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Chapter 1
Using FPGA Express with VHDL

FPGA Express translates and optimizes a VHDL description to an internal 
gate-level equivalent format. This format is then compiled for a given 
FPGA technology.

To work with VHDL, familiarize yourself with the following concepts:
n Hardware Description Languages
n About VHDL
n About FPGA Express
n Using FPGA Express
n A Model of the Design Process

The United States Department of Defense, as part of its Very-High-Speed 
Integrated Circuit (VHSIC) program, developed VHSIC HDL (VHDL) in 
1982. VHDL describes the behavior, function, inputs, and outputs of a 
digital circuit design. VHDL is similar in style and syntax to modern 
programming languages, but includes many hardware-specific constructs. 

FPGA Express reads and parses the supported VHDL syntax. Chapter 11 
lists all VHDL constructs and includes the level of Synopsys support 
provided for each construct.



Hardware Description Languages

Hardware description languages (HDLs) are used to describe the 
architecture and behavior of discrete electronic systems. 

HDLs were developed to deal with increasingly complex designs. An 
analogy is often made to the history of what can be called software 
description languages, from machine code (transistors and solder), to 
assembly language (netlists), to high-level languages (HDLs).

Top-down, HDL-based system design is most useful in large projects, 
where several designers or teams of designers are working concurrently. 
HDLs provide structured development. After major architectural decisions 
have been made, and major components and their connections have been 
identified, work can proceed independently on subprojects.

Typical Uses for HDLs

HDLs typically support a mixed-level description where structural or netlist 
constructs can be mixed with behavioral or algorithmic descriptions. With 
this mixed-level capability, you can describe system architectures at a high 
level of abstraction; then incrementally refine a design into a particular 
component-level or gate-level implementation. Alternatively, you can read 
an HDL design description into FPGA Express, then direct the compiler to 
synthesize a gate-level implementation automatically.

Advantages of HDLs

A design methodology that uses HDLs has several fundamental advantages 
over a traditional gate-level design methodology. Among the advantages 
are the following:

n You can verify design functionality early in the design process, and 
immediately simulate a design written as an HDL description. Design 
simulation at this higher level, before implementation at the gate-level, 
allows you to test architectural and design decisions.

n FPGA Express provides logic synthesis and optimization, so you can 
automatically convert a VHDL description to a gate-level implementation 
in a given technology. This methodology eliminates the former gate-level 
design bottleneck and reduces circuit design time and errors introduced 
when hand-translating a VHDL specification to gates. With FPGA Express 
logic optimization, you can automatically transform a synthesized design to 



a smaller and faster circuit. You can apply information gained from the 
synthesized and optimized circuits back to the VHDL description, perhaps 
to fine-tune architectural decisions.

n HDL descriptions provide technology-independent documentation of a 
design and its functionality. An HDL description is more easily read and 
understood than a netlist or schematic description. Since the initial HDL 
design description is technology-independent, you can later reuse it to 
generate the design in a different technology, without having to translate 
from the original technology.

n VHDL, like most high-level software languages, provides strong type 
checking. A component that expects a four-bit-wide signal type cannot be 
connected to a three- or five-bit-wide signal; this mismatch causes an error 
when the HDL description is compiled. If a variable’s range is defined as 1 
to 15, an error results from assigning it a value of 0. Incorrect use of types 
has been shown to be a major source of errors in descriptions. Type 
checking catches this kind of error in the HDL description even before a 
design is generated.

About VHDL

VHDL is one of just a few HDLs in widespread use today. VHDL is 
recognized as a standard HDL by the IEEE (IEEE Standard 1076, ratified 
in 1987) and by the United States Department of Defense 
(MIL-STD-454L). 

VHDL divides entities (components, circuits, or systems) into an external 
or visible part (entity name and connections) and an internal or hidden part 
(entity algorithm and implementation). After you define the external 
interface to an entity, other entities can use that entity when they all are 
being developed. This concept of internal and external views is central to a 
VHDL view of system design. An entity is defined, with respect to other 
entities, by its connections and behavior. You can explore alternate 
implementations (architectures) of an entity without changing the rest of 
the design.

After you define an entity for one design, you can reuse it in other designs 
as needed. You can develop libraries of entities for use by many designs, or 
for a family of designs.

The VHDL model of hardware is shown in Figure 1-1.



Figure 1-1 VHDL Hardware Model 

A VHDL entity (design) has one or more input, output, or inout ports that 
are connected (wired) to neighboring systems. An entity is itself composed 
of interconnected entities, processes, and components, all which operate 
concurrently. Each entity is defined by a particular architecture, which is 
composed of VHDL constructs such as arithmetic, signal assignment, or 
component instantiation statements. 

In VHDL, independent processes model sequential (clocked) circuits, using 
flip-flops and latches, and combinational (unclocked) circuits, using only 
logic gates. Processes can define and call (instantiate) subprograms 
(subdesigns). Processes communicate with each other by signals (wires). 

A signal has a source (driver), one or more destinations (receivers), and a 
user-defined type, such as “color” or “number between 0 and 15.”

VHDL provides a broad set of constructs. With VHDL you can describe 
discrete electronic systems of varying complexity (systems, boards, chips, 
modules) with varying levels of abstraction.

VHDL language constructs are divided into three categories by their level 
of abstraction: behavioral, dataflow, and structural. These categories are 
described as follows:
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behavioral

The functional or algorithmic aspects of a design, expressed in a sequential 
VHDL process.

dataflow

The view of data as flowing through a design, from input to output. An 
operation is defined in terms of a collection of data transformations, 
expressed as concurrent statements.

structural

The view closest to hardware; a model where the components of a design 
are interconnected. This view is expressed by component instantiations.

FPGA Express Design Process

FPGA Express performs three functions: 
n Translates VHDL to an internal format
n Optimizes the block level representation through various optimization 

methods
n Maps the design’s logical structure for a specific FPGA technology library.

FPGA Express synthesizes VHDL descriptions according to the VHDL 
synthesis policy defined in Chapter 2, “Description Styles.” The Synopsys 
VHDL synthesis policy has three parts: design methodology, design style, 
and language constructs. You use the VHDL synthesis policy to produce 
high quality VHDL-based designs. 

Using FPGA Express to Compile a VHDL Design

When a VHDL design is read into FPGA Express, it is converted to an 
internal database format so FPGA Express can synthesize and optimize the 
design. When FPGA Express optimizes a design, it may restructure part or 
all the design. You control the degree of restructuring. Options include:

n Fully preserving a design’s hierarchy
n Allowing full modules to be moved up or down in the hierarchy
n Allowing certain modules to be combined with others
n Compressing the entire design into one module (called flattening the 

design) if it is beneficial



The following section describes the design process that uses FPGA Express 
with a VHDL Simulator.

Design Methodology

Figure 1-2 shows a typical design process that uses FPGA Express and a 
VHDL Simulator. Each step of this design model is described in detail.

Figure 1-2 Design Flow
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The steps in Figure 1-2 are explained below.

1. Write a design description in VHDL. This description can be a combination 
of structural and functional elements (as shown in Chapter 2, “Description 
Styles“). This description is used with both FPGA Express and the 
Synopsys VHDL simulator.

2. Provide VHDL-language test drivers for the simulator. For information on 
writing these drivers, see the appropriate simulator manual. The drivers 
supply test vectors for simulation and gather output data.

3. Simulate the design by using a VHDL simulator. Verify that the description 
is correct.

4. Use FPGA Express to synthesize and optimize the VHDL design 
description into a gate-level netlist. FPGA Express generates optimized 
netlists to satisfy timing constraints for a targeted FPGA architecture.

5. Use your FPGA development system to link the FPGA technology-specific 
version of the design to the VHDL simulator. The development system 
includes simulation models and interfaces required for the design flow.

6. Simulate the technology-specific version of the design with the VHDL 
simulator. You can use the original VHDL simulation drivers from Step 2 
because module and port definitions are preserved through the translation 
and optimization processes.

7. Compare the output of the gate-level simulation (Step 6) against the output 
of the original VHDL description simulation (Step 3) to verify that the 
implementation is correct.



Chapter 2
Description Styles

The style of your initial VHDL description has a major effect on the 
characteristics of the resulting gate-level design synthesized by FPGA 
Express. The organization and style of a VHDL description determines the 
basic architecture of your design. Because FPGA Express automates most 
of the logic-level decisions required in your design, you can concentrate on 
architectural tradeoffs.

You can make some of the high-level architectural decisions that are 
needed by using FPGA Express. Certain VHDL constructs are well suited 
for synthesis. To make the decisions and use the constructs, you need to 
become familiar with the following concepts:

n Design Hierarchy
n Data Types
n Design Constraints
n Register Selection
n Asynchronous Designs
n Language Constructs



Design Hierarchy

FPGA Express maintains the hierarchical boundaries you define when 
using the structural view in VHDL. These boundaries have two major 
effects: 

1. Each design entity specified in your VHDL description is synthesized 
separately and is maintained as a distinct design. The constraints for the 
design are maintained, and each design entity can be optimized separately 
in FPGA Express. 

2. Component instantiations within VHDL descriptions are maintained during 
input. The instance name you give each user-defined entity is carried 
through to the gate-level implementation. 

Chapter 3 discusses design entities, and Chapter 7 discusses component 
instantiations.

Note: FPGA Express does not automatically maintain or create a 
hierarchy of  other nonstructural VHDL constructs such, as blocks, 
processes, loops, functions, and procedures. These elements of a VHDL 
description are translated in the context of their design.  After reading in 
a VHDL design, you can group together the logic of a process, function, 
or procedure within the FPGA Express Implementation Window.

The choice of hierarchical boundaries has a significant effect on the quality 
of the synthesized design. Using FPGA Express, you can optimize a design 
while preserving these hierarchical boundaries. However, FPGA Express 
only partially optimizes logic across hierarchical modules.  Full 
optimization is possible across those parts of the design hierarchy that are 
collapsed in FPGA Express.

Data Types

In VHDL, you must assign a data type to all ports, signals, and variables. 
The data type of an object defines the operations that can be applied to it. 
For example, the AND operator is defined for objects of type BIT , but not 
for objects of type INTEGER . 

Data types are also important when your design is synthesized. The data 
type of an object determines its size (bit width) and its bit organization. The 
proper choice of data types greatly improves design quality and helps 
minimize errors.

See Chapter 4 for a discussion of VHDL data types.



Design Constraints

You can describe the performance constraints for a design module within 
the FPGA Express Implementation Window.  Refer to the FPGA Express 
User’s Guide for further information.

Register Selection

The placement of registers and the clocking scheme are important 
architectural decisions. There are two ways to define registers in your 
VHDL description.  Each method has specific advantages:

n You can directly instantiate registers into a VHDL description, selecting 
from any element in your FPGA library. Clocking schemes can be 
arbitrarily complex. You can choose between a flip-flop and a latch-based 
architecture. The major disadvantages of this approach are

n The VHDL description is now specific to a given technology because you 
choose structural elements from that technology library. However, you can 
isolate this portion of your design as a separate entity, which you then 
connect to the remainder of the design.

n The description is more difficult to write. 

n You can use the VHDL if  and wait  statements to direct FPGA Express 
to infer latches and flip-flops from the description. The advantages of this 
approach directly counter the disadvantages of the previous approach. 
When using register inference, the VHDL description is 
technology-independent and is much easier to write. This method allows 
FPGA Express to select the type of component inferred, on the basis of 
constraints. Therefore, if a specific component is necessary, instantiation 
should be used. Some types of registers and latches cannot be inferred.

See Chapter 8 for a discussion of register and latch inference.

Asynchronous Designs

You can use FPGA Express to construct asynchronous designs with 
multiple clocks and gated clocks. However, although these designs are 
logically (statically) correct, they might not simulate or operate correctly, 
because of race conditions.  



Language Constructs

Another component of the VHDL synthesis policy is the set of VHDL 
constructs that describe your design, determine its architecture, and give 
consistently good results. The remainder of this manual discusses these 
constructs and their uses. 

The concepts mentioned earlier in this chapter are described in the manual 
as follows:

Design Hierarchy

Chapter 3 describes the use and importance of hierarchy in VHDL designs. 
Chapter 7 explains how to instantiate (apply) existing components.

Data Types

Chapter 4 describes data types and their uses.

Register Selection

You can instantiate registers with the component instantiation statement 
discussed in Chapter 3 and Chapter 7. Chapter 6, and Chapter 8 describe 
register inference with the VHDL if  and wait  statements.



Chapter 3
Describing Designs

To describe a design in VHDL, you need to be familiar with the following 
concepts:

n VHDL Entities
n VHDL Constructs
n Defining Designs
n Structural Designs

VHDL Entities

Designs that are described with VHDL are composed of entities. An entity 
represents one level of the design hierarchy and can consist of a complete 
design, an existing hardware component, or a VHDL-defined object.

Each design has two parts: the entity specification and the architecture. The 
specification of an entity is its external interface. The architecture of an 
entity is its internal implementation. A design has only one entity 
specification (interface), but it can have multiple architectures 
(implementations). When an entity is compiled into a hardware design, a 



configuration specifies the architecture to use. An entity’s specification and 
architecture can be contained in separate VHDL source files or in one 
VHDL source file. 

Example 3-1 shows the entity specification of a simple logic gate (a 2-input 
NAND gate).

Example 3-1 VHDL Entity Specification

entity NAND2 is 
  port(A, B: in BIT;    -- Two inputs, A and B
       Z: out BIT);     -- One output, Z = (A and B)’
end NAND2;

Note: In a VHDL description, a comment is prefixed by two hyphens 
(--). All characters from the hyphens to the end of the line are ignored 
by FPGA Express. The only exceptions to this rule are comments that 
begin with -- pragma or -- synopsys; these comments are FPGA 
Express directives.

After an entity  statement declares an entity specification, that entity can 
be used by other entities in a design. The internal architecture of an entity 
determines its function.

Examples 3-2, 3-3, and 3-4 show three different architectures for the entity 
NAND2 . The three examples define equivalent implementations of NAND2 . 
After optimization and synthesis, each implementation produces the same 
circuit, probably a 2-input NAND gate in the target technology. The 
architecture description style you use for this entity depends on your own 
preferences.

Example 3-2 shows how the entity NAND2  can be implemented with two 
components from a technology library. The entity inputs A and B are 
connected to AND gate U0 , producing an intermediate signal I. Signal I is 
then connected to inverter U1 , producing the entity output Z.



Example 3-2 Structural Architecture for Entity NAND2

architecture STRUCTURAL of NAND2 is
  signal I:  BIT;

  component AND_2           -- From a technology 
library
      port(I1, I2: in BIT;
           O1: out BIT);
  end component;

  component INVERT          -- From a technology 
library
      port(I1: in BIT;
           O1: out BIT);
  end component;

begin
  U0: AND_2  port map (I1 => A, I2 => B, O1 => I);
  U1: INVERT port map (I1 => I, O1 => Z);
end STRUCTURAL;

Example 3-3 shows how you can define the entity NAND2  by its logical 
function.

Example 3-3 Dataflow Architecture for Entity NAND2 

architecture DATAFLOW of NAND2 is
begin
  Z <= A nand B;
end DATAFLOW;

Example 3-4 shows another implementation of NAND2.

Example 3-4 RTL Architecture for Entity NAND2 

architecture RTL of NAND2 is
begin
  process(A, B)
  begin
    if (A = ’1’) and (B = ’1’) then
      Z <= ’0’;
    else 
      Z <= ’1’;
    end if;
  end process;
end RTL;

VHDL Constructs

The top-level VHDL constructs work together to describe a design. The 
description consists of



Entities

The interfaces to other designs.

Architectures

The implementations of design entities.  Architectures can specify 
connection through instantiation to other entities.

Configurations

The bindings of entities to architectures. 

Processes

Collections of sequentially executed statements. Processes are declared 
within architectures.

Subprograms

Algorithms that can be used by more than one architecture.

Packages

Collections of declarations used by one or more designs.

Entities

A VHDL design consists of one or more entities. Entities have defined 
inputs and outputs, and perform a defined function. Each design has two 
parts: an entity specification and an architecture. The entity specification 
defines the design’s inputs and outputs, and the architecture determines its 
function.

You can describe a VHDL design in one or more files. Each file contains 
entities, architectures, or packages. Packages define global information that 
can be used by several entities. You can often reuse VHDL design files in 
later design projects.

Figure 3-1 shows a block diagram of a VHDL design’s hierarchical 
organization into files.



Figure 3-1 Design Organization
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Figure 3-2 Architecture Organization

An architecture consists of a declaration section where you declare signals, 
types, constants, components, and subprograms, followed by a collection of 
concurrent statements.

Signals connect the separate pieces of an architecture (the concurrent 
statements) to each other, and to the outside world, through interface ports. 
You declare each signal with a type that determines the kind of data it 
carries. Types, constants, components, and subprograms declared in an 
architecture are local to that architecture. To use these declarations in more 
than one entity or architecture, place them in a package, as described under 
"Packages" later in this chapter.

Each concurrent statement in an architecture defines a unit of computation 
that reads signals, performs a computation that is based on the signal 
values, and assigns computed values to signals. Concurrent statements 
compute all values simultaneously.  Although the order of concurrent 
statements has no effect on execution order, the statements often coordinate 
their processing by communicating with each other through signals.
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The five kinds of concurrent statements are blocks, signal assignments, 
procedure calls, component instantiations, and processes. They are 
described as follows:

blocks

Group together a set of concurrent statements.

signal assignments

Assign computed values to signals or interface ports.

procedure calls

Call algorithms that compute and assign values to signals.

component instantiations

Create an instance of an entity, connecting its interface ports to signals or 
interface ports of the entity being defined. See "Structural Design" later in 
this chapter.

processes

Define sequential algorithms that read the values of signals, and compute 
new values to assign to other signals. Processes are discussed in the next 
section.

Concurrent statements are described in Chapter 7.

Configurations

A configuration specifies one combination of an entity and its associated 
architecture.

Note: FPGA Express supports only configurations that associate one 
top-level entity with an architecture. 

Processes

Processes contain sequential statements that define algorithms. Unlike 
concurrent statements, sequential statements are executed in order.  The 
order allows you to perform step-by-step computations. Processes read and 
write signals and interface port values to communicate with the rest of the 
architecture and with the enclosing system.



Figure 3-3 shows the organization of constructs in a process. Processes 
need not use all the constructs listed.

Processes are unique in that they behave like concurrent statements to the 
rest of the design, but they are internally sequential. In addition, only 
processes can define variables to hold intermediate values in a sequence of 
computations.

Because the statements in a process are sequentially executed, several 
constructs are provided to control the order of execution, such as if  and 
loop  statements.

Chapter 6 describes sequential statements.

Figure 3-3 Process Organization
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of a loop.in variables.



Subprograms

Subprograms, like processes, use sequential statements to define algorithms 
that compute values. Unlike processes, however, they cannot directly read 
or write signals from the rest of the architecture. All communication is 
through the subprogram’s interface; each subprogram call has its own set of 
interface signals.

The two types of subprograms are functions and procedures.  A function 
returns a single value directly.  A procedure returns zero or more values 
through its interface.  Subprograms are useful because you can use them to 
perform repeated calculations, often in different parts of an architecture.

Chapter 6 describes subprograms.

Packages

You can collect constants, data types, component declarations, and 
subprograms into a VHDL package that can then be used by more than one 
design or entity. Figure 3-4 shows the typical organization of a package. 

Figure 3-4 Typical Package Organization 
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A package must contain at least one of the constructs listed in Figure 3-4.
n Constants in packages often declare system-wide parameters, such as 

data-path widths.
n VHDL data type declarations are often included in a package to define data 

types used throughout a design. All entities in a design must use common 
interface types; for example, common address bus types.

n Component declarations specify the interfaces to entities that can be 
instantiated in the design.

n Subprograms define algorithms that can be called anywhere in a design.

Packages are often sufficiently general so that you can use them in many 
different designs.  For example, the std_logic_1164  package defines 
data types std_logic  and std_logic_vector . 

Using a Package
The use  statement allows an entity to use the declarations in a package. 
The supported syntax of the use  statement is

use LIBRARY_NAME.PACKAGE_NAME.ALL;

LIBRARY_NAME is the name of a VHDL library, and PACKAGE_NAME is 
the name of the included package. A use  statement is usually the first 
statement in a package or entity specification source file.  Synopsys does 
not support different packages with the same name when they exist in 
different libraries.  No two packages can have the same name.

Package Structure
Packages have two parts, the declaration and the body:

package declaration 

Holds public information, including constant, type, and
subprogram declarations.

package body 

Holds private information, including local types and subprogram 
implementations (bodies).

Note: When a package declaration contains subprogram declarations, a 
corresponding package body must define the subprogram bodies.



Package Declarations
Package declarations collect information needed by one or more entities in 
a design. This information includes data type declarations, signal 
declarations, subprogram declarations, and component declarations.

Note: Signals declared in packages cannot be shared across entities. If 
two entities both use a signal from a given package, each entity has its 
own copy of that signal.

Although you can declare all this information explicitly in each design 
entity or architecture in a system, it is often easier to declare system 
information in a separate package. Each design entity in the system can 
then use the system’s package.

The syntax of a package declaration is

package package_name is
  { package_declarative_item }
end [ package_name ] ;

where package_name is the name of this package.

A package_declarative_item is any of these:
n use  clause (to include other packages)
n Type declaration
n Subtype declaration
n Constant declaration
n Signal declaration
n Subprogram declaration
n Component declaration



Example 3-5 shows some package declarations. 

Example 3-5 Sample Package Declarations

package EXAMPLE is

  type BYTE is range 0 to 255;
  subtype NIBBLE is BYTE range 0 to 15;

  constant BYTE_FF: BYTE := 255;

  signal ADDEND: NIBBLE;

  component BYTE_ADDER
    port(A, B:      in BYTE;
         C:        out BYTE;
         OVERFLOW: out BOOLEAN);
  end component;

  function MY_FUNCTION (A: in BYTE) return BYTE;

end EXAMPLE;

To use the example declarations above, add a use  statement at the 
beginning of your design description as follows:

use WORK.EXAMPLE.ALL;

entity . . .

architecture . . .

Further examples of packages and their declarations are given in the 
packages supplied by Synopsys. These packages are listed in Appendix B.

Package Bodies
Package bodies contain the implementations of subprograms listed in the 
package declaration. However, this information is never seen by designs or 
entities that use the package. Package bodies can include the 
implementations (bodies) of subprograms declared in the package 
declaration and in internal support subprograms.

The syntax of a package body is

package body package_name is
  { package_body_declarative_item }
end [ package_name ] ;

where package_name is the name of the associated package.

A package_body_declarative_item  is any of these:



n use  clause
n Subprogram declaration
n Subprogram body
n Type declaration
n Subtype declaration
n Constant declaration

For an example of a package declaration and body, see the std_logic_
arith  package supplied with FPGA Express. This package is listed in 
Appendix B.

Defining Designs

The high-level constructs discussed earlier in this chapter involve 
n Entity specifications (interfaces)
n Entity architectures (implementations)
n Subprograms

Entity Specifications

An entity specification defines the characteristics of an entity that must be 
known before that entity can be connected to other entities and 
components.

For example, before you can connect a counter to other entities, you must 
specify the number and types of its inputs and outputs. The entity 
specification defines the ports (inputs and outputs) of an entity. 

The syntax of an entity specification is

entity entity_name is
  [ generic( generic_declarations) ; ]
  [ port( port_declarations) ; ]
end [ entity_name ] ;

entity_name is the name of the entity, generic_declarations 
determine local constants used for sizing or timing the entity, and port_
declarations determine the number and type of inputs and outputs.  
Other declarations are not supported in the entity specification.



Entity Generic Specifications
Generic specifications are entity parameters. Generics can specify the bit 
widths of components (such as adders) or provide internal timing values.

A generic can have a default value. A generic is assigned a nondefault 
value only when the entity is instantiated (see ‘‘Component Instantiation 
Statement," later in this chapter) or configured (see "Entity 
Configurations," later in this chapter). Inside an entity, a generic is a 
constant value. 

The syntax of generic_declarations is

generic(
[ constant_name : type [ := value ] 
 { ; constant_name : type [ := value ] } 
);

constant_name is the name of a generic constant, type is a previously 
defined data type, and the optional value is the default value of 
constant_name.

Note: FPGA Express supports only INTEGER type generics.

Entity Port Specifications
The syntax of port_declarations is

port(
[ port_name :  mode port_type
 { ; port_name :  mode port_type}]
);

port_name is the name of a port; mode is either in , out , inout , or 
buffer ; and port_type is a previously defined data type.

The four port modes are

inCan only be read.

outCan only be assigned a value.

inout

Can be read and assigned a value. The value read is that of the port’s 
incoming value, not the assigned value (if any).

buffer

Similar to out, but can be read. The value read is the assigned value. It can 
have only one driver. For more information on drivers, see "Driving 
Signals" in Chapter 7.



Example 3-6 shows an entity specification for a 2-input N-bit comparator, 
with a default bit width of 8.

Example 3-6 Interface for an N-Bit Counter

-- Define an entity (design) called COMP
-- that has 2 N-bit inputs and one output.

entity COMP is
  generic(N:  INTEGER := 8);      -- default is 8 bits

  port(X, Y:  in  BIT_VECTOR(0 to N-1);
       EQUAL: out BOOLEAN);
end COMP;

Entity Architectures

Each entity architecture defines one implementation of the entity’s 
function. An architecture can range in abstraction from an algorithm (a set 
of sequential statements within a process) to a structural netlist (a set of 
component instantiations).

The syntax of an architecture is

architecture architecture_name of entity_name is
  { block_declarative_item }
begin
  { concurrent_statement }
end [ architecture_name ] ;

architecture_name is the name of the architecture, and entity_
name is the name of the entity being implemented.

A block_declarative_item is any of these:
n use  clause
n Subprogram declaration
n Subprogram body
n Type declaration
n Subtype declaration
n Constant declaration
n Signal declaration
n Component declaration

Concurrent statements are described in Chapter 7.



Example 3-7 shows a complete circuit description for a three-bit counter, 
entity specification (COUNTER3 ), and an architecture (MY_ARCH ). This 
example also includes a schematic of the resulting synthesized circuit. 

Example 3-7 An Implementation of a Three-Bit Counter

entity COUNTER3 is
port ( CLK :  in bit;
       RESET: in bit;
       COUNT: out integer range 0 to 7);
end COUNTER3;

architecture MY_ARCH of COUNTER3 is
signal COUNT_tmp : integer range 0 to 7;
begin
  process
  begin
     wait until (CLK’event and CLK = ’1’);
                     -- wait for the clock
     if RESET = ’1’ or COUNT_tmp = 7 then
                     -- Ck. for RESET or max. count
          COUNT_tmp <= 0;
     else COUNT_tmp <= COUNT_tmp + 1;
                     -- Keep counting
     end if;

  end process;
  COUNT <= COUNT_tmp;
end MY_ARCH;

Figure 3-5 Three-Bit Counter Schematic

Note: In an architecture, you must not declare constants or signals with 
the same name as any of the entity’s ports. If you declare a constant or 
signal with a port’s name, the new declaration hides that port name. If 



the new declaration is included in the architecture declaration (as shown 
in Example 3-8) and not in an inner block, FPGA Express reports an 
error.

Example 3-8 Incorrect Use of a Port Name when Declaring Signals or Constants

entity X is 
  port( SIG, CONST: in  BIT;
       OUT1, OUT2: out BIT);
end X;

architecture EXAMPLE of X is
  signal   SIG  : BIT;
  constant CONST: BIT := ’1’;
begin

...
 
end EXAMPLE;

The error messages generated for Example 3-8 are:
  signal   SIG  : BIT;
           ^
Error:  (VHDL-1872) line 13
    Illegal redeclaration of SIG.

  constant CONST: BIT := ’1’;
           ^
Error:  (VHDL-1872) line 14
    Illegal redeclaration of CONST.

Entity Configurations

A configuration defines one combination of an entity and architecture for a 
design.

Note: FPGA Express supports only configurations that associate one 
top-level entity with an architecture. 

The supported syntax for a configuration is

configuration configuration_name of entity_name is
  for architecture_name
  end for;
end [ configuration_name ] ;

configuration_name is the name of this configuration, entity_
name is the name of a top-level entity, and architecture_name is the 
name of the architecture to use for entity_name.



Example 3-9 shows a configuration for the three-bit counter in Example 
3-7. This configuration associates the counter’s entity specification 
(COUNTER3 ) with an architecture (MY_ARCH ). 

Example 3-9 Configuration of Counter in Example 3-7

configuration MY_CONFIG of COUNTER3 is
  for MY_ARCH
  end for;
end MY_CONFIG;

Note: If you do not specify a configuration for an entity with multiple 
architectures, IEEE VHDL specifies that the last architecture read is 
used.  This is determined from the .mra (most recently analyzed) file.

Subprograms

Subprograms describe algorithms that are meant to be used more than once 
in a design. Unlike component instantiation statements, when a subprogram 
is used by an entity or another subprogram, a new level of design hierarchy 
is not automatically created. However, you can manually define a 
subprogram as a new level of design hierarchy in the FPGA Express 
Implementation Window.

Two types of subprograms, procedures and functions, can contain zero or 
more parameters:

procedures

Procedures have no return value, but can return information to their callers 
by changing the values of their parameters.

functions

A function has a single value that it returns to the caller, but it cannot 
change the value of its parameters.

Like an entity, a subprogram has two parts—its declaration and its body:

declaration

Declares the interface to a subprogram: its name, its parameters, and its 
return value (if any).

body

Defines an algorithm that gives the subprogram’s expected results.



When you declare a subprogram in a package, the subprogram declaration 
must be in the package declaration, and the subprogram body must be in the 
package body. A subprogram defined inside an architecture has a body, but 
does not have a corresponding subprogram declaration.

Subprogram Declarations
A subprogram declaration lists the names and types of its parameters and, 
for functions, the type of its return value.

The syntax of a procedure declaration is

procedure proc_name [ ( parameter_declarations ) ] ;

proc_name is the name of the procedure.

The syntax of a function declaration is

function func_name [ ( parameter_declarations ) ]
    return type_name ;

func_name is the name of the function, and type_name is the type of 
the function’s returned value. 

The syntax of parameter_declarations is the same as the syntax of 
port_declarations:

[ parameter_name    :  mode  parameter_type
 { ; parameter_name :  mode  parameter_type}]

parameter_name is the name of a parameter; mode is either in , out , 
inout , or buffer ; and parameter_type is a previously defined data 
type. 

Procedure parameters can use any mode. Function parameters must use 
only mode in .  Signal parameters of type range cannot be passed to a 
subprogram.  

Example 3-10 shows sample subprogram declarations for a function and a 
procedure.



Example 3-10 Two Subprogram Declarations

type BYTE   is array (7 downto 0) of BIT;
type NIBBLE is array (3 downto 0) of BIT;

function IS_EVEN(NUM: in INTEGER) return BOOLEAN;
  -- Returns TRUE if NUM is even. 

procedure BYTE_TO_NIBBLES(B:             in BYTE;
                          UPPER, LOWER: out NIBBLE);
  -- Splits a BYTE into UPPER and LOWER halves.

