ="1) then
t = b;
elset ="'72";
end process;

The VHDL conditional assignment may also be used for three-state
inferencing.

Assigning the Value Z

Assigning variables the value Z is allowed. The value Z can also appear in
function calls, return statements, and aggregates. However, except for
comparisonsto Z, you cannot use Z in an expression. Example 8-25 shows
an incorrect use of Z (in an expression), and Example 8-26 shows a correct
use of Z (in a comparison).

Example 8-25 Incorrect Use of the Value Z in an Expression
QUT_VAL <= 'Z and | N VAL

Example 8-26 Correct Expression Comparing to Z
if INVAL =27 then

Caution Expressions comparing to Z are synthesized as though values are not
equal to Z.

For example:
if X="2Z then

is synthesized as:
i f FALSE then

If you use expressions comparing valuesto’ Z', the presynthesis and
postsynthesis simulation results might differ. For this reason, FPGA
Express issues a warning when it synthesizes such comparisons.

Latched Three-State Variables

When avariable islatched (or registered) in the same processin whichitis
three-stated, the enable of the three-state Z is also latched (or registered).
This process is shown in Example 8-27.

Example 8-27 Three-State Inferred with Registered Enable

-- Oeates a flip-flop on input and on enabl e
if (THREESTATE = '0’) then

QUTPUT <= ' Z;
elsif (LK event and CLK = "1') then

if (CONDITION) then

QUTPUT <= | NPUT;

end if;

end if;

Figure 8-17 Three-State Inferred with Registered Enable

THREESTATE (S

CONDITION D'iF:D

B> -2
DUTPUT
= —e

CLK >
INPUT (>

In Example 8-27, the three-state gate has a registered enable signal.
Example 8-28 uses two processes to instantiate a three-state with aflip-flop
only on the input.

Example 8-28

Figure 8-18

THREESTATE >

Latched Three-State with Flip-flop on Input

entity LATCH3S is
port (CLK, THREESTATE, INPUT: in std_|ogic;
QUTPUT: out std logic; CONDITION in Bool ean) ;
end LATCH 3S;

architecture EXAMPLE of LATCH 3S i s
signal TEMP. std_| ogic;
begi n

process(CLK, CONDI TI QN, | NPUT)
begi n -- creates three-state
if (CLK event and CLK = "1') then
if (CONDITIQN) then
TEMP <= | NPUT;
end if;
end if;
end process;
process(THREESTATE, TEMP)
begi n
if (THREESTATE = '0") then
QUTPUT <= ' Z';
el se
QUTPUT <= TEMP;
end if;
end process;
end EXAMPLE;

Latched Three-State with Flip-Flop on Input

Chapter 9
FPGA Express Directives

Synopsys has defined several methods of providing circuit design
information directly in your VHDL source code.

Using FPGA Express directives, you can direct the translation from VHDL
to components with special VHDL comments. These synthetic comments
turn translation on or off, specify one of several hard-wired resolution
methods, and provide a means to map subprograms to hardware
components.

Using Synopsys-defined VHDL attributes, you can add synthesis-related
signal and constraint information to ports, components, and entities. This
information is used by FPGA Express during synthesis.

To familiarize yourself with FPGA Express directives, consider the
following topics:

Notation for FPGA Express Directives
FPGA Express Directives
Synthesis Attributes and Constraints

Notation for FPGA Express Directives

FPGA Express directives are special VHDL comments (synthetic
comments) that affect the actions of FPGA Express. These comments are
just aspecial case of regular VHDL comments, so they areignored by other
VHDL tools. Synthetic comments are used only to direct the actions of
FPGA Express.

Synthetic comments begin with two hyphens (- -), just like aregular
comment. If the word following these charactersis pragna or
synopsys , the remaining comment text is interpreted by FPGA Express
asadirective.

Note: FPGA Express displays a syntax error if an unrecognized directive
isencountered after - - synopsysor-- pragm

FPGA Express Directives

The three types of directives are

Translation stop and start Directives

pragnma transl ate off
pragna transl ate_on
pragma synt hesis_of f
pragnma synt hesi s_on

Resolution function directives

pragma resol uti on_met hod w red_and
pragnma resol ution_method wred_or
pragnma resol ution_method three state

Component implication directives

pragnma map_to entity
pragna return_port_nane

entity name
port _name

Other directives such asthemap_t o operator are used to driveinference of
HDL operatorssuchas*, +, and - .

Translation Stop and Start Directives

Translation directives stop and start the translation of aVHDL sourcefile
by FPGA Express.

-- pragna translate of f
-- pragma transl ate_on

Thetransl ate_off andtransl ate _on directivesinstruct FPGA
Expressto stop and start synthesizing VHDL source code. The VHDL code
between these two directivesis, however, checked for syntax.

Translation is enabled at the beginning of each VHDL sourcefile. You can
usetransl ate off andtransl ate_on directivesanywherein the
text.

Thesynthesis_off andsynthesis_on directivesarethe
recommended mechanisms for hiding simulation-only constructs from
synthesis. Any text between these directivesis checked for syntax, but no
corresponding hardware is synthesized. The behavior of the synt hesi s_
off and synthesis_on directivesisnot affected by the variable
hdlin_translate off_skip_text

Example 9-1 shows how you can use the directives to protect a simulation
driver.

Example 9-1 Using synthesis_on and synthesis_off Directives

-- The following test driver for entity EXAMPLE
-- shoul d not be transl at ed:

-- pragma synthesis_off

-- Transl ati on stops

entity DRVER i s
end;

architecture VHDL of DRRVER i s
signal AL B: INTEGER range 0 to 255;
signal SUM : INTEGER range O to 511;

conponent EXAMPLE
port (A B: in INTEGER range 0 to 255;
SUM out |INTEGER range 0 to 511);
end conponent ;

begi n
Ul: EXAMPLE port map(A B, SWV;
process
begi n
for I in O to 255 | oop
for Jin O to 255 | oop
A<=1;
B <= J;
wait for 10 ns;
assert SUM= A + B;
end | oop;
end | oop;
end process;
end;

-- pragnma synthesis_on
-- Code fromhere on is transl ated

entity EXAMPLE i s
port (A B: in INTEGER range 0 to 255;
SUM out |INTEGER range 0 to 511);
end;

architecture VHDL of EXAMPLE i s
begi n

SUM <= A + B
end;

Resolution Function Directives

Resolution function directives determine the resol ution function associated
with resolved signals (see ‘ ‘ Signal Declarations® in Chapter 3). FPGA
Express does not currently support arbitrary resolution functions. It does
support the following three methods:

-- pragna resol uti on_nethod wired_and

-- pragna resol ution_nethod wired_or
-- pragna resolution _nethod three state

Note: Do not connect signals that use different resolution functions.
FPGA Express supports only one resolution function per network.

