;This program displays the contents of the bootstrap ROM in a Motorola MC68705P3 or P5 microcontroller. It can be modified to do the same with ;the MC68705U3, U5, R3 and R5. I haven't tried but it should be possible to modify it for other Motorola microcontrollers

;To setup the hardware you can place the microcontroller on a breadboard and connect XTAL pin to the EXTAL pin (to use RC mode) ;Connect nine LEDs as follows – connect all the LED anodes to +5V

;Connect each LED cathode to its own 1K resistor and connect the other side of 8 resistors to Port A; connect the 9th resistor to bit 7 of Port B ;The 8 Port A LEDS will display each byte of data, the 9th LED acts as a 'data ready' signal

;The idea is each time the 'data ready' LED flashes you need to quickly write down the value being displayed on the 8 data LEDs ;If you miss any values don't worry, just keep going, you can re-run the program and fill in the missing values later. The circuit can be improved by ;using BCD to 7-segment decoders and 7-segment displays but since it normally is only used once it's hardly worth the trouble ;An alternative is to remove all the delay loops in the program and feed the Port A and 'data ready signals into an I/O card connected to a computer ;or other microcontroller and have it log the data ;originally written by Peter Ihnat in May 2012

;properly documented in Feb 2016; also added references to MC68705S3 but I haven't tested it on an S3 micro

```
;equates
PortA equ
             0000H
PortB equ
             0001H
;data direction registers
             0004H
DDRA equ
DDRB equ
             0005H
;variables used by delay subroutine
             0010H
                                  :note: for MC68705S3 use 0018H instead of 0010H
       org
cntr
       rmb
            1
cntr1 rmb
            1
;main program starts here
;(at start of EPROM)
.************
```

```
H0800
        org
Start: rsp
;setup I/O ports - Port A displays a byte of data on 8 LEDs
;a 'data ready' LED connected to bit 7 of Port B is flashed when correct data is displayed on Port A
;note: outputting a 0 turns on an LED, 1 turns it off
;first setup Ports A and B as outputs and set all bits high (LEDs off)
                #0FFH
        lda
                PortA
        sta
                DDRA
        sta
        sta
                PortB
        sta
                DDRB
                                       ;reg X will be used as an offset to access each value in the bootstrap area
        clrx
                                       ;used in delay subroutine
        clr
                cntr
;fetch a byte from the bootstrap area, invert it and display on 8 LEDs
loop: Ida
                0785H,X
                                       ;note that address 0785H is the start of the bootstrap ROM for the MC68705P3 and P5
                                       ;for the MC68705U3, R3, U5 and R5 use 0F80H
                                        ;for the MC68705S3 use 0F20H
        coma
        sta
                PortA
;flash 'data ready' LED
                7,PortB
        bclr
                                        ;turn LED on
        bsr
                delay
               7,PortB
                                        ;turn LED off
        bset
                delay
        bsr
;increment pointer to the next byte
        incx
                #73H
                                        ;check if end of bootstrap code has been reached
        срх
                                       ;note that 73H (115 bytes) is the length of the bootstrap ROM for the MC68705P3 and P5
                                        ;for the MC68705U3, R3, U5 and R5 use 120 bytes or 78H
```

```
;for the MC68705S3 use 216 bytes or 0D8H
              loop
       bne
       bra
                                     ;all done so go into infinite loop
;SUBROUTINES
.*********
;this is a very simple delay routine. Increase the value #30H if you want the data to be displayed on the LEDs for a longer time
delay: Ida
               #30H
       sta
               cntr1
del:
               wait
       bsr
               cntr1
       dec
       bne
               del
       rts
wait:
       bsr
               deccntr
               deccntr
       bsr
       bsr
               deccntr
               deccntr
       bsr
               deccntr
       bsr
               deccntr
       bsr
       bsr
               deccntr
       bsr
               deccntr
               deccntr
       bsr
       bsr
               deccntr
               deccntr
       bsr
deccntr:
       dec
               cntr
       bne
               deccntr
       rts
```

```
.******
;vectors, etc
.******
;interrupts (not used here)
Timer: rti
       rti
Ext:
SW:
       rti
;set MOR so micro is in RC mode
               0784H
                                      ;use address 0784H for the MC68705P3 and P5
       org
                                      ;use address 0F38H for MC68705U3, U5, R3 and R5
                                      ;use address 0F1EH for MC68705S3
               80H
       fdb
;setup all the vectors for correct operation
               07F8H
       org
                                      note that address 07F8H is the location of vectors for the MC68705P3 and P5
                                      ;for the MC68705U3, R3, U5 and R5 use 0FF8H
                                      ;for the MC68705S3 use 0FF8H
       fdb
                                      ;vector to Timer interrupt routine
               Timer
       fdb
                                      ;vector to External interrupt routine
               Ext
       fdb
               SW
                                      ;vector to SW interrupt routine
       fdb
                                      ;vector to start of main program
               Start
```