Note: When you call a subprogram, actual parameters are substituted for 
the declared formal parameters. Actual parameters are either constant 
values or signal, variable, constant, or port names. An actual parameter 
must support the formal parameter’s type and mode. For example, an 
input port cannot be used as an out actual parameter, and a constant 
can be used only as an in actual parameter.

Example 3-11 shows some calls to the subprogram declarations from 
Example 3-10.

Example 3-11 Two Subprogram Calls

signal INT : INTEGER;
variable EVEN : BOOLEAN;
. . .
INT <= 7;
EVEN := IS_EVEN(INT);
. . .

variable TOP, BOT: NIBBLE;
. . .
BYTE_TO_NIBBLES("00101101", TOP, BOT);

Subprogram Bodies
A subprogram body defines an implementation of a subprogram’s 
algorithm.

The syntax of a procedure body is

procedure procedure_name [ (parameter_declarations) 
] is
  { subprogram_declarative_item }
begin
  { sequential_statement }
end [ procedure_name ] ;



The syntax of a function body is

function function_name [  (parameter_declarations) ]
    return type_name is
  { subprogram_declarative_item }
begin
  { sequential_statement }
end [ function_name ] ;

A subprogram_declarative_item is any of these:
n use  clause
n Type declaration
n Subtype declaration
n Constant declaration
n Variable declaration
n Attribute declaration
n Attribute specification
n Subprogram declaration
n Subprogram body

Example 3-12 shows subprogram bodies for the sample subprogram 
declarations in Example 3-10.

Example 3-12 Two Subprogram Bodies

function IS_EVEN(NUM: in INTEGER) 
    return BOOLEAN is
begin
  return ((NUM rem 2) = 0);
end IS_EVEN;

procedure BYTE_TO_NIBBLES(B: in BYTE;
                          UPPER, LOWER: out NIBBLE) is
begin
  UPPER := NIBBLE(B(7 downto 4));
  LOWER := NIBBLE(B(3 downto 0));
end BYTE_TO_NIBBLES;

Subprogram Overloading
You can overload subprograms; more than one subprogram can have the 
same name. Each subprogram that uses a given name must have a different 
parameter profile.



A parameter profile specifies a subprogram’s number and type of 
parameters. This information determines which subprogram is called when 
more than one subprogram has the same name. Overloaded functions are 
also distinguished by the type of their return values.

Example 3-13 shows two subprograms with the same name, but different 
parameter profiles.

Example 3-13 Subprogram Overloading

type SMALL is range 0 to 100;
type LARGE is range 0 to 10000;

function IS_ODD(NUM: SMALL) return BOOLEAN;
function IS_ODD(NUM: LARGE) return BOOLEAN;

signal A_NUMBER: SMALL;
signal B: BOOLEAN;
. . .
B <= IS_ODD(A_NUMBER); -- Will call the first
                       -- function above

Operator Overloading
Predefined operators such as +, and , and mod  can also be overloaded. By 
using overloading, you can adapt predefined operators to work with your 
own data types.

For example, you can declare new logic types, rather than use the 
predefined types BIT  and INTEGER . However, you cannot use predefined 
operators with these new types unless you declare overloaded operators for 
the new logic type.

Example 3-14 shows how some predefined operators are overloaded for a 
new logic type.

Example 3-14 Operator Overloading

type NEW_BIT is (’0’, ’1’, ’X’);
  -- New logic type

function "and"(I1, I2: in NEW_BIT) return NEW_BIT;
function "or" (I1, I2: in NEW_BIT) return NEW_BIT;
  -- Declare overloaded operators for new logic type
. . .
signal A, B, C: NEW_BIT;
. . .

C <= (A and B) or C;



VHDL requires overloaded operator declarations to enclose the operator 
name or symbol in double quotation marks, because they are infix operators 
(they are used between operands). If you declared the overloaded operators 
without quotation marks, a VHDL tool considers them functions rather than 
operators.

Type Declarations 

Type declarations define the name and characteristics of a type. Types and 
type declarations are fully described in Chapter 4. A type is a named set of 
values, such as the set of integers, or the set (red, green, blue) . An 
object of a given type, such as a signal, can have any value of that type.

Example 3-14 shows a type declaration for type NEW_BIT , and some 
functions and variables of that type.

Type declarations are allowed in architectures, packages, entities, blocks, 
processes, and subprograms.

Subtype Declarations 

Use subtype declarations to define the name and characteristics of a 
constrained subset of another type or subtype. A subtype is fully 
compatible with its parent type, but only over the subtype’s range. Subtype 
declarations are described in Chapter 4.

The following subtype declaration (NEW_LOGIC ) is a subrange of the type 
declaration in Example 3-14.

subtype NEW_LOGIC is NEW_BIT range ’0’ to ’1’;

Subtype declarations are allowed wherever type declarations are allowed: 
in architectures, packages, entities, blocks, processes, and subprograms.

Constant Declarations 

Constant declarations create named values of a given type. The value of a 
constant can be read but not changed. 

Constant declarations are allowed in architectures, packages, entities, 
blocks, processes, and subprograms.

Example 3-15 shows some constant declarations.



Example 3-15 Constant Declarations 

constant WIDTH: INTEGER := 8;
constant X    : NEW_BIT := ’X’;

You can use constants in expressions, as described in Chapter 5, and as 
source values in assignment statements, as described in Chapter 6.

Signal Declarations 

Signal declarations create new named signals (wires) of a given type. 
Signals can be given default (initial) values.  However, these initial values 
are not used for synthesis.

Signals with multiple drivers (signals driven by wired logic) can have 
associated resolution functions, as described in the next section. 

Example 3-16 shows two signal declarations.

Example 3-16 Signal Declarations 

signal A, B: BIT;
signal INIT: INTEGER := -1;

Note: Ports are also signals, with the restriction that out ports cannot be 
read, and in ports cannot be assigned a value. You create signals either 
by port declarations or by signal declarations. You create ports only by 
port declarations.

You can declare signals in architectures, entities, and blocks, and use them 
in processes and subprograms. Processes and subprograms cannot declare 
signals for internal use.

You can use signals in expressions, as described in Chapter 5. Signals are 
assigned values by signal assignment statements, as described in Chapter 6.

Resolution Functions 

Resolution functions are used with signals that can be connected (wired 
together). For example, if two drivers are directly connected to a signal, the 
resolution function determines whether the signal value is the AND, OR, or 
three-state function of the driving values. 



Use resolution functions to assign the driving value when there are multiple 
drivers. For simulation, you can write an arbitrary function to resolve bus 
conflicts. 

Note: A resolution function might change the value of a resolved signal, 
even if all drivers have the same value.

The resolution function for a signal is part of that signal’s subtype 
declaration. You create a resolved signal in four steps: 

-- Step 1
type SIGNAL_TYPE is ...                             
-- signal’s base type is SIGNAL_TYPE

-- Step 2
subtype res_type is res_function SIGNAL_TYPE;
-- name of the subtype is res_type
-- name of function is res_function
-- signal type is res_type (a subtype of  SIGNAL_TYPE)
...
-- Step 3
function res_function (DATA: ARRAY_TYPE) 
  return SIGNAL_TYPE is
-- declaration of the resolution function
-- ARRAY_TYPE must be an unconstrained array of 
SIGNAL_TYPE
...
-- Step 4
signal resolved_signal_name:res_type;
-- resolved_signal_name is a resolved signal
...

1. The signal’s base type is declared.

2. The resolved signal’s subtype is declared as a subtype of the base type and 
includes the name of the resolution function.

3. The resolution function itself is declared (and later defined).

4. Resolved signals are declared as resolved subtypes.

FPGA Express does not support arbitrary resolution functions. Only wired 
AND, wired OR, and three-state functions are allowed. FPGA Express 
requires that you mark all resolution functions with a special directive 
indicating the kind of resolution performed. 

Note: FPGA Express considers the directive only when creating 
hardware. The body of the resolution function is parsed but ignored. 
Using unsupported VHDL constructs (see Appendix C) generates errors.   

Do not connect signals that use different resolution functions.   FPGA 
Express supports only one resolution function per network.



The three resolution function directives are 

-- synopsys resolution_method wired_and

-- synopsys resolution_method wired_or

-- synopsys resolution_method three_state

Note: Pre-synthesis and post-synthesis simulation results might not 
match if the body of the resolution function used by the simulator does 
not match the directive used by the synthesizer.

Example 3-17 shows how to create and use resolved signals, and how to 
use compiler directives for resolution functions. The signal’s base type is 
the predefined type BIT .



Example 3-17 Resolved Signal and Its Resolution Function

package RES_PACK is
  function RES_FUNC(DATA: in BIT_VECTOR) return BIT;
  subtype RESOLVED_BIT is RES_FUNC BIT;
end;

package body RES_PACK is
  function RES_FUNC(DATA: in BIT_VECTOR) return BIT 
is
    -- pragma resolution_method wired_and
  begin
  -- The code in this function is ignored by FPGA 
Express
  -- but parsed for correct VHDL syntax

    for I in DATA’range loop
      if DATA(I) = ’0’ then
         return ’0’;
      end if;
    end loop;
    return ’1’;
  end;
end;

use work.RES_PACK.all;

entity WAND_VHDL is
  port(X, Y: in BIT; Z: out RESOLVED_BIT);
end WAND_VHDL;

architecture WAND_VHDL of WAND_VHDL is
begin
  Z <= X;
  Z <= Y;
end WAND_VHDL;

Variable Declarations 

Variable declarations define a named value of a given type. 

You can use variables in expressions, as described in Chapter 5. Variables 
are assigned values by variable assignment statements, as described in 
Chapter 6.

X

Y
Z

AN2



Example 3-18 shows some variable declarations.

Example 3-18 Variable Declarations 

variable A, B: BIT;
variable INIT: NEW_BIT;

Note: Variables are declared and used only in processes and 
subprograms, because processes and subprograms cannot declare signals 
for internal use.

Structural Design

FPGA Express works with one or more designs. Each entity (and 
architecture) in a VHDL description is translated to a single design in 
FPGA Express. Designs can also originate from formats other than VHDL, 
such as equations, Programmable Logic Arrays (PLAs), state machines, 
other HDLs, or netlists.

A design can contain instances of lower-level designs, connected by nets 
(signals) to the lower-level design’s ports. These lower-level designs can 
consist of other entities from a VHDL design, designs represented in some 
other Synopsys format, or cells from a technology library. By instantiating 
designs within designs, you create a hierarchy.

Hierarchy in VHDL is specified by using component declarations and 
component instantiation statements. To include a design, you must specify 
its interface with a component declaration. You can then create an instance 
of that design by using the component instantiation statement.

If your design consists only of VHDL entities, every component 
declaration statement corresponds to an entity in the design. If your design 
uses designs or technology library cells not described in VHDL, create 
component declarations without corresponding entities. You can then use 
FPGA Express to associate the VHDL component with the non-VHDL 
design or cell. 

Note: To simulate your VHDL design, you must provide entity and 
architecture descriptions for all component declarations.

Using Hardware Components

VHDL includes constructs to use existing hardware components. These 
structural constructs can be used to define a netlist of components.



The following sections describe how to use components and how FPGA 
Express configures these components.

Component Declaration

You must declare a component in an architecture or package before you can 
use (instantiate) it. A component declaration statement is similar to the 
entity specification statement described earlier, in that it defines the 
component’s interface.

The syntax for a component declaration is

component identifier
  [ generic( generic_declarations ) ]
  [ port( port_declarations ) ]
end component ;

where identifier is the name of this type of component, and the syntax 
of generic_declarations and port_declarations is the same 
as defined previously for entity specifications.

Example 3-19 shows a simple component declaration statement.

Example 3-19 Component Declaration of a Two-Input AND Gate

component AND2
  port(I1, I2: in BIT;
       O1:     out BIT);
end component;

Example 3-20 shows a component declaration statement that uses a generic 
parameter.

Example 3-20 Component Declaration of an N-Bit Adder

component ADD
  generic(N: POSITIVE);

  port(X, Y:   in  BIT_VECTOR(N-1 downto 0);
       Z:      out BIT_VECTOR(N-1 downto 0);
       CARRY:  out BIT)
end component;

Although the component declaration statement is similar to the entity 
specification, it serves a different purpose. The component declaration is 
required to make the design entity AND2  or ADD  usable, or visible, within 
an architecture. After a component is declared, it can be used in a design.



Sources of Components
A declared component can come from the same VHDL source file, from a 
different VHDL source file, from another format such as Electronic Data 
Interchange Format (EDIF) or state table, or from a technology library. If 
the component is not in one of the current VHDL source files, it must 
already be compiled by FPGA Express.

When a design that uses components is compiled by FPGA Express, 
previously compiled components are searched for by name in the following 
order:

1. In the current design.

2. In the input source file or files identified in the FPGA Express 
Implementation Window.

3. In the libraries of technology-specific FPGA components.

Consistency of Component Ports 
FPGA Express checks for consistency among its VHDL entities. For other 
entities, the port names are taken from the original design description.

n For components in a technology library, the port names are the input and 
output pin names.

n For EDIF designs, the port names are the EDIF port names. 

The bit widths of each port must also match. FPGA Express verifies 
matching for VHDL components, because the port types must be identical. 
For components from other sources, FPGA Express checks when linking 
the component to the VHDL description.

Component Instantiation Statement

The component instantiation statement instantiates and connects 
components to form a netlist (structural) description of a design. A 
component instantiation statement can create a new level of design 
hierarchy.

The syntax of the component instantiation statement is

instance_name : component_name 
[ generic map (
   generic_name => expression 
   { , generic_name => expression } 
) ]
port map (
   [ port_name => ] expression 
   { , [ port_name => ] expression } 
);



instance_name is the name of this instance of component type 
component_name.   

The optional generic map  assigns nondefault values to generics. Each 
generic_name is the name of a generic, exactly as declared in the 
corresponding component declaration statement. Each expression 
evaluates to an appropriate value.

The port map  assigns the component’s ports to connections. Each 
port_name is the name of a port, exactly as declared in the corresponding 
component declaration statement. Each expression evaluates to a signal 
value.

FPGA Express uses the following two rules to decide which entity and 
architecture are to be associated with a component instantiation:

1. Each component declaration must have an entity with the same name: a 
VHDL entity, a design from another source (format), or a library 
component. This entity is used for each component instantiation associated 
with the component declaration.

2. If a VHDL entity has more than one architecture, the last architecture input 
is used for each component instantiation associated with that entity.  The 
.mra  file determines the last architecture analyzed.

Mapping Generic Values
When you instantiate a component with generics, you can map generics to 
values. A generic without a default value must be instantiated with a 
generic map  value.

For example, a four-bit instantiation of the component ADD  from Example 
3-20 might use the following generic map .

U1:  ADD generic map (N => 4) 
         port map (X, Y, Z, CARRY...);

The port map  assigns component ports to actual signals; it is described 
in the next section.

Mapping Port Connections 
You can specify port connections in component instantiation statements 
with either named or positional notation. With named notation, the port_
name => construct identifies the specific ports of the component. With 
positional notation, the expressions for the component ports are simply 
listed in the declared port order.

Example 3-21 shows named and positional notation for the U5  component 
instantiation statement in Example 3-22.



Example 3-21 Equivalent Named and Positional Association

U5: or2 port map (O => n6, I1 => n3, I2 => n1);
  -- Named association

U5: or2 port map (n3, n1, n6);
  -- Positional association

Note: When you use positional association, the instantiated port 
expressions (signals) must be in the same order as the declared ports.

Example 3-22 shows a structural (netlist) description for the COUNTER3  
design entity from Example 3-7.



Example 3-22 Structural Description of a Three-Bit Counter

architecture STRUCTURE of COUNTER3 is
  component DFF
    port(CLK, DATA: in BIT;
         Q: out BIT);
  end component;
  component AND2
    port(I1, I2: in BIT;
         O: out BIT);
  end component;
  component OR2
    port(I1, I2: in BIT;
         O: out BIT);
  end component;
  component NAND2 
    port(I1, I2: in BIT;
         O: out BIT);
  end component;
  component XNOR2
    port(I1, I2: in BIT;
         O: out BIT);
  end component;
  component INV
    port(I: in BIT;
         O: out BIT);
  end component;

  signal N1, N2, N3, N4, N5, N6, N7, N8, N9: BIT;

begin
  u1: DFF port map(CLK, N1, N2);
  u2: DFF port map(CLK, N5, N3);
  u3: DFF port map(CLK, N9, N4);
  u4: INV port map(N2, N1);
  u5: OR2 port map(N3, N1, N6);
  u6: NAND2 port map(N1, N3, N7);
  u7: NAND2 port map(N6, N7, N5);
  u8: XNOR2 port map(N8, N4, N9);
  u9: NAND2 port map(N2, N3, N8);
  COUNT(0) <= N2;
  COUNT(1) <= N3;
  COUNT(2) <= N4;
end STRUCTURE;

Technology-Independent Component Instantiation

When you use a structural design style, you might want to instantiate 
logical components. Synopsys provides generic technology library 
GTECH for this purpose. This generic technology library contains 
technology-independent logical components such as: 

n AND, OR, and NOR gates (2, 3, 4, 5, and 8)
n one-bit adders and half adders
n 2-of-3 majority 



n multiplexors
n flip-flops and latches
n multiple-level logic gates, such as AND-NOT, AND-OR, 

AND-OR-INVERT

You can use these simple components to create technology-independent 
designs. Example 3-23 shows how an N-bit ripple-carry adder can be 
created from N one-bit adders.

Example 3-23 Design That Uses Technology-Independent Components

library GTECH;
use gtech.gtech_components.all;
entity RIPPLE_CARRY is
  generic(N: NATURAL);

  port(A, B:       in BIT_VECTOR(N-1 downto 0);
       CARRY_IN:   in BIT;
       SUM:       out BIT_VECTOR(N-1 downto 0);
       CARRY_OUT: out BIT;);
end RIPPLE_CARRY;

architecture TECH_INDEP of RIPPLE_CARRY is

  signal CARRY: BIT_VECTOR(N downto 0);

begin
  CARRY(0) <= CARRY_IN;

  GEN: for I in 0 to N-1 generate
    U1: GTECH_ADD_ABC port map(
             A    => A(I), 
             B    => B(I), 
             C    => CARRY(I), 
             S    => SUM(I),
             COUT => CARRY(I+1));

  end generate GEN;

  CARRY_OUT <= CARRY(N);
end TECH_INDEP;



Chapter 4
Data Types

VHDL is a strongly typed language. Every constant, signal, variable, 
function, and parameter is declared with a type, such as BOOLEAN  or 
INTEGER , and can hold or return only a value of that type.

VHDL predefines abstract data types, such as BOOLEAN , which are part of 
most programming languages, and hardware-related types, such as BIT , 
found in most hardware languages. VHDL predefined types are declared in 
the STANDARD  package, which is supplied with all VHDL 
implementations (see Example 4-12). Data types addresses information 
about

n Enumeration Types
n Integer Types
n Array Types
n Record Types 
n Predefined VHDL Data Types
n Unsupported Data Types
n Synopsys Data Types
n Subtypes

The advantage of strong typing is that VHDL tools can catch many 
common design errors, such as assigning an eight-bit value to a 
four-bit-wide signal, or incrementing an array index out of its range.



The following code shows the definition of a new type, BYTE , as an array 
of eight bits, and a variable declaration, ADDEND , that uses this type.

type BYTE is array(7 downto 0) of BIT;

variable ADDEND: BYTE;

The predefined VHDL data types are built from the basic VHDL data 
types. Some VHDL types are not supported for synthesis, such as REAL  
and FILE . 

The examples in this chapter show type definitions and associated object 
declarations. Although each constant, signal, variable, function, and 
parameter is declared with a type, only variable and signal declarations are 
shown here in the examples.  Constant, function, and parameter 
declarations are shown in Chapter 3.

VHDL also provides subtypes, which are defined as subsets of other types. 
Anywhere a type definition can appear, a subtype definition can also 
appear. The difference between a type and a subtype is that a subtype is a 
subset of a previously defined parent (or base) type or subtype. 
Overlapping subtypes of a given base type can be compared against and 
assigned to each other. All integer types, for example, are technically 
subtypes of the built-in integer base type (see "Integer Types," later in this 
chapter). Subtypes are described in the last section of this chapter.

Enumeration Types

An enumeration type is defined by listing (enumerating) all possible values 
of that type.

The syntax of an enumeration type definition is

type type_name is ( enumeration_literal 
                    {, enumeration_literal} );

type_name is an identifier, and each enumeration_literal is 
either an identifier (enum_6 ) or a character literal (’A’ ). 

An identifier is a sequence of letters, underscores, and numbers. An 
identifier must start with a letter and cannot be a VHDL reserved word, 
such as TYPE .  All VHDL reserved words are listed in Appendix C.

A character literal is any value of type CHARACTER , in single quotes.



Example 4-1 shows two enumeration type definitions and corresponding 
variable and signal declarations.

Example 4-1 Enumeration Type Definitions

type COLOR is (BLUE, GREEN, YELLOW, RED);

type MY_LOGIC is (’0’, ’1’, ’U’, ’Z’);

variable HUE: COLOR;

signal SIG: MY_LOGIC;
. . .
HUE := BLUE;
SIG <= ’Z’;

Enumeration Overloading

You can overload an enumeration literal by including it in the definition of 
two or more enumeration types. When you use such an overloaded 
enumeration literal, FPGA Express can usually determine the literal’s type. 
However, under certain circumstances determination may be impossible. In 
these cases, you must qualify the literal by explicitly stating its type (see 
‘‘Qualified Expressions" in Chapter 5). Example 4-2 shows how you can 
qualify an overloaded enumeration literal.

Example 4-2 Enumeration Literal Overloading

type COLOR is (RED, GREEN, YELLOW, BLUE, VIOLET);
type PRIMARY_COLOR is (RED, YELLOW, BLUE);
...
A <= COLOR’(RED);

Enumeration Encoding

Enumeration types are ordered by enumeration value. By default, the first 
enumeration literal is assigned the value 0, the next enumeration literal is 
assigned the value 1, and so forth.

FPGA Express automatically encodes enumeration values into bit vectors 
that are based on each value’s position. The length of the encoding bit 
vector is the minimum number of bits required to encode the number of 
enumerated values. For example, an enumeration type with five values has 
a three-bit encoding vector.

Example 4-3 shows the default encoding of an enumeration type with five 
values.



Example 4-3 Automatic Enumeration Encoding 

type COLOR is (RED, GREEN, YELLOW, BLUE, VIOLET);

The enumeration values are encoded as follows:

RED    ⇒ "000"
GREEN  ⇒ "001"
YELLOW ⇒ "010"
BLUE   ⇒ "011"
VIOLET ⇒ "100"

The result is RED  < GREEN  < YELLOW  < BLUE  < VIOLET.

You can override the automatic enumeration encodings and specify your 
own enumeration encodings with the ENUM_ENCODING  attribute. This 
interpretation is specific to FPGA Express.

A VHDL attribute is defined by its name and type, and is then declared 
with a value for the attributed type, as shown in Example 4-4 below. 

Note: Several VHDL synthesis-related attributes are declared in the 
ATTRIBUTES package supplied with FPGA Express. This package is 
listed in Appendix B.  The section "Synthesis Attributes and 
Constraints," in Chapter 9 describes how to use these VHDL attributes.

The ENUM_ENCODING  attribute must be a STRING  containing a series of 
vectors, one for each enumeration literal in the associated type. The 
encoding vector is specified by ’0’ s, ’1’ s, ’D’ s, ’U’ s, and ’Z’ s 
separated by blank spaces. The meaning of these encoding vectors is 
described in the next section. The first vector in the attribute string specifies 
the encoding for the first enumeration literal, the second vector specifies 
the encoding for the second enumeration literal, and so on. The ENUM_
ENCODING  attribute must immediately follow the type declaration. 

Example 4-4 illustrates how the default encodings from Example 4-3 can 
be changed with the ENUM_ENCODING  attribute.

Example 4-4 Using the ENUM_ENCODING Attribute

attribute ENUM_ENCODING: STRING;
  -- Attribute definition

type COLOR is (RED, GREEN, YELLOW, BLUE, VIOLET);
attribute ENUM_ENCODING of 
  COLOR: type is "010 000 011 100 001";
  -- Attribute declaration



The enumeration values are encoded as follows:

RED    = "010"
GREEN  = "000"
YELLOW = "011"
BLUE   = "100"
VIOLET = "001"

The result is GREEN<VIOLET<RED<YELLOW<BLUE  

Note: The interpretation of the ENUM_ENCODING attribute is specific to 
FPGA Express.  Other VHDL tools, such as simulators, use the standard 
encoding (ordering).

Enumeration Encoding Values

The possible encoding values for the ENUM_ENCODING  attribute are:

’0’ Bit value 0

’1’ Bit value 1

’D’  Don’t-care (can be either 0 or 1).

’U’  Unknown.  If U appears in the encoding vector for an enumeration, 
you cannot use that enumeration literal except as an operand to the = and /
= operators. You can read an enumeration literal encoded with a U from a 
variable or signal, but you cannot assign it. 

For synthesis, the = operator returns FALSE  and the /=  operator returns 
TRUE when either of the operands is an enumeration literal whose 
encoding contains U. 

’Z’ High impedance.  See ‘‘Three-State Inference" in Chapter 8 for more 
information.

Integer Types

The maximum range of a VHDL integer type is −(¡¬¿−¿) to ¡¬¿−¿ (-2_
147_483_647 .. 2_147_483_647 ). Integer types are defined as 
subranges of this anonymous built-in type.  Multidigit numbers in VHDL 
can include underscores (_) to make them easier to read.

FPGA Express encodes an integer value as a bit vector whose length is the 
minimum necessary to hold the defined range and encodes integer ranges 
that include negative numbers as 2’s-complement bit vectors.



The syntax of an integer type definition is

type type_name is range integer_range ;

type_name is the name of the new integer type, and integer_range 
is a subrange of the anonymous integer type.

Example 4-5 shows some integer type definitions.

Example 4-5 Integer Type Definitions

type PERCENT is range -100 to 100;
  -- Represented as an 8-bit vector
  --   (1 sign bit, 7 value bits)

type INTEGER is range -2147483647 to 2147483647;
  -- Represented as a 32-bit vector
  --   This is the definition of the INTEGER type

Note: You cannot directly access the bits of an INTEGER or explicitly 
state the bit width of the type.  For these reasons, Synopsys provides 
overloaded functions for arithmetic.  These functions are defined in the 
std_logic package, listed in Appendix B.

Array Types

An array is an object that is a collection of elements of the same type. 
VHDL supports N-dimensional arrays, but FPGA Express supports only 
one-dimensional arrays. Array elements can be of any type. An array has an 
index whose value selects each element. The index range determines how 
many elements are in the array and their ordering (low to  high, or high 
downto  low). An index can be of any integer type.

You can declare multidimensional arrays by building one-dimensional 
arrays where the element type is another one-dimensional array, as shown 
in Example 4-6.

Example 4-6 Declaration of Array of Arrays

type BYTE   is array (7 downto 0) of BIT;
type VECTOR is array (3 downto 0) of BYTE;

VHDL provides both constrained arrays and unconstrained arrays. The 
difference between these two arrays comes from the index range in the 
array type definition.



Constrained Array

A constrained array’s index range is explicitly defined; for example, an 
integer range (1 to 4) . When you declare a variable or signal of this 
type, it has the same index range.

The syntax of a constrained array type definition is

type array_type_name is 
    array ( integer_range ) of type_name ;

array_type_name is the name of the new constrained array type, 
integer_range is a subrange of another integer type, and type_name 
is the type of each array element.

Example 4-7 shows a constrained array definition.

Example 4-7 Constrained Array Type Definition

type BYTE is array (7 downto 0) of BIT;
  -- A constrained array whose index range is
  -- (7, 6, 5, 4, 3, 2, 1, 0)

Unconstrained Array

You define an unconstrained array’s index range as a type, for example, 
INTEGER . This definition implies that the index range can consist of any 
contiguous subset of that type’s values. When you declare an array variable 
or signal of this type, you also define its actual index range. Different 
declarations can have different index ranges.

The syntax of an unconstrained array type definition is

type array_type_name is 
    array (range_type_name range <>) 
        of element_type_name ;

array_type_name is the name of the new unconstrained array type, 
range_type_name is the name of an integer type or subtype, and 
element_type_name is the type of each array element.

Example 4-8 shows an unconstrained array type definition and a 
declaration that uses it.



Example 4-8 Unconstrained Array Type Definition

type BIT_VECTOR is array(INTEGER range <>) of BIT;
  -- An unconstrained array definition
. . .
variable MY_VECTOR : BIT_VECTOR(5 downto -5);

The advantage of using unconstrained arrays is that a VHDL tool 
remembers the index range of each declaration. You can use array 
attributes to determine the range (bounds) of a signal or variable of an 
unconstrained array type. With this information, you can write routines that 
use  variables or signals of an unconstrained array type, independently of 
any one array variable’s or signal’s bounds.  The next section describes 
array attributes and how they are used.

Array Attributes

FPGA Express supports the following predefined VHDL attributes for use 
with arrays:

n left
n right
n high
n low
n length
n range
n reverse_range

These attributes return a value corresponding to part of an array’s range.  
Table 4-1 shows the values of the array attributes for the variable MY_
VECTOR in Example 4-8.

Table 4-1 Array Index Attributes

MY_VECTOR’left 5

MY_VECTOR’right -5

MY_VECTOR’high 5

MY_VECTOR’low 5



Example 4-9 shows the use of array attributes in a function that ORs 
together all elements of a given BIT_VECTOR  (declared in Example 4-8) 
and returns that value. 

Example 4-9 Use of Array Attributes

function OR_ALL (X: in BIT_VECTOR) return BIT is
  variable OR_BIT: BIT;
  begin
    OR_BIT := ’0’; 
    for I in X’range loop
      OR_BIT := OR_BIT or X(I);
    end loop;

    return OR_BIT;
  end;

Note that this function works for a BIT_VECTOR  of any size.

Record Types

A record is a set of named fields of various types, unlike an array, which is 
composed of identical anonymous entries.  A record’s field can be of any 
previously defined type, including another record type.

Note: Constants in VHDL of type record are not supported for 
synthesis (the initialization of records is not supported).

Example 4-11 shows a record type declaration (BYTE_AND_IX ), three 
signals of that type, and some assignments.

MY_VECTOR’length 11

MY_VECTOR’range (5 down to -5)

MY_VECTOR’
reverse_range

(-5 to 5)



Example 4-11 Record Type Declaration and Use

constant LEN:  INTEGER := 8;

subtype BYTE_VEC is BIT_VECTOR(LEN-1 downto 0);

type BYTE_AND_IX is 
  record
    BYTE: BYTE_VEC;
    IX:   INTEGER range 0 to LEN;
  end record;
 
signal X, Y, Z: BYTE_AND_IX;

signal DATA: BYTE_VEC;
signal NUM:  INTEGER;
. . .