Component Implication Directives

Component implication directives map VHDL subprograms onto existing
components or VHDL entities. These directives are described under
‘*Mapping Subprograms to Components* in Chapter 6:

-- pragna map_to entity entity_nane
-- pragma return_port_nane port_name

Chapter 10
Synopsys Packages

Three Synopsys packages are included with this release:
std_logic 1164 Package

Defines a standard for designers to use when describing the interconnection
datatypesused in VHDL modeling.

std_logic_arith Package

Provides a set of arithmetic, conversion, and comparison functions for
SIGNED, UNSIGNED, INTEGER, STD_ULOGIC, STD_LOGIC, and STD_
LOGIC_VECTOR types.

std_logic_misc Package

Defines supplemental types, subtypes, constants, and functions for the std_
logic_1164 package.

To understand the contents of each package, review the following sections.

std_logic_1164 Package

This package defines the |EEE standard for designers to use when
describing the interconnection data types used in VHDL modeling. The
logic system defined in this package might be insufficient for modeling
switched transistors, because such arequirement is out of the scope of this

effort. Furthermore, mathematics, primitives, and timing standards are
considered orthogonal issues asthey relate to this package and are therefore
beyond the scope of this effort.

Thestd | ogi c_1164 package contains Synopsys synthesis directives.
Three functions, however, are not currently supported for synthesis;
rising_edge ,falling_edge ,andis_x.

To use this package in aVHDL source file, include the following lines at
the top of the sourcefile:

l'ibrary | EEE
use | EEE std logic_1164.all;

When you analyze your VHDL source file, FPGA Express automatically
findsthe |IEEE library andthest d_| ogi c_1164 package. However, you
must analyze the use packages not contained in the |IEEE and Synopsys
libraries before processing a source file that uses them.

std_logic_arith Package

Functionsdefined inthestd | ogi c_arith package provide
conversion to and from the predefined VHDL datatype | NTEGER, and
arithmetic, comparison, and Boolean operations. This package lets you
perform arithmetic operations and numeric comparisons on array data
types. The package defines some arithmetic operators (+, - , *, and abs)
and the relational operators (<, >, <=, >=, =, and / =). Note that |IEEE
VHDL does not define arithmetic operators for arrays and defines the
comparison operators in a manner inconsistent with an arithmetic
interpretation of array values.

The package also definestwo major datatypes of itsown: UNSI GNED and
S| GNED . Details can be found in ‘* Synopsys Data Types' later in this
appendix. Thestd | ogic_arith packageislegal VHDL; you can use
it for both synthesis and simulation.

Thestd | ogic_arith packagecanbeconfiguredtowork onany array
of single-bit types. Y ou encode single-bit types in one bit with the ENUM_
ENCCODI NG attribute.

Y ou can make the vector type (for example, std_| ogi c_vector)
synonymous with either SI GNED or UNSI GNED . Thisway, if you plan to
use mostly UNSI GNED numbers, you do not need to convert your vector
typeto call UNSI GNED functions. The disadvantage of making your vector

type synonymous with either UNSI GNED or SI GNED isthat it causes the
standard VHDL comparison functions (=, / =, <, >, <=, and >=) to be
redefined.

Table 9-1 shows that the standard comparison functionsfor Bl T_VECTCR
do not match the SI GNED and UNSI GNED functions.

Table 9-1 UNSIGNED, SIGNED and BIT_VECTOR Comparison Functions

ARG1 op ARG2 UNSIGNED SIGNED BIT_VECTOR

" 000" = " 000" TRUE TRUE TRUE

" 00" = " 000" TRUE TRUE FALSE

" 100" = "0100" TRUE FALSE FALSE

" 000" < " 000" FALSE FALSE FALSE

" 00" < " 000" FALSE FALSE TRUE

" 100" < "0100" FALSE TRUE FALSE

Using the Package

Thestd |l ogic_arith packageisinthe$synopsys/ packages/
| EEE/ src/std_logic_arith.vhd subdirectory of the Synopsys
root directory. To use this packagein aVHDL source file, include the
following lines at the top of the sourcefile:

l'ibrary | EEE
use | EEE std logic arith.all;

Synopsys packages are preanalyzed and do not require further analyzing.

Modifying the Package

Thestd |l ogic_arith packageiswrittenin standard VHDL. Y ou can
modify or add to it. The appropriate hardware is then synthesized.

For example, to convert a vector of multivalued logic to an | NTEGER , you
can write the function shown in Example 9-1. This WL_TO | NTEGER
function returns the integer value corresponding to the vector when the
vector isinterpreted as an unsigned (natural) number. If unknown values
arein the vector, the return valueis -1.

Example 9-1 New Function Based on a std_logic_arith Package Function

l'ibrary | EEE
use | EEE std logic_1164.all;

function MVL_TO | NTECER(ARG : M/L_VECTCR)
return INTEGER i s
-- pragnma built_in SYN FEED THRU
vari abl e uns: UNSI GNED (ARG range);

begi n
for i in ARG range | oop
case ARJi) is
when '0" | 'L’ => uns(i) :='0";
when '1" | "H =>uns(i) :="'1";
when ot hers = return -1;
end case;
end | oop;
return CONV_I NTEGER(uns);
end;

Note the use of the CONV_|I NTEGER function in Example 9-1.

FPGA Express performs almost all synthesis directly from the VHDL
descriptions. However, several functions are hard wired for efficiency.
These functions can be identified by the following comment in their
declarations

-- pragna built _in

This statement marks functions as special, causing the body to be ignored.
M odifying the body does not change the synthesized logic unless you
removethebui It _in comment. If you want new functionality, use the
bui It _i n functions; thisis more efficient than removing thebui It _in
and modifying the body.

Data Types
Thestd | ogic_arith package definestwo datatypes, UNSI GNED
and S| G\NED:
type UNSIGNED is array (natural range <>) of std_
| ogi c;

type SSG\ED is array (natural range <>) of std_| ogic;

Example 9--2

These data types are similar to the predefined VHDL type Bl T_VECTCR ,
butthestd | ogi c_arith package definesthe interpretation of
variables and signals of these types as numeric values. With the

install _vhdl conversion script, you can change these data types to
arrays of other one-bit types.

