- dn Mttt b vt -.

iPDS™ User’s Guide System Programmer’s Reference

/
7

%S | mecorn MODULE CHK

ooy | LENGTH NAME Sum

/ A
7/

0214

Figure 8-7 Module Header Record

The Content Record (see figure 8-8) provides contiguous data, from which a
memory image may be constructed for a portion of memory.

REC
RECORD CHK
oo | Uenom | oo OFFSET | DATA |ewe | DATA | e 0 o | STT
0215

Figure 8-8 Content Record

The OFFSET field specifies the absolute location of the first data byte.

Following the OFFSET are one or more DATA bytes. Thus, this record provides
N consecutive bytes of a memory image from OFFSET through OFFSET + N -1,
inclusive.

The Module End Record (see figure 8-9) has a MODULETYPE (MODTYPE)
field with a value of 0 or 1. If the value is 1, the module is a main program. If the
value is 0, the module is not a main program.

If the module is a main program, the OFFSET field specifies the module’s execu-
tion start address. Otherwise, this field has no significance, but it must be present.

/ L

BB | recoro | mop OPTIONAL | CHK
sy | LENGTH [Typ | DoM | OFFSET INFO SUM
s L
!

0216

Figure 8-9 Module End Record

The OPTIONAL INFORMATION field may not be present depending on the lan-
guage translator used. It contains debug information.

8-87

System Programmer’s Reference

Disk Structure

This section describes the structure of disks and disk files at the byte level. The in-
formation is not necessary to use the system calls described previously. Disk
devices are discussed in Chapter 5. This section deals with the disk media and the
structure of the files recorded on it.

Bubble memory multimodules are treated as virtual disk devices. Both flexible
disks and bubble memory are organized into tracks and sectors. All flexible disks
contain 80 tracks which are divided into 32 sectors of 256 bytes each. (Sixteen sec-
tors are on side 0 and sixteen on side 1.) Bubble memory contains 16 tracks with
32 sectors of 256 bytes each. Disk capacities are given in the following chart.

Diskette Bubble Memory

Tracks/Disk 80 16
Sectors/Track 32 32
Sectors/Disk 2560 * 512
Bytes/Sector 256 256
Bytes/Disk 655,360 131,072

* Only 2544 sectors available to the user.

General Disk File Structure

Each disk contains a number of files. Each file is made up of 256-byte blocks. Each
block corresponds to one disk sector, which is a hardware addressable unit. See
figure 8-10. ISIS-PDS system files and commands occupy about 400 sectors on a
system disk and 50 sectors on a non-system disk.

I3

iPDS™ User’s Guide

FILE

y \ \J
BLOCK BLOCK BLOCK BLOCK BLOCK
i y y i y
SECTOR SECTOR SECTOR SECTOR SECTOR
\i y y y y
256 BYTES 256 BYTES 256 BYTES 256 BYTES 256 BYTES

Figure 8-10 Disk File Components

0217

8-88

Each sector on a disk has a unique address by which it can be accessed. The address
consists of a one-byte track number and a one-byte sector (block) number. Tracks
are numbered 0-79 on a diskette and 0-15 on bubble memory. The sectors on a
track are numbered 1-32 on both diskettes and bubble memory. The address of a
block is also referred to as a pointer to that block. Related blocks are linked togeth-
er by pointers. That is, two of the bytes in a block may contain the address of a
related block.

iPDS™ User’s Guide System Programmer’s Reference

(.Q\ Blocks. A block is the data in one sector. There are two types of blocks in a file:
; pointer blocks and data blocks. Pointer blocks contain nothing but pointers to
other blocks as shown in figure 8-11.

POINTER
BLOCK ————
LINKS

[PREV —»at— NEXT ————————— 123 DATA BLOCK POINTERS "‘

/L
S T S T S T S T S T // S T
I

0 1 2 3 4 5 6 7 8 9 248 249 1 250 251 252 253 254 255 |
S=SECTOR # RESERVED
T=TRACK # 250~.255
,} 0218

Figure 8-11 Pointer Block

All files begin with a pointer block that is called the header block. If the file con-

tains fewer than 123 data blocks, the header block is the only pointer block in the

file. If there are more than 123 data blocks, there is an additional pointer block for
(o every 123 data blocks. For example, a file of 300 data blocks contains 3 pointer
‘ blocks, including the header block.

The first two pointers in a pointer block are links to other pointer blocks in the file.
The first link contains the address of the previous pointer block. The header block
always contains zeros in this field because there is no previous pointer block in the
file. The second link contains the address of the next pointer block in the file. The
last pointer block in the file has zeros in this field.

Following the links to other pointer blocks are 123 pointers to the data blocks in
; the file followed by six reserved bytes. If a pointer contains zeros, then no data
3 block has been allocated for the pointer. A zero pointer does not necessarily mark
the end of the file.

Data blocks, as shown in figure 8-12, have no particular format, since they contain
user data.

-t (FORMAT IS CONTEXT-DEFINED) Lt

0219

Figure 8-12 Data Block

8-89

System Programmer’s Reference

Data blocks are fundamentally different from pointer blocks. Data blocks are visi-
ble to users; they contain the information that is transferred by read and write
operations. Pointer blocks, on the other hand, are invisible to users; the data they
contain is of interest only to the system. Data blocks can be thought of as destina-
tions with pointer blocks as paths to those destinations. To access user data in a
file, ISIS follows a path of pointers to a data block.