X.BYTE <= "11110000";
X.IX   <= 2;

DATA <= Y.BYTE;
NUM  <= Y.IX;

Z <= X;

As shown in Example 4-11, you can read values from or assign values to 
records in two ways:

n By individual field name

X.BYTE <= DATA;
X.IX   <= LEN;

n From another record object of the same type

Z <= X;

Note: A record type object’s individual fields are accessed by the object 
name, a period, and a field name:  X.BYTE or X.IX.  To access an 
element of the BYTE field’s array, use the array notation  X.BYTE(2).  

Predefined VHDL Data Types

IEEE VHDL describes two site-specific packages, each containing a 
standard set of types and operations:  the STANDARD  package and the 
TEXTIO  package.

The STANDARD  package of data types is included in all VHDL source files 
by an implicit use  clause. The TEXTIO  package defines types and 
operations for communication with a standard programming environment 
(terminal and file I/O). This package is not needed for synthesis, and 
therefore FPGA Express does not support it.



The FPGA Express implementation of the STANDARD  package is listed in 
Example 4-12.  This STANDARD  package is a subset of the IEEE VHDL 
STANDARD  package. Differences are described in ‘‘Unsupported Data 
Types"  later in this chapter.

Example 4-12 FPGA Express STANDARD Package

package STANDARD is

  type BOOLEAN is (FALSE, TRUE);

  type BIT is (’0’, ’1’);

  type CHARACTER is (
    NUL, SOH, STX, ETX, EOT, ENQ, ACK, BEL,
    BS,  HT,  LF,  VT,  FF,  CR,  SO,  SI, 
    DLE, DC1, DC2, DC3, DC4, NAK, SYN, ETB,
    CAN, EM,  SUB, ESC, FSP, GSP, RSP, USP,

    ’ ’, ’!’, ’"’, ’#’, ’$’, ’%’, ’&’, ’’’,
    ’(’, ’)’, ’*’, ’+’, ’,’, ’-’, ’.’, ’/’,
    ’0’, ’1’, ’2’, ’3’, ’4’, ’5’, ’6’, ’7’,
    ’8’, ’9’, ’:’, ’;’, ’<’, ’=’, ’>’, ’?’,

    ’@’, ’A’, ’B’, ’C’, ’D’, ’E’, ’F’, ’G’,
    ’H’, ’I’, ’J’, ’K’, ’L’, ’M’, ’N’, ’O’,
    ’P’, ’Q’, ’R’, ’S’, ’T’, ’U’, ’V’, ’W’,
    ’X’, ’Y’, ’Z’, ’[’, ’\’, ’]’, ’^’, ’_’,

    ’‘’, ’a’, ’b’, ’c’, ’d’, ’e’, ’f’, ’g’, 
    ’h’, ’i’, ’j’, ’k’, ’l’, ’m’, ’n’, ’o’,
    ’p’, ’q’, ’r’, ’s’, ’t’, ’u’, ’v’, ’w’, 
    ’x’, ’y’, ’z’, ’{’, ’|’, ’}’, ’~’, DEL);

  type INTEGER is range -2147483647 to 2147483647;

  subtype NATURAL is INTEGER range 0 to 2147483647;

  subtype POSITIVE is INTEGER range 1 to 2147483647;

  type STRING is array (POSITIVE range <>) 
       of CHARACTER;

  type BIT_VECTOR is array (NATURAL range <>) 
       of BIT;

end STANDARD;

Data Type BOOLEAN 

The BOOLEAN  data type is actually an enumerated type with two values, 
FALSE  and TRUE , where FALSE < TRUE . Logical functions such as 
equality (=) and comparison (<) functions return a BOOLEAN  value.



Convert a BIT  value to a BOOLEAN  value as follows:

BOOLEAN_VAR := (BIT_VAR = ’1’);

Data Type  BIT 

The BIT  data type represents a binary value as one of two characters, ’0’  
or ’1’ . Logical operations such as and  can take and return BIT  values.

Convert a BOOLEAN  value to a BIT  value as follows:

if (BOOLEAN_VAR) then
  BIT_VAR := ’1’;
else 
  BIT_VAR := ’0’;
end if;

Data Type  CHARACTER 

The CHARACTER  data type enumerates the ASCII character set. 
Nonprinting characters are represented by a three-letter name, such as NUL  
for the null character. Printable characters are represented by themselves, in 
single quotation marks, as follows:

variable CHARACTER_VAR: CHARACTER;
. . .
CHARACTER_VAR := ’A’;

Data Type  INTEGER

The INTEGER data type represents positive and negative whole numbers 
and zero.

Data Type NATURAL

The NATURAL  data type is a subtype of INTEGER that is used to represent 
natural (nonnegative) numbers.



Data Type  POSITIVE 

The POSITIVE  data type is a subtype of INTEGER  that is used to 
represent positive (nonzero and nonnegative) numbers.

Data Type  STRING 

The STRING  data type is an unconstrained array of CHARACTER  data 
types. A STRING  value is enclosed in double quotation marks, as follows:

variable STRING_VAR: STRING(1 to 7);
. . .
STRING_VAR := "Rosebud";

Data Type  BIT_VECTOR

The BIT_VECTOR  data type represents an array of BIT  values.

Unsupported Data Types

Some data types are either not useful for synthesis or are not supported. 
Unsupported types are parsed but ignored by FPGA Express. These types 
are listed and described below.

Appendix C describes the level of FPGA Express support for each VHDL 
construct.

Physical Types

FPGA Express does not support physical types, such as units of measure 
(for example, nS). Because physical types are relevant to the simulation 
process, FPGA Express allows but ignores physical type declarations.

Floating Point Types

FPGA Express does not support floating point types, such as REAL . 
Floating point literals, such as 1.34 , are allowed in the definitions of 
FPGA Express-recognized attributes.



Access Types

FPGA Express does not support access (pointer) types because no 
equivalent hardware construct exists.

File Types

FPGA Express does not support file (disk file) types. A hardware file is a 
RAM or ROM.

SYNOPSYS Data Types

The std_logic_arith  package provides arithmetic operations and 
numeric comparisons on array data types. The package also defines two 
major data types:  UNSIGNED  and SIGNED . These data types, unlike the 
predefined INTEGER  type, provide access to the individual bits (wires) of a 
numeric value. For more information, see Appendix B.

Subtypes

A subtype is defined as a subset of a previously defined type or subtype.  A 
subtype definition can appear wherever a type definition is allowed.

Subtypes are a powerful way to use VHDL type checking to ensure valid 
assignments and meaningful data handling. Subtypes inherit all operators 
and subprograms defined for their parent (base) types.

Subtypes are also used for resolved signals to associate a resolution 
function with the signal type.  (See "Signal Declarations" in Chapter 3 for 
more information.)

For example, in Example 4-12 NATURAL  and POSITIVE  are subtypes of 
INTEGER  and they can be used with any INTEGER  function. These 
subtypes can be added, multiplied, compared, and assigned to each other, as 
long as the values are within the appropriate subtype’s range. All 
INTEGER  types and subtypes are actually subtypes of an anonymous 
predefined numeric type.

Example 4-13 shows some valid and invalid assignments between 
NATURAL  and POSITIVE  values.



Example 4-13 Valid and Invalid Assignments between INTEGER Subtypes

variable NAT:  NATURAL;
variable POS:  POSITIVE;
. . .
POS := 5;
NAT := POS + 2;
. . .
NAT := 0;
POS := NAT;      -- Invalid; out of range
For example, the type BIT_VECTOR  is defined as
type BIT_VECTOR is array(NATURAL range <>) of BIT;

If your design uses only 16-bit vectors, you can define a subtype MY_
VECTOR  as

subtype MY_VECTOR is BIT_VECTOR(0 to 15);

Example 4-14 shows that all functions and attributes that operate on BIT_
VECTOR  also operate on MY_VECTOR .

Example 4-14 Attributes and Functions Operating on a Subtype

type BIT_VECTOR is array(NATURAL range <>) of BIT;
subtype MY_VECTOR is BIT_VECTOR(0 to 15);
. . .
signal   VEC1, VEC2:  MY_VECTOR;
signal   S_BIT:  BIT;
variable UPPER_BOUND: INTEGER;
. . .
if (VEC1 = VEC2)
. . .
VEC1(4) <= S_BIT;
VEC2 <= "0000111100001111";
. . .
RIGHT_INDEX := VEC1’high;



Chapter 5
Expressions

Expressions perform arithmetic or logical computations by applying an 
operator to one or more operands. Operators specify the computation to be 
performed.  Operands are the data for the computation.

Expressions are discussed as
n Operators
n Operands

In the following VHDL fragment, A and B are operands, + is an operator, 
and A + B is an expression.

C := A + B;  -- Computes the sum of two values

You can use expressions in many places in a design description. 
Expressions can be:

n Assign to variables or signals or used as the initial values of constants.
n Used as operands to other operators.
n Used for the return value of functions.
n Used for the IN  parameters in a subprogram call.
n Assigned to the OUT  parameters in a procedure body.
n Used to control the actions of statements like if , loop , and case .



To understand expressions for VHDL, consider the individual components 
of operators and operands.

Operators
n Logical operators
n Relational operators
n Adding operators
n Unary (sign) operators
n Multiplying operators
n Miscellaneous arithmetic operators

Operands
n Computable operands
n Literals
n Identifiers
n Indexed names
n Slice names
n Aggregates
n Attributes
n Function calls
n Qualified expressions
n Type conversions

Operators

A VHDL operator is characterized by
n Name
n Computation (function)
n Number of operands
n Type of operands (such as Boolean  or Character )
n Type of result value

You can define new operators, like functions, for any type of operand and 
result value. The predefined VHDL operators are listed in Table 5-1.

Table 5-1 Predefined VHDL Operators   



Each row in the table lists operators with the same precedence. Each row’s 
operators have greater precedence than those in the row above. An 
operator’s precedence determines whether it is applied before or after 
adjoining operators.

Example 5-1 shows several expressions and their interpretations. 

Example 5-1 Operator Precedence

A + B * C               =  A + (B * C)
not BOOL and (NUM = 4)  =  (not BOOL) and (NUM = 4)

VHDL allows existing operators to be overloaded (applied to new types of 
operands). For example, the and  operator can be overloaded to work with a 
new logic type. For more information, see ‘‘Operator Overloading" in 
Chapter 3.

Logical Operators 

Operands of a logical operator must be of the same type. The logical 
operators and, or, nand, nor, xor,  and not  accept operands of 
type BIT,  type BOOLEAN , and one-dimensional arrays of BIT  or 
BOOLEAN . Array operands must be the same size. A logical operator 
applied to two array operands is applied to pairs of the two arrays’ 
elements.

Example 5-2 shows some logical signal declarations and logical operations 
on them.

Type Operators Precedence

Logical and or nand nor xor Lowest

Relational = /= < <= > >=

Adding + - &

Unary (sign) + -

Multiplying * / mod rem

Miscellaneous ** abs not Highest



Example 5-2 Logical Operators

signal A, B, C:       BIT_VECTOR(3 downto 0);
signal D, E, F, G:    BIT_VECTOR(1 downto 0);
signal H, I, J, K:    BIT;
signal L, M, N, O, P: BOOLEAN;

A <= B and C;
D <= E or F or G;
H <= (I nand J) nand K;
L <= (M xor N) and (O xor P); 

Normally, to use more than two operands in an expression, you must use 
parentheses to group the operands. Alternately you can combine a sequence 
of and , or , or xor  operators without parentheses, such as

A and B and C and D

However, sequences with different operators, such as 

A or B xor C 

do require parentheses.

Example 5-3 uses the declarations from Example 5-2 to show some 
common errors.

Example 5-3 Errors in Using Logical Operators

H <= I and J or K;            -- Parenthesis required;
L <= M nand N nand O nand P;  -- Parenthesis 
required;
A <= B and E;       -- Operands must be the same size;
H <= I or L;        -- Operands must be the same type;

Figure 5-1 Common Errors Using Logical Operators

Relational Operators

Relational operators, such as = or >, compare two operands of the same 
base type and return a BOOLEAN  value.

IEEE VHDL defines the equality (=) and inequality (/=) operators for all 
types. Two operands are equal if they represent the same value. For array 
and record types, IEEE VHDL compares corresponding elements of the 
operands.

IEEE VHDL defines the ordering operators (<, <= , "" (relational 
operator)">>, and ="" (relational operator)">>=) for all enumerated types, 
integer types, and one-dimensional arrays of enumeration or integer types.



The internal order of a type’s values determines the result of the ordering 
operators. Integer values are ordered from negative infinity to positive 
infinity. Enumerated values are in the same order as they were declared, 
unless you have changed the encoding.

Note: If you set the encoding of your enumerated types (see 
‘‘Enumeration Encoding" in Chapter 4), the ordering operators compare 
your encoded value ordering, not the declaration ordering. Because this 
interpretation is specific to FPGA Express, a VHDL simulator continues 
to use the declaration’s order of enumerated types.

Arrays are ordered like words in a dictionary. The relative order of two 
array values is determined by comparing each pair of elements in turn, 
beginning from the left bound of each array’s index range. If a pair of array 
elements is not equal, the order of the different elements determines the 
order of the arrays. For example, bit vector 101011  is less than 1011  
because the fourth bit of each vector is different, and 0  is less than 1 . 

If the two arrays have different lengths and the shorter array matches the 
first part of the longer array, the shorter one is ordered before the longer. 
Thus, the bit vector 101  is less than 101000 . Arrays are compared from 
left to right, regardless of their index ranges (to  or downto ).

Example 5-4 shows several expressions that evaluate to TRUE .



Example 5-4 TRUE Relational Expressions

 ’1’  =  ’1’
"101" = "101"
 "1"  > "011"   -- Array comparison
"101" < "110"

To interpret bit vectors such as 011  as signed or unsigned binary numbers, 
use the relational operators defined in the FPGA Express std_logic_
arith  package (listed in Appendix B). The third line in Example 5-4 
evaluates to FALSE  if the operands are of type UNSIGNED .

UNSIGNED’"1"  < UNSIGNED’"011"   -- Numeric 
comparison

Example 5-5 shows some relational expressions and the resulting 
synthesized circuits.

Example 5-5 Relational Operators

signal A, B: BIT_VECTOR(3 downto 0);
signal C, D: BIT_VECTOR(1 downto 0);
signal E, F, G, H, I, J: BOOLEAN;

G <= (A = B);
H <= (C < D);
I <= (C >= D);
J <= (E > F); 

Adding Operators

Adding operators include arithmetic and concatenation operators.



The arithmetic operators + and - are predefined by FPGA Express for all 
integer operands. These addition and subtraction operators perform 
conventional arithmetic, as shown in Example 5-6. For adders and 
subtracters more than four bits wide, a synthetic library component is used 
(see Chapter 9).

The concatenation (&) operator is predefined for all one-dimensional array 
operands. The concatenation operator builds arrays by combining the 
operands. Each operand of & can be an array or an element of an array. Use 
& to add a single element to the beginning or end of an array, to combine 
two arrays, or to build an array from elements, as shown in Example 5-6.

Example 5-6 Adding Operators

signal A, D:    BIT_VECTOR(3 downto 0);
signal B, C, G: BIT_VECTOR(1 downto 0);
signal E:       BIT_VECTOR(2 downto 0);
signal F, H, I: BIT;

signal J, K, L: INTEGER range 0 to 3;

A <= not B & not C;  -- Array & array
D <= not E & not F;  -- Array & element
G <= not H & not I;  -- Element & element 
J <= K + L;          -- Simple addition 



Figure 5-2 Adding Operators

Unary (Sign) Operators

A unary operator has only one operand. FPGA Express predefines  unary 
operators + and - for all integer types. The + operator has no effect.  The - 
operator negates its operand. For example,

5 = +5
5 = -(-5)

Example 5-7 shows how unary negation is synthesized.

Example 5-7 Unary (Signed) Operators

signal A, B: INTEGER range -8 to 7;

A <= -B;



Figure 5-3 Unary (Signed) Operators

Multiplying Operators

FPGA Express  predefines the multiplying operators (*, /, mod , and rem ) 
for all integer types. 

FPGA Express places some restrictions on the supported values for the 
right operands of the multiplying operators, as follows:

n * Integer multiplication: no restrictions.

A multiplication operator is implemented as a synthetic library cell.
n / Integer division: The right operand must be a computable power of 2 (see 

"Computable Operands," later in this chapter). Neither operand can be 
negative.

This operator is implemented as a bit shift.

mod  Modulus: Same as / .

rem  Remainder: Same as / . 

Example 5-8 shows some uses of the multiplying operators whose right 
operands are all powers of 2. The resulting synthesized circuit is also 
shown.



Example 5-8 Multiplying Operators with Powers of 2

signal A, B, C, D, E, F, G, H: INTEGER range 0 to 15;

  A <= B * 4;
  C <= D / 4;
  E <= F mod 4;
  G <= H rem 4;

Example 5-9 shows two multiplication operations, one with a four-bit 
operand times a two-bit constant (B * 3 ), and one with two five-bit 
operands (X * Y ). Because the synthetic library is enabled by default, 
these multiplications are implemented as synthetic library cells.



Example 5-9 Multiply Operator (* ) Using Synthetic Cells

signal A, B: INTEGER range 0 to 15; 
signal Y, Z: INTEGER range 0 to 31;
signal X:    INTEGER range 0 to 1023;
. . .
  A <= B * 3;
  X <= Y * Z; 

Miscellaneous Arithmetic Operators

FPGA Express predefines the absolute value (abs ) and exponentiation 
(**) operators for all integer types. One FPGA Express restriction placed 
on ** , as follows:

** Exponentiation: Left operand must have a computable value of 2 (see 
‘‘Computable Operands," later in this chapter).

Example 5-10 shows how these operators are used and synthesized.



Example 5-10 Miscellaneous Arithmetic Operators

signal A, B: INTEGER range -8 to 7;
signal C:    INTEGER range  0 to 15;
signal D:    INTEGER range  0 to 3;

A <= abs(B);
C <= 2 ** D; 

Operands

Operands determine the data used by the operator to compute its value. An 
operand is said to return its value to the operator.

There are many categories of operands. The simplest operand is a literal, 
such as the number 7, or an identifier, such as a variable or signal name. An 
operand itself can be an expression. You create expression operands by 
surrounding an expression with parentheses.

The operand categories are

Expressions:(A nand B)

Literals:’0’, "101", 435, 16#FF3E#

Identifiers: my_var, my_sig

Indexed names: my_array(7)

Slice names: my_array(7 to 11)

Fields: my_record.a_field



Aggregates:my_array_type’(others => 1)

Attributes: my_array’range

Function calls: LOOKUP_VAL(my_var_1, my_var_2)

Qualified expressions:BIT_VECTOR’(’1’ & ’0’)

Type conversions: THREE_STATE(’0’)

The next two sections discuss operand bit widths and explain computable 
operands. Subsequent sections describe the operand types listed above.

Operand Bit Width

FPGA Express uses the bit width of the largest operand to determine the bit 
width needed to implement an operator in hardware. For example, an 
INTEGER  operand is 32 bits wide by default. An addition of two 
INTEGER  operands causes FPGA Express to build a 32-bit adder. 

To use hardware resources efficiently, always indicate the bit width of 
numeric operands. For example, use a subrange of INTEGER  when 
declaring types, variables, or signals.

type     ENOUGH:  INTEGER range 0 to 255; 
variable WIDE:    INTEGER range -1024 to 1023; 
signal   NARROW:  INTEGER range 0 to 7; 

Note: During optimization, FPGA Express removes hardware for unused 
bits. 

Computable Operands

Some operators, such as the division operator, restrict their operands to be 
computable. A computable operand is one whose value can be determined 
by FPGA Express. Computability is important because noncomputable 
expressions can require logic gates to determine their value. 

Following are examples of computable operands:
n Literal values
n for ... loop  parameters, when the loop’s range is computable
n Variables assigned a computable expression
n Aggregates that contain only computable expressions
n Function calls with a computable return value
n Expressions with computable operand



n Qualified expressions, where the expression is computable
n Type conversions, when the expression is computable
n Value of the and  or nand  operators when one of the operands is a 

computable 0
n Value of the or  or nor  operators when one of the operands is a 

computable 1

Additionally, a variable is given a computable value if it is an OUT  or 
INOUT  parameter of a procedure that assigns it a computable value. 

Following are examples of noncomputable operands:
n Signals
n Ports
n Variables that are assigned different computable values that depend on a 

noncomputable condition
n Variables assigned noncomputable values

Example 5-11 shows some definitions and declarations, followed by 
several computable and noncomputable expressions.



Example 5-11 Computable and Noncomputable Expressions

signal S: BIT;
. . .
function MUX(A, B, C: BIT) return BIT is
begin
  if (C = ’1’) then 
    return(A);
  else 
    return(B);
  end if;
end;

procedure COMP(A: BIT; B: out BIT) is
begin
  B := not A;
end;

process(S)
  variable V0, V1, V2: BIT;
  variable V_INT:      INTEGER;

  subtype MY_ARRAY is BIT_VECTOR(0 to 3);
  variable V_ARRAY:    MY_ARRAY;
begin
  V0 := ’1’;             -- Computable (value is ’1’)
  V1 := V0;              -- Computable (value is ’1’)
  V2 := not V1;          -- Computable (value is ’0’)

  for I in 0 to 3 loop
    V_INT := I;          -- Computable (value depends
  end loop;              --   on iteration)

  V_ARRAY := MY_ARRAY’(V1, V2, ’0’, ’0’);
                         -- Computable ("1000")
  V1 := MUX(V0, V1, V2); -- Computable (value is ’1’)
  COMP(V1, V2);
  V1 := V2;              -- Computable (value is ’0’)
  V0 := S and ’0’;       -- Computable (value is ’0’)
  V1 := MUX(S, ’1’, ’0’);-- Computable (value is ’1’)
  V1 := MUX(’1’, ’1’, S);-- Computable (value is ’1’)

  if (S = ’1’) then
    V2 := ’0’;           -- Computable (value is ’0’)
  else
    V2 := ’1’;           -- Computable (value is ’1’)
  end if;
  V0 := V2;            -- Noncomputable; V2 depends
                       --   on S
  V1 := S;             -- Noncomputable; S is signal 
  V2 := V1;            -- Noncomputable; V1 is no
                       --   longer computable
end process;



Literals

A literal (constant) operand can be a numeric literal, a character literal, an 
enumeration literal, or a string literal. The following sections describe these 
four kinds of literals.

Numeric Literals
Numeric literals are constant integer values. The two kinds of numeric 
literals are decimal and based. A decimal literal is written in base 10. A 
based literal can be written in a base from 2 to 16 and is composed of the 
base number, an octothorpe (#), the value in the given base, and another 
octothorpe (#); for example, 2#101#  is decimal 5.

The digits in either kind of numeric literal can be separated by an 
underscore ( _ ) character. Example 5-12 shows several different numeric 
literals, all representing the same value.

Example 5-12 Numeric Literals

170
1_7_0
10#170#
2#1010_1010#
16#AA#

Character Literals

Character literals are single characters enclosed in single quotation marks, 
for example, A . Character literals can be used as values for operators and 
to define enumerated types, such as CHARACTER  and BIT . See Chapter 4 
for more information about the legal character types.

Enumeration Literals

Enumeration literals are values of enumerated types. The two kinds of 
enumeration literals are character literals and identifiers. Character literals 
were described previously. Enumeration identifiers are those literals listed 
in an enumeration type definition. For example:

type SOME_ENUM is ( ENUM_ID_1, ENUM_ID_2, ENUM_ID_3);

If two enumerated types use the same literals, those literals are said to be 
overloaded. You must qualify overloaded enumeration literals (see 
"Qualified Expressions," later in this chapter) when you use them in an 
expression unless their type can be determined from context. See Chapter 4 
for more information.



Example 5-13 defines two enumerated types and shows some enumeration 
literal values.

Example 5-13 Enumeration Literals

type ENUM_1 is (AAA, BBB, ’A’, ’B’, ZZZ);
type ENUM_2 is (CCC, DDD, ’C’, ’D’, ZZZ);

AAA           -- Enumeration identifier of type ENUM_1
’B’           -- Character literal of type ENUM_1
CCC           -- Enumeration identifier of type ENUM_2
’D’           -- Character literal of type ENUM_2
ENUM_1’(ZZZ)  -- Qualified because overloaded

String Literals

String literals are one-dimensional arrays of characters, enclosed in double 
quotes (" "). The two kinds of string literals are character strings and bit 
strings. Character strings are sequences of characters in double quotes; for 
example, "ABCD" . Bit strings are similar to character strings, but represent 
binary, octal, or hexadecimal values; for example, B"1101" , O"15" , and 
X"D"  all represent decimal value 13. 

A string value’s type is a one-dimensional array of an enumerated type. 
Each of the characters in the string represents one element of the array. 

Example 5-14 shows some character-string literals.

Example 5-14 Character-String Literals

"10101"
"ABCDEF"

Note: Null string literals ("") are not supported.

Bit strings, like based numeric literals, are composed of a base specifier 
character, a double quotation mark, a sequence of numbers in the given 
base, and another double quotation mark. For example, B"0101"  
represents the bit vector 0101. A bit-string literal consists of the base 
specifier B, O, or X, followed by a string literal. The bit-string literal is 
interpreted as a bit vector, a one-dimensional array of the predefined type 
BIT . The base specifier determines the interpretation of the bit string as 
follows:

B (binary)
The value is in binary digits (bits, 0 or 1). Each bit in the string represents 
one BIT  in the generated bit vector (array).

O (octal)
The value is in octal digits (0 to 7). Each octal digit in the string represents 
three BIT s in the generated bit vector (array).



X (hexadecimal)
The value is in hexadecimal digits (0 to 9 and A to F). Each hexadecimal 
digit in the string represents four BIT s in the generated bit vector (array).

You can separate the digits in a bit-string literal value with underscores (_) 
for readability. Example 5-15 shows several bit-string literals that represent 
the same value.

Example 5-15 Bit-String Literals

X"AAA"
B"1010_1010_1010"

O"5252"
B"101_010_101_010"

Identifiers

Identifiers are probably the most common operand. An identifier is the 
name of a constant, variable, signal, entity, port, subprogram, or parameter 
and returns the object’s value to an operand. 

Example 5-16 shows several kinds of identifiers and their usage. All 
identifiers are shown in boldface.

Example 5-16 Identifiers

entity EXAMPLE is
  port ( INT_PORT:   in INTEGER;
        BIT_PORT:  out BIT);
end;
. . .
signal   BIT_SIG: BIT;
signal   INT_SIG: INTEGER;
. . .
INT_SIG  <= INT_PORT;   -- Signal assignment from 
port
BIT_PORT <= BIT_SIG;    -- Signal assignment to port

function FUNC(INT_PARAM:  INTEGER)
    return INTEGER;
end function;
. . .
constant CONST:   INTEGER := 2;
variable VAR:     INTEGER;
. . .
VAR := FUNC(INT_PARAM => CONST);  -- Function call



Indexed Names

An indexed name identifies one element of an array variable or signal. Slice 
names identify a sequence of elements in an array variable or signal; 
aggregates create array literals by giving a value to each element of an 
instance of an array type. Slice names and aggregates are described in the 
next two sections.

The syntax of an indexed name is

identifier ( expression )

identifier must name a signal or variable of an array type. The 
expression must return a value within the array’s index range. The 
value returned to an operator is the specified array element.

If expression is computable (see ‘‘Computable Operands," earlier in 
this chapter), the operand is synthesized directly. If the expression is not 
computable, hardware that extracts the specified element from the arrayis 
synthesized. 

Example 5-17 shows two indexed names—one computable and one not 
computable.



Example 5-17 Indexed Name Operands

signal A, B: BIT_VECTOR(0 to 3);
signal I:    INTEGER range 0 to 3;
signal Y, Z: BIT;

Y <= A(I);  -- Noncomputable index expression
Z <= B(3);  -- Computable index expression 

You can also use indexed names as assignment targets; see "Indexed Name 
Targets" in Chapter 6.

Slice Names

Slice names return a sequence of elements in an array. The syntax is

identifier ( expression direction expression )

identifier must name a signal or variable of an array type. Each 
expression must return a value within the array’s index range, and must 
be computable. See ‘‘Computable Operands," earlier in this chapter.

The direction  must be either to  or downto . The direction of a slice 
must be the same as the direction of identifier  array type. If the left 
and right expressions are equal, define a single element.

The value returned to an operator is a subarray containing the specified 
array elements.



Example 5-18 uses slices to assign an eight-bit input to an eight-bit output, 
exchanging the lower and upper four bits. 

Example 5-18 Slice Name Operands

signal A, Z: BIT_VECTOR(0 to 7);

Z(0 to 3) <= A(4 to 7);
Z(4 to 7) <= A(0 to 3); 

In Example 5-18, slices are also used as assignment targets. This usage is 
described in Chapter 6, under ‘‘Slice Targets."

Limitations on Null Slices 

FPGA Express does not support null slices. A null slice is indicated by a 
null range, such as (4 to 3) , or a range with the wrong direction, such 
as UP_VAR(3 downto 2)  when the declared range of UP_VAR  is 
ascending (Example 5-19). 

Example 5-19 shows three null slices and one noncomputable slice.



Example 5-19 Null and Noncomputable Slices

subtype DOWN is BIT_VECTOR(4 downto 0); 
subtype UP   is BIT_VECTOR(0 to 7);
. . .
variable UP_VAR:   UP;
variable DOWN_VAR: DOWN;
. . .
UP_VAR(4 to 3)       -- Null slice (null range)

UP_VAR(4 downto 0)   -- Null slice (wrong direction)
DOWN_VAR(0 to 1)     -- Null slice (wrong direction)
. . .

variable I: INTEGER range 0 to 7;
. . .
UP_VAR(I to I+1)     -- Noncomputable slice

Limitations on Noncomputable Slices
IEEE VHDL does not allow noncomputable slices—slices whose range 
contains a noncomputable expression.

Records and Fields

Records are composed of named fields of any type. For more information, 
see ‘‘Record Types" in Chapter 4. 

In an expression, you can refer to a record as a whole, or you can refer to a 
single field. The syntax of field names is

record_name .field_name

record_name is the name of the record variable or signal, and field_
name is the name of a field in that record type. A field_name  is 
separated from the record name by a period (.).   Note that a record_
name is different for each variable or signal of that record type.  A 
field_name is the field name defined for that record type.

Example 5-20 shows a record type definition, and record and field access.