UNSIGNED

The UNSI G\NED data type represents an unsigned numeric value. FPGA
Express interprets the number as a binary representation, with the farthest
left bit being most significant. For example, the decimal number 8 can be
represented as

UNSI G\ED ("1000")

When you declare variables or signals of type UNSI GNED , alarger vector
holds alarger number. A four-bit variable holds values up to decimal 15; an
eight-bit variable holds values up to 255, and so on. By definition, negative
numbers cannot be represented in an UNSI GNED variable. Zero isthe
smallest value that can be represented.

Example 9-2 illustrates some UNSI GNED declarations. Note that the most
significant bit is the farthest left array bound, rather than the high or low
range value.

UNSIGNED Declarations

variable VAR UNSIGNED (1 to 10);

-- 11-bit nunber

-- VAR(VAR left) = VAR(1) is the nost significant
bi t

signal SIG UNSIGNED (5 downto 0);

-- 6-bit nunber

-- SIgSIGleft) = SIE5) is the nost significant
bi t

SIGNED

The SI GNED data type represents a signed numeric value. FPGA Express
interprets the number as a 2's complement binary representation, with the
farthest |eft bit as the sign bit. For example, you can represent decimal 5
and -5 as

SIG\ED ("0101") -- represents +5
SIG\ED ("1011") -- represents -5

When you declare S| G\NED variables or signals, alarger vector holds a
larger number. A four-bit variable holds values from -8 to 7; an eight-bit
variable holds values from —128 to 127. Note that a SI GNED value cannot
hold as large avalue as an UNSI GNED value with the same bit width.

Example 9-3

Example 9-3 shows some S| GNED declarations. Note that the sign bit is
the farthest left bit, rather than the highest or lowest.

SIGNED Declarations

variable S VAR SIGNED (1 to 10);
-- 11-bit nunber
-- SVAR(S VAR left) = S VAR(1) is the sign bit

signal S SIG SIGNED (5 downto 0);
-- 6-bit nunber
-- SSIS SIGleft) =S SIE5) is the sign bit

Conversion Functions

Thestd | ogic_arith package providesthree sets of functionsto
convert values between its UNSI GNED and SI GNED types, and the
predefined type | NTEGER . This package also providesthestd | ogi c_
vector .

Example 9-4 shows the declarations of these conversion functions. Bl T
and Bl T_VECTCR types are shown.

Example 9-4

Conversion Functions
subtype SVALL INT is INTEGER range O to 1;

function CONV_I NTEGER(ARG |INTEGER) return | NTECER
functi on CONV_I NTEGCER(ARG UNSI G\ED) return | NTECER,
functi on CONV_I NTEGCER(ARG Sl G\ED) return | NTECER,
function CONV_I NTECER(ARG STD LOA C) return SMALL
| NT;

functi on CONV_UNSI GNED(ARG | NTEGER,

Sl ZE: I NTEGER) return UNSI GNED,
functi on CONV_UNSI GNED(ARG UNSI GNED,

Sl ZE: I NTEGER) return UNSI GNED,
functi on CONV_UNSI GNED(ARG Sl G\ED,

Sl ZE: I NTEGER) return UNSI GNED,
functi on CONV_UNSI GNED(ARG STD ULGA G

Sl ZE: I NTEGER) return UNSI GNED,

functi on CONV_SI GNED(ARG | NTEGER,

Sl ZE: | NTEGER) return Sl GN\NED,
functi on CONV_SI GNED(ARG UNSI GNED,

S| ZE: | NTEGER) return Sl GN\NED,
functi on CONV_SI GNED(ARG Sl G\ED,

S| ZE: | NTEGER) return Sl GN\NED,
functi on CONV_SI GNED(ARG STD ULGd C

Sl ZE: | NTEGER) return Sl G\NED,

function CONV_STD LOd C VECTCR(ARG | NTECER

SI ZE: | NTEGER) return STD LOd C_
VECTCR
function CONV_STD LOG3 C VECTCR(ARG UNSI G\ED;

SI ZE: | NTEGER) return STD LOd C_
VECTCR
function CONV_STD LOd C VECTCR(ARG Sl G\ED,

SI ZE: | NTEGER) return STD LOd C_
VECTCR
function CONV_STD LOd C VECTCR(ARG STD ULGd C

SI ZE: | NTEGER) return STD LOd C_
VECTCR

Note that there are four versions of each conversion function.

The operator overloading mechanism of VHDL determines the correct
version from the function call’ s argument types.

The CONV_I NTEGER functions convert an argument of type | NTEGER,
UNSI GNED, SI GNED, or STD ULOd C toan | NTEGER return value.
The CONV_UNSI GNED and CONV_SI GNED functions convert an
argument of type | NTEGER , UNSI GNED , SI GNED, or STD ULCOd C to
an UNSI GNED or SI GNED return value whose bit width is S| ZE.

The CONV_I NTEGER functions have a limitation on the size of operands.
VHDL defines | NTEGER values as between -2147483647 and
2147483647. This range corresponds to a 31-bit UNSI GNED value or a
32-bit SI G\ED value. Y ou cannot convert an argument outside this range
toan | NTECER.

The CONV_UNSI GNED and CONV_SI GNED functions require two
operands. Thefirst operand is the value converted. The second operand is
an | NTECER that specifies the expected size of the converted result. For
example, the following function call returns a 10-bit UNSI GNED value
representing the valueinsi g.

ten_unsigned bits := CONV_UNSI G\NED(si g, 10);

If the value passed to CONV_UNSI GNED or CONV_SI GNED is smaller
than the expected hit width (such as representing the value 2 in a 24-bit
number), the value is bit-extended appropriately. FPGA Express places
zeros in the more significant (left) bits for an UNSI GNED return value and
uses sign extension for a SI GNED return value.

Y ou can use the conversion functions to extend a number’s bit width even
if conversion is not required. For example:

CONV_SI G\NED(S| G\NED ("110"), 8) %"11111110"

An UNSI GNED or S| GNED return value is truncated when its bit width is
too small to hold the ARG value. For example:

CONV_SI GNED(UNSI GNED' (*1101010"), 3) % "010"

Arithmetic Functions

Thestd | ogic_arith package provides arithmetic functions for use
with combinations of Synopsys’ UNSI GNED and S| G\NED data types and
the predefined types STD ULOA C and | NTEGER . These functions
produce adders and subtracters.

There are two sets of arithmetic functions: binary functions with two
arguments, such as A+B or A* B, and unary functions with one argument,
such as- A. The declarationsfor these functions are shown in Examples 9-5
and 9-6.

