;This program displays the contents of the bootstrap ROM in a Motorola MC68705P3 or P5 microcontroller. It can be modified to do the same with
;the MC68705U3, U5, R3 and R5. | haven’t tried but it should be possible to modify it for other Motorola microcontrollers

;To setup the hardware you can place the microcontroller on a breadboard and connect XTAL pin to the EXTAL pin (to use RC mode)

;Connect nine LEDs as follows — connect all the LED anodes to +5V

;Connect each LED cathode to its own 1K resistor and connect the other side of 8 resistors to Port A; connect the 9th resistor to bit 7 of Port B
;The 8 Port A LEDS will display each byte of data, the 9th LED acts as a ‘data ready’ signal

;The idea is each time the ‘data ready’ LED flashes you need to quickly write down the value being displayed on the 8 data LEDs

;If you miss any values don’t worry, just keep going, you can re-run the program and fill in the missing values later. The circuit can be improved by
;using BCD to 7-segment decoders and 7-segment displays but since it normally is only used once it’s hardly worth the trouble

;An alternative is to remove all the delay loops in the program and feed the Port A and ‘data ready signals into an 1/O card connected to a computer
;or other microcontroller and have it log the data

;originally written by Peter Ihnat in May 2012

;properly documented in Feb 2016; also added references to MC68705S3 but | haven’t tested it on an S3 micro

;equates

PortA equ 0000H
PortB equ 0001H
;data direction registers
DDRA equ 0004H
DDRB equ 0005H

;variables used by delay subroutine

org 0010H ;note: for MC68705S3 use 0018H instead of 0010H
cntr rmb 1
cntrl rmb 1

o 3 3k 3k 3k 3k 3k 3k 3k 3k sk 3k 3k 3k %k %k sk %k %k %k %k k
’

;main program starts here
;(at start of EPROM)

« 3 3k 3k 3k 3k 3k 3k 3k 3k 3k %k %k 3k %k %k %k %k %k %k %k k
’

org 0080H
Start: rsp

;setup 1/0 ports - Port A displays a byte of data on 8 LEDs

;a ‘data ready’ LED connected to bit 7 of Port B is flashed when correct data is displayed on Port A
;note: outputting a 0 turns on an LED, 1 turns it off

;first setup Ports A and B as outputs and set all bits high (LEDs off)

Ida H#OFFH

sta PortA

sta DDRA

sta PortB

sta DDRB

clrx ;reg X will be used as an offset to access each value in the bootstrap area
clr cntr ;used in delay subroutine

;fetch a byte from the bootstrap area, invert it and display on 8 LEDs
loop: Ida 0785H,X ;note that address 0785H is the start of the bootstrap ROM for the MC68705P3 and P5
;for the MC68705U3, R3, U5 and R5 use OF80H
;for the MC68705S3 use OF20H
coma
sta PortA

;flash ‘data ready’ LED

bclr 7,PortB ;turn LED on
bsr delay
bset 7,PortB ;turn LED off
bsr delay

;increment pointer to the next byte
incx
cpx #73H ;check if end of bootstrap code has been reached
;note that 73H (115 bytes) is the length of the bootstrap ROM for the MC68705P3 and P5
;for the MC68705U3, R3, U5 and R5 use 120 bytes or 78H

;for the MC68705S3 use 216 bytes or 0D8H

bne loop
bra * ;all done so go into infinite loop
o 3 3K 3k ok sk sk ok sk k sk k k

;SUBROUTINES

« % 3k 3k 3k 3k %k %k %k %k %k %k %k
’

;this is a very simple delay routine. Increase the value #30H if you want the data to be displayed on the LEDs for a longer time
delay: Ida #30H

sta cntrl
del: bsr wait
dec cntrl
bne del
rts
wait: bsr deccntr
bsr deccntr
bsr deccntr
bsr deccntr
bsr deccntr
bsr deccntr
bsr deccntr
bsr deccntr
bsr deccntr
bsr deccntr
bsr deccntr
deccntr:
dec cntr

bne deccntr
rts

KKk ok ok K K K ok
’

;vectors, etc
« 3K 3k 3k %k 3k 5k sk %k %k k
’

;interrupts (not used here)

Timer: rti
Ext: rti
SW: rti

;set MOR so micro is in RC mode
org 0784H ;use address 0784H for the MC68705P3 and P5
;use address OF38H for MC68705U3, U5, R3 and R5
;use address OF1EH for MC68705S3

fdb 80H
;setup all the vectors for correct operation

org 07F8H note that address 07F8H is the location of vectors for the MC68705P3 and P5
;for the MC68705U3, R3, U5 and R5 use OFF8H
;for the MC68705S3 use OFF8H

fdb Timer ;vector to Timer interrupt routine

fdb Ext ;vector to External interrupt routine

fdb SW ;vector to SW interrupt routine

fdb Start ;vector to start of main program