Example 5-20 Record and Field Access

type BYTE_AND_IX is 
  record
    BYTE: BIT_VECTOR(7 downto 0);
    IX:   INTEGER range 0 to 7;
  end record;
 
signal X: BYTE_AND_IX;
. . .
X           -- record
X.BYTE      -- field: 8-bit array
X.IX        -- field: integer

A field can be of any type—including an array, record, or aggregate type.  
Refer to an element of a field with that type’s notation, for example:

X.BYTE(2)           -- one element from array field 
BYTE
X.BYTE(3 downto 0)  -- 4-element slice of array field 
BYTE

Aggregates

Aggregates can be considered array literals, because they specify an array 
type and the value of each array element. The syntax is

type_name’([choice =>] expression 
           {, [choice =>] expression})

Note that the syntax is more restrictive than the syntax in the Library 
Reference Manual (LRM).  type_name must be a constrained array type. 
The optional choice specifies an element index, a sequence of indexes, or 
others . Each expression provides a value for the chosen elements, 
and must evaluate to a value of the element’s type.

Example 5-21 shows an array type definition and an aggregate representing 
a literal of that array type. The two sets of assignments have the same 
result.



Example 5-21 Simple Aggregate

subtype MY_VECTOR is BIT_VECTOR(1 to 4);
signal X:      MY_VECTOR;
variable A, B: BIT;

X <= MY_VECTOR’(’1’, A nand B, ’1’, A or B)  -- Aggregate
                                             -- assignment
...
X(1) <= ’1’;                                 -- Element
X(2) <= A nand B;                            -- assignment
X(3) <= ’1’;
X(4) <= A or B;

You can specify an element’s index with either positional or named 
notation. With positional notation, each element is given the value of its 
expression in order, as shown in Example 5-21. 

By using named notation, the choice  =>  construct specifies one or more 
elements of the array. The choice can contain an expression (such as 
(I mod 2) => ) to indicate a single element index, or a range (such as 
3 to 5 =>  or 7 downto 0 => ) to indicate a sequence of element 
indexes.

An aggregate can use both positional and named notation, but positional 
expressions must appear before named (choice) expressions.

It is not necessary to specify all element indexes in an aggregate. All 
unassigned values are given a value by including 
others => expression as the last element of the list.

Example 5-22 shows several aggregates representing the same value.

Example 5-22 Equivalent Aggregates

subtype MY_VECTOR is BIT_VECTOR(1 to 4);

MY_VECTOR’(’1’, ’1’, ’0’, ’0’);
MY_VECTOR’(2 => ’1’, 3 => ’0’, 1 => ’1’, 4 => ’0’);
MY_VECTOR’(’1’, ’1’, others => ’0’);
MY_VECTOR’(3 => ’0’, 4 => ’0’, others => ’1’);
MY_VECTOR’(3 to 4 => ’0’, 2 downto 1 => ’1’);

The others  expression must be the only expression in the aggregate. 
Example 5-23 shows two equivalent aggregates.

Example 5-23 Equivalent Aggregates Using the others Expression

MY_VECTOR’(others => ’1’);
MY_VECTOR’(’1’, ’1’, ’1’, ’1’);



To use an aggregate as the target of an assignment statement, see 
‘‘Aggregate Targets" in Chapter 6.

Attributes

VHDL defines attributes for various types. A VHDL attribute takes a 
variable or signal of a given type and returns a value. The syntax of an 
attribute is

object’attribute

FPGA Express supports the following predefined VHDL attributes for use 
with arrays, as described under ‘‘Array Types" in Chapter 4:

n left
n right
n high
n low
n length
n range
n reverse_range

FPGA Express also supports the following predefined VHDL attributes for 
use with wait  and if  statements, as described in Chapter 8, "Register and 
Three-State Inference":

n event 
n stable

In addition to supporting predefined VHDL attributes listed above, FPGA 
Express has a defined set of synthesis-related attributes. These FPGA 
Express-specific attributes can be placed in your VHDL design description 
to direct optimization. See ‘‘Synthesis Attributes and Constraints" in 
Chapter 9 for more information.

Function Calls

A function call executes a named function with the given parameter values. 
The value returned to an operator is the function’s return value. The syntax 
of a function call is

function_name ( [parameter_name =>] expression 
                { , [parameter_name =>] expression } )



function_name is the name of a defined function. The optional 
parameter_name is an expression of formal parameters, as defined by 
the function. Each expression provides a value for its parameter, and 
must evaluate to a type appropriate for that parameter.

You can specify parameters in positional or named notation, like aggregate 
values.

In positional notation, the parameter_name =>  construct is omitted. 
The first expression provides a value for the function’s first parameter, the 
second expression provides a value for the second parameter, and so on. 

In named notation, parameter_name =>  is specified before an 
expression; the named parameter gets the value of that expression.

You can mix positional and named expressions in the same function call, as 
long as all positional expressions appear before a named parameter 
expressions. 

Function calls are implemented by logic unless you use the map_to_
entity  compiler directive. For more information, see "Mapping 
Subprograms to Components" in Chapter 6, and "Component Implication 
Directives" in Chapter 9.

Example 5-24 shows a function declaration and several equivalent function 
calls.

Example 5-24 Function Calls

function FUNC(A, B, C: INTEGER) return BIT;
. . .
FUNC(1, 2, 3)
FUNC(B => 2, A => 1, C => 7 mod 4)
FUNC(1, 2, C => -3+6)

Qualified Expressions

Qualified expressions state the type of an operand to resolve ambiguities in 
an operand’s type. You cannot use qualified expressions for type 
conversion (see "Type Conversions").

The syntax of a qualified expression is

type_name’(expression)



type_name is the name of a defined type. expression must evaluate 
to a value of an appropriate type. 

Note: A single quote, or tick, must appear between type_name and 
(expression). If the single quote is omitted, the construction is 
interpreted as a type conversion (see "Type Conversions"). 

Example 5-25 shows a qualified expression that resolves an overloaded 
function by qualifying the type of a decimal literal parameter.

Example 5-25 A Qualified Decimal Literal

type R_1 is range 0 to 10;  -- Integer 0 to 10
type R_2 is range 0 to 20;  -- Integer 0 to 20

function FUNC(A: R_1) return BIT;
function FUNC(A: R_2) return BIT;

FUNC(5)         -- Ambiguous; could be of type R_1, 
                --   R_2, or INTEGER

FUNC(R_1’(5))   -- Unambiguous

Example 5-26 shows how qualified expressions resolve ambiguities in 
aggregates and enumeration literals.

Example 5-26 Qualified Aggregates and Enumeration Literals

type ARR_1 is array(0 to 10) of BIT;
type ARR_2 is array(0 to 20) of BIT;
. . .
(others => ’0’)        -- Ambiguous; could be of
                       -- type ARR_1 or ARR_2

ARR_1’(others => ’0’)  -- Qualified; unambiguous
----------------------------------------------------
--
type ENUM_1 is (A, B);
type ENUM_2 is (B, C);
. . .
B                      -- Ambiguous; could be of 
                       -- type ENUM_1 or ENUM_2

ENUM_1’(B)             -- Qualified; unambiguous



Type Conversions

Type conversions change an expression’s type. Type conversions are 
different from qualified expressions because they change the type of their 
expression; whereas qualified expressions simply resolve the type of an 
expression.

The syntax of a type conversion is

type_name(expression)

type_name is the name of a defined type. The expression must 
evaluate to a value of a type that can be converted into type type_name.

n Type conversions can convert between integer types or between similar 
array types. 

n Two array types are similar if they have the same length and if they have 
convertible or identical element types. 

n Enumerated types cannot be converted. 

Example 5-27 shows some type definitions and associated signal 
declarations, followed by legal and illegal type conversions.



Example 5-27 Legal and Illegal Type Conversions

type INT_1 is range 0 to 10;
type INT_2 is range 0 to 20;

type ARRAY_1 is array(1 to 10) of INT_1;
type ARRAY_2 is array(11 to 20) of INT_2;

subtype MY_BIT_VECTOR is BIT_VECTOR(1 to 10);
type BIT_ARRAY_10 is array(11 to 20) of BIT;
type BIT_ARRAY_20 is array(0 to 20) of BIT;

signal S_INT:      INT_1;
signal S_ARRAY:    ARRAY_1;
signal S_BIT_VEC:  MY_BIT_VECTOR;
signal S_BIT:      BIT;

       -- Legal type conversions

INT_2(S_INT)   
  -- Integer type conversion

BIT_ARRAY_10(S_BIT_VEC)
  -- Similar array type conversion

       -- Illegal type conversions

BOOLEAN(S_BIT);  
  -- Can’t convert between enumerated types

INT_1(S_BIT);
  -- Can’t convert enumerated types to other types

BIT_ARRAY_20(S_BIT_VEC); 
  -- Array lengths not equal

ARRAY_1(S_BIT_VEC);  
  -- Element types cannot be converted 



Chapter 6
Sequential Statements

Sequential statements like A := 3  are interpreted one after another, in the 
order in which they are written. VHDL sequential statements can appear 
only in a process or subprogram. A VHDL process is a group of sequential 
statements; a subprogram is a procedure or function.

To familiarize yourself with sequential statements, consider the following:
n Assignment Statements
n Variable Assignment Statement
n Signal Assignment Statement
n if Statement
n case Statement
n loop Statements
n next Statement
n exit Statement
n Subprograms
n return Statement
n wait Statement
n null Statement



Processes are composed of sequential statements, but processes are 
themselves concurrent statements (see Chapter 7). All processes in a design 
execute concurrently. However, at any given time only one sequential 
statement is interpreted within each process. 

A process communicates with the rest of a design by reading or writing 
values to and from signals or ports declared outside the process.

Sequential algorithms can be expressed as subprograms and can be called 
sequentially (as described in this chapter) or concurrently (as described in 
Chapter 7).

Sequential statements are

assignment statements

that assign values to variables and signals.

flow control statements

that conditionally execute statements (if and case), repeat statements 
(for...loop), and skip statements (next and exit).

subprograms 

that define sequential algorithms for repeated use in a design (procedure 
and function). 

wait statement 

to pause until an event occurs (wait).

null statement 

to note that no action is necessary (null). 

Assignment Statements

An assignment statement assigns a value to a variable or signal. The syntax 
is

target := expression;  -- Variable assignment
target <= expression;  -- Signal assignment

target  is a variable or signal (or part of a variable or signal, such as a 
subarray) that receives the value of the expression . The expression 
must evaluate to the same type as the target. See Chapter 5 for more 
information on expressions. 



The difference in syntax between variable assignments and signal 
assignments is that variables use := and signals use <= . The basic 
semantic difference is that variables are local to a process or subprogram, 
and their assignments take effect immediately. 

Signals need not be local to a process or subprogram, and their assignments 
take effect at the end of a process. Signals are the only means of 
communication between processes. For more information on semantic 
differences, see ‘‘Signal Assignment,- later in this chapter.

Assignment Targets

Assignment statements have five kinds of targets:
n Simple names, such as my_var
n Indexed names, such as my_array_var(3)
n Slices, such as my_array_var(3 to 6)
n Field names, such as my_record.a_field
n Aggregates, such as (my_var1, my_var2)

A assignment target can be either a variable or a signal; the following 
descriptions refer to both.

Simple Name Targets

The syntax for an assignment to a simple name target is

identifier := expression;  -- Variable assignment
identifier <= expression;  -- Signal assignment

identifier is the name of a signal or variable. The assigned expression 
must have the same type as the signal or variable. For array types, all 
elements of the array are assigned values. 

Example 6-1 shows some assignments to simple name targets.



Example 6-1 Simple Name Targets

variable A, B: BIT;
signal   C:    BIT_VECTOR(1 to 4);

-- Target    Expression
     A    := ’1’;    -- Variable A is assigned ’1’
     B    := ’0’;    -- Variable B is assigned ’0’
     C    <= -1100"; -- Signal array C is assigned
                     --   -1100"

Indexed Name Targets

The syntax for an assignment to an indexed name target is

identifier(index_expression) := expression;
  -- Variable assignment

identifier(index_expression) <= expression;
  -- Signal assignment

identifier is the name of an array type signal or variable. index_
expression must evaluate to an index value for the identifier 
array’s index type and bounds but does not have to be computable (see 
‘‘Computable Operands- in Chapter 5), but more hardware is synthesized if 
it is not. 

The assigned expression must contain the array’s element type.

In Example 6-2, the elements for array variable A are assigned values as 
indexed names.

Example 6-2 Indexed Name Targets

variable A: BIT_VECTOR(1 to 4);

-- Target    Expression;
   A(1)   := ’1’;    -- Assigns ’1’ to the first
                     --   element of array A.
   A(2)   := ’1’;    -- Assigns ’1’ to the second
                     --   element of array A.
   A(3)   := ’0’;    -- Assigns ’0’ to the third
                     --   element of array A.
   A(4)   := ’0’;    -- Assigns ’0’ to the fourth
                     --   element of array A.

Example 6-3 shows two indexed name targets. One of the targets is 
computable and the other is not. Note the differences in the hardware 
generated for each assignment.



Example 6-3 Computable and Noncomputable Indexed Name Targets

signal A, B: BIT_VECTOR(0 to 3);
signal I: INTEGER range 0 to 3;
signal Y, Z: BIT;

A    <= -0000";
B    <= -0000";
A(I) <= Y;  -- Noncomputable index expression
B(3) <= Z;  -- Computable index expression
 

Slice Targets

The syntax for a slice target is

identifier(index_expr_1 direction index_expr_2)

identifier is the name of an array type signal or variable. Each 
index_expr expression must evaluate to an index value for the 
identifier array’s index type and bounds. Both index_expr 
expressions must be computable (see -Computable Operands- in 
Chapter 5), and must lie within the bounds of the array. direction must 
match the identifier array type’s direction—either to  or downto .

The assigned expression must contain the array’s element type.



In Example 6-4, array variables A and B are assigned the same value.

Example 6-4 Slice Targets

variable A, B: BIT_VECTOR(1 to 4);

-- Target       Expression;
   A(1 to 2) := -11";  -- Assigns -11" to the first
                       -- two elements of array A
   A(3 to 4) := -00";  -- Assigns -00" to the last
                       -- two elements of array A
   B(1 to 4) := -1100";-- Assigns -1100" to array B

Field Targets

The syntax for a field target is

identifier.field_name

identifier is the name of a record type signal or variable, and field_
name is the name of a field in that record type, preceded by a period (.). 
The assigned expression must contain the identified field’s type. A field 
can be of any type, including an array, record, or aggregate type. 

Example 6-5 assigns values to the fields of record variables A and B.

Example 6-5 Field Targets

type REC is 
    record
        NUM_FIELD:   INTEGER range -16 to 15;
        ARRAY_FIELD: BIT_VECTOR(3 to 0);
    end record;

variable A, B: REC;

-- Target        Expression;
   A.NUM_FIELD   := -12;     -- Assigns -12 to record A’s
                             -- field NUM_FIELD 
  
   A.ARRAY_FIELD := -0011";  -- Assigns -0011" to record
                             -- A’s field ARRAY_FIELD
   A.ARRAY_FIELD(3) := ’1’;  -- Assigns ’1’ to the most-
                             -- significant bit of record
                             -- A’s field ARRAY_FIELD

   B             := A;       -- Assigns values of record
                             -- A to corresponding fields
                             -- of B

For more information about field targets see -Record Types- in Chapter 4. 



Aggregate Targets

The syntax for an assignment to an aggregate target is

([choice =>] identifier 
 {,[choice =>] identifier}) := array_expression;
  -- Variable assignment

([choice =>] identifier 
 {,[choice =>] identifier}) <= array_expression;
  -- Signal assignment

An aggregate assignment assigns array_expression’s element values 
to one or more variable or signal identifiers.

Each choice (optional) is an index expression selecting an element or a 
slice of the assigned array_expression. Each identifier must 
have the element type of array_expression. An identifier can 
be an array type.

Example 6-6 shows some aggregate targets.

Example 6-6 Aggregate Targets

signal A, B, C, D: BIT;
signal S: BIT_VECTOR(1 to 4);
. . .
variable E, F:  BIT;
variable G: BIT_VECTOR(1 to 2);
variable H: BIT_VECTOR(1 to 4);

-- Positional notation 
S            <= (’0’, ’1’, ’0’, ’0’);
(A, B, C, D) <= S;      -- Assigns ’0’ to A
                        -- Assigns ’1’ to B
                        -- Assigns ’0’ to C
                        -- Assigns ’0’ to D

-- Named notation
(3 => E,    4 => F, 
 2 => G(1), 1 => G(2)) := H;
                        -- Assigns H(1) to G(2)
                        -- Assigns H(2) to G(1)
                        -- Assigns H(3) to E
                        -- Assigns H(4) to F

You can assign array element values to the identifiers by position or by 
name. In positional notation, the choice =>  construct is not used. 
Identifiers are assigned array element values in order, from the left array 
bound to the right array bound. 



In named notation, the choice =>  construct identifies specific elements 
of the assigned array. A choice index expression indicates a single 
element, such as 3. The type of identifier must match the assigned 
expression’s element type.

Positional and named notation can be mixed, but positional associations 
must appear before named associations.

Variable Assignment Statement

A variable assignment changes the value of a variable. The syntax is

target := expression;

expression determines the assigned value; its type must be compatible 
with target. See Chapter 5 for further information about expressions. 
target names the variables that receive the value of expression. See 
-Assignment Targets- in the previous section for a description of variable 
assignment targets.

When a variable is assigned a value, the assignment takes place 
immediately. A variable keeps its assigned value until it is assigned a new 
value.

Signal Assignment Statement

A signal assignment changes the value being driven on a signal by the 
current process. The syntax is

target <= expression;

expression determines the assigned value; its type must be compatible 
with target. See Chapter 5 for further information about expressions. 
target names the signals that receive the value of expression. See 
-Assignment Targets- in this chapter for a description of signal assignment 
targets.

Signals and variables behave differently when they are assigned values. 
The differences lie in the way the two kinds of assignments take effect, and 
how that affects the values read from either variables or signals.



Variable Assignment

When a variable is assigned a value, the assignment takes place 
immediately. A variable keeps its assigned value until it is assigned a new 
value.

Signal Assignment

When a signal is assigned a value, the assignment does not necessarily take 
effect because the value of a signal is determined by the processes (or other 
concurrent statements) that drive it.

n If several values are assigned to a given signal in one process, only the last 
assignment is effective. Even if a signal in a process is assigned, read, and 
reassigned, the value read (either inside or outside the process) is the last 
assignment value. 

n If several processes (or other concurrent statements) assign values to one 
signal, the drivers are wired together. The resulting circuit depends on the 
expressions and the target technology.  It may be invalid, wired AND, 
wired OR, or a three-state bus. Refer to ‘‘Driving Signals- in Chapter 7 for 
more information.

Example 6-7 shows the different effects of variable and signal assignments.



Example 6-7 Signal and Variable Assignments

signal S1, S2: BIT; 
signal S_OUT:    BIT_VECTOR(1 to 8); 
. . . 
process( S1, S2 ) 
  variable V1, V2: BIT;
begin
  V1 := ’1’;   -- This sets the value of V1
  V2 := ’1’;   -- This sets the value of V2
  S1 <= ’1’;   -- This assignment is the driver for S1
  S2 <= ’1’;   -- This has no effect because of the
               --   assignment later in this process

  S_OUT(1) <= V1; -- Assigns ’1’, the value assigned above
  S_OUT(2) <= V2; -- Assigns ’1’, the value assigned above
  S_OUT(3) <= S1; -- Assigns ’1’, the value assigned above
  S_OUT(4) <= S2; -- Assigns ’0’, the value assigned below
  

  V1 := ’0’;   -- This sets the new value of V1
  V2 := ’0’;   -- This sets the new value of V2
  S2 <= ’0’;   -- This assignment overrides the 
               --   previous one since it is the last 
               --   assignment to this signal in this
               --   process

  S_OUT(5) <= V1; -- Assigns ’0’, the value assigned above
  S_OUT(6) <= V2; -- Assigns ’0’, the value assigned above
  S_OUT(7) <= S1; -- Assigns ’1’, the value assigned above
  S_OUT(8) <= S2; -- Assigns ’0’, the value assigned above
end process;

if Statement

The if  statement executes a sequence of statements. The sequence 
depends on the value of one or more conditions. The syntax is

if condition then
     { sequential_statement }
{ elsif condition then
     { sequential_statement } }
[ else
     { sequential_statement } ]
end if;

Each condition must be a Boolean expression. Each branch of an if  
statement can have one or more sequential_statements.



Evaluating condition
An if  statement evaluates each condition in order. The first (and only 
the first) TRUE  condition causes the execution of its branch’s statements. 
The remainder of the if  statement is skipped. 

If none of the conditions are TRUE , and the else  clause is present, those 
statements are executed. 

If none of the conditions are TRUE , and no else  is present, none of the 
statements is executed. 

Example 6-8 shows an if  statement and a corresponding circuit.

Example 6-8 if Statement

signal A, B, C, P1, P2, Z: BIT;

if (P1 = ’1’) then
  Z <= A;
elsif (P2 = ’0’) then
  Z <= B;
else
  Z <= C;
end if; 

Using the if Statement to Imply Registers and Latches

Some forms of the if  statement can be used like the wait  statement, to 
test for signal edges and therefore imply synchronous logic. This usage 
causes FPGA Express to infer registers or latches, as described in 
Chapter 8, ‘‘Register and Three-State Inference.-



case Statement

The case  statement executes one of several sequences of statements, 
depending on the value of a single expression. The syntax is

case expression is
     when choices =>
          { sequential_statement }
   { when choices =>
          { sequential_statement } }
end case;

expression must evaluate to an INTEGER  or an enumerated type, or 
an array of enumerated types, such as BIT_VECTOR . Each of the 
choices must be of the form

choice { | choice }

Each choice can be either a static expression (such as 3) or a static range 
(such as 1 to 3 ). The type of choice_expression  determines the 
type of each choice.    Each value in the range of the choice_
expression  type must be covered by one choice.   

The final choice can be others , which matches all remaining 
(unchosen) values in the range of the expression type. The others  
choice, if present, matches expression only if no other choices match.

The case  statement evaluates expression and compares that value to 
each choice value. The statements following each when clause is 
evaluated only if the choice value matches the expression value. 

The following restrictions are placed on choices:
n No two choices can overlap.
n If no others  choice is present, all possible values of expression must 

be covered by the set of choices.

Using Different Expression Types

Example 6-9 shows a case  statement that selects one of four signal 
assignment statements by using an enumerated expression type.



Example 6-9 case Statement That Uses an Enumerated Type

type ENUM is (PICK_A, PICK_B, PICK_C, PICK_D);
signal VALUE: ENUM;

signal A, B, C, D, Z:  BIT;

case VALUE is
  when PICK_A =>
    Z <= A;
  when PICK_B =>
    Z <= B;
  when PICK_C =>
    Z <= C;
  when PICK_D =>
    Z <= D;
end case; 

Example 6-10 shows a case  statement again used to select one of four 
signal assignment statements, this time by using an integer expression type 
with multiple choices.



Example 6-10 case Statement with Integers

signal VALUE is INTEGER range 0 to 15;
signal Z1, Z2, Z3, Z4:  BIT;

Z1 <= ’0’;
Z2 <= ’0’;
Z3 <= ’0’;
Z4 <= ’0’;

case VALUE is
  when 0 =>             -- Matches 0
    Z1 <= ’1’;
  when 1 | 3 =>         -- Matches 1 or 3
    Z2 <= ’1’;
  when 4 to 7 | 2 =>    -- Matches 2, 4, 5, 6, or 7
    Z3 <= ’1’;
  when others =>        -- Matches remaining values,
                        --   8 through 15
    Z4 <= ’1’;
end case; 

Invalid case Statements

Example 6-11 shows four invalid case statements.



Example 6-11 Invalid case Statements

signal VALUE:  INTEGER range 0 to 15;
signal OUT_1:  BIT;

case VALUE is          -- Must have at least one when
end case;              --   clause

case VALUE is          -- Values 2 to 15 are not
  when 0 =>            --   covered by choices
    OUT_1 <= ’1’;
  when 1 =>
    OUT_1 <= ’0’;
end case;

case VALUE is           -- Choices 5 to 10 overlap
  when 0 to 10 =>
    OUT_1 <= ’1’;
  when 5 to 15 =>    
    OUT_1 <= ’0’;
end case;

loop Statements

A loop  statement repeatedly executes a sequence of statements. The 
syntax is

[label :] [iteration_scheme] loop
    { sequential_statement }
    { next [ label ] [ when condition ] ; }
    { exit [ label ] [ when condition ] ; }
end loop [label];

The optional label names the loop and is useful for building nested loops. 
Each type of iteration_scheme is described in this section.

The next  and exit  statements are sequential statements used only within 
loops. The next  statement skips the remainder of the current loop and 
continues with the next loop iteration. The exit  statement skips the 
remainder of the current loop and continues with the next statement after 
the exited loop.

VHDL provides three types of loop statements, each with a different 
iteration scheme:

loop
The basic loop  statement has no iteration scheme. Enclosed statements are 
executed repeatedly forever until an exit  or next  statement is 
encountered.



while .. loop
The while .. loop  statement has a Boolean iteration scheme.  If the 
iteration condition evaluates to TRUE , enclosed statements are executed 
once. The iteration condition is then reevaluated. While the iteration 
condition remains true, the loop is repeatedly executed. When the iteration 
condition evaluates to FALSE , the loop is skipped, and execution continues 
with the next statement after the loop.

for .. loop
The for .. loop  statement has an integer iteration scheme, where the 
number of repetitions is determined by an integer range. The loop is 
executed once for each value in the range. After the last value in the 
iteration range is reached, the loop is skipped, and execution continues with 
the next statement after the loop.

Caution Noncomputable loops (loop and while..loop statements) must have at 
least one wait statement in each enclosed logic branch. Otherwise, a 
combinational feedback loop is created. See ‘‘wait Statement,- later in 
this chapter, for more information.

Conversely, computable loops (for..loop statements) must not contain 
wait statements. Otherwise, a race condition might result.

loop Statement

The loop  statement, with no iteration scheme, repeats enclosed statements 
indefinitely. The syntax is

[label :] loop
    { sequential_statement }
end loop [label];

The optional label names this loop.

sequential_statement  can be any statement described in this chapter. 
Two sequential statements are used only with loops: the next  statement, 
which skips the remainder of the current loop iteration, and the exit  
statement, which terminates the loop. These statements are described in the 
next two sections.

Note: A loop statement must have at least one wait statement in each 
enclosed logic branch. See ‘‘wait Statement,- later in this chapter, for an 
example.



while .. loop Statement

The while .. loop  statement repeats enclosed statements as long as 
its iteration condition evaluates to TRUE . The syntax is

[label :] while condition loop
    { sequential_statement }
end loop [label];

The optional label names this loop. condition is any Boolean 
expression, such as ((A = ’1’) or (X < Y)) .

sequential_statement can be any statement described in this 
chapter. Two sequential statements are used only with loops: the next  
statement, which skips the remainder of the current loop iteration, and the 
exit  statement, which terminates the loop. These statements are described 
in the next two sections.

Note: A while..loop statement must have at least one wait 
statement in each enclosed logic branch. See -wait Statement,- later in 
this chapter, for an example.

for .. loop Statement

The for .. loop  statement repeats enclosed statements once for each 
value in an integer range. The syntax is

[label :] for identifier in range loop
    { sequential_statement }
end loop [label];

The optional label names this loop.

The use of identifier is specific to the for .. loop  statement:
n identifier is not declared elsewhere. It is automatically declared by 

the loop itself and is local to the loop. A loop identifier overrides any other 
identifier with the same name but only within the loop. 

n The value of identifier can be read only inside its loop 
(identifier does not exist outside the loop). You cannot assign a value 
to a loop identifier.



FPGA Express currently requires that range must be a computable integer 
range(see ‘‘Computable Operands- in Chapter 5), in either of two forms:

integer_expression to integer_expression

integer_expression downto integer_expression

Each integer_expression evaluates to an integer. 

sequential_statement can be any statement described in this 
chapter. Two sequential statements are used only with loops: the next  
statement, which skips the remainder of the current loop iteration, and the 
exit  statement, which terminates the loop. These statements are described 
in the next two sections.

Note: A for..loop statement must not contain any wait statements.

A for .. loop  statement executes as follows:

1. A new, local, integer variable is declared with the name identifier. 

2. identifier is assigned the first value of range, and the sequence of 
statements is executed once.

3. identifier is assigned the next value in range, and the sequence of 
statements is executed once more.

4. Step 3 is repeated until identifier is assigned to the last value in range. 
The sequence of statements is then executed for the last time, and execution 
continues with the statement following end loop . The loop is then 
inaccessible.

Example 6-12 shows two equivalent code fragments.



Example 6-12 for..loop Statement with Equivalent Fragment

variable A, B: BIT_VECTOR(1 to 3);

-- First fragment is a loop statement
for I in 1 to 3 loop
  A(I) <= B(I);
end loop;

-- Second fragment is three equivalent statements
A(1) <= B(1);
A(2) <= B(2);
A(3) <= B(3); 

You can use a loop  statement to operate on all elements of an array 
without explicitly depending on the size of the array. Example 6-13 shows 
how the VHDL array attribute ’range  can be used—in this case to invert 
each element of bit vector A.

Example 6-13 for..loop Statement Operating on an Entire Array

variable A, B: BIT_VECTOR(1 to 10);
. . .
for I in A’range loop
  A(I) := not B(I);
end loop;
 

Unconstrained arrays and array attributes are described under ‘‘Array 
Types- in Chapter 4.



next Statement

The next  statement terminates the current iteration of a loop, then 
continues with the first statement in the loop. The syntax is

next [ label ] [ when condition ] ;

A next  statement with no label terminates the current iteration of the 
innermost enclosing loop. When you specify a loop label, the current 
iteration of that named loop is terminated.

The optional when  clause executes its next  statement when its 
condition (a Boolean expression) evaluates to TRUE .

Example 6-14 uses the next  statement to copy bits conditionally from bit 
vector B to bit vector A only when the next condition evaluates to TRUE .

Example 6-14 next Statement

signal A, B, COPY_ENABLE: BIT_VECTOR (1 to 8);
. . .
A <= -00000000";
. . .
-- B is assigned a value, such as -01011011"
-- COPY_ENABLE is assigned a value, such as 
-11010011"
. . .
for I in 1 to 8 loop
  next when COPY_ENABLE(I) = ’0’;
  A(I) <= B(I);
end loop; 
 

Example 6-15 shows the use of nested next  statements in named loops. 
This example processes:

n The first element of vector X  against the first element of vector Y, 



n The second element of vector X against each of the first two elements of 
vector Y, 

n The third element of vector X against each of the first three elements of 
vector Y,

The processing continues in this fashion until it is completed.

Example 6-15 Named next Statement

signal X, Y: BIT_VECTOR(0 to 7);

A_LOOP: for I in X’range loop
. . .
  B_LOOP: for J in Y’range loop
    . . .
    next A_LOOP when I < J;
    . . .
  end loop B_LOOP;
. . .
end loop A_LOOP;

exit Statement

The exit  statement terminates a loop. Execution continues with the 
statement following end loop . The syntax is

exit [ label ] [ when condition ] ;

An exit  statement with no label terminates the innermost enclosing 
loop. When you identify a loop label, that named loop is terminated, as 
shown earlier in Example 6-15.