Example 9-5 Binary Arithmetic Functions

function "+"(L: UNSIGNED, R UNSIGNED) return UNSI GNED,
function "+"(L: Sl G\ED, R Sl G\ED) return Sl G\ED,
function "+"(L: UNSIGNED, R Sl G\ED) return Sl G\ED,
function "+"(L: Sl G\ED, R UNSIG\ED) return Sl G\ED
function "+"(L: UNSIGNED, R INTEGER) return UNSI GNED,
function "+"(L: INTEGER R UNSIG\ED) return UNSI GNED,
function "+"(L: Sl G\ED, R INTEGER) return Sl G\ED
function "+"(L: INTEGER R Sl G\ED) return Sl G\ED,
function "+"(L: UNSIGNED, R STD LG Q) return UNSI G\ED,
function "+"(L: STD WLOEA C R UNSIG\ED) return UNSI G\NED,
function "+"(L: SI GNED R STD LOA Q) return Sl G\ED,
function "+"(L: STD ULGA C R Sl G\ED) return Sl G\NED,
function "+"(L: UNSIGNED, R UNSIGN\ED) return STD LOd C VECTCR,
function "+"(L: SIGNED, R SIGNED) return STD LOd C VECTCR,
function "+"(L: UNSIGNED, R SIG\NED) return STD LO3d C VECTCR
function "+"(L: SIGNED, R UNSIGN\ED) return STD LO3d C VECTCR
function "+'(L: UNSIGNED, R INTEGER) return STD LOGd C VECTCR,
function "+"(L: INTEGER R UNSIGNED) return STD LO3d C VECTCR,
function "+'(L: SIGED, R INTEGER) return STD LOd C VECTCR,
function "+'(L: INTEGER R SIG\ED) return STD LOd C VECTCR,
function "+"(L: UNSIGNED, R STD ULOA Q) return

STD L4 C_VECTCR;
function "+'(L: STDUOAC, R UNSIGNED) return STD LOd C VECTCR
function ' +(L: SIGNED, R STD ULGA O return STD LOJ C VECTOR
function "+"(L: STD UWLOCAC R SIG\NED) return STD LO3d C VECTCR,
function "-"(L: UNSIGNED, R UNSIGNED) return UNSI GNED,
function "-"(L: Sl G\ED, R Sl G\ED) return Sl G\ED,
function "—"(L: UNSIGNED, R SI GNED) return Sl G\ED,
function "-"(L: Sl G\ED, R UNSIGN\ED) return Sl G\ED
function "-"(L: UNSIGNED, R INTEGER) return UNSI GNED,
function "-"(L: INTEGER R UNSIG\ED) return UNSI GNED,
function "-"(L: Sl G\ED, R INTEGER) return Sl G\ED
function "-"(L: INTEGER R Sl G\ED) return Sl G\ED,
function "-"(L: UNSIGNED, R STD LG Q) return UNSI G\ED,
function "-"(L: STD ULOE C R UNSIG\ED) return UNSI G\NED,
function "-"(L: SIG\ED R STD LOA Q) return Sl G\ED,
function "-"(L: STD ULGA C R SIG\ED) return Sl GNED,
function "-"(L: UNSIGNED, R UNSIGN\ED) return STD LOd C VECTCR,
function "-"(L: SIGNED, R SIGNED) return STD LOd C VECTCR,
function "-"(L: UNSIGNED, R SIG\ED) return STD LO3d C VECTCR
function "-"(L: SIGNED, R UNSIGN\ED) return STD LO3d C VECTCR
function "-"(L: UNSIGNED, R INTECGER) return STD LOd C VECTCR,
function "-"(L: INTECGER R UNSIGNED) return STD LO3d C VECTCR,
function "-"(L: SIGNED, R INTEGER) return STD LO3d C VECTCR
function "-"(L: INTECGER R SIG\NED) return STD LOd C VECTCR
function "-"(L: UNSIGNED, R STD LLOA Q) return

STD LGd C VECTOR,

function "-"(L: STDUOAC R UNSIG\ED) return

STD LGd C VECTOR

function "-"(L: SIGNED, R STD ULOAd O return STD LOd C VECTCR
function "-"(L: STD UWLOCEC R SIG\NED) return STD LOd C VECTCR,

function "*"(L: UNSI G\ED,
function "*"(L: Sl G\ED,
function "*"(L: Sl G\ED,
function "*"(L: UNSI G\ED,

UNSI GNED) return UNSI GNED,
S| G\NED) return Sl G\ED,
UNSI GNED) return Sl G\ED,

R
R
R
R Sl G\ED) return Sl G\ED,

Example 9-6 Unary Arithmetic Functions

function "+"(L: UNSIGN\ED) return UNSI G\ED
function "+"(L: SI G\ED) return Sl G\ED,
function "-"(L: SI G\ED) return Sl G\ED,
function "ABS'(L: SIGNED) return Sl G\ED,

These functions determine the width of their return values as follows:

1. Whenonly one UNSI GNED or SI GNED argument is present, the width of
the return value is the same as that argument.

2. When both arguments are either UNSI GNED or SI GNED, the width of the
return value is the larger of the two argument widths. An exception is that
when an UNSI GNED number is added to or subtracted from a SI GNED
number of the same size or smaller, the return valueis a S| GNED number
one bit wider than the UNSI GNED argument. This size guarantees that the
return value is large enough to hold any (positive) value of the UNSI GNED
argument.

The number of bitsreturned by + and - isillustrated in Table 9-2.

signal W4 UNSIGNED (3 downto 0);
signal U8: UNSIGNED (7 downto 0);
signal $S4: SIGNED (3 downto 0);
signal S8: SIGNED (7 downto 0);

Table 9-2 Number of Bits Returned by + and -
+or - u4 us S4 S8
u4 4 8 5 8
us 8 8 9 9
S4 5 9 4 8
S8 8 9 8 8

In some circumstances, you might need to obtain a carry-out bit from the +
or - operation. To do this, extend the larger operand by one bit. The high
bit of the return value is the carry-out bit, asillustrated in Example 9-7.

Example 9-7 Using the Carry-Out Bit

pr ocess
variable a, b, sum UNSI G\NED (7 downto 0);
vari abl e tenp: UNSIG\ED (8 downto 0);
variable carry: BIT,

begi n
tenp := CONV_UNSIGN\ED(a, 9) + b;
sum = tenp(7 downto 0);
carry := tenp(8);

end process;

Comparison Functions

Thestd | ogic_arith package providesfunctionsto compare
UNSI GNED and SI GNED data types to each other and to the predefined
type | NTEGER . FPGA Express compares the numeric values of the
arguments, returning a Boolean value. For example, the following
expression evaluates to TRUE.

UNSI GNED ("001") > S| G\NED ("111")

Thestd | ogic_arith comparison functionsare similar to the built-in
VHDL comparison functions. The only differenceisthat thestd_

| ogi c_arith functionsaccommodate signed numbers and varying bit
widths. The predefined VHDL comparison functions perform bit-wise
comparisons and so do not have the correct semantics for comparing
numeric values (see ‘* Relational Operators' in Chapter 5).

These functions produce comparators. The function declarations are listed
in two groups, ordering functions (<, <=, >, and >=) and equality functions
(=and/ =), in Examples 9-8 and 9-9.

Example 9-8 Ordering Functions

function "<"(L: UNSIGNED, R UNSI G\ED) return Bool ean;
function "<"(L: SIG\ED, R Sl G\ED) return Bool ean;
function "<"(L: UNSIGNED, R Sl G\ED) return Bool ean;
function "<"(L: SIG\ED R UNSI G\ED) return Bool ean;
function "<"(L: UNSIGNED, R |INTEGER) return Bool ean;
function "<"(L: INTEGER R UNSIGNED) return Bool ean;
function "<"(L: SIG\ED, R INTEGER) return Bool ean;
function "<"(L: INTEGER R Sl G\ED) return Bool ean;

function "<="(L: UNSI G\ED,
function "<="(L: Sl G\ED,
function "<="(L: UNSI G\ED,
function "<="(L: SIG\ED,
function "<="(L: UNSI G\ED,
function "<="(L: | NTECER
function "<="(L: Sl G\ED,
function "<="(L: | NTECER

UNSI GNED) return Bool ean;
Sl G\NED) ret urn Bool ean;
S| G\NED) ret urn Bool ean;
UNSI G\ED) return Bool ean;
| NTEGCER) return Bool ean;
UNSI G\ED) return Bool ean;
| NTEGER) return Bool ean;
Sl G\NED) ret urn Bool ean;

DD DND

function "" functions">">"(L: UNSIGNED, R UNSI GNED) return Bool ean;
function " >" (L: Sl G\ED R Sl G\ED) return Bool ean;

function ">"(L: UNSIGNED, R Sl G\ED) return Bool ean;

function ">"(L: SIG\ED R UNSI GNED) return Bool ean;

function ">"(L: UNSIGNED, R |INTEGER) return Bool ean;

function ">"(L: INTEGER R UNSIGNED) return Bool ean;

function ">"(L: Sl G\ED, R INTEGER) return Bool ean;

function ">"(L: INTEGER R Sl G\ED) return Bool ean;

function ="" functions">">="(L: UNSIGNED, R UNSI G\NED) return Bool ean;

function ">="(L: Sl G\ED, R Sl G\ED) return Bool ean;
function ">="(L: UNSIGNED, R Sl G\ED) ret urn Bool ean;
function ">="(L: Sl G\ED, R UNSI G\ED) return Bool ean;
function ">="(L: UNSIGNED, R INTEGER) return Bool ean;
function ">="(L: INTEGER R UNSIG\ED) return Bool ean;
function ">="(L: Sl GNED, R INTEGER) return Bool ean;
function ">="(L: INTECER R Sl G\ED) return Bool ean;
Example 9-9 Equality Functions
function "="(L: UNSIGNED, R UNSI G\ED) return Bool ean;
function "="(L: SI G\ED, R Sl G\ED) return Bool ean;
function "="(L: UNSIGNED, R Sl G\ED) return Bool ean;
function "="(L: SIG\ED, R UNSI GNED) return Bool ean;
function "="(L: UNSIGNED, R |INTEGER) return Bool ean;
function "="(L: INTEGER R UNSIG\ED) return Bool ean;
function "="(L: SI G\ED, R INTEGER) return Bool ean;
function "="(L: INTEGER R Sl G\ED) return Bool ean;
function "/="(L: UNSIGNED, R UNSI G\ED) return Bool ean;
function "/="(L: Sl G\ED, R Sl G\ED) return Bool ean;
function "/="(L: UNSIGNED, R Sl G\ED) return Bool ean;
function "/="(L: Sl G\ED, R UNSI G\ED) return Bool ean;
function "/="(L: UNSIGNED, R INTEGER) return Bool ean;
function "/="(L: INTEGER R UNSIG\ED) return Bool ean;
function "/="(L: Sl G\ED, R INTEGER) return Bool ean;
function "/="(L: INTECER R Sl G\ED) return Bool ean;

Shift Functions

Thestd | ogic_arith package providesfunctionsfor shifting the bits
in SI GNED and UNSI GNED numbers. These functions produce shifters.
Example 9-10 shows the shift function declarations.

Example 9-10 Shift Functions

function SHL.(ARG UNSI G\ED,

COUNT: UNSI GNED) return UNSI G\ED;
function SHL.(ARG SI G\ED,

COUNT: UNSI GNED) return SI GNED

functi on SHRCARG UNSI G\ED,

COUNT: UNSI GNED) return UNSI G\ED;
functi on SHRUCARG SI G\ED,

COUNT: UNSI GNED) return SI GNED

The SHL function shifts the bits of its argument ARG to the left by COUNT
bits. SHR shifts the bits of its argument ARG to the right by COUNT bits.

The SHL functions work the same for both UNSI GNED and S| GNED
values of ARG, shifting in zero bits as necessary. The SHR functions treat
UNSI GNED and SI GNED values differently. If ARG isan UNSI GNED
number, vacated bitsarefilled with zeros; if ARGisa S| GNED number, the
vacated bits are copied from the sign bit of ARG.

Example 9-11 shows some shift function calls and their return values.

Example 9-11 Shift Operations

variable UL, U2: UNSIGNED (7 downto 0);
variable S1, S2: SIGNED (7 downto 0);
variable COUNT: UNSIGNED (1 downto 0);

uL

= "01101011";
w := "11101011";
S1 := "01101011";
S2 = "11101011";

COUNT : = OONV._UNSI GNED(ARG => 3, SIZE => 2);

SH (U1, COUNT) = "01011000"
SHL(S1, COUNT) = "01011000"
SHL (U2, COUNT) = "01011000"
SH(S2, COUNT) = "01011000"
SHR(UL, COUNT) = "00001101"
SHR(S1, COUNT) = "00001101"
SHR(U2, COUNT) = "00011101"
SHR(S2, COUNT) = "11111101"

Multiplication Using Shifts

Y ou can use shift operations for simple multiplication and division of
UNSI GNED numbers, if you multiply or divide by a power of two.