The optional when  clause executes its exit  statement when its 
condition (a Boolean expression) evaluates TRUE .

The exit  and next  statements are equivalent constructs. Both statements 
use identical syntax, and both skip the remainder of the enclosing (or 
named) loop. The only difference between the two statements is that exit  
terminates its loop, and next  continues with the next loop iteration (if 
any).

Example 6-16 compares two bit vectors. An exit  statement exits the 
comparison loop when a difference is found.



Example 6-16 Comparator Using the exit Statement

signal A, B:          BIT_VECTOR(1 downto 0);
signal A_LESS_THAN_B: Boolean ;
. . .
A_LESS_THAN_B <= FALSE;

for I in 1 downto 0 loop
  if (A(I) = ’1’ and B(I) = ’0’) then
    A_LESS_THAN_B <= FALSE;
    exit;
  elsif (A(I) = ’0’ and B(I) = ’1’) then
    A_LESS_THAN_B <= TRUE;
    exit;
  else
    null;      -- Continue comparing
  end if;
end loop;
 

Subprograms

Subprograms are independent, named algorithms. A subprogram is either a 
procedure  (zero or more in , inout , or out  parameters) or a 
function  (zero or more in  parameters and one return  value). 
Subprograms are called by name from anywhere within a VHDL 
architecture or a package body. Subprograms can be called sequentially (as 
described later in this chapter) or concurrently (as described in Chapter 7). 

In hardware terms, a subprogram call is similar to module instantiation, 
except that a subprogram call becomes part of the current circuit, whereas 
module instantiation adds a level of hierarchy to the design. A synthesized 
subprogram is always a combinational circuit (use a process  to create a 
sequential circuit).

Subprograms, like packages, have subprogram declarations and 
subprogram bodies. A subprogram declaration specifies its name, 
parameters, and return value (for functions). A subprogram body then 
implements the operation you want. 



Often, a package contains only type and subprogram declarations for use by 
other packages. The bodies of the declared subprograms are then 
implemented in the bodies of the declaring packages. 

The advantage of the separation between declarations and bodies is that 
subprogram interfaces can be declared in public packages during system 
development. One group of developers can use the public subprograms as 
another group develops the corresponding bodies. You can modify package 
bodies, including subprogram bodies, without affecting existing users of 
that package’s declarations. You can also define subprograms locally inside 
an entity, block, or process.

FPGA Express implements procedure and function calls with 
combinational logic, unless you use the map_to_entity  compiler 
directive (see ‘‘Mapping Subprograms to Components),-  later in this 
chapter).  FPGA Express does not allow inference of sequential devices, 
such as latches or flip-flops, in subprograms.

Example 6-17 shows a package containing some procedure and function 
declarations and bodies.  The example itself is not synthesizable; it just 
creates a template.  Designs that instantiate procedure P, however, compile 
normally.

Example 6-17 Subprogram Declarations and Bodies

package EXAMPLE is
  procedure P (A: in INTEGER; B: inout INTEGER);
    -- Declaration of procedure P

  function INVERT (A: BIT) return BIT;
    -- Declaration of function INVERT
end EXAMPLE;

package body EXAMPLE is
  procedure P (A: in INTEGER; B: inout INTEGER) is
    -- Body of procedure P
  begin
    B := A + B;
  end; 

  function INVERT (A: BIT) return BIT is
    -- Body of function INVERT
  begin
    return (not A);
  end;
end EXAMPLE;

For more information about subprograms, see ‘‘Subprograms- in 
Chapter 3.



Subprogram Calls

Subprograms can have zero or more parameters. A subprogram declaration 
defines each parameter’s name, mode, and type. These are a subprogram’s 
formal parameters. When the subprogram is called, each formal parameter 
is given a value, termed the actual parameter. Each actual parameter’s 
value (of an appropriate type) can come from an expression, a variable, or a 
signal.

The mode of a parameter specifies whether the actual parameter can be read 
from (mode in), written to (mode out ), or both read from and written to 
(mode inout ). Actual parameters that use modes out  and inout  must 
be variables or signals, including indexed names (A(1) ) and slices (A(1 
to 3) ), but cannot be constants or expressions.

Procedures and functions are two kinds of subprograms:

procedure
Can have multiple parameters that use modes in , inout , and out . Does 
not itself return a value.

Procedures are used when you want to update some parameters (modes 
out  and inout ), or when you do not need a return value. An example 
might be a procedure with one inout  bit vector parameter that inverted 
each bit in place.

function
Can have multiple parameters, but only parameters that use mode in . 
Returns its own function value. Part of a function definition specifies its 
return value type (also called the function type).

Functions are used when you do not need to update the parameters and you 
want a single return value. For example, the arithmetic function ABS  
returns the absolute value of its parameter.

Procedure Calls
A procedure call executes the named procedure with the given parameters. 
The syntax is

procedure_name [ ( [ name => ] expression
                 { , [ name => ] expression } ) ] ;

Each expression is called an actual parameter; expression is often 
just an identifier. If a name is present (positional notation), it is a formal 
parameter name associated with the actual parameter’s expression. 

Formal parameters are matched to actual parameters by positional or named 
notation. Named and positional notation can be mixed, but positional 
parameters must appear before named parameters.



Conceptually, a procedure call is performed in three steps. First, the values 
of the in  and inout  actual parameters are assigned to their associated 
formal parameters. Second, the procedure is executed. Third, the values of 
the inout  and out  formal parameters are assigned to the actual 
parameters.

In the synthesized hardware, the procedure’s actual inputs and outputs are 
wired to the procedure’s internal logic.

Example 6-18 shows a local procedure named SWAP  that compares two 
elements of an array and exchanges these elements if they are out of order. 
SWAP  is repeatedly called to sort an array of three numbers.



Example 6-18 Procedure Call to Sort an Array

package DATA_TYPES is 
  type DATA_ELEMENT is range 0 to 3;
  type DATA_ARRAY is array (1 to 3) of DATA_ELEMENT;
end DATA_TYPES;

use WORK.DATA_TYPES.ALL;
entity SORT is
  port(IN_ARRAY:   in DATA_ARRAY;
       OUT_ARRAY: out DATA_ARRAY);
end SORT;

architecture EXAMPLE of SORT is
begin

  process(IN_ARRAY)
    procedure SWAP(DATA:   inout DATA_ARRAY;
                   LOW, HIGH: in INTEGER) is
      variable TEMP: DATA_ELEMENT;
    begin
      if(DATA(LOW) > DATA(HIGH)) then  -- Check data
        TEMP := DATA(LOW);       
        DATA(LOW) := DATA(HIGH);       -- Swap data
        DATA(HIGH) := TEMP;
      end if;
    end SWAP;

    variable MY_ARRAY: DATA_ARRAY;

  begin
    MY_ARRAY := IN_ARRAY;   -- Read input to variable

    -- Pair-wise sort
    SWAP(MY_ARRAY, 1, 2);   -- Swap first and second
    SWAP(MY_ARRAY, 2, 3);   -- Swap second and third
    SWAP(MY_ARRAY, 1, 2);   -- Swap first and second 
again
    OUT_ARRAY <= MY_ARRAY;  -- Write result to output
  end process;
end EXAMPLE; 



Function Calls
A function call is similar to a procedure call, except that a function call is a 
type of expression because it returns a value.

Example 6-19 shows a simple function definition and two calls to that 
function.

Example 6-19 Function Call

function INVERT (A : BIT) return BIT is
  begin
    return (not A);
  end;
...
process
  variable V1, V2, V3: BIT;
begin
  V1 := ’1’;
  V2 := INVERT(V1) xor 1;   
  V3 := INVERT(’0’);  
end process;

For more information, see ‘‘Function Calls,- under ‘‘Operands- in 
Chapter 5.

return Statement

The return  statement terminates a subprogram. This statement is 
required in function definitions and is optional in procedure definitions. 
The syntax is

return expression ;      -- Functions
return ;                 -- Procedures

The required expression provides the function’s return value. Every 
function must have at least one return  statement. The expression’s type 
must match the declared function type. A function can have more than one 
return  statement. Only one return  statement is reached by a given 
function call.

A procedure can have one or more return  statements, but no 
expression is allowed. A return  statement, if present, is the last 
statement executed in a procedure. 

In Example 6-20, the function OPERATE  returns either the AND or the OR 
of its parameters A and B. The return depends on the value of its parameter 
OPERATION .



Example 6-20 Use of Multiple return Statements

function OPERATE(A, B, OPERATION: BIT) return BIT is
begin
  if (OPERATION = ’1’) then
    return (A and B);
  else
    return (A or B);
  end if;
end OPERATE; 

Mapping Subprograms to Components (Entities) 

In VHDL, entities cannot be invoked from within behavioral code. 
Procedures and functions cannot exist as entities (components), but must be 
represented by gates. You can overcome this limitation with the compiler 
directive map_to_entity , which causes FPGA Express to implement a 
function or procedure as a component instantiation. Procedures and 
functions that use map_to_entity are represented as components in 
designs in which they are called.

You can also use the FPGA Express Implementation Window to create a 
new level of hierarchy from a VHDL subprogram, as described in the 
FPGA Express User’s Guide. 

When you add a map_to_entity  directive to a subprogram definition, 
FPGA Express assumes the existence of an entity with the identified name 
and the same interface. FPGA Express does not check this assumption until 
it links the parent design. The matching entity must have the same input 
and output port names. If the subprogram is a function, you must also 
provide a return_port_name  directive, where the matching entity has 
an output port of the same name. 

These two directives are called component implication directives:

-- pragma map_to_entity    entity_name
-- pragma return_port_name port_name 



Insert these directives after the function or procedure definition. For 
example:

  function MUX_FUNC(A,B: in TWO_BIT; C: in BIT) 
return
      TWO_BIT is

  -- pragma map_to_entity MUX_ENTITY
  -- pragma return_port_name Z
...

When FPGA Express encounters the map_to_entity  directive, it parses 
but ignores the contents of the subprogram definition. Use 
-- pragma translate_off  and -- pragma translate_on  to hide 
simulation-specific constructs in a map_to_entity  subprogram. 

Note: The matching entity (entity_name) does not need to be written in 
VHDL. It can be in any format that FPGA Express supports. 

Caution The behavioral description of the subprogram is not checked against the 
functionality of the entity overloading it. Presynthesis and post-synthesis 
simulation results might not match if differences in functionality exist 
between the VHDL subprogram and the overloaded entity.

Example 6-21 shows a function that uses the component implication 
directives.



Example 6-21 Using Component Implication Directives on a Function 

package MY_PACK is
  subtype TWO_BIT is BIT_VECTOR(1 to 2);
  function MUX_FUNC(A,B: in TWO_BIT; C: in BIT) 
return
      TWO_BIT;
end;

package body MY_PACK is

  function MUX_FUNC(A,B: in TWO_BIT; C: in BIT) 
return
      TWO_BIT is

  -- pragma map_to_entity MUX_ENTITY
  -- pragma return_port_name Z

  -- contents of this function are ignored but should
  -- match the functionality of the module MUX_ENTITY
  -- so pre- and post simulation will match
  begin
    if(C = ’1’) then
      return(A);
    else 
      return(B);
    end if;
  end;

end;

use WORK.MY_PACK.ALL;

entity TEST is
  port(A: in TWO_BIT; C: in BIT; TEST_OUT: out TWO_
BIT);
end;

architecture ARCH of TEST is
begin
  process
  begin
    TEST_OUT <= MUX_FUNC(not A, A, C); 
                               -- Component 
implication call
  end process;
end;
use WORK.MY_PACK.ALL;

-- the following entity ’overloads’ the function
-- MUX_FUNC above

entity MUX_ENTITY is
  port(A, B: in TWO_BIT; C: in BIT; Z: out TWO_BIT);
end;

architecture ARCH of MUX_ENTITY is
begin
  process
  begin



      case C is
          when ’1’ => Z <= A;
          when ’0’ => Z <= B;
      end case;
  end process;
end; 

Example 6-22 shows the same design as Example 6-21, but without the 
creation of an entity for the function. The compiler directives have been 
removed.



Example 6-22 Using Gates to Implement a Function 

package MY_PACK is
  subtype TWO_BIT is BIT_VECTOR(1 to 2);
  function MUX_FUNC(A,B: in TWO_BIT; C: in BIT) 
      return TWO_BIT;
end;

package body MY_PACK is

  function MUX_FUNC(A,B: in TWO_BIT; C: in BIT) 
      return TWO_BIT is
  begin
    if(C = ’1’) then
      return(A);
    else 
      return(B);
    end if;
  end;
end;

use WORK.MY_PACK.ALL;

entity TEST is
  port(A: in TWO_BIT; C: in BIT; Z: out TWO_BIT);
end;

architecture ARCH of TEST is
begin
  process
  begin
    Z <= MUX_FUNC(not A, A, C); 
  end process;
end;



wait Statement

A wait  statement suspends a process until a positive-going edge or 
negative-going edge is detected on a signal. The syntax is

wait until signal = value ;

wait until signal’event and signal = value ;

wait until not signal’stable 
           and signal = value ;

signal is the name of a single-bit signal—a signal of an enumerated type 
encoded with one bit (see ‘‘Enumeration Encoding- in Chapter 4). value 
must be one of the literals of the enumerated type. If the signal type is BIT , 
the awaited value is either ’1’  for a positive-going edge or ’0’  for a 
negative-going edge.

Note: The three forms of the wait statement, a subset of IEEE VHDL, 
are specific to the current implementation of FPGA Express.

Inferring Synchronous Logic

A wait  statement implies synchronous logic, where signal is usually a 
clock signal. The next section describes how FPGA Express infers and 
implements this logic.

Example 6-23 shows three equivalent wait  statements (all positive-edge 
triggered).

Example 6-23 Equivalent wait Statements

wait until CLK = ’1’;
wait until CLK’event and CLK = ’1’;
wait until not CLK’stable and CLK = ’1’;

When a circuit is synthesized, the hardware in the three forms of wait  
statements does not differ. 

Example 6-24 shows a wait  statement used to suspend a process until the 
next positive edge (a 0-to-1 transition) on signal CLK .



Example 6-24 wait for a Positive Edge

signal CLK: BIT;
...
process
begin
  wait until CLK’event and CLK = ’1’; 
    -- Wait for positive transition (edge)
  ...
end process;

Note: IEEE VHDL specifies that a process containing a wait statement 
must not have a sensitivity list. See ‘‘Process Statements- in Chapter 7 for 
more information.

Example 6-25 shows how a wait  statement is used to describe a circuit 
where a value is incremented on each positive clock edge.

Example 6-25 Loop Using a wait Statement

process
begin
y <= 0;
wait until (clk’event and clk = ’1’);
while (y < MAX) loop
wait until (clk’event and clk = ’1’);
x <= y ;
y <= y + 1;
end loop;
end process;

Example 6-26 shows how multiple wait  statements describe a multicycle 
circuit. The circuit provides an average value of its input A over four clock 
cycles.

Example 6-26 Using Multiple wait Statements 

process
begin
  wait until CLK’event and CLK = ’1’; 
  AVE <= A;
  wait until CLK’event and CLK = ’1’; 
  AVE <= AVE + A;
  wait until CLK’event and CLK = ’1’; 
  AVE <= AVE + A;
  wait until CLK’event and CLK = ’1’; 
  AVE <= (AVE + A)/4;
end process;

Example 6-27 shows two equivalent descriptions. The first description uses 
implicit state logic, and the second uses explicit state logic.  



Example 6-27 wait Statements and State Logic

-- Implicit State Logic
process 
begin
  wait until CLOCK’event and CLOCK = ’1’;
  if (CONDITION) then 
    X <= A;
  else 
    wait until CLOCK’event and CLOCK = ’1’;
  end if;
end process;

-- Explicit State Logic
...
type STATE_TYPE is (SO, S1);
variable STATE : STATE_TYPE;
...
process 
begin
  wait until CLOCK’event and CLOCK = ’1’;
  case STATE is
    when S0 =>
      if (CONDITION) then
         X <= A;
         STATE := S0;  -- Set STATE here to avoid an
                       -- extra feedback loop in the 
                       -- synthesized logic.
      else 
         STATE := S1;
      end if;
    when S1 =>
      STATE := S0;
  end case;
end process;

Note: wait statements can be used anywhere in a process except in 
for..loop statements or subprograms. However, if any path through 
the logic contains one or more wait statements, all paths must contain at 
least one wait statement.

Example 6-28 shows how a circuit with synchronous reset can be described 
with wait  statements in an infinite loop. The reset signal must be checked 
immediately after each wait  statement. The assignment statements in 
Example 6-28 (X <= A;  and Y <= B; ) simply represent the sequential 
statements used to implement your circuit.



Example 6-28 Synchronous Reset Using wait Statements

process 
begin
  RESET_LOOP: loop
    wait until CLOCK’event and CLOCK = ’1’;
    next RESET_LOOP when (RESET = ’1’);
    X <= A; 
    wait until CLOCK’event and CLOCK = ’1’;
    next RESET_LOOP when (RESET = ’1’);
    Y <= B;
  end loop RESET_LOOP;
end process;

Example 6-29 shows two invalid uses of wait  statements. These 
limitations are specific to FPGA Express.

Example 6-29 Invalid Uses of the wait Statement 

...
type COLOR is (RED, GREEN, BLUE);
attribute ENUM_ENCODING : STRING;
attribute ENUM_ENCODING of COLOR : type is -100 010 
001";
signal CLK : COLOR;
...
process
  begin
    wait until CLK’event and CLK = RED; 
       -- Illegal: clock type is not encoded with one 
bit 
    ...
  end;
...

process
  begin 
    if (X = Y) then
       wait until CLK’event and CLK = ’1’; 
       ...
    end if;
       -- Illegal: not all paths contain wait 
statements
    ...
  end;

Combinational vs. Sequential Processes

If a process has no wait  statements, the process is synthesized with 
combinational logic. Computations performed by the process react 
immediately to changes in input signals. 



If a process uses one or more wait  statements, it is synthesized with 
sequential logic. The process computations are performed only once for 
each specified clock edge (positive or negative edge). The results of these 
computations are saved until the next edge by storing them in flip-flops. 

The following values are stored in flip-flops:
n Signals driven by the process; see ‘‘Signal Assignment Statement- at the 

beginning of this chapter.
n State vector values, where the state vector can be implicit or explicit (as in 

Example 6-27).
n Variables that may be read before they are set.

Note: Like the wait statement, some uses of the if statement can also 
imply synchronous logic, causing FPGA Express to infer registers or 
latches. These methods are described in Chapter 8, under ‘‘Register and 
Three-State Inference.-

Example 6-30 uses a wait  statement to store values across clock cycles. 
The example code compares the parity of a data value with a stored value. 
The stored value (called CORRECT_PARITY ) is set from the NEW_
CORRECT_PARITY  signal if the SET_PARITY  signal is TRUE .



Example 6-30 Parity Tester Using the wait Statement

signal CLOCK: BIT;
signal SET_PARITY, PARITY_OK: Boolean ;
signal NEW_CORRECT_PARITY: BIT;
signal DATA: BIT_VECTOR(0 to 3);
...
process
  variable CORRECT_PARITY, TEMP: BIT;
begin
  wait until CLOCK’event and CLOCK = ’1’;

  -- Set new correct parity value if requested
  if (SET_PARITY) then
    CORRECT_PARITY := NEW_CORRECT_PARITY;
  end if;

  -- Compute parity of DATA
  TEMP := ’0’;
  for I in DATA’range loop
    TEMP := TEMP xor DATA(I);
  end loop;

  -- Compare computed parity with the correct value
  PARITY_OK <= (TEMP = CORRECT_PARITY);
end process; 

Note that two flip-flops are in the synthesized schematic for Example 6-30. 
The first (input) flip-flop holds the value of CORRECT_PARITY . A 
flip-flop is needed here because CORRECT_PARITY  is read (when it is 
compared to TEMP ) before it is set (if SET_PARITY  is FALSE ). The 
second (output) flip-flop stores the value of PARITY_OK  between clock 
cycles. The variable TEMP  is not given a flip-flop because it is always set 
before it is read.



null Statement

The null  statement explicitly states that no action is required. The null  
statement is often used in case  statements because all choices must be 
covered, even if some of the choices are ignored. The syntax is

null;

Example 6-31 shows a typical usage of the null statement.

Example 6-31 null Statement

signal CONTROL: INTEGER range 0 to 7;
signal A, Z: BIT; 
...
Z <= A;

case CONTROL is      
  when 0 | 7 =>      -- If 0 or 7, then invert A
    Z <= not A;
  when others =>
    null;            -- If not 0 or 7, then do nothing
end case; 



Chapter 7
Concurrent Statements

A VHDL architecture contains a set of concurrent statements. Each 
concurrent statement defines one of the interconnected blocks or processes 
that describe the overall behavior or structure of a design. Concurrent 
statements in a design execute continuously, unlike sequential statements 
(see Chapter 6), which execute one after another.

The two main concurrent statements are 

process statement
A process statement defines a process. Processes are composed of 
sequential statements (see Chapter 6), but processes are themselves 
concurrent statements. All processes in a design execute concurrently. 
However, at any given time only one sequential statement is interpreted 
within each process. A process communicates with the rest of a design by 
reading or writing values to and from signals or ports declared outside the 
process.

block statement
A block statement defines a block. Blocks are named collections of 
concurrent statements, optionally using locally defined types, signals, 
subprograms, and components.

VHDL provides two concurrent versions of sequential statements: 
concurrent procedure calls and concurrent signal assignments. 



The component instantiation statement references a previously defined 
hardware component. 

Finally, the generate  statement creates multiple copies of any 
concurrent statement. 

The concurrent statements consist of
n process Statements
n block Statement
n Concurrent Procedure Calls
n Concurrent Signal Assignments
n Component Instantiations
n generate Statements

process Statements

A process  statement contains an ordered set of sequential statements. 
The syntax is

[ label: ] process [ ( sensitivity_list ) ]
     { process_declarative_item }
begin
     { sequential_statement }
end process [ label ] ;

An optional label names the process. The sensitivity_list is a 
list of all signals (including ports) read by the process, in the following 
format:

signal_name {, signal_name} 

The hardware synthesized by FPGA Express is sensitive to all signals read 
by the process. To guarantee that a VHDL simulator sees the same results 
as the synthesized hardware, a process sensitivity list must contain all 
signals whose changes require resimulation of that process. FPGA Express 
checks sensitivity lists for completeness and issues warning messages for 
any signals that are read inside a process but are not in the sensitivity list. 
An error is issued if a clock signal is read as data in a process.

Note: IEEE VHDL does not allow a sensitivity list if the process includes 
a wait statement. 



A process_declarative_item declares subprograms, types, 
constants, and variables local to the process. These items can be any of the 
following items:

n use  clause
n Subprogram declaration
n Subprogram body
n Type declaration
n Subtype declaration
n Constant declaration
n Variable declaration

Each sequential_statement is described in Chapter 6.

Conceptually, the behavior of a process is defined by the sequence of its 
statements. After the last statement in a process is executed, execution 
continues with the first statement. The only exception is during simulation: 
if a process has a sensitivity list, the process is suspended (after its last 
statement) until a change occurs in one of the signals in the sensitivity list. 

If a process has one or more wait  statements (and therefore no sensitivity 
list), the process is suspended at the first wait  statement whose wait 
condition is FALSE .

The hardware synthesized for a process is either combinational (not 
clocked) or sequential (clocked). If a process includes a wait  or 
if signal’event  statement, its hardware contains sequential 
components. The wait  and if  statements are described in Chapter 6.

Note: The process statements provide a natural means for describing 
conceptually sequential algorithms. If the values computed in a process 
are inherently parallel, consider using concurrent signal assignment 
statements (see ‘‘Concurrent Signal Assignments," later in this chapter).

Combinational Process Example

Example 7-1 shows a process that implements a simple modulo-10 counter. 
The example process is sensitive to (reads) two signals: CLEAR  and IN_
COUNT . It drives one signal, OUT_COUNT . If CLEAR  is ’1’  or IN_
COUNT  is 9, then OUT_COUNT  is set to zero. Otherwise, OUT_COUNT  is 
set to one more than IN_COUNT .



Example 7-1 Modulo-10 Counter Process

entity COUNTER is 
   port (CLEAR:      in BIT;
         IN_COUNT:   in INTEGER range 0 to 9;
         OUT_COUNT: out INTEGER range 0 to 9);
end COUNTER;

architecture EXAMPLE of COUNTER is
begin
  process(IN_COUNT, CLEAR)
  begin
     if (CLEAR = ’1’ or IN_COUNT = 9) then
        OUT_COUNT <= 0;
     else
        OUT_COUNT <= IN_COUNT + 1;
     end if;
  end process;
end EXAMPLE; 

Sequential Process Example

Because the process in Example 7-1 contains no wait  statements, it is 
synthesized with combinational logic. An alternate implementation of the 
counter is to retain the count value internally in the process with a wait  
statement. 

Example 7-2 shows an implementation of a counter as a sequential 
(clocked) process. On each 0-to-1 CLOCK  transition, if CLEAR  is ’1’  or 
COUNT  is 9, COUNT  is set to zero; otherwise, COUNT  is incremented by 1.



Example 7-2 Modulo-10 Counter Process with wait Statement

entity COUNTER is 
   port (CLEAR: in BIT;
         CLOCK: in BIT;
         COUNT: buffer INTEGER range 0 to 9);
end COUNTER;

architecture EXAMPLE of COUNTER is
begin
  process
  begin
     wait until CLOCK’event and CLOCK = ’1’;

     if (CLEAR = ’1’ or COUNT >= 9) then
        COUNT <= 0;
     else
        COUNT <= COUNT + 1;
     end if;
  end process;
end EXAMPLE; 

In Example 7-2, the value of the variable COUNT  is stored in four flip-flops. 
These flip-flops are generated because COUNT  can be read before it is set, 
so its value must be maintained from the previous clock cycle. See ‘‘wait 
Statement" in Chapter 6 for more information.

Driving Signals

If a process assigns a value to a signal, the process is a driver of that signal. 
If more than one process or other concurrent statement drives a signal, that 
signal has multiple drivers. 



Example 7-3 shows two three-state buffers driving the same signal (SIG ). 
Chapter 8 shows how to describe a three-state device in 
technology-independent VHDL, in the section on ‘‘Three-State Inference."

Example 7-3 Multiple Drivers of a Signal

A_OUT <= A when ENABLE_A else ’Z’;
B_OUT <= B when ENABLE_B else ’Z’;

process(A_OUT)
begin
   SIG <= A_OUT;
end process;

process(B_OUT)
begin
   SIG <= B_OUT;
end process; 

Bus resolution functions assign the value for a multiply-driven signal. See 
‘‘Resolution Functions," under ‘‘Subprograms" in Chapter 3, for more 
information.

block Statement

A block  statement names a set of concurrent statements. Use blocks to 
organize concurrent statements hierarchically. 

The syntax is

label: block
  { block_declarative_item }
begin
  { concurrent_statement }
end block [ label ];

The required label names the block. 

A block_declarative_item declares objects local to the block and 
can be any of the following items:



n use  clause
n Subprogram declaration
n Subprogram body
n Type declaration
n Subtype declaration
n Constant declaration
n Signal declaration
n Component declaration

The order of each concurrent_statement in a block is not 
significant, because each statement is always active. 

Note: FPGA Express does not support guarded blocks. 

Objects declared in a block are visible to that block and to all blocks nested 
within. When a child block (inside a parent block) declares an object with 
the same name as an object in the parent block, the child’s declaration 
overrides that of the parent (inside the child block).

Example 7-4 shows the use of nested blocks.

Example 7-4 Nested Blocks

B1: block
   signal S: BIT; -- Declaration of "S" in block B1
begin
   S <= A and B;  -- "S" from B1

   B2: block
      signal S: BIT; -- Declaration of "S"  in block B2
   begin
      S <= C and D;  -- "S" from B2

      B3: block
      begin
         Z <= S;     -- "S" from B2
      end block B3;
   end block B2;

  Y <= S;         -- "S" from B1
end block B1; 



Concurrent Procedure Calls

A concurrent procedure call is a procedure call used as a concurrent 
statement; it is used in an architecture or a block, rather than in a process. A 
concurrent procedure call is equivalent to a process containing a single 
sequential procedure call. The syntax is the same as that of a sequential 
procedure call:

procedure_name [  ( [ name => ] expression
                    { , [ name => ] expression } ) ] ;

The equivalent process is sensitive to all in  and inout  parameters of the 
procedure. Example 7-5 shows a procedure declaration, then a concurrent 
procedure call and its equivalent process.

Example 7-5 Concurrent Procedure Call and Equivalent Process

procedure ADD(signal A, B: in BIT; 
              signal SUM: out BIT);
...
ADD(A, B, SUM);    -- Concurrent procedure call
...
process(A, B)      -- The equivalent process
begin
   ADD(A, B, SUM); -- Sequential procedure call
end process;

FPGA Express implements procedure and function calls with logic, unless 
you use the map_to_entity  compiler directive (see ‘‘Mapping 
Subprograms to Components (Entities)," in Chapter 6).

A common use for concurrent procedure calls is to obtain many copies of a 
procedure.   For example, assume that a class of BIT_VECTOR  signals 
must contain only one bit with value 1 and the rest of the bits value 0. 
Suppose you have several signals of varying widths that you want 
monitored at the same time. One approach is to write a procedure to detect 
the error in a BIT_VECTOR  signal, then make a concurrent call to that 
procedure for each signal. 

Example 7-6 shows a procedure CHECK  that determines whether a given 
bit vector contains exactly one element with value ’1’ ; if this is not the 
case, CHECK  sets its out  parameter ERROR  to TRUE .



Example 7-6 Procedure Definition for Example 7-7

procedure CHECK(signal A:      in BIT_VECTOR; 
                signal ERROR: out Boolean ) is

  variable FOUND_ONE: Boolean  := FALSE;
                            -- Set TRUE when a ’1’ 
                            -- is seen
begin
   for I in A’range loop    -- Loop across all bits
                            --   in the vector
      if A(I) = ’1’ then    -- Found a ’1’
         if FOUND_ONE then  -- Have we already found one?
            ERROR <= TRUE;  -- Found two ’1’s
            return;         -- Terminate procedure
         end if;

         FOUND_ONE := TRUE; -- Note that we have
      end if;               --   seen a ’1’
   end loop;

   ERROR <= not FOUND_ONE;  -- Error will be TRUE
                            --   if no ’1’ found
end;

Example 7-7 shows the CHECK  procedure called concurrently for four 
different-sized bit vector signals.

Example 7-7 Concurrent Procedure Calls

BLK: block
  signal S1: BIT_VECTOR(0 to 0);
  signal S2: BIT_VECTOR(0 to 1);
  signal S3: BIT_VECTOR(0 to 2);
  signal S4: BIT_VECTOR(0 to 3);

  signal E1, E2, E3, E4: Boolean ;

begin
  CHECK(S1, E1);  -- Concurrent procedure call
  CHECK(S2, E2);
  CHECK(S3, E3);
  CHECK(S4, E4);
end block BLK; 

Concurrent Signal Assignments

A concurrent signal assignment is equivalent to a process containing that 
sequential assignment. Thus, each concurrent signal assignment defines a 
new driver for the assigned signal. The simplest form of the concurrent 
signal assignment is

target <= expression;



target is a signal that receives the value of expression.