For example, to divide the following UNSI GNED variable U by 4:

variable U UNSIGNED (7 downto 0) := "11010101";
variable quarter U UNSI G\NED (5 downto 0);

quarter U := SHR(U "01");

ENUM_ENCODING Attribute

Place the synthesis attribute ENUM ENCCDI NG on your primary logic type
(see ‘' Enumeration Encoding" in Chapter 4). This attribute allows FPGA
Express to interpret your logic correctly.

pragma built_in

Example 9-12

Label your primary logic functionswiththebui |t _i n pragma. This
pragma allows FPGA Express to interpret your logic functions easily.
Whenyouuseabui It _in pragma, FPGA Express parses but ignores the
body of the function. Instead, FPGA Express directly substitutes the
appropriate logic for the function. You need not usebui It _i n pragmas;
however using these pragmas result in run times that are ten times faster.

Usebui It _i n pragmas by placing acomment in the declaration part of a
function. FPGA Expressinterprets acomment as a directive if the first
word of the comment is pr agna .

Example 9-12 showstheuseof bui It _i n pragmas.

Using abuilt_in pragma

function "XOR' (L, R STD LOAd C VECTOR) return STD_
LOE C VECTCR i s
-- pragma built_in SYN XCR

begi n
if (L="1) xor (R="1") then
return '1;
el se
return '0;
end if;

end "XCR';

Two-Argument Logic Functions

Synopsys provides six built-in functions to perform two-argument logic
functions:

" SYN_AND
" SYN_CR

" SYN_NAND
" SYN_NCR
" SYN_XCR
" SYN XNCR

Y ou can use these functions on single-bit arguments or equal-length arrays
of single hits.

Example 9-13 shows afunction that generates the logical AND of two
equal-size arrays.

Example 9-13 Built-In AND for Arrays

function "AND' (L, R STD LOd C VECTOR) return STD_
LG C VECTRR i s
-- pragrma built_in SYN AND

variable MY _L: STD LOd C VECTCR (L'l ength-1
downto 0);

variable MW R STD LOd C VECTCR (L'l ength-1
downto 0);

vari abl e RESULT: STD LO3d C VECTCR (L'l ength-1
downto 0);
begi n

assert L'length = R 1length;

M L =L

W R:=R

for i in RESULT range | oop

if (M_L(i) =’2) and (MW_R(i) ='1") then

RESULT(i) :="1";
el se
RESULT(i) :="'0";
end if;
end | oop;
return RESULT;

end "AND';

One-Argument Logic Functions

Synopsys provides two built-in functions to perform one-argument logic
functions:

" SYN_NOT
" SYN_BUF

Example 9-14

Example 9-15

Y ou can use these functions on single-bit arguments or equal-length arrays
of single bits. Example 9-14 shows a function that generates the logical
NOT of an array.

Built-In NOT for Arrays

function "NO™ (L: STD LOd C VECTOR) return STD_
LOE C VECTCR i s
-- pragrma built_in SYN NOT
variable MY _L: STD LOd C VECTOR (L'l ength-1
downto 0);
vari abl e RESULT: STD LOd C VECTCR (L'l ength-1

downto 0);
begi n
MY L :=L;
for i inresult’range |oop
if (M L(i) =0 or MWW L(i) ='L") then
RESULT(i) :="1";
elsif (M L(i) ='1 or MW L(i) ="H) then
RESULT(i) :="'0";
el se
RESULT(i) :="'X;
end if;
end | oop;
return RESULT;
end "NOTI";
end;

Type Conversion

The built-in function SYN_FEED THRU performsfast type conversion
between unrelated types. The synthesized logic from SYN FEED THRU
wires the single input of afunction to the return value. This connection can
save the CPU time required to process a complicated conversion function,
as shown in Example 9-15.

Use of SYN_FEED_THRU

type COLCR is (RED, GREEN, BLUE);

attribute ENUM ENCODI NG : STRI NG

attribute ENUM ENCCDI NG of COLOR : type is "01 10
11",

function COLOR TO BV (L: COLOR) return BIT VECTCR i s
-- pragma built_in SYN FEED THRU
begi n
case L is
when RED => return "01";
when GREEN => return "10";
when BLUE => return "11";
end case;
end COLCR TO BV,

translate_off Directive

If there are constructs in your "types" package that are not supported for
synthesis, or that produce warning messages, you may need to use the
FPGA Expressdirective -- synopsys translate off .Youcan
make liberal use of thetransl ate_of f directive when you use

bui It _in pragmasbecause FPGA Expressignoresthe body of built
i n functions. For examples of illustrating how to usethetransl ate_
of f directive, seethestd | ogic_arith.vhd package.

std_logic_misc Package

Thestd | ogi c_m sc packageresidesinthe Synopsyslibraries
directory ($synopsys/ packages/ | EEE/ src/std_| ogi ¢c_

m sc. vhd). This package declares the primary data types supported by
the Synopsys V' SS Family.

Boolean reduction functions use one argument, an array of bits, and return a
single bit. For example, the and-reduction of " 101" is" 0" , the logical
AND of all three bits.

Several functionsinthestd | ogi c_m sc package provide Boolean
reduction operations for the predefined type STD LOd C VECTCR .
Example 9-16 shows the declarations of these functions.

Example 9-16 Boolean Reduction Functions
function AND REDUCE (ARG STD LOd C VECTCR) return

%ﬁgii on NAND REDUCE (ARG STD LO@ C VECTQR) return
%ﬁgiion R REDICE (ARG STD LO@ C VECTQR) return
%ﬁgiion NCR REDICE (ARG STD LOG C VECTOR) return
%ggiion XCR REDUCE (ARG STD LOGA C VECTOR) return
%ﬁgii on XNOR REDUCE (ARG STD LO@ C VECTQR) return
%ﬁgiion AND REDUCE (ARG STD ULOG C VECTOR) return
%ﬁgii on NAND REDUCE (ARG STD ULOG C VECTCR) return
%ﬁgiion R REDUICE (ARG STD ULOQ C VECTCR) return
%ﬁgiion NCR REDUCE (ARG STD ULOG C VECTCR) return
%ﬁi_tl on XOR REDUCE (ARG STD ULOd C VECTCR) return
fﬁﬁ%ﬁ on XNCR REDUCE (ARG STD ULOG C VECTCR) return

These functions combine the bits of the STD LOd C VECTCR , asthe
name of the function indicates. For example, XCR_REDUCE returns the
XOR vaue of al bitsin ARG.

Example 9-17 shows some reduction function calls and their return values.

Example 9-17 Boolean Reduction Operations

AND REDUCE("111") = ' 1’
AND_REDUCE("011") = 'O’
OR REDUCE("000") =0’
OR REDUCE("001") ='1’
XCR REDUCE("100") ='1’
XCR REDUCE("101") ='0O’
NAND REDUCE("111") = 'O’
NAND REDUCE("011") = ' 1’
NOR_REDUCE(" 000") = ' 1’
NOR_REDUCE(" 001") = ' 0O’
XNOR_REDUCE("100") =0’
XNOR_REDUCE("101") =1’

Chapter 11

HDL Constructs

Many VHDL language constructs, although useful for simulation and other
stages in the design process, are not relevant to synthesis. Because these
constructs cannot be synthesized, they are not supported by FPGA Express.

This appendix provides alist of all VHDL language constructs with the
level of support for each, followed by alist of VHDL reserved words.

This appendix describes
VHDL Construct Support
VHDL Reserved Words

VHDL Construct Support

A construct can be fully supported, ignored, or unsupported. Ignored and
unsupported constructs are defined as follows:

Ignored means that the construct is allowed in the VHDL source, but is
ignored by FPGA Express.

Unsupported means that the construct is not allowed in the VHDL source
and that FPGA Express flags the construct as an error. If errors are found
inaVHDL description, the description is not translated (synthesized).

Constructs are listed in the following order:
Design units

Data types

Declarations

Specifications

Names

Operators

Operands and expressions

Sequential statements

Concurrent statements

Predefined language environment

Design Units

entity
The entity statement part is ignored.

Generics are supported, but only of type | NTEGER .
Default values for ports are ignored.

architecture
Multiple architectures are allowed.

Global signal interaction between architectures is unsupported.

configuration
Configuration declarations and block configurations are supported, but
only to specify the top-level architecture for atop-level entity.

Attribute specifications, use clauses, component configurations, and
nested block configurations are unsupported.

package
Packages are fully supported.

library
Libraries and separate compilation are supported.

subprogram
Default values for parameters are unsupported. Assigning to indexes and
slices of unconstrained out parameters is unsupported, unless the actual
parameter is an identifier.

Subprogram recursion is unsupported if the recursion is not bounded by a
static value.

Resolution functions are supported for wired-logic and three-state functions
only.

Subprograms can only be declared in packages and in the declaration part
of an architecture.

Data Types

enumeration
Enumeration is fully supported.

integer
Infinite-precision arithmetic is unsupported.
Integer types are automatically converted to bit vectors whose width is as
small as possible to accommodate all possible values of the type' s range,
either in unsigned binary for nonnegative ranges, or in 2's-complement
form for ranges that include negative numbers.

physical
Physical type declarations are ignored. The use of physical typesisignored
in delay specifications.

floating
Floating-point type declarations are ignored. The use of floating-point
types is unsupported except for floating-point constants used with
Synopsys-defined attributes (see Chapter 9).

array
Array ranges and indexes other than integers are unsupported.

Multidimensional arrays are unsupported, but arrays of arrays are
supported.

record
Record data types are fully supported.

access
Access type declarations are ignored, and the use of accesstypesis
unsupported.

file
File type declarations are ignored, and the use of file typesis unsupported.

incompl ete type declarations
Incompl ete type declarations are unsupported.

Declarations

constant
Constant declarations are supported, except for deferred constant
declarations.

signal
regi st er andbus declarations are unsupported.

Resolution functions are supported for wired and three-state functions only.
Declarations other than from a globally static type are unsupported.
Initial values are unsupported.

variable
Declarations other than from a globally static type are unsupported.

Initial values are unsupported.
file
File declarations are unsupported.
interface
buffer andlinkage aretranslated to out andi nout , respectively.
alias
Alias declarations are ignored.
component

Component declarations that list a name other than avalid entity name are
unsupported.

attribute
Attribute declarations are fully supported. However, the use of user-defined
attributes is unsupported.

Specifications

attribute
others andal | areunsupported in attribute specifications.

User-defined attributes can be specified, but the use of user-defined
attributes is unsupported.

configuration
Configuration specifications are unsupported.

disconnection
Disconnection specifications are unsupported.

Attribute declarations are fully supported. However, the use of user-defined
attributes is unsupported.

Names

simple
Simple names are fully supported.

selected
Selected (qualified) names outside of ause clause are unsupported.

Overriding the scopes of identifiers is unsupported.

operator symbols
Operator symbols are fully supported.

indexed
Indexed names are fully supported, with one exception. Indexing an
unconstrained out parameter in a procedure is unsupported.

dlice
Slice names are fully supported, with one exception. Using a slice of an
unconstrained out parameter in a procedure is unsupported unless the
actual parameter is an identifier.

attribute
Only the following predefined attributes are supported: base, | ef t
right ,high,low,range,reverse range ,andl ength.

event and st abl e attributes are supported only as described with the
wait andif statements (see Chapter 6).

User-defined attribute names are unsupported.

The use of attributes with selected names (nane. nane’ attribute)is
unsupported.

Operators

logical
L ogical operators are fully supported.

relational
Relational operators are fully supported.

addition

Concatenation and arithmetic operators are both fully supported.
signing

Signing operators are fully supported.
multiplying

The* (multiply) operator isfully supported.

The / (division), mod, and r em operators are supported only when both
operands are constant or when the right operand is a constant power of 2.

miscellaneous
The** operator is supported only when both operands are constant or
when the left operand is 2.

The abs operator isfully supported.

operator overloading
Operator overloading is fully supported.

short-circuit operations
The short-circuit behavior of operators is not supported.

Operands and Expressions
based literals
Based literals are fully supported.

null literals
Null slices, null ranges, and null arrays are unsupported.

physical literals

Physical literals are ignored.
strings

Strings are fully supported.

aggregates
The use of types as aggregate choices is unsupported.

Record aggregates are unsupported.

function calls
Function conversions on input ports are not supported, because type
conversions on formal ports in a connection specification are unsupported.
gualified expressions
Qualified expressions are fully supported.

type conversion
Type conversion is fully supported.

allocators
Allocators are unsupported.
static expressions
Static expressions are fully supported.
universal expressions
Floating-point expressions are unsupported, except in a
Synopsys-recognized attribute definition.

Infinite-precision expressions are not supported.

Precision is limited to 32 bits; all intermediate results are converted to
integer.

Sequential Statements

wait
Thewai t statement is unsupported unlessit is of one the following forms:
wait until cl ock = VALUE;
wait until cl ock’ event and cl ock = VALUE;
wait until not clock’stable and clock = VALUE;

where VALUE is0, 1 or an enumeration literal whose encodingisO or 1. A
wai t statement in thisform isinterpreted to mean “wait until the falling
(VALUE is0) orrising (VALUE is1) edge of the signal named cl ock .”

wai t statements cannot be used in subprogramsor in f or loops.

assertion
assertion statementsareignored.
signal
Guarded signal assignment is unsupported.
transport andafter areignored.