Example 7-8 shows the value of the expression A and B  concurrently 
assigned to signal Z.

Example 7-8 Concurrent Signal Assignment

BLK: block
  signal A, B, Z: BIT;
begin
  Z <= A and B;
end block BLK;

The other two forms of concurrent signal assignment are conditional signal 
assignment and selected signal assignment.

Conditional Signal Assignment

Another form of concurrent signal assignment is the conditional signal 
assignment. The syntax is

target <= { expression when condition else }
          expression;

target is a signal that receives the value of an expression. The 
expression used is the first one whose Boolean condition is TRUE .



When a conditional signal assignment statement is executed, each 
condition is tested in order as written. The first condition that 
evaluates TRUE  has its expression assigned to target. If no 
condition is TRUE , the final expression is assigned to the target. 
If two or more conditions are TRUE , only the first one is effective, just 
like the first TRUE  branch of an if  statement.

Example 7-9 shows a conditional signal assignment, where the target is the 
signal Z. The signal Z  is assigned from one of the signals A, B, or C. The 
signal depends on the value of the expressions ASSIGN_A  and ASSIGN_
B.  Note that the assignment of A takes precedence over that of B, and the 
assignment of B takes precedence over that of C, because the first TRUE  
condition controls the assignment.

Example 7-9 Conditional Signal Assignment

  Z <= A when ASSIGN_A = ’1’ else
       B when ASSIGN_B = ’1’ else
       C; 

Example 7-10 shows a process equivalent to the conditional signal 
assignment in Example 7-9.

Example 7-10 Process Equivalent to Conditional Signal Assignment

process(A, ASSIGN_A, B, ASSIGN_B, C)
begin
   if ASSIGN_A = ’1’ then
      Z <= A;
   elsif ASSIGN_B = ’1’ then
      Z <= B;
   else
      Z <= C;
   end if;
end process;



Selected Signal Assignment

The final kind of concurrent signal assignment is the selected signal 
assignment. The syntax is

with choice_expression select
   target <= { expression when choices, }
             expression when choices;

target is a signal that receives the value of an expression. The 
expression selected is the first one whose choices include the value 
of choice_expression. The syntax of choices is the same as that of 
the case  statement:

choice { | choice }

Each choice can be either a static expression (such as 3) or a static range 
(such as 1 to 3 ). The type of choice_expression determines the 
type of each choice.   Each value in the range of the choice_
expression type must be covered by one choice. 

The final choice can be others , which matches all remaining 
(unchosen) values in the range of the choice_expression type. The 
others  choice, if present, matches choice_expression only if none 
of the other choices match.

The with..select statement evaluates choice_expression and 
compares that value to each choice value. The when  clause with the 
matching choice value has its expression assigned to target. 

The following restrictions are placed on choices:
n No two choices can overlap.
n If no others  choice is present, all possible values of choice_
expression must be covered by the set of choices.

Example 7-11 shows target Z assigned from A, B, C,  or D. The assignment 
depends on the current value of CONTROL .



Example 7-11 Selected Signal Assignment

signal A, B, C, D, Z: BIT;
signal CONTROL:  bit_vector(1 down to 0);
. . .
with CONTROL select
   Z <= A when "00",
        B when "01",
        C when "10",
        D when "11";

Example 7-12 shows the process equivalent to the selected signal 
assignment statement in Example 7-11.

Example 7-12 Process Equivalent to Selected Signal Assignment

process(CONTROL, A, B, C, D)
begin
   case CONTROL is
      when 0 =>
         Z <= A;
      when 1 =>
         Z <= B;
      when 2 =>
         Z <= C;
      when 3 =>
         Z <= D;
    end case;
end process;

Component Instantiations

A component instantiation references a previously defined hardware 
component, in the current design, at the current level of hierarchy. You can 
use component instantiations to define a design hierarchy. You can also use 
parts not defined in VHDL, such as components from an FPGA technology 
library, parts defined in the Verilog hardware description language, or the 
generic technology library. Component instantiation statements can be used 
to build netlists in VHDL. 



A component instantiation statement indicates
n A name for this instance of the component.
n The name of a component to include in the current entity.
n The connection method for a component’s ports.

The syntax is

instance_name : component_name port map (
                [ port_name => ] expression
                {, [ port_name => ] expression } );

instance_name names this instance of the component type 
component_name.

The port map connects each port of this instance of component_name 
to a signal-valued expression in the current entity. The value of 
expression can be a signal name, an indexed name, a slice name, or an 
aggregate. If expression is the VHDL reserved word open , the 
corresponding port is left unconnected.

You can map ports to signals by named or positional notation. You can 
include both named and positional connections in the port map, but you 
must place all positional connections before any named connections. 

Note: For named association, the component port names must exactly 
match the declared component’s port names. For positional association, 
the actual port expressions must be in the same order as the declared 
component’s port order.

Example 7-13 shows a component declaration (a 2-input NAND gate) 
followed by three equivalent component instantiation statements.

Example 7-13 Component Declaration and Instantiations

component ND2
   port(A, B: in BIT; C: out BIT);
end component;
. . .
signal X, Y, Z:  BIT;
. . .
U1: ND2 port map(X, Y, Z);               -- positional
U2: ND2 port map(A => X, C => Z, B => Y);-- named
U3: ND2 port map(X, Y, C => Z);          -- mixed

Example 7-14 shows the component instantiation statement defining a 
simple netlist. The three instances, U1 , U2 , and U3 , are instantiations of the 
2-input NAND gate component declared in Example 7-13.



Example 7-14 A Simple Netlist

signal TEMP_1, TEMP2: BIT;
. . .
  U1: ND2 port map(A, B, TEMP_1);
  U2: ND2 port map(C, D, TEMP_2);
  U3: ND2 port map(TEMP_1, TEMP_2, Z); 

generate Statements

A generate  statement creates zero or more copies of an enclosed set of 
concurrent statements. The two kinds of generate  statements are

for... generate 
the number of copies is determined by a discrete range

if... generate 

zero or one copy is made, conditionally

for .. generate Statement

The syntax is

label: for identifier in range generate
     { concurrent_statement }
end generate [ label ] ;

The required label names this statement (useful for nested generate  
statements).

The use of the identifier in this construct is similar to that of the 
for..loop  statement:

n identifier is not declared elsewhere. It is automatically declared by 
the generate  statement itself and is entirely local to the loop. A loop 
identifier overrides any other identifier with the same name but only within 
the loop. 



n The value identifier can be read only inside its loop, but you cannot 
assign a value to a loop identifier. In addition, the value of identifier 
cannot be assigned to any parameter whose mode is out  or inout .

FPGA Express requires that range must be a computable integer range, in 
either of these forms:

integer_expression to integer_expression
integer_expression downto  integer_expression

Each integer_expression evaluates to an integer. 

Each concurrent_statement can be any of the statements described 
in this chapter, including other generate  statements. 

A for..generate  statement executes as follows:

1. A new local integer variable is declared with the name identifier. 

2. identifier is assigned the first value of range, and each concurrent 
statement is executed once.

3. identifier is assigned the next value in range, and each concurrent 
statement is executed once more.

4. Step 3 is repeated until identifier is assigned the last value in range. 
Each concurrent statement is then executed for the last time, and execution 
continues with the statement following end generate . The loop 
identifier is deleted.

Example 7-15 shows a code fragment that combines and interleaves two 
four-bit arrays A and B into an eight-bit array C.

Example 7-15 for..generate Statement

signal A, B : bit_vector(3 downto 0);
signal C    : bit_vector(7 downto 0);
signal X    : bit;
. . .
GEN_LABEL: for I in 3 downto 0 generate
  C(2*I + 1) <= A(I) nor X;
  C(2*I)     <= B(I) nor X;
end generate GEN_LABEL; 

The most common usage of the generate  statement is to create multiple 
copies of components, processes, or blocks. Example 7-16 demonstrates 
this usage with components. Example 7-17 shows how to generate multiple 
copies of processes.Example 7-16 shows VHDL array attribute ’range  
used with the for..generate  statement to instantiate a set of COMP  
components that connect corresponding elements of bit vectors A and B.



Example 7-16 for..generate Statement Operating on an Entire Array

component COMP
  port (X :  in bit;
        Y : out bit);
end component;
. . .
signal A, B: BIT_VECTOR(0 to 7);
. . .
GEN: for I in A’range generate
  U: COMP port map (X => A(I), 
                    Y => B(I));
end generate GEN; 

Unconstrained arrays and array attributes are described under ‘‘Array 
Types" in Chapter 4. Array attributes are shown in Example 4-9.



 if . . generate Statement

The syntax is

label: if expression generate
     { concurrent_statement }
end generate [ label ] ;

label identifies (names) this statement. expression is any expression 
that evaluates to a Boolean value. A concurrent_statement  is any of 
the statements described in this chapter, including other generate  
statements. 

Note: Unlike the if statement described in Chapter 6, the 
if..generate statement has no else or elsif branches.

You can use the if..generate  statement to generate a regular structure 
that has different circuitry at its ends. Use a for..generate  statement to 
iterate over the desired width of a design, and a set of if..generate  
statements to define the beginning, middle, and ending sets of connections. 

Example 7-17 shows a technology-independent description of the 
following N-bit serial-to-parallel converter. Data is clocked into an N-bit 
buffer from right to left. On each clock cycle, each bit in an N-bit buffer is 
shifted up one bit, and the incoming DATA  bit is moved into the low-order 
bit. 



Example 7-17 Typical Use of if..generate Statements

entity CONVERTER is
  generic(N: INTEGER := 8);

  port(CLK, DATA:   in BIT;
       CONVERT: buffer BIT_VECTOR(N-1 downto 0));
end CONVERTER;

architecture BEHAVIOR of CONVERTER is
  signal S : BIT_VECTOR(CONVERT’range);
begin
  
  G: for I in CONVERT’range generate

    G1: -- Shift (N-1) data bit into high-order bit 
      if (I = CONVERT’left) generate
        process begin
          wait until (CLK’event and CLK = ’1’);
          CONVERT(I) <= S(I-1);
        end process;  
    end generate G1;

    G2: -- Shift middle bits up
      if (I > CONVERT’right and 
          I < CONVERT’left) generate

        S(I) <= S(I-1) and CONVERT(I);

        process begin
          wait until (CLK’event and CLK = ’1’);
          CONVERT(I) <= S(I-1);
        end process;
    end generate G2;

    G3:  -- Move DATA into low-order bit
      if (I = CONVERT’right) generate
        process begin
          wait until (CLK’event and CLK = ’1’);
          CONVERT(I) <= DATA;
        end process;
        S(I) <= CONVERT(I);
    end generate G3;

  end generate G;
end BEHAVIOR;



Example 7–17  (Continued)   Typical Use of if..generate Statements 



Chapter 8
Register and Three-State Inference

You can generally use several different, but logically equivalent, VHDL 
descriptions to describe a circuit. 

To write VHDL descriptions to produce efficient synthesized circuits, 
consider the following topics:

n Register Inference
n Three-State Inference

You can use VHDL to make your design more efficient in terms of the 
synthesized circuit’s area and speed, as follows:

n A design that needs some, but not all, of its variables or signals stored 
during operation can be written to minimize the number of latches or 
flip-flops required.

n A design that is described more easily with several levels of hierarchy can 
be synthesized more efficiently if part of the design hierarchy is collapsed 
during synthesis.

Register Inference

FPGA Express provides register inferencing using the wait  and if  
statements.



A register is a simple, one-bit memory device, either a flip-flop or a latch.  
A flip-flop is an edge-triggered memory device.  A latch is a level-sensitive 
memory device.

Use the wait  statement to imply flip-flops in a synthesized circuit. FPGA 
Express creates flip-flops for all signals, and some variables assigned 
values in a process with a wait  statement. 

The if  statement can be used to imply registers (flip-flops or latches) for 
signals and variables in the branches of the if  statement.  

To use register inferences, describe latches and flip-flops, and learn 
efficient use of registers, familiarize yourself with

n Using register inference 
n Describing latches
n Describing flip-flops
n Efficient use of registers

Using Register Inference

Using register inference involves describing clock signals and using wait  
and if  statements for register inferencing. Recommended models for 
different types of inferred registers and current Synopsys restrictions must 
also be considered.

Describing Clocked Signals

FPGA Express can infer asynchronous memory elements from VHDL 
descriptions written in a natural style.

Use the wait  and if  statements to test for the rising or falling edge of a 
signal. The most common usages are

process
begin
  wait until ( edge); 
  ...
end process;
...

process ( sensitivity_list)
begin
  if ( edge) 
    ...
  end if;
end process;



Another form is

process ( sensitivity_list)
begin
  if (...) then
    ...
  elsif (...)
    ...
  elsif ( edge) then
    ...
  end if;
end process;

edge refers to an expression that tests for the positive or negative edge of a 
signal. The syntax of an edge expression is

SIGNAL’event      and SIGNAL = ’1’  -- rising edge
NOT SIGNAL’stable and SIGNAL = ’1’  -- rising edge

SIGNAL’event      and SIGNAL = ’0’  -- falling edge
NOT SIGNAL’stable and SIGNAL = ’0’  -- falling edge

In a wait  statement, edge can also be

signal = ’1’  -- rising edge
signal = ’0’  -- falling edge

An edge expression must be the only condition of an if  or an elsif  
statement.  You can have only one edge expression in an if statement, 
and the if  statement must not have an else  clause. An edge expression 
cannot be part of another logical expression nor used as an argument.

if ( edge and RST = ’1’) 
  -- Illegal usage; edge must be only condition

Any_function( edge);
  -- Illegal usage; edge cannot be an argument

if X > 5 then
  sequential_statement;
elsif edge then
  sequential_statement;
else
  sequential_statement;
end if;
  -- Illegal usage; do  not  use  edge as an intermediate 
expression.

These lines illustrate three incorrect uses of the edge expression. In the 
first group, the edge expression is part of a larger Boolean expression. In 
the second group, the edge expression is used as an argument. In the third 
group, the edge expression is used as an intermediate condition.



wait vs if Statements

Sometimes you can use the wait  and if  statements interchangeably.  The 
if  statement is usually preferred, because it provides greater control over 
the inferred register’s capabilities, as described in the next section.

IEEE VHDL requires that a process with a wait  statement must not have a 
sensitivity list.  

An if  edge statement can appear anywhere in a process.  The sensitivity 
list of the process must contain all signals read in the process, including the 
edge signal. In general, the following guidelines apply:

n Synchronous processes (processes that compute values only on clock 
edges) must be sensitive to the clock signal.

n Asynchronous processes (processes that compute values on clock edges 
and when asynchronous conditions are TRUE ) must be sensitive to the 
clock signal (if any), and to inputs that affect asynchronous behavior.

Recommended Use of Register Inference Capabilities

The register inference capability can support styles of description other 
than those described here. However, for best results:

n Restrict each process to a single type of memory-element inferencing:  
latch, latch with asynchronous set or reset, flip-flop, flip-flop with 
asynchronous reset, or flip-flop with synchronous reset.



n Use the following templates.

LATCH:  process( sensitivity_list)
          begin
            if LATCH_ENABLE then
                   ...
            end if;
          end process;

LATCH_ASYNC_SET:  
                   ...
attribute async_set_reset of SET : signal is "true";
                   ...
        process( sensitivity_list)
          begin
            if SET then
               Q <= ’1’;
            elsif LATCH_ENABLE then
                   ...
            end if;
          end process;

FF:     process(CLK)
          begin
            if edge then
                ...
            end if;
          end process;

FF_ASYNC_RESET:  
        process(RESET, CLK)
          begin
            if RESET then
               Q <= ’0’;
            elsif edge then
               Q <= ...;
            end if;
          end process;

FF_SYNC_RESET:  
        process(RESET, CLK)
          begin
            if edge then
              if RESET then
                Q <= ’0’;
              else
                Q <= ...;
              end if;
            end if;
          end process;

Examples of these templates are provided in ‘‘Describing Latches" and 
‘‘Describing Flip-Flops," later in this chapter.



Restrictions on Register Capabilities

Do not use more than one if  edge expression in a process.

     process(CLK_A, CLK_B)
     begin
       if(CLK_A’event and CLK_A = ’1’) then
         A <= B;
       end if;
     
       if(CLK_B’event and CLK_B = ’1’) then  -- 
Illegal
         C <= B;
       end if;
     end process;

Do not assign a value to a variable or signal on a FALSE  branch of an if 
edge statement. This assignment is equivalent to checking for the absence 
of a clock edge, which has no hardware counterpart.

     process(CLK)
     begin
       if(CLK’event and CLK = ’1’) then
         SIG <= B;
       else
         SIG <= C;      -- Illegal 
       end if;
     end process;

If a variable is assigned a value inside an edge construct, do not read that 
variable later in the same process.

process(CLK)
  variable EDGE_VAR, ANY_VAR:  BIT;

begin
  if (CLK’event and CLK = ’1’) then
    EDGE_SIGNAL <= X;
     EDGE_VAR    := Y;
     ANY_VAR     := EDGE_VAR; -- Legal
  end if;

  ANY_VAR := EDGE_VAR;        -- Illegal
end process;

Do not use an edge expression as an operand.

if not(CLK’event and CLK = ’1’) then  -- Illegal



Delays in Registers

If you use delay specifications with values that may be registered, the 
simulation to behave differently from the logic synthesized by FPGA 
Express.  For example, the description in Example 8-1 contains delay 
information that causes FPGA Express to synthesize a circuit that behaves 
unexpectedly.

Example 8-1 Delays in Registers

component flip_flop ( 
    D, clock: in BIT;
    Q:        out BIT;);
end component;

process ( A, C, D, clock );
  signal B: BIT;
begin
B <= A after 100ns;

F1: flip_flop port map ( A, C, clock ),
F2: flip_flop port map ( B, D, clock );
end process;

In Example 8-1, B changes 100 nanoseconds after A changes.  If the 
clock period is fewer than 100 nanoseconds, output D  is one or more clock 
cycles behind output C  when the circuit is simulated.  However, because 
FPGA Express ignores the delay information, A and B change values at 
the same time, and so do C and D .  This behavior is not the same as in the 
simulated circuit.

When you use delay information in your designs, make sure the delays do 
not affect registered values.  In general, you can safely include delay 
information in your description if it does not change the value that gets 
clocked into a flip-flop.

Describing Latches

FPGA Express infers latches from incompletely specified conditional 
expressions.  In  Example 8-2, the if  statement infers a latch because there 
is no else  clause:



Example 8-2 Latch Inference

process(GATE, DATA)
begin
  if (GATE = ’1’) then
    Q <= DATA;
  end if;
end process;

Figure 8-1 Latch Inference 

The inferred latch uses CLK  as its clock and DATA  as its data input, as 
shown in Example 8-2.

Automatic Latch Inferencing

A signal or variable that is not driven under all conditions becomes a 
latched value. As shown in Example 8-3, TEMP  becomes a latched value 
because it is assigned only when PHI  is 1.

Example 8-3 Automatically Inferred Latch

if(PHI = ’1’) then
  TEMP <= A;
end if;

Figure 8-2 Automatically Inferred Latch 

To avoid inferred latches, assign a value to the signal under all conditions, 
as shown in Example 8-4.



Example 8-4 Fully Specified Signal:  No Latch Inference 

if (PHI = ’1’) then
  TEMP <= A;
else
  TEMP <= ’0’;
end if;

Restrictions on Latch Inference Capabilities

You cannot read a conditionally assigned variable after the if  statement in 
which it is assigned. A conditionally assigned variable is assigned a new 
value under some, but not all, conditions.

Therefore, a variable must always have a value before it is read.

signal X, Y: BIT;
. . .
process
  variable VALUE: BIT;
begin

  if ( condition) then
    VALUE := X;
  end if;

  Y <= VALUE;  -- Illegal
end;  

In simulation, latch inference occurs because signals and variables can hold 
state over time. A signal or variable holds its value until that value is 
reassigned.  FPGA Express inserts a latch to duplicate this holding of state 
in hardware.

Variables declared locally within a subprogram do not hold their value over 
time. Every time a subprogram is used, its variables are reinitialized.  
Therefore, FPGA Express does not infer latches for variables declared in 
subprograms. In Example 8-5, no latches are inferred.



Example 8-5 Function without Inferred Latch

function MY_FUNC(DATA, GATE : BIT) return BIT is
     variable STATE: BIT;
begin
     if GATE then
          STATE := DATA;
     end if;
     return STATE;
end;
. . .
Q <= MY_FUNC(DATA, GATE);

Figure 8-3 Function without Inferred Latch 

Example—Design with Two-Phase Clocks

By using the latch inference capability, you can describe network 
structures, such as two-phase systems in a technology-independent manner. 
Example 8-6 shows a simple two-phase system with clocks PHI_1  and 
PHI_2 .

Example 8-6 Two-Phase Clocks

entity LATCH_VHDL is
  port(PHI_1, PHI_2, A : in BIT; 
       t: out BIT);
end LATCH_VHDL;

architecture EXAMPLE of LATCH_VHDL is
  signal TEMP, LOOP_BACK: BIT;
begin
  process(PHI_1, A, LOOP_BACK)
  begin
    if(PHI_1 = ’1’) then
      TEMP <= A and LOOP_BACK;
    end if;
  end process;

  process(PHI_2, TEMP)
  begin
    if(PHI_2 = ’1’) then
      LOOP_BACK <= not TEMP;
    end if;
  end process;
  t <= LOOP_BACK;
end EXAMPLE;



Figure 8-4 Two-Phase Clocks 

FPGA Express does not automatically infer dual-phase latches (devices 
with master and slave clocks).  To use these devices, you must instantiate 
them as components, as described in Chapter 3.

Describing Flip- Flops

Example 8-7 shows how an edge construct creates a flip-flop.

Example 8-7 Inferred Flip-Flop

process(CLK, DATA)
begin
  if (CLK’event and CLK = ’1’) then
    Q <= DATA;
  end if;
end process;  

Figure 8-5 Inferred Flip-Flop 

Flip-Flop with Asynchronous Reset

Example 8-8 shows how to specify a flip-flop with an asynchronous reset.



Example 8-8 Inferred Flip-Flop with Asynchronous Reset

process(RESET_LOW, CLK, SYNC_DATA)
begin
  if RESET_LOW = ’0’ then
    Q <= ’0’;
  elsif (CLK’event and CLK = ’1’) then
    Q <= SYNC_DATA;
  end if;
end process;  

Note how the flip-flop in Example 8-8 is wired.
n The D input of the flip-flop is wired to SYNC_DATA . 
n If the reset condition is computable (see "Computable Operands" in 

Chapter 5), either the SET  or CLEAR  pin of the flip-flop is wired to the 
RESET  (or RESET_LOW ) signal, as shown in Example 8–8.

n If the reset condition (ANY_SIGNAL  in Example 8–9) is not computable, 
SET  is wired to (ANY_SIGNAL AND ASYNC_DATA)  and CLEAR  is 
wired to (ANY_SIGNAL AND NOT(ASYNC_DATA)) , as shown in 
Example 8–9.

Example 8-9 shows an inferred flip-flop with an asynchronous reset, where 
the reset condition is not computable.



Example 8-9 Inferred Flip-Flop with Asynchronous Set or Clear

process (CLK, ANY_SIGNAL, ASYNC_DATA, SYNC_DATA)
  begin
    if (ANY_SIGNAL) then
      Q <= ASYNC_DATA;
    elsif (CLK’event and CLK = ’1’) then
      Q <= SYNC_DATA;
    end if;
  end process;

Example—Synchronous Design with Asynchronous Reset

Example 8-10 describes a synchronous finite state machine (FSM) with an 
asynchronous reset.



Example 8-10 Synchronous Finite State Machine with Asynchronous Reset

package MY_TYPES is
  type STATE_TYPE is (S0, S1, S2, S3);
end MY_TYPES;

use WORK.MY_TYPES.ALL;

entity STATE_MACHINE is
  port(CLK, INC, A, B: in BIT; RESET: in Boolean ;
       t: out BIT);
end STATE_MACHINE;

architecture EXAMPLE of STATE_MACHINE is
  signal CURRENT_STATE, NEXT_STATE: STATE_TYPE;
begin
  SYNC: process(CLK, RESET)
  begin
    if (RESET) then
      CURRENT_STATE <= S0;
    elsif (CLK’event and CLK = ’1’) then
      CURRENT_STATE <= NEXT_STATE;
    end if;
  end process SYNC;

  FSM: process(CURRENT_STATE, A, B)
  begin
    t <= A;            -- Default assignment
    NEXT_STATE <= S0;  -- Default assignment

    if (INC = ’1’) then
      case CURRENT_STATE is
        when S0 =>
          NEXT_STATE <= S1;
        when S1 =>
          NEXT_STATE <= S2;
          t <= B;
        when S2 =>
          NEXT_STATE <= S3;
        when S3 =>
          null;
      end case;
    end if;
  end process FSM;
end EXAMPLE;



Figure 8-6 Synchronous Finite State Machine with Asynchronous Reset 

Attributes

New attributes used to assist register inference are discussed in this section. 
The attributes are defined in a VHDL library called Synopsys Attribute’s 
package.

attribute async_set_reset : string;
attribute sync_set_reset : string;
attribute async_set_reset_local : string;
attribute sync_set_reset_local : string;
attribute async_set_reset_local_all : string;
attribute sync_set_reset_local_all : string;
attribute one_hot : string;
attribute one_cold : string;

async_set_reset

The async_set_reset  attribute is attached to single-bit signals using 
the attribute construct. FPGA Express checks signals with the async_
set_reset  attribute set to TRUE to determine whether these signals 
asynchronously set or reset a latch in the entire design. 

The syntax of async_set_reset  is 

        attribute async_set_reset of signal_name,. : signal is "true";

Latch with Asynchronous Set or Clear  Inputs

The asynchronous clear signal for a latch is inferred by driving the "Q" pin 
of your latch to 0. The asynchronous set signal for a latch is inferred by 
driving the "Q" pin of your latch to 1. Although FPGA Express does not 
require that the clear (set) be the first condition in your conditional branch, 
it is best to write your VHDL in this manner. 



Example 8-11 shows how to specify a latch with an asynchronous clear 
input.  To specify a latch with an asynchronous set, change the logic as 
indicated by the comments.  

Example 8-11 Inferred Latch with Asynchronous Clear Input

attribute async_set_reset of clear : signal is 
"true";
process(clear, gate, a)
begin
  if ( clear = ’1’) then
    q <= ’0’;
  elsif (gate = ’1’) then
    q <= a;
  end if;
end process;

Figure 8-7 Inferred Latch with Asynchronous Clear 

sync_set_reset

The sync_set_reset  attribute is attached to single-bit signals with the 
attribute constructs. FPGA Express checks signals with the sync_set_
reset  attribute set to TRUE  to determine whether these signals 
synchronously set or reset a flip-flop in the entire design. 

The syntax of sync_set_reset  is 

            attribute sync_set_reset of  signal_name,... :  signal is "true";

Flip-Flop with Synchronous Reset  Input

Example 8-12 shows how to specify a flip-flop with a synchronous reset.



Example 8-12 Inferred Flip-Flop with Synchronous Reset Input

attribute sync_set_reset of RESET, SET : signal is 
"true";
process(RESET, CLK)
begin
  if (CLK’event and CLK = ’1’) then
    if RESET = ’1’ then
      Q <= ’0’;
    else
      Q <= DATA_A;
    end if;
  end if;
end process;  

process (SET, CLK)
begin
  if (CLK’event and CLK = ’1’) then
    if SET = ’1’ then
      T <= ’1’;
    else
      T <= DATA_B;
    end if;
  end if;
end process;

async_set_reset_local

The async_set_reset_local  attribute is attached to the label of a 
process with a value of a double-quoted list of single-bit signals. Every 
signal in the list is treated as though it has the async_set_reset  
attribute attached in the specified process. 

The syntax of async_set_reset_local  is

attribute async_set_reset_local of process_label : 
label is
 "signal_name,...";



Example 8-13 Asynchronous Set/Reset on a Single Block

library IEEE;
library synopsys;
use IEEE.std_logic_1164.all;
use synopsys.attributes.all;

entity e_async_set_reset_local is
port(reset, set, gate: in std_logic; y, t: out std_
logic);
end e_async_set_reset_local;

architecture rtl of e_async_set_reset_local is
attribute async_set_reset_local of direct_set_reset 
: label 
is "reset, set";
begin

  direct_set_reset: process (reset, set)
  begin
    if (reset = ’1’) then
      y <= ’0’;             -- asynchronous reset
    elsif (set = ’1’) then
      y <= ’1’;             -- asynchronous set
    end if;
  end process direct_set_reset;

  gated_data: process (gate, reset, set)
  begin
    if (gate = ’1’) then
      if (reset = ’1’) then
        t <= ’0’;             -- gated data
      elsif (set = ’1’) then
        t <= ’1’;             -- gated data
      end if;
    end if;
  end process gated_set_reset;

end rtl;



Figure 8-8 Asynchronous Set/Reset on a Single Block 

sync_set_reset_local

The sync_set_reset_local  attribute is attached to the label of a 
process with a value of a double-quoted list of single-bit signals. Every 
signal in the list is treated as though it has the sync_set_reset  
attribute attached in the specified process.

The syntax of sync_set_reset_local  is 

attribute sync_set_reset_local of process_label : 
label is "signal_name,..."

y

z

reset

set



Example 8-14 Synchronous Set/Reset on a Single Block

library IEEE;
library synopsys;
use IEEE.std_logic_1164.all;
use synopsys.attributes.all;

entity e_sync_set_reset_local is
port(clk, reset, set, gate : in std_logic; y, t: out std_logic);
end e_sync_set_reset_local;

architecture rtl of e_sync_set_reset_local is
attribute sync_set_reset_local of clocked_set_reset : label is "reset, set";
begin

  clocked_reset: process (clk, reset, set)
  begin
    if (clk’event and clk = ’1’) then
      if (reset = ’1’) then
        y <= ’0’;             -- synchronous reset
      else
        y <= ’1’;               -- synchronous set
      end if;
    end if;
  end process clocked_set_reset;

  gated_data: process (clk, gate, reset, set)
  begin
    if (clk’event and clk = ’1’) then
      if (gate = ’1’) then
        if (reset = ’1’) then
          t <= ’0’;             -- gated data
        elsif (set = ’1’) then
          t <= ’1’;             -- gated data
        end if;
      end if;
    end if;
  end process gated_set_reset;

end rtl;



Figure 8-9 Synchronous Set/Reset on a Single Block 

async_set_reset_local_all

The async_set_reset_local_all  attribute is attached to a process 
label. The attribute async_set_reset_local_all  specifies that all 
the signals in the process are used to detect an asynchronous set or reset 
condition for inferred latches or flip-flops. 

The syntax of async_set_reset_local_all  is 

attribute async_set_reset_local_all of process_
label,... : label is "true";
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reset
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d1



Example 8-15 Asynchronous Set/Reset on Part of a Design

library IEEE;
library synopsys;
use IEEE.std_logic_1164.all;
use synopsys.attributes.all;

entity e_async_set_reset_local_all is
port(reset, set, gate, gate2: in std_logic; y, t, w: out std_logic);
end e_async_set_reset_local_all;

architecture rtl of e_async_set_reset_local_all is
attribute async_set_reset_local_all of
          direct_set_reset, direct_set_reset_too: label is "true";
begin
  direct_set_reset: process (reset, set)
  begin
    if (reset = ’1’) then
      y <= ’0’;             -- asynchronous reset
    elsif (set = ’1’) then
      y <= ’1’;             -- asynchronous set
    end if;
  end process direct_set_reset;

  direct_set_reset_too: process (gate, reset, set)
  begin
    if (gate = ’1’) then
      if (reset = ’1’) then
        t <= ’0’;             -- asynchronous reset
      elsif (set = ’1’) then
        t <= ’1’;             -- asynchronous set
      end if;
    end if;
  end process direct_set_reset_too;

  gated_data: process (gate2, reset, set)
  begin
    if (gate = ’1’) then
      if (reset = ’1’) then
        w <= ’0’;             -- gated data
      elsif (set = ’1’) then
        w <= ’1’;             -- gated data
      end if;
    end if;
  end process gated_set_reset;

end rtl;



Figure 8-10 Asynchronous Set/Reset on Part of a Design 

sync_set_reset_local_all

The sync_set_reset_local_all  attribute is attached to a process 
label. The attribute sync_set_reset_local_all  specifies that all 
the signals in the process are used to detect a synchronous set or reset 
condition for inferred latches or flip-flops.

The syntax of sync_set_reset_local_all  is 

attribute sync_set_reset_local_all of process_label,... : label is "true";



Example 8-16 Synchronous Set/Reset on a Part of a Design

library IEEE;
library synopsys;
use IEEE.std_logic_1164.all;
use synopsys.attributes.all;

entity e_sync_set_reset_local_all is
port(clk, reset, set, gate, gate2: in std_logic; y, t, w: out std_logic);
end e_sync_set_reset_local_all;

architecture rtl of e_sync_set_reset_local_all is
attribute sync_set_reset_local_all of
          clocked_set_reset, clocked_set_reset_too: label is "true";
begin

  clocked_set_reset: process (clk, reset, set)
  begin
    if (clk’event and clk = ’1’) then
      if (reset = ’1’) then
        y <= ’0’;             -- synchronous reset
      elsif (set = ’1’) then
        y <= ’1’;             -- synchronous set
      end if;
    end if;
  end process clocked_set_reset;

  clocked_set_reset_too: process (clk, gate, reset, set)
  begin
    if (clk’event and clk = ’1’) then
      if (gate = ’1’) then
        if (reset = ’1’) then
          t <= ’0’;             -- synchronous reset
        elsif (set = ’1’) then
          t <= ’1’;             -- synchronous set
        end if;
      end if;
    end if;
  end process clocked_set_reset_too;

  gated_data: process (clk, gate2, reset, set)
  begin
    if (clk’event and clk = ’1’) then
      if (gate = ’1’) then
        if (reset = ’1’) then
          w <= ’0’;             -- gated data
        elsif (set = ’1’) then
          w <= ’1’;             -- gated data
        end if;
      end if;
    end if;
  end process gated_set_reset;

end rtl;



Figure 8-11 Synchronous Set/Reset on a Part of a Design 

Note: Use the one_hot and one_cold directives to implement D-type 
flip-flops with asynchronous set and reset signals.  These two attributes 
tell FPGA Express that only one of the objects in the list are active at a 
time.  If you are defining active high signals, use one_hot.  For active 
low, use one_cold.  Each attribute has two objects specified.

one_hot

The one_hot  directive takes one argument of a double-quoted list of 
signals separated by commas. This attribute indicates that the group of 
signals are one_hot , in other words, at any time, no more than one signal 
can have a Logic 1 value. You must make sure that the group of signals are 
really one_hot . FPGA Express does not produce any logic to check this 
assertion.

The syntax of one_hot  is

attribute one_hot signal_name,... : label is "true";



Example 8-17 Using one_hot for Set and Reset

library IEEE;
library synopsys;
use IEEE.std_logic_1164.all;
use synopsys.attributes.all;

entity e_one_hot is
port(reset, set, reset2, set2: in std_logic; y, t: out std_logic);
attribute async_set_reset of reset, set : signal is "true";
attribute async_set_reset of reset2, set2 : signal is "true";
attribute one_hot of reset, set : signal is "true";
end e_one_hot;

architecture rtl of e_one_hot is
begin
  direct_set_reset: process (reset, set )
  begin
    if (reset = ’1’) then
      y <= ’0’;             -- asynchronous reset by "reset"
    elsif (set = ’1’) then
      y <= ’1’;             -- asynchronous set by "set"
    end if;
  end process direct_set_reset;
  direct_set_reset_too: process (reset2, set2 )
  begin
    if (reset2 = ’1’) then
      t <= ’0’;             -- asynchronous reset by "reset2"
    elsif (set2 = ’1’) then
      t <= ’1’;             -- asynchronous set by "~reset2 set2"
    end if;
  end process direct_set_reset_too;

-- synopsys synthesis_off
process (reset, set)
begin
  assert not (reset=’1’ and set=’1’)
    report "One-hot violation"
    severity Error;
end process;
-- synopsys synthesis_on
end rtl;



Figure 8-12 Using one_hot for Set and Reset 

one_cold

The one_cold  directive is similar to the one_hot  directive. one_cold  
indicates that no more than one signal in the group can have a Logic 0 value 
at any time. 

The syntax of one_cold  is

attribute one_cold signal_name,... : label is "true";
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Example 8-18 Using one_cold for Set and Reset

library IEEE;
library synopsys;
use IEEE.std_logic_1164.all;
use synopsys.attributes.all;

entity e_one_cold is
port(reset, set, reset2, set2: in std_logic; y, t: out std_logic);
attribute async_set_reset of reset, set : signal is "true";
attribute async_set_reset of reset2, set2 : signal is "true";
attribute one_cold of reset, set : signal is "true";
end e_one_cold;

architecture rtl of e_one_cold is
begin

  direct_set_reset: process (reset, set )
  begin
    if (reset = ’0’) then
      y <= ’0’;             -- asynchronous reset by "not reset"
    elsif (set = ’0’) then
      y <= ’1’;             -- asynchronous set by "not set"
    end if;
  end process direct_set_reset;

  direct_set_reset_too: process (reset2, set2 )
  begin
    if (reset2 = ’0’) then
      t <= ’0’;             -- asynchronous reset by "not reset2"
    elsif (set2 = ’0’) then
      t <= ’1’;           -- asynchronous set by "(not reset2) (not set2)"
    end if;
  end process direct_set_reset_too;

-- synopsys synthesis_off
process (reset, set)
begin
  assert not (reset=’0’ and set=’0’)
    report "One-cold violation"
    severity Error;
end process;
-- synopsys synthesis_on

end rtl;



Figure 8-13 Using one_cold for Set and Reset 

FPGA Express  Latch and Flip-Flop Inference

FPGA Express inferes latches and flip-flops as follows:
n Asynchronous Flip-Flop Resets

FPGA Express reports asynchronous set and reset conditions of flip-flops.

n Asynchronous Latch Resets
FPGA Express interprets each control object of a latch as synchronous. If 
you want to asynchronously set or reset a latch, set this variable to TRUE . 

n Flip-Flop Feedback Loops
FPGA Express removes all flip-flop feedback loops. For example, feedback 
loops inferred from a statement such as Q=Q  are removed. With the state 
feedback removed from a simple D flip-flop, it becomes a synchronous 
loaded flip-flop. 
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n Flip-Flop Inverted Feedback Loops
FPGA Express removes all inverted flip-flop feedback loops. For example, 
feedback loops inferred from a statement such as Q=Q  are removed and 
synthesized as T flip-flops. 

n Reporting Inferred Modules
FPGA Express generates a brief report on inferred latches, flip-flops, or 
three-state devices. 

Efficient Use of Registers

Organize your HDL description so that you build only as many flip-flops as 
the design requires.  Example 8-19 shows a description where too many 
flip-flops are implied.

Example 8-19 Circuit with Six Implied Registers

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;

entity ex8_13 is
port ( clk , reset : in std_logic;
       and_bits , or_bits , xor_bits : out std_logic
);
end ex8_13;

architecture rtl of ex8_13 is
begin
process
variable count : std_logic_vector (2 downto 0);
begin
     wait until (clk’event and clk = ’1’);
     if (reset = ’1’) then
          count := "000";
     else count := count + 1;
     end if;
     and_bits <= count(2) and count(1) and count(0);
     or_bits <= count(2) or count(1) or count(0);
     xor_bits <= count(2) xor count(1) xor count(0);
end process;
end rtl;



Figure 8-14 Circuit with Six Implied Registers 

In Example 8-19, the outputs AND_BITS , OR_BITS , and XOR_BITS  
depend solely on the value of COUNT . Because COUNT  is registered, the 
three outputs do not need to be registered. To avoid implying extra 
registers, assign the outputs from within a process that does not have a 
wait  statement. Example 8-20 shows a description with two processes, 
one with a wait  statement and one without. This description style lets you 
choose the signals that are registered and those that are not.



Example 8-20 Circuit with Three Implied Registers

use work.ARITHMETIC.all;
entity COUNT is
  port(CLOCK, RESET: in BIT; 
       AND_BITS, OR_BITS, XOR_BITS : out BIT);
end COUNT;

architecture RTL of COUNT is
  signal COUNT : UNSIGNED (2 downto 0);
begin

  REG: process                  -- Registered logic
  begin
    wait until CLOCK’event and CLOCK = ’1’;
    if (RESET = ’1’) then
       COUNT <= "000";
    else
       COUNT <= COUNT + 1;
    end if;
  end process;

  COMBIN: process(COUNT)        -- Combinational 
logic
  begin
    AND_BITS <= COUNT(2) and COUNT(1) and COUNT(0);
    OR_BITS <= COUNT(2) or COUNT(1) or COUNT(0);
    XOR_BITS <= COUNT(2) xor COUNT(1) xor COUNT(0);
  end process;
end RTL;

Figure 8-15 Circuit with Three Implied Registers 

This technique of separating combinational logic from registered or 
sequential logic is useful when describing finite state machines.

See the following examples in Appendix A:
n Moore machine
n Mealy machine
n Count zeros—sequential version



n Soft drink machine controller—state machine version

Example—Using Synchronous and Asynchronous Processes

You might want to keep some of the values computed by a process in 
flip-flops, while allowing other values to change between clock edges. 

You can do this by splitting your algorithm between two processes, one 
with a wait  statement and one without. Put the registered (synchronous) 
assignments into the wait  process.  Put the other (asynchronous) 
assignments into the other process. Use signals to communicate between 
the two processes. 

For example, suppose you want to build a design with the following 
characteristics:

n Inputs A_1 , A_2 , A_3  and A_4  change asynchronously.
n Output t is driven from one of A_1 , A_2 , A_3 , or A_4 .
n Input CONTROL  is valid only on the positive edge of CLOCK . The value at 

the edge determines which of the four inputs is selected during the next 
clock cycle.

n Output t must always reflect changes in the value of the currently selected 
signal.

The implementation of this design requires two processes. The process with 
a wait  statement synchronizes the CONTROL  value. The other process 
multiplexes the output, based on the synchronized control. The signal 
SYNC_CONTROL  communicates between the two processes.

Example 8-21 shows the code and a schematic of one possible 
implementation.



Example 8-21 Two Processes:  One Synchronous, One Asynchronous

entity SYNC_ASYNC is
   port (CLOCK:   in BIT;
         CONTROL: in INTEGER range 0 to 3;
         A:       in BIT_VECTOR(0 to 3);
         t:      out BIT);
end SYNC_ASYNC;

architecture EXAMPLE of SYNC_ASYNC is
  signal SYNC_CONTROL: INTEGER range 0 to 3;
begin

  process
  begin
    wait until CLOCK’event and CLOCK = ’1’;
    SYNC_CONTROL <= CONTROL;
  end process;

  process (A, SYNC_CONTROL)
  begin
    t <= A(SYNC_CONTROL);
  end process;
end EXAMPLE;

Figure 8-16 Two Processes:  One Synchronous, One Asynchronous 

Three-State Inference

FPGA Express can infer three-state gates (high-impedance output) from 
enumeration encoding in VHDL.  After inferrence, FPGA Express maps 
the gates to a specified technology library.  See "Enumeration Encoding" in 
Chapter 4 for more information.



When a variable is assigned the value of ’Z’ , the output of the three-state 
gate is disabled. Example 8-22 shows the VHDL for a three-state gate 

Example 8-22 Creating a Three-State Gate in VHDL

signal OUT_VAL, IN_VAL: std_logic;
...
if (COND) then
    OUT_VAL <= IN_VAL;
else
    OUT_VAL <= ’Z’;     -- assigns high-impedance
end if;

You can assign a high impedance value to a four-bit wide bus with 
"ZZZZ" .

One three-state device is inferred from a single process.  Example 8-23 
infers only one three-state device.

Example 8-23 Inferring One Three-State Device from a Single Process

process (sela, a, selb, b) begin
  t <= ’z’;
    if (sela = ’1’) then
      t <= a;
    if (selb = ’1’) then
      t <= b;
end process;

Example 8-24 infers two three-state devices.

Example 8-24 Inferring Two Three-State Devices

process (sela, a) begin
    if (sela = ‘1’) then
      t = a;
    else t = ‘z’;
end process;

process (selb, b) begin
    if (selb = ‘1’) then
      t = b;
    else t = ‘z’;
end process;

The VHDL conditional assignment may also be used for three-state 
inferencing.



Assigning the Value Z

Assigning variables the value Z is allowed. The value Z can also appear in 
function calls, return statements, and aggregates.  However, except for 
comparisons to Z,  you cannot use Z in an expression. Example 8-25 shows 
an incorrect use of Z (in an expression), and Example 8-26 shows a correct 
use of Z (in a comparison).

Example 8-25 Incorrect Use of the Value Z in an Expression

OUT_VAL <= ’Z’ and IN_VAL;
...

Example 8-26 Correct Expression Comparing to Z

if IN_VAL = ’Z’ then
...

Caution Expressions comparing to Z are synthesized as though values are not 
equal to Z. 

For example:

if X = ’Z’ then
...

is synthesized as:

if FALSE then
...

If you use expressions comparing values to ’Z’,  the presynthesis and 
postsynthesis simulation results might differ. For this reason, FPGA 
Express issues a warning when it synthesizes such comparisons.

Latched Three-State Variables

When a variable is latched (or registered) in the same process in which it is 
three-stated, the enable of the three-state Z is also latched (or registered). 
This process is shown in Example 8-27.  



Example 8-27 Three-State Inferred with Registered Enable

-- Creates a flip-flop on input and on enable
if (THREESTATE = ’0’) then
    OUTPUT <= ’Z’;
elsif (CLK’event and CLK = ’1’) then
    if (CONDITION) then
        OUTPUT <= INPUT;
    end if;
end if;

Figure 8-17 Three-State Inferred with Registered Enable 

In Example 8-27, the three-state gate has a registered enable signal. 
Example 8-28 uses two processes to instantiate a three-state with a flip-flop 
only on the input.



Example 8-28 Latched Three-State with Flip-flop on Input

entity LATCH_3S is
  port(CLK, THREESTATE, INPUT: in std_logic;
       OUTPUT: out std_logic; CONDITION: in Boolean );
end LATCH_3S;

architecture EXAMPLE of LATCH_3S is
  signal TEMP: std_logic;
begin

  process(CLK, CONDITION, INPUT)
  begin      -- creates three-state
    if (CLK’event and CLK = ’1’) then
      if (CONDITION) then
          TEMP <= INPUT;
      end if;
    end if;
  end process;
  process(THREESTATE, TEMP)
  begin
    if (THREESTATE = ’0’) then
        OUTPUT <= ’Z’;
    else
        OUTPUT <= TEMP;
    end if;
  end process;
end EXAMPLE;

Figure 8-18 Latched Three-State with Flip-Flop on Input 



Chapter 9
FPGA Express Directives

Synopsys has defined several methods of providing circuit design 
information directly in your VHDL source code.

n Using FPGA Express directives, you can direct the translation from VHDL 
to components with special VHDL comments. These synthetic comments 
turn translation on or off, specify one of several hard-wired resolution 
methods, and provide a means to map subprograms to hardware 
components.

n Using Synopsys-defined VHDL attributes, you can add synthesis-related 
signal and constraint information to ports, components, and entities. This 
information is used by FPGA Express during synthesis.

To familiarize yourself with FPGA Express directives, consider the 
following topics:

n Notation for FPGA Express Directives
n FPGA Express Directives
n Synthesis Attributes and Constraints



Notation for FPGA Express Directives

FPGA Express directives are special VHDL comments (synthetic 
comments) that affect the actions of FPGA Express. These comments are 
just a special case of regular VHDL comments, so they are ignored by other 
VHDL tools. Synthetic comments are used only to direct the actions of 
FPGA Express.

Synthetic comments begin with two hyphens (--), just like a regular 
comment. If the word following these characters is pragma  or 
synopsys , the remaining comment text is interpreted by FPGA Express 
as a directive. 

Note: FPGA Express displays a syntax error if an unrecognized directive 
is encountered after -- synopsys or -- pragma.

FPGA Express Directives

The three types of directives are
n Translation stop and start Directives

-- pragma translate_off
-- pragma translate_on
-- pragma synthesis_off
-- pragma synthesis_on

n Resolution function directives 

-- pragma resolution_method wired_and 
-- pragma resolution_method wired_or 
-- pragma resolution_method three_state 

n Component implication directives

-- pragma map_to_entity entity_name
-- pragma return_port_name port_name

Other directives such as the map_to  operator are used to drive inference of 
HDL operators such as *, +, and -.



Translation Stop and Start Directives

Translation directives stop and start the translation of a VHDL source file 
by FPGA Express.

-- pragma translate_off 
-- pragma translate_on

The translate_off  and translate_on  directives instruct FPGA 
Express to stop and start synthesizing VHDL source code. The VHDL code 
between these two directives is, however, checked for syntax.  

Translation is enabled at the beginning of each VHDL source file. You can 
use translate_off  and translate_on  directives anywhere in the 
text.

The synthesis_off  and synthesis_on  directives are the 
recommended mechanisms for hiding simulation-only constructs from 
synthesis.  Any text between these directives is checked for syntax, but no 
corresponding hardware is synthesized. The behavior of the synthesis_
off and synthesis_on directives is not affected by the variable 
hdlin_translate_off_skip_text .

Example 9-1 shows how you can use the directives to protect a simulation 
driver.



Example 9-1 Using synthesis_on and synthesis_off Directives 

-- The following test driver for entity EXAMPLE
--   should not be translated:
--
-- pragma synthesis_off
--   Translation stops

entity DRIVER is
end;

architecture VHDL of DRIVER is
    signal A, B : INTEGER range 0 to 255;
    signal SUM  : INTEGER range 0 to 511;

    component EXAMPLE 
        port (A, B: in INTEGER range 0 to 255;
              SUM: out INTEGER range 0 to 511);
    end component;

begin
    U1: EXAMPLE port map(A, B, SUM);
    process
    begin
        for I in 0 to 255 loop
            for J in 0 to 255 loop
                A <= I;
                B <= J;
                wait for 10 ns;
                assert SUM = A + B;
            end loop;
        end loop;
    end process;
end;

-- pragma synthesis_on
--   Code from here on is translated

entity EXAMPLE is
    port (A, B: in INTEGER range 0 to 255;
          SUM: out INTEGER range 0 to 511);
end;

architecture VHDL of EXAMPLE is
begin
    SUM <= A + B;
end;



Resolution Function Directives  

Resolution function directives determine the resolution function associated 
with resolved signals (see ‘‘Signal Declarations“ in Chapter 3). FPGA 
Express does not currently support arbitrary resolution functions. It does 
support the following three methods:

-- pragma resolution_method wired_and 
-- pragma resolution_method wired_or 
-- pragma resolution_method three_state 

Note: Do not connect signals that use different resolution functions. 
FPGA Express supports only one resolution function per network.

Component Implication Directives 

Component implication directives map VHDL subprograms onto existing 
components or VHDL entities. These directives are described under 
‘‘Mapping Subprograms to Components“ in Chapter 6:

-- pragma map_to_entity entity_name
-- pragma return_port_name port_name



Chapter 10
Synopsys Packages

Three Synopsys packages are included with this release:
n std_logic_1164 Package

Defines a standard for designers to use when describing the interconnection 
data types used in VHDL modeling. 

n std_logic_arith Package

Provides a set of arithmetic, conversion, and comparison functions for 
SIGNED, UNSIGNED, INTEGER, STD_ULOGIC, STD_LOGIC,  and STD_
LOGIC_VECTOR  types. 

n std_logic_misc Package

Defines supplemental types, subtypes, constants, and functions for the std_
logic_1164  package.  

To understand the contents of each package, review the following sections. 

std_logic_1164 Package

This package defines the IEEE standard for designers to use when 
describing the interconnection data types used in VHDL modeling. The 
logic system defined in this package might be insufficient for modeling 
switched transistors, because such a requirement is out of the scope of this 



effort. Furthermore, mathematics, primitives, and timing standards are 
considered orthogonal issues as they relate to this package and are therefore 
beyond the scope of this effort.

The std_logic_1164  package contains Synopsys synthesis directives. 
Three functions, however, are not currently supported for synthesis: 
rising_edge , falling_edge , and is_x . 

To use this package in a VHDL source file, include the following lines at 
the top of the source file:

library IEEE;
use IEEE.std_logic_1164.all;

When you analyze your VHDL source file, FPGA Express automatically 
finds the IEEE library and the std_logic_1164  package. However, you 
must analyze the use  packages not contained in the IEEE and Synopsys 
libraries before processing a source file that uses them. 

std_logic_arith Package

Functions defined in the std_logic_arith  package provide 
conversion to and from the predefined VHDL data type INTEGER , and 
arithmetic, comparison, and Boolean operations. This package lets you 
perform arithmetic operations and numeric comparisons on array data 
types. The package defines some arithmetic operators (+, -, *, and abs ) 
and the relational operators (<, >, <= , >= , =, and /=). Note that IEEE 
VHDL does not define arithmetic operators for arrays and defines the 
comparison operators in a manner inconsistent with an arithmetic 
interpretation of array values. 

The package also defines two major data types of its own: UNSIGNED  and 
SIGNED . Details can be found in ‘‘Synopsys Data Types" later in this 
appendix. The std_logic_arith  package is legal VHDL; you can use 
it for both synthesis and simulation.

The std_logic_arith  package can be configured to work on any array 
of single-bit types. You encode single-bit types in one bit with the ENUM_
ENCODING  attribute.

You can make the vector type (for example, std_logic_vector ) 
synonymous with either SIGNED  or UNSIGNED . This way, if you plan to 
use mostly UNSIGNED  numbers, you do not need to convert your vector 
type to call UNSIGNED  functions. The disadvantage of making your vector 



type synonymous with either UNSIGNED  or SIGNED  is that it causes the 
standard VHDL comparison functions (=, /= , <, >, <= , and >=) to be 
redefined.

Table 9-1 shows that the standard comparison functions for BIT_VECTOR  
do not match the SIGNED  and UNSIGNED  functions.

Table 9-1 UNSIGNED, SIGNED and BIT_VECTOR Comparison Functions

Using the Package

The std_logic_arith  package is in the $synopsys/packages/
IEEE/src/std_logic_arith.vhd  subdirectory of the Synopsys 
root directory. To use this package in a VHDL source file, include the 
following lines at the top of the source file:

library IEEE;
use IEEE.std_logic_arith.all;

Synopsys packages are preanalyzed and do not require further analyzing. 

Modifying the Package

The std_logic_arith  package is written in standard VHDL. You can 
modify or add to it. The appropriate hardware is then synthesized.

ARG1 op ARG2 UNSIGNED SIGNED BIT_VECTOR

"000" = "000" TRUE TRUE TRUE

"00" = "000" TRUE TRUE FALSE

"100" = "0100" TRUE FALSE FALSE

"000" < "000" FALSE FALSE FALSE

"00" < "000" FALSE FALSE TRUE

"100" < "0100" FALSE TRUE FALSE



For example, to convert a vector of multivalued logic to an INTEGER , you 
can write the function shown in Example 9-1.  This MVL_TO_INTEGER  
function returns the integer value corresponding to the vector when the 
vector is interpreted as an unsigned (natural) number.  If unknown values 
are in the vector, the return value is -1.

Example 9-1 New Function Based on a std_logic_arith Package Function

library IEEE;
use IEEE.std_logic_1164.all;

function MVL_TO_INTEGER(ARG : MVL_VECTOR) 
  return INTEGER is
  -- pragma built_in SYN_FEED_THRU
  variable uns: UNSIGNED (ARG’range);
begin
    for i in ARG’range loop
        case ARG(i) is
            when ’0’ | ’L’ => uns(i) := ’0’;
            when ’1’ | ’H’ => uns(i) := ’1’;
            when others    => return -1;
        end case;
    end loop;
    return CONV_INTEGER(uns);
end;

Note the use of the CONV_INTEGER  function in Example 9-1.

FPGA Express performs almost all synthesis directly from the VHDL 
descriptions. However, several functions are hard wired for efficiency. 
These functions can be identified by the following comment in their 
declarations

-- pragma built_in

This statement marks functions as special, causing the body to be ignored. 
Modifying the body does not change the synthesized logic unless you 
remove the built_in  comment. If you want new functionality, use the 
built_in  functions; this is more efficient than removing the built_in  
and modifying the body.

Data Types

The std_logic_arith  package defines two data types, UNSIGNED  
and SIGNED :

type UNSIGNED is array (natural range <>) of std_
logic;
type SIGNED is array (natural range <>) of std_logic;



These data types are similar to the predefined VHDL type BIT_VECTOR , 
but the std_logic_arith  package defines the interpretation of 
variables and signals of these types as numeric values. With the 
install_vhdl  conversion script, you can change these data types to 
arrays of other one-bit types.  

UNSIGNED 
The UNSIGNED  data type represents an unsigned numeric value. FPGA 
Express interprets the number as a binary representation, with the farthest 
left bit being most significant. For example, the decimal number 8 can be 
represented as

UNSIGNED’("1000")

When you declare variables or signals of type UNSIGNED , a larger vector 
holds a larger number. A four-bit variable holds values up to decimal 15; an 
eight-bit variable holds values up to 255, and so on. By definition, negative 
numbers cannot be represented in an UNSIGNED  variable. Zero is the 
smallest value that can be represented. 

Example 9-2 illustrates some UNSIGNED  declarations. Note that the most 
significant bit is the farthest left array bound, rather than the high or low 
range value.

Example 9--2 UNSIGNED Declarations

variable VAR: UNSIGNED (1 to 10);
  -- 11-bit number
  -- VAR(VAR’left) = VAR(1) is the most significant 
bit

signal SIG: UNSIGNED (5 downto 0); 
  -- 6-bit number
  -- SIG(SIG’left) = SIG(5) is the most significant 
bit

SIGNED
The SIGNED  data type represents a signed numeric value. FPGA Express 
interprets the number as a 2’s complement binary representation, with the 
farthest left bit as the sign bit. For example, you can represent decimal 5 
and -5 as

SIGNED’("0101")  -- represents +5
SIGNED’("1011")  -- represents -5

When you declare SIGNED  variables or signals, a larger vector holds a 
larger number.  A four-bit variable holds values from -8 to 7; an eight-bit 
variable holds values from –128 to 127. Note that a SIGNED  value cannot 
hold as large a value as an UNSIGNED  value with the same bit width. 



Example 9-3 shows some SIGNED  declarations. Note that the sign bit is 
the farthest left bit, rather than the highest or lowest.

Example 9-3 SIGNED Declarations

variable S_VAR: SIGNED (1 to 10);  
  -- 11-bit number
  -- S_VAR(S_VAR’left) = S_VAR(1) is the sign bit

signal S_SIG: SIGNED (5 downto 0); 
  -- 6-bit number
  -- S_SIG(S_SIG’left) = S_SIG(5) is the sign bit

Conversion Functions

The std_logic_arith  package provides three sets of functions to 
convert values between its UNSIGNED  and SIGNED  types, and the 
predefined type INTEGER . This package also provides the std_logic_
vector .

Example 9-4 shows the declarations of these conversion functions. BIT  
and BIT_VECTOR  types are shown.



Example 9-4 Conversion Functions

subtype SMALL_INT is INTEGER range 0 to 1;

function CONV_INTEGER(ARG: INTEGER)  return INTEGER;
function CONV_INTEGER(ARG: UNSIGNED) return INTEGER;
function CONV_INTEGER(ARG: SIGNED)   return INTEGER;
function CONV_INTEGER(ARG: STD_ULOGIC) return SMALL_
INT;

function CONV_UNSIGNED(ARG: INTEGER;  
                       SIZE: INTEGER) return UNSIGNED;
function CONV_UNSIGNED(ARG: UNSIGNED;
                       SIZE: INTEGER) return UNSIGNED;
function CONV_UNSIGNED(ARG: SIGNED;  
                       SIZE: INTEGER) return UNSIGNED;
function CONV_UNSIGNED(ARG: STD_ULOGIC;      
                       SIZE: INTEGER) return UNSIGNED;

function CONV_SIGNED(ARG: INTEGER;  
                     SIZE: INTEGER)   return SIGNED;
function CONV_SIGNED(ARG: UNSIGNED; 
                     SIZE: INTEGER)   return SIGNED;
function CONV_SIGNED(ARG: SIGNED;
                     SIZE: INTEGER)   return SIGNED;
function CONV_SIGNED(ARG: STD_ULOGIC;
                     SIZE: INTEGER)   return SIGNED;

function CONV_STD_LOGIC_VECTOR(ARG: INTEGER;  
                     SIZE: INTEGER)   return STD_LOGIC_
VECTOR;
function CONV_STD_LOGIC_VECTOR(ARG: UNSIGNED; 
                     SIZE: INTEGER)   return STD_LOGIC_
VECTOR;
function CONV_STD_LOGIC_VECTOR(ARG: SIGNED;
                     SIZE: INTEGER)   return STD_LOGIC_
VECTOR;
function CONV_STD_LOGIC_VECTOR(ARG: STD_ULOGIC;
                     SIZE: INTEGER)   return STD_LOGIC_
VECTOR;

Note that there are four versions of each conversion function. 

The operator overloading mechanism of VHDL determines the correct 
version from the function call’s argument types.