Multiple waveform elements in signal assignment statements are
unsupported.

variable
vari abl e statements are fully supported.

procedure call
Type conversion on formal parameters is unsupported.

Assignment to single bits of vectored ports is unsupported.
if

i f statementsare fully supported.
case

case statementsare fully supported.

loop
f or loops are supported, with two constraints: the loop index range must
be globally static, and the loop body must not contain awai t statement.

whi | e loops are supported, but the loop body must contain at |east one
wai t statement.

| oop statements with no iteration scheme (infinite loops) are supported,
but the loop body must contain at least onewai t statement.

next

next statements are fully supported.
exit

exit statements are fully supported.

return
ret urn statements are fully supported.

null
nul | statements are fully supported.

Concurrent Statements
block

Guardson bl ock statements are unsupported.
Ports and genericsin bl ock statements are unsupported.

process
Sensitivity listsin pr ocess statements are ignored.

concurrent procedure call
Concurrent procedure call statements are fully supported.

concurrent assertion
Concurrent assertion statements are ignored.

concurrent signal assignment
Theguarded andtransport keywordsareignored. Multiple
waveforms are unsupported.

component instantiation
Type conversion on the formal port of a connection specification is
unsupported.

generate
generate statementsare fully supported.

Predefined Language Environment
severity level type
severity | evel typeisunsupported.
time type
tinme typeisunsupported.
now function
now function is unsupported.

TEXTIO package
The TEXTI O package is unsupported.

predefined attributes
Predefined attributes are unsupported, except for base, | eft , ri ght ,
hi gh,l ow, range,reverse range ,andl ength.

Theevent andst abl e attributesare supported only inthei f and wai t
statements, as described in Chapter 6.

VHDL Reserved Words

The following words are reserved for the VHDL language and cannot be
used asidentifiers:

absif sel ect

access i nseverity
after i nout si gnal
al i asi ssubtype

al l

and| abel then
architecture libraryto
array | i nkage t ransport
assert | ooptype
attribute mapunits
begi n nodunti |

bl ock use

body nand

buf f er newvari abl e
bus next

nor wai t

case not when
conponent null while
configuration with
const ant of

onxor

di sconnect open
downt o or

ot hers

el se out

el sif

end package

entity port

exit procedure

pr ocess

file

for range

function record
register

generate rem
generic report
guarded return

	VHDL Reference Manual
	Using FPGA Express with VHDL
	Hardware Description Languages
	Typical Uses for HDLs
	Advantages of HDLs

	About VHDL
	FPGA Express Design Process
	Using FPGA Express to Compile a VHDL Design
	Design Methodology

	Description Styles
	Design Hierarchy
	Data Types
	Design Constraints
	Register Selection
	Asynchronous Designs
	Language Constructs

	Describing Designs
	VHDL Entities
	VHDL Constructs
	Entities
	Architectures
	Configurations
	Processes
	Subprograms
	Packages

	Defining Designs
	Entity Specifications
	Entity Architectures
	Entity Configurations
	Subprograms
	Type Declarations
	Subtype Declarations
	Constant Declarations
	Signal Declarations
	Resolution Functions
	Variable Declarations

	Structural Design
	Using Hardware Components
	Component Declaration
	Component Instantiation Statement
	Technology-Independent Component Instantiation

	Data Types
	Enumeration Types
	Enumeration Overloading
	Enumeration Encoding
	Enumeration Encoding Values

	Integer Types
	Array Types
	Constrained Array
	Unconstrained Array
	Array Attributes

	Record Types
	Predefined VHDL Data Types
	Data Type BOOLEAN
	Data Type BIT
	Data Type CHARACTER
	Data Type INTEGER
	Data Type NATURAL
	Data Type POSITIVE
	Data Type STRING
	Data Type BIT_VECTOR

	Unsupported Data Types
	Physical Types
	Floating Point Types
	Access Types
	File Types

	Synopsys Data Types
	Subtypes

	Expressions
	Operators
	Logical Operators
	Relational Operators
	Adding Operators
	Unary (Sign) Operators
	Multiplying Operators
	Miscellaneous Arithmetic Operators

	Operands
	Operand Bit Width
	Computable Operands
	Literals
	Identifiers
	Indexed Names
	Slice Names
	Records and Fields
	Aggregates
	Attributes
	Function Calls
	Qualified Expressions
	Type Conversions

	Sequential Statements
	Assignment Statements
	Assignment Targets
	Simple Name Targets
	Indexed Name Targets
	Slice Targets
	Field Targets
	Aggregate Targets

	Variable Assignment Statement
	Signal Assignment Statement
	Variable Assignment
	Signal Assignment

	if Statement
	Evaluating condition
	Using the if Statement to Imply Registers and Latches

	case Statement
	Using Different Expression Types
	Invalid case Statements

	loop Statements
	loop Statement
	while .. loop Statement
	for .. loop Statement

	next Statement
	exit Statement
	Subprograms
	Subprogram Calls

	return Statement
	Mapping Subprograms to Components (Entities)

	wait Statement
	Inferring Synchronous Logic
	Combinational vs. Sequential Processes

	null Statement

	Concurrent Statements
	process Statements
	Combinational Process Example
	Sequential Process Example
	Driving Signals

	block Statement
	Concurrent Procedure Calls
	Concurrent Signal Assignments
	Conditional Signal Assignment
	Selected Signal Assignment

	Component Instantiations
	generate Statements
	for .. generate Statement
	if . . generate Statement

	Register and Three-State Inference
	Register Inference
	Using Register Inference
	Delays in Registers
	Describing Latches
	Describing Flip- Flops
	Attributes
	FPGA Express Latch and Flip-Flop Inference
	Efficient Use of Registers

	Three-State Inference
	Assigning the Value Z
	Latched Three-State Variables

	FPGA Express Directives
	Notation for FPGA Express Directives
	FPGA Express Directives
	Translation Stop and Start Directives
	Resolution Function Directives
	Component Implication Directives

	Synopsys Packages
	std_logic_1164 Package
	std_logic_arith Package
	Using the Package
	Modifying the Package
	Data Types
	Conversion Functions
	Arithmetic Functions
	Comparison Functions
	Shift Functions
	ENUM_ENCODING Attribute
	pragma built_in
	translate_off Directive

	std_logic_misc Package

	HDL Constructs
	VHDL Construct Support
	Design Units
	Data Types
	Declarations
	Specifications
	Names
	Operators
	Operands and Expressions
	Sequential Statements
	Concurrent Statements
	Predefined Language Environment

	VHDL Reserved Words