The CONV_INTEGER  functions convert an argument of type INTEGER , 
UNSIGNED , SIGNED , or STD_ULOGIC  to an INTEGER  return value. 
The CONV_UNSIGNED  and CONV_SIGNED  functions convert an 
argument of type INTEGER , UNSIGNED , SIGNED , or STD_ULOGIC  to 
an UNSIGNED  or SIGNED  return value whose bit width is SIZE .



The CONV_INTEGER  functions have a limitation on the size of operands. 
VHDL defines INTEGER  values as between -2147483647 and 
2147483647. This range corresponds to a 31-bit UNSIGNED  value or a 
32-bit SIGNED  value. You cannot convert an argument outside this range 
to an INTEGER .

The CONV_UNSIGNED  and CONV_SIGNED  functions require two 
operands. The first operand is the value converted. The second operand is 
an INTEGER  that specifies the expected size of the converted result. For 
example, the following function call returns a 10-bit UNSIGNED  value 
representing the value in sig .

ten_unsigned_bits := CONV_UNSIGNED(sig, 10);

If the value passed to CONV_UNSIGNED  or CONV_SIGNED  is smaller 
than the expected bit width (such as representing the value 2 in a 24-bit 
number), the value is bit-extended appropriately.  FPGA Express places 
zeros in the more significant (left) bits for an UNSIGNED  return value and 
uses sign extension for a SIGNED  return value. 

You can use the conversion functions to extend a number’s bit width even 
if conversion is not required.  For example:

CONV_SIGNED(SIGNED’("110"), 8) % "11111110"

An UNSIGNED  or SIGNED  return value is truncated when its bit width is 
too small to hold the ARG  value.  For example:

CONV_SIGNED(UNSIGNED’("1101010"), 3) % "010"

Arithmetic Functions

The std_logic_arith  package provides arithmetic functions for use 
with combinations of Synopsys’ UNSIGNED  and SIGNED  data types and 
the predefined types STD_ULOGIC  and INTEGER . These functions 
produce adders and subtracters. 

There are two sets of arithmetic functions: binary functions with two 
arguments, such as A+B  or A*B , and unary functions with one argument, 
such as -A . The declarations for these functions are shown in Examples 9-5 
and 9-6.



Example 9-5 Binary Arithmetic Functions

function "+"(L: UNSIGNED; R: UNSIGNED) return UNSIGNED;
function "+"(L: SIGNED;   R: SIGNED)   return SIGNED;
function "+"(L: UNSIGNED; R: SIGNED)   return SIGNED;
function "+"(L: SIGNED;   R: UNSIGNED) return SIGNED;
function "+"(L: UNSIGNED; R: INTEGER)  return UNSIGNED;
function "+"(L: INTEGER;  R: UNSIGNED) return UNSIGNED;
function "+"(L: SIGNED;   R: INTEGER)  return SIGNED;
function "+"(L: INTEGER;  R: SIGNED)   return SIGNED;
function "+"(L: UNSIGNED; R: STD_ULOGIC) return UNSIGNED;
function "+"(L: STD_ULOGIC; R: UNSIGNED) return UNSIGNED;
function "+"(L: SIGNED;   R: STD_ULOGIC) return SIGNED;
function "+"(L: STD_ULOGIC; R: SIGNED)   return SIGNED;

function "+"(L: UNSIGNED; R: UNSIGNED) return STD_LOGIC_VECTOR;
function "+"(L: SIGNED; R: SIGNED) return STD_LOGIC_VECTOR;
function "+"(L: UNSIGNED; R: SIGNED) return STD_LOGIC_VECTOR;
function "+"(L: SIGNED; R: UNSIGNED) return STD_LOGIC_VECTOR;
function "+"(L: UNSIGNED; R: INTEGER) return STD_LOGIC_VECTOR;
function "+"(L: INTEGER; R: UNSIGNED) return STD_LOGIC_VECTOR;
function "+"(L: SIGNED; R: INTEGER) return STD_LOGIC_VECTOR;
function "+"(L: INTEGER; R: SIGNED) return STD_LOGIC_VECTOR;
function "+"(L: UNSIGNED; R: STD_ULOGIC) return
 STD_LOGIC_VECTOR;
function "+"(L: STD_ULOGIC; R: UNSIGNED) return STD_LOGIC_VECTOR;
function "+"(L: SIGNED; R: STD_ULOGIC) return STD_LOGIC_VECTOR;
function "+"(L: STD_ULOGIC; R: SIGNED) return STD_LOGIC_VECTOR;
function "-"(L: UNSIGNED; R: UNSIGNED) return UNSIGNED;
function "-"(L: SIGNED;   R: SIGNED)   return SIGNED;
function "-"(L: UNSIGNED; R: SIGNED)   return SIGNED;
function "-"(L: SIGNED;   R: UNSIGNED) return SIGNED;
function "-"(L: UNSIGNED; R: INTEGER)  return UNSIGNED;
function "-"(L: INTEGER;  R: UNSIGNED) return UNSIGNED;
function "-"(L: SIGNED;   R: INTEGER)  return SIGNED;
function "-"(L: INTEGER;  R: SIGNED)   return SIGNED;
function "-"(L: UNSIGNED; R: STD_ULOGIC) return UNSIGNED;
function "-"(L: STD_ULOGIC; R: UNSIGNED) return UNSIGNED;
function "-"(L: SIGNED;   R: STD_ULOGIC) return SIGNED;
function "-"(L: STD_ULOGIC; R: SIGNED)   return SIGNED;

function "-"(L: UNSIGNED; R: UNSIGNED) return STD_LOGIC_VECTOR;
function "-"(L: SIGNED; R: SIGNED) return STD_LOGIC_VECTOR;
function "-"(L: UNSIGNED; R: SIGNED) return STD_LOGIC_VECTOR;
function "-"(L: SIGNED; R: UNSIGNED) return STD_LOGIC_VECTOR;
function "-"(L: UNSIGNED; R: INTEGER) return STD_LOGIC_VECTOR;
function "-"(L: INTEGER; R: UNSIGNED) return STD_LOGIC_VECTOR;
function "-"(L: SIGNED; R: INTEGER) return STD_LOGIC_VECTOR;
function "-"(L: INTEGER; R: SIGNED) return STD_LOGIC_VECTOR;
function "-"(L: UNSIGNED; R: STD_ULOGIC) return
 STD_LOGIC_VECTOR;
function "-"(L: STD_ULOGIC; R: UNSIGNED) return
 STD_LOGIC_VECTOR;
function "-"(L: SIGNED; R: STD_ULOGIC) return STD_LOGIC_VECTOR;
function "-"(L: STD_ULOGIC; R: SIGNED) return STD_LOGIC_VECTOR;

function "*"(L: UNSIGNED; R: UNSIGNED) return UNSIGNED;
function "*"(L: SIGNED;   R: SIGNED)   return SIGNED;
function "*"(L: SIGNED;   R: UNSIGNED) return SIGNED;
function "*"(L: UNSIGNED; R: SIGNED)   return SIGNED;



Example 9-6 Unary Arithmetic Functions

function "+"(L: UNSIGNED) return UNSIGNED;
function "+"(L: SIGNED)   return SIGNED;
function "-"(L: SIGNED)   return SIGNED;
function "ABS"(L: SIGNED) return SIGNED;

These functions determine the width of their return values as follows:

1. When only one UNSIGNED  or SIGNED  argument is present, the width of 
the return value is the same as that argument. 

2. When both arguments are either UNSIGNED  or SIGNED , the width of the 
return value is the larger of the two argument widths. An exception is that 
when an UNSIGNED  number is added to or subtracted from a SIGNED  
number of the same size or smaller, the return value is a SIGNED  number 
one bit wider than the UNSIGNED  argument. This size guarantees that the 
return value is large enough to hold any (positive) value of the UNSIGNED  
argument. 

The number of bits returned by + and - is illustrated in Table 9-2.

signal U4: UNSIGNED (3 downto 0);
signal U8: UNSIGNED (7 downto 0);
signal S4: SIGNED (3 downto 0);
signal S8: SIGNED (7 downto 0);

Table 9-2 Number of Bits Returned by + and - 

In some circumstances, you might need to obtain a carry-out bit from the + 
or - operation. To do this, extend the larger operand by one bit. The high 
bit of the return value is the carry-out bit, as illustrated in Example 9-7.

+ or -    U4 U8 S4 S8

U4 4 8 5 8

U8 8 8 9 9

S4 5 9 4 8

S8 8 9 8 8



Example 9-7 Using the Carry-Out Bit

process
    variable a, b, sum: UNSIGNED (7 downto 0);
    variable temp: UNSIGNED (8 downto 0);
    variable carry: BIT;
begin
    temp  := CONV_UNSIGNED(a,9) + b;
    sum   := temp(7 downto 0);
    carry := temp(8);
end process;

Comparison Functions

The std_logic_arith  package provides functions to compare 
UNSIGNED  and SIGNED  data types to each other and to the predefined 
type INTEGER . FPGA Express compares the numeric values of the 
arguments, returning a Boolean value.  For example, the following 
expression evaluates to TRUE .

UNSIGNED’("001") > SIGNED’("111")

The std_logic_arith  comparison functions are similar to the built-in 
VHDL comparison functions. The only difference is that the std_
logic_arith  functions accommodate signed numbers and varying bit 
widths. The predefined VHDL comparison functions perform bit-wise 
comparisons and so do not have the correct semantics for comparing 
numeric values (see ‘‘Relational Operators" in Chapter 5).

These functions produce comparators. The function declarations are listed 
in two groups, ordering functions (<, <= , >, and >=) and equality functions 
(= and /=), in Examples 9-8 and 9-9. 



Example 9-8 Ordering Functions

function "<"(L: UNSIGNED; R: UNSIGNED) return Boolean;
function "<"(L: SIGNED;   R: SIGNED)   return Boolean;
function "<"(L: UNSIGNED; R: SIGNED)   return Boolean;
function "<"(L: SIGNED;   R: UNSIGNED) return Boolean;
function "<"(L: UNSIGNED; R: INTEGER)  return Boolean;
function "<"(L: INTEGER;  R: UNSIGNED) return Boolean;
function "<"(L: SIGNED;   R: INTEGER)  return Boolean;
function "<"(L: INTEGER;  R: SIGNED)   return Boolean;

function "<="(L: UNSIGNED; R: UNSIGNED) return Boolean;
function "<="(L: SIGNED;   R: SIGNED)   return Boolean;
function "<="(L: UNSIGNED; R: SIGNED)   return Boolean;
function "<="(L: SIGNED;   R: UNSIGNED) return Boolean;
function "<="(L: UNSIGNED; R: INTEGER)  return Boolean;
function "<="(L: INTEGER;  R: UNSIGNED) return Boolean;
function "<="(L: SIGNED;   R: INTEGER)  return Boolean;
function "<="(L: INTEGER;  R: SIGNED)   return Boolean;

function "" functions">">"(L: UNSIGNED; R: UNSIGNED) return Boolean;
function ">"(L: SIGNED;   R: SIGNED)   return Boolean;
function ">"(L: UNSIGNED; R: SIGNED)   return Boolean;
function ">"(L: SIGNED;   R: UNSIGNED) return Boolean;
function ">"(L: UNSIGNED; R: INTEGER)  return Boolean;
function ">"(L: INTEGER;  R: UNSIGNED) return Boolean;
function ">"(L: SIGNED;   R: INTEGER)  return Boolean;
function ">"(L: INTEGER;  R: SIGNED)   return Boolean;

function ="" functions">">="(L: UNSIGNED; R: UNSIGNED) return Boolean;
function ">="(L: SIGNED;   R: SIGNED)   return Boolean;
function ">="(L: UNSIGNED; R: SIGNED)   return Boolean;
function ">="(L: SIGNED;   R: UNSIGNED) return Boolean;
function ">="(L: UNSIGNED; R: INTEGER)  return Boolean;
function ">="(L: INTEGER;  R: UNSIGNED) return Boolean;
function ">="(L: SIGNED;   R: INTEGER)  return Boolean;
function ">="(L: INTEGER;  R: SIGNED)   return Boolean;

Example 9-9 Equality Functions

function "="(L: UNSIGNED; R: UNSIGNED) return Boolean;
function "="(L: SIGNED;   R: SIGNED)   return Boolean;
function "="(L: UNSIGNED; R: SIGNED)   return Boolean;
function "="(L: SIGNED;   R: UNSIGNED) return Boolean;
function "="(L: UNSIGNED; R: INTEGER)  return Boolean;
function "="(L: INTEGER;  R: UNSIGNED) return Boolean;
function "="(L: SIGNED;   R: INTEGER)  return Boolean;
function "="(L: INTEGER;  R: SIGNED)   return Boolean;

function "/="(L: UNSIGNED; R: UNSIGNED) return Boolean;
function "/="(L: SIGNED;   R: SIGNED)   return Boolean;
function "/="(L: UNSIGNED; R: SIGNED)   return Boolean;
function "/="(L: SIGNED;   R: UNSIGNED) return Boolean;
function "/="(L: UNSIGNED; R: INTEGER)  return Boolean;
function "/="(L: INTEGER;  R: UNSIGNED) return Boolean;
function "/="(L: SIGNED;   R: INTEGER)  return Boolean;
function "/="(L: INTEGER;  R: SIGNED)   return Boolean;



Shift Functions

The std_logic_arith  package provides functions for shifting the bits 
in SIGNED  and UNSIGNED  numbers. These functions produce shifters. 
Example 9-10 shows the shift function declarations.

Example 9-10 Shift Functions

function SHL(ARG: UNSIGNED; 
             COUNT: UNSIGNED)  return UNSIGNED;
function SHL(ARG: SIGNED;
             COUNT: UNSIGNED)  return SIGNED;

function SHR(ARG: UNSIGNED; 
             COUNT: UNSIGNED)  return UNSIGNED;
function SHR(ARG: SIGNED;
             COUNT: UNSIGNED)  return SIGNED;

The SHL  function shifts the bits of its argument ARG  to the left by COUNT  
bits. SHR  shifts the bits of its argument ARG  to the right by COUNT  bits. 

The SHL  functions work the same for both UNSIGNED  and SIGNED  
values of ARG , shifting in zero bits as necessary. The SHR  functions treat 
UNSIGNED  and SIGNED  values differently.  If ARG  is an UNSIGNED  
number, vacated bits are filled with zeros; if  ARG  is a SIGNED  number, the 
vacated bits are copied from the sign bit of ARG . 

Example 9-11 shows some shift function calls and their return values.

Example 9-11 Shift Operations

variable U1, U2: UNSIGNED (7 downto 0);
variable S1, S2: SIGNED   (7 downto 0);
variable COUNT:  UNSIGNED (1 downto 0);
. . .
U1 := "01101011";   
U2 := "11101011";

S1 := "01101011";   
S2 := "11101011";

COUNT := CONV_UNSIGNED(ARG => 3, SIZE => 2);
. . .
SHL(U1, COUNT) = "01011000"
SHL(S1, COUNT) = "01011000"
SHL(U2, COUNT) = "01011000"
SHL(S2, COUNT) = "01011000"

SHR(U1, COUNT) = "00001101"
SHR(S1, COUNT) = "00001101"
SHR(U2, COUNT) = "00011101"
SHR(S2, COUNT) = "11111101"



Multiplication Using Shifts

You can use shift operations for simple multiplication and division of 
UNSIGNED  numbers, if you multiply or divide by a power of two.

For example, to divide the following UNSIGNED  variable U by 4:

variable U: UNSIGNED (7 downto 0) := "11010101";
variable quarter_U: UNSIGNED (5 downto 0);

quarter_U := SHR(U, "01");

ENUM_ENCODING Attribute

Place the synthesis attribute ENUM_ENCODING  on your primary logic type 
(see ‘‘Enumeration Encoding" in Chapter 4). This attribute allows FPGA 
Express to interpret your logic correctly.

pragma built_in

Label your primary logic functions with the built_in  pragma. This 
pragma allows FPGA Express to interpret your logic functions easily. 
When you use a built_in  pragma, FPGA Express parses but ignores the 
body of the function. Instead, FPGA Express directly substitutes the 
appropriate logic for the function.  You need not use built_in  pragmas; 
however using these pragmas result in run times that are ten times faster.

Use built_in  pragmas by placing a comment in the declaration part of a 
function.  FPGA Express interprets a comment as a directive if the first 
word of the comment is pragma . 

Example 9-12 shows the use of built_in  pragmas.

Example 9-12 Using a built_in pragma

function "XOR" (L, R: STD_LOGIC_VECTOR) return STD_
LOGIC_VECTOR is
  -- pragma built_in SYN_XOR
    begin
        if (L = ’1’) xor (R = ’1’) then
            return ’1’;
        else 
            return ’0’;
        end if;
end "XOR";



Two-Argument Logic Functions

Synopsys provides six built-in functions to perform two-argument logic 
functions:

n SYN_AND
n SYN_OR
n SYN_NAND
n SYN_NOR
n SYN_XOR
n SYN_XNOR

You can use these functions on single-bit arguments or equal-length arrays 
of single bits. 

Example 9-13 shows a function that generates the logical AND of two 
equal-size arrays.

Example 9-13 Built-In AND for Arrays

function "AND" (L, R: STD_LOGIC_VECTOR) return STD_
LOGIC_VECTOR is
  -- pragma built_in SYN_AND
    variable MY_L: STD_LOGIC_VECTOR (L’length-1 
downto 0);
    variable MY_R: STD_LOGIC_VECTOR (L’length-1 
downto 0);
    variable RESULT: STD_LOGIC_VECTOR (L’length-1 
downto 0);
begin
    assert L’length = R’length;
    MY_L := L;
    MY_R := R;
    for i in RESULT’range loop
        if (MY_L(i) = ’1’) and (MY_R(i) = ’1’) then
            RESULT(i) := ’1’;
        else
            RESULT(i) := ’0’;
        end if;
    end loop;
    return RESULT;
end "AND";

One-Argument Logic Functions

Synopsys provides two built-in functions to perform one-argument logic 
functions: 

n SYN_NOT
n SYN_BUF



You can use these functions on single-bit arguments or equal-length arrays 
of single bits. Example 9-14 shows a function that generates the logical 
NOT of an array.

Example 9-14 Built-In NOT for Arrays

function "NOT" (L: STD_LOGIC_VECTOR) return STD_
LOGIC_VECTOR is
  -- pragma built_in SYN_NOT
     variable MY_L: STD_LOGIC_VECTOR (L’length-1 
downto 0);
     variable RESULT: STD_LOGIC_VECTOR (L’length-1 
downto 0);
begin
    MY_L := L;
    for i in result’range loop
        if (MY_L(i) = ’0’ or MY_L(i) = ’L’) then
            RESULT(i) := ’1’;
        elsif (MY_L(i) = ’1’ or MY_L(i) = ’H’) then
            RESULT(i) := ’0’;
        else
            RESULT(i) := ’X’;
        end if;
    end loop;
    return RESULT;
end "NOT";
end;

Type Conversion

The built-in function SYN_FEED_THRU  performs fast type conversion 
between unrelated types. The synthesized logic from SYN_FEED_THRU  
wires the single input of a function to the return value. This connection can 
save the CPU time required to process a complicated conversion function, 
as shown in Example 9-15.

Example 9-15 Use of SYN_FEED_THRU

type COLOR is (RED, GREEN, BLUE);
attribute ENUM_ENCODING : STRING;
attribute ENUM_ENCODING of COLOR : type is "01 10 
11";
...

function COLOR_TO_BV (L: COLOR) return BIT_VECTOR is
  -- pragma built_in SYN_FEED_THRU
begin
    case L is
       when RED   => return "01";
       when GREEN => return "10";
       when BLUE  => return "11";
    end case;
end COLOR_TO_BV;



translate_off Directive

If there are constructs in your "types" package that are not supported for 
synthesis, or that produce warning messages, you may need to use the 
FPGA Express directive  -- synopsys translate_off . You can 
make liberal use of the translate_off  directive when you use 
built_in  pragmas because FPGA Express ignores the body of built_
in  functions.  For examples of illustrating how to use the translate_
off  directive, see the std_logic_arith.vhd  package.

std_logic_misc Package

The std_logic_misc  package resides in the Synopsys libraries 
directory ($synopsys/packages/IEEE/src/std_logic_
misc.vhd ).  This package declares the primary data types supported by 
the Synopsys VSS Family. 

Boolean reduction functions use one argument, an array of bits, and return a 
single bit. For example, the and-reduction of "101"  is "0" , the logical 
AND of all three bits. 

Several functions in the std_logic_misc  package provide Boolean 
reduction operations for the predefined type STD_LOGIC_VECTOR . 
Example 9-16 shows the declarations of these functions.



Example 9-16 Boolean Reduction Functions

function AND_REDUCE  (ARG: STD_LOGIC_VECTOR) return 
UX01;
function NAND_REDUCE (ARG: STD_LOGIC_VECTOR) return 
UX01;
function OR_REDUCE   (ARG: STD_LOGIC_VECTOR) return 
UX01;
function NOR_REDUCE  (ARG: STD_LOGIC_VECTOR) return 
UX01;
function XOR_REDUCE  (ARG: STD_LOGIC_VECTOR) return 
UX01;
function XNOR_REDUCE (ARG: STD_LOGIC_VECTOR) return 
UX01;
function AND_REDUCE  (ARG: STD_ULOGIC_VECTOR) return 
UX01;
function NAND_REDUCE (ARG: STD_ULOGIC_VECTOR) return 
UX01;
function OR_REDUCE   (ARG: STD_ULOGIC_VECTOR) return 
UX01;
function NOR_REDUCE  (ARG: STD_ULOGIC_VECTOR) return 
UX01;
function XOR_REDUCE  (ARG: STD_ULOGIC_VECTOR) return 
UX01;
function XNOR_REDUCE (ARG: STD_ULOGIC_VECTOR) return 
UX01;

These functions combine the bits of the STD_LOGIC_VECTOR , as the 
name of the function indicates. For example, XOR_REDUCE  returns the 
XOR value of all bits in ARG .

Example 9-17 shows some reduction function calls and their return values.

Example 9-17 Boolean Reduction Operations

AND_REDUCE("111") = ’1’
AND_REDUCE("011") = ’0’

OR_REDUCE("000")  = ’0’
OR_REDUCE("001")  = ’1’

XOR_REDUCE("100") = ’1’
XOR_REDUCE("101") = ’0’

NAND_REDUCE("111") = ’0’
NAND_REDUCE("011") = ’1’

NOR_REDUCE("000") = ’1’
NOR_REDUCE("001") = ’0’

XNOR_REDUCE("100") = ’0’
XNOR_REDUCE("101") = ’1’ 



Chapter 11
HDL Constructs

Many VHDL language constructs, although useful for simulation and other 
stages in the design process, are not relevant to synthesis. Because these 
constructs cannot be synthesized, they are not supported by FPGA Express.

This appendix provides a list of all VHDL language constructs with the 
level of support for each, followed by a list of VHDL reserved words.  

This appendix describes
n VHDL Construct Support
n VHDL Reserved Words

VHDL Construct Support

A construct can be fully supported, ignored, or unsupported. Ignored and 
unsupported constructs are defined as follows:

n Ignored means that the construct is allowed in the VHDL source, but is 
ignored by FPGA Express.

n Unsupported means that the construct is not allowed in the VHDL source 
and that FPGA Express flags the construct as an error.  If errors are found 
in a VHDL description, the description is not translated (synthesized).



Constructs are listed in the following order:
n Design units
n Data types
n Declarations
n Specifications
n Names
n Operators
n Operands and expressions
n Sequential statements
n Concurrent statements
n Predefined language environment

Design Units
entity

The entity statement part is ignored.

Generics are supported, but only of type INTEGER .

Default values for ports are ignored.

architecture
Multiple architectures are allowed. 

Global signal interaction between architectures is unsupported.

configuration
Configuration declarations and block configurations are supported, but 
only to specify the top-level architecture for a top-level entity.  

Attribute specifications, use  clauses, component configurations, and 
nested block configurations are unsupported.

package
Packages are fully supported.

library
Libraries and separate compilation are supported.  



subprogram
Default values for parameters are unsupported.  Assigning to indexes and 
slices of unconstrained out  parameters is unsupported, unless the actual 
parameter is an identifier.

Subprogram recursion is unsupported if the recursion is not bounded by a 
static value. 

Resolution functions are supported for wired-logic and three-state functions 
only.

Subprograms can only be declared in packages and in the declaration part 
of an architecture.

Data Types
enumeration

Enumeration is fully supported.

integer
Infinite-precision arithmetic is unsupported. 

Integer types are automatically converted to bit vectors whose width is as 
small as possible to accommodate all possible values of the type’s range, 
either in unsigned binary for nonnegative ranges, or in 2’s-complement 
form for ranges that include negative numbers.

physical
Physical type declarations are ignored. The use of physical types is ignored 
in delay specifications.

floating
Floating-point type declarations are ignored. The use of floating-point 
types is unsupported except for floating-point constants used with 
Synopsys-defined attributes (see Chapter 9).

array
Array ranges and indexes other than integers are unsupported.

Multidimensional arrays are unsupported, but arrays of arrays are 
supported.

record
Record data types are fully supported.

access
Access type declarations are ignored, and the use of access types is 
unsupported.

file
File type declarations are ignored, and the use of file types is unsupported.

incomplete type declarations
Incomplete type declarations are unsupported.



Declarations
constant

Constant declarations are supported, except for deferred constant 
declarations.

signal
register  and bus  declarations are unsupported. 

Resolution functions are supported for wired and three-state functions only.

Declarations other than from a globally static type are unsupported.

Initial values are unsupported.

variable
Declarations other than from a globally static type are unsupported.

Initial values are unsupported.

file
File declarations are unsupported.

interface
buffer  and linkage  are translated to out  and inout , respectively.

alias
Alias declarations are ignored.

component
Component declarations that list a name other than a valid entity name are 
unsupported.

attribute
Attribute declarations are fully supported. However, the use of user-defined 
attributes is unsupported.

Specifications
attribute

others  and all  are unsupported in attribute specifications.

User-defined attributes can be specified, but the use of user-defined 
attributes is unsupported.

configuration
Configuration specifications are unsupported. 

disconnection
Disconnection specifications are unsupported.

Attribute declarations are fully supported. However, the use of user-defined 
attributes is unsupported.



Names
simple

Simple names are fully supported.

selected
Selected (qualified) names outside of a use  clause are unsupported.

Overriding the scopes of identifiers is unsupported.

operator symbols
Operator symbols are fully supported.

indexed
Indexed names are fully supported, with one exception. Indexing an 
unconstrained out  parameter in a procedure is unsupported.

slice
Slice names are fully supported, with one exception. Using a slice of an 
unconstrained out  parameter in a procedure is unsupported unless the 
actual parameter is an identifier.

attribute
Only the following predefined attributes are supported: base , left , 
right , high , low , range , reverse_range , and length.

event  and stable  attributes are supported only as described with the 
wait  and if  statements (see Chapter 6).

User-defined attribute names are unsupported.

The use of attributes with selected names (name.name’attribute ) is 
unsupported.

Operators
logical

Logical operators are fully supported.

relational
Relational operators are fully supported.

addition
Concatenation and arithmetic operators are both fully supported.

signing
Signing operators are fully supported.

multiplying
The * (multiply) operator is fully supported.

The / (division), mod , and rem  operators are supported only when both 
operands are constant or when the right operand is a constant power of 2.



miscellaneous
The **  operator is supported only when both operands are constant or 
when the left operand is 2.

The abs  operator is fully supported.

operator overloading
Operator overloading is fully supported.

short-circuit operations
The short-circuit behavior of operators is not supported.

Operands and Expressions
based literals

Based literals are fully supported.

null literals
Null slices, null ranges, and null arrays are unsupported.

physical literals
Physical literals are ignored.

strings
Strings are fully supported.

aggregates
The use of types as aggregate choices is unsupported.

Record aggregates are unsupported.

function calls
Function conversions on input ports are not supported, because type 
conversions on formal ports in a connection specification are unsupported.

qualified expressions
Qualified expressions are fully supported.

type conversion
Type conversion is fully supported.

allocators
Allocators are unsupported.

static expressions
Static expressions are fully supported.

universal expressions
Floating-point expressions are unsupported, except in a 
Synopsys-recognized attribute definition.

Infinite-precision expressions are not supported. 

Precision is limited to 32 bits; all intermediate results are converted to 
integer.



Sequential Statements
wait

The wait  statement is unsupported unless it is of one the following forms:

wait until                      clock = VALUE;
wait until     clock’event  and clock = VALUE;
wait until not clock’stable and clock = VALUE;

where VALUE  is 0, 1 or an enumeration literal whose encoding is 0 or 1. A 
wait  statement in this form is interpreted to mean “wait until the falling 
(VALUE  is 0) or rising (VALUE  is 1) edge of the signal named clock .”

wait  statements cannot be used in subprograms or in  for  loops.

assertion
assertion statements are ignored.

signal
Guarded signal assignment is unsupported. 

transport  and after  are ignored. 

Multiple waveform elements in signal assignment statements are 
unsupported.

variable
variable statements are fully supported.

procedure call
Type conversion on formal parameters is unsupported. 

Assignment to single bits of vectored ports is unsupported.

if
if  statements are fully supported.

case
case statements are fully supported.

loop
for  loops are supported, with two constraints:  the loop index range must 
be globally static, and the loop body must not contain a wait  statement.

while  loops are supported, but the loop body must contain at least one 
wait  statement. 

loop  statements with no iteration scheme (infinite loops) are supported, 
but the loop body must contain at least one wait  statement. 

next
next  statements are fully supported.

exit
exit  statements are fully supported.

return
return  statements are fully supported.

null
null statements are fully supported.



Concurrent Statements
block

Guards on block  statements are unsupported. 

Ports and generics in block  statements are unsupported.

process
Sensitivity lists in process  statements are ignored.

concurrent procedure call
Concurrent procedure call statements are fully supported.

concurrent assertion
Concurrent assertion statements are ignored.

concurrent signal assignment
The guarded  and transport  keywords are ignored. Multiple 
waveforms are unsupported.

component instantiation
Type conversion on the formal port of a connection specification is 
unsupported. 

generate
generate statements are fully supported.

Predefined Language Environment
severity_level type

severity_level  type is unsupported.

time type
time type is unsupported.

now function
now function is unsupported.

TEXTIO package
The TEXTIO package is unsupported.

predefined attributes
Predefined attributes are unsupported, except for base , left , right , 
high , low , range , reverse_range , and length . 

The event  and stable  attributes are supported only in the if  and wait  
statements, as described in Chapter 6.



VHDL Reserved Words

The following words are reserved for the VHDL language and cannot be 
used as identifiers:

absifselect
access inseverity
after inout signal
alias issubtype
all
andlabel then
architecture library to
array linkage transport
assert loop type
attribute mapunits
begin moduntil
block use
body nand
buffer newvariable
busnext
norwait
case notwhen
component null while
configuration with
constant of
onxor
disconnect open
downto or
others
else out
elsif
endpackage
entity port
exit procedure
process
file
forrange
function record
register
generate rem
generic report
guarded return
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