The relationship of pointer and data blocks is shown in figure 8-13.

iPDS™ User’s Guide

BLOCK <
T
y — ,
DATA BLOCK DATA BLOCK XX DATA BLOCK
1 2 123
POINTER

\

BLOCK 1 o

4][[

' — r
DATA BLOCK DATA BLOCK PP DATA BLOCK
1 2 123

— POINTER
- BLOCK 2
| i

A \

DATA BLOCK DATA BLOCK DATA BLOCK
1 2 oo 123

0285

Figure 8-13 Relation of Data and Pointer Blocks

8-90

Figure 8-14 shows an example file which consists of data in five blocks: DATA 1
through DATA 5. The diagram in figure 8-14 is simplified in that it shows only
four sectors per track instead of 32 and only two data pointers per pointer block in-
stead of 123. The file begins at the header block which contains pointers to the first
two data blocks, DATA1 and DATA2.

The header block is linked to a second pointer block at sector 3 of track 8. The
second pointer block contains pointers to DATA3 and DATA4. It is linked back to
the header block and forward to the last pointer block at sector 1 of track 9.

The third pointer block contains the last data pointer in the file. Because it is the
last pointer block, it contains a backward link to the second pointer block but no
forward link.

Notice that it is the data pointers which order the data blocks for sequential access.
The physical locations of the data blocks and the pointer blocks are irrelevant. Be-
cause of this ability to scatter files on the disk, the system can make efficient use of
available space. Note also the data capacity is reduced by the number of pointer
blocks on a disk.

~—’

~ b il vl

iPDS™ User’s Guide

System Programmer’s Reference

TRACK 7

TRACK 8

TRACK 9

SECTOR

PREV | NEXT (UNALLOCATED)
DATA 3 olols|sla|7]2]|8 DATA 1
(UNALLOCATED) ‘ PREV | NEXT (UNALLOCATED)
DATA 2 2l7l1lo]t]7]4]e
IPREV I NEXT (UNALLOCATED)
sls]olol2|9]o]o DATA 5 DATA 4
1 2 3 4

Figure 8-14 Pointer and Data Blocks in a File

0220

Interleaving Factors. Interleaving factors are used to speed up the sequential
access of blocks on the same track. Often a program reads a block, processes that
block, reads the next block, and so on. If the blocks were stored in physically adja-
cent sectors, the disk drive read/write head would pass by the second sector while
the program was processing the first sector. The program would have to wait one
full disk revolution for the read/write head to seek the second sector again. The
effect of an interleaving factor of 3 is shown in figure 8-15.

0221

Figure 8-15 Sector Interleaving

Physical sector addresses are shown outside the track (which is simplified for the
drawing to show only 18 sectors). Logical sector addresses, which are the basis for
accessing blocks stored in the sectors, are shown on the track.

With interleaving, a program which reads and processes every block in logical se-
quence has a processing window equivalent to the time it takes for two sectors to
pass by the head.

8-91

System Programmer’s Reference iPDS™ User’s Guide

Assuming that processing each block takes slightly less time than is available in
this window, all 18 blocks can be processed in three revolutions of the disk. With-
out interleaving, 18 revolutions would be required.

Sectors 1-16 which has an interleaving factor of 1. Track 0 contains the file ISIS.TO
which is formatted at 128 bytes/sector and contains information needed to initial-
ize the system. The interleaving information is used by the IDISK command when
disks are formatted.

The ISIS-PDS operating system uses an interleaving factor of 4 except for Track 0, ,

System Disk Files

All ISIS non-system disks contain four system files: ISIS.T0, ISIS.LAB, ISIS.DIR,
and ISIS.FRE. These are created automatically when the disk is initialized.

The location of these files is fixed as shown in table 8-4. The FROM and THRU

values are given in the form T,S where T is the track number and S is the sector
number. The values are given in hexadecimal.

Table 8-4 System File Locations

Double Density
Mini-Diskette Bubble Memory
File Name
FROM THRU FROM THRU
ISIS. TO (Header) OOH,11H OOH,11H OOH,11H OOH,11H
(Data) OOH,12H OOH,20H OOH,12H O0H,20H
ISIS.LAB {(Header) 01H,01H 01H,01H 01H,01H 01H,01H
(Data) 01H,02H 01H,04H 01H,02H 01H,04H
ISIS.DIR (Header) 27H,01H 27H,01H - OOH,01H OOH,01H
(Data) 27H,02H 27H,10H O0H,02H OOH,04H
ISIS.FRE {(Header) 27H,11H 27H,11H OOH,05H OOH,05H
(Data) 27H,12H 27H,14H 0OO0H,06H OO0H,08H

On a system disk, 6 files are reserved for the operating system. These are:
ISIS.PDS, ISIS.CLI, ISIS.TO, ISIS.LAB, ISIS.DIR, and ISIS.FRE. Note that four
of these appear on a non-system disk as well. In addition to these six files, there
are a number of command files containing programs and a library file named
SYSPDS.LIB.

ISIS.PDS

This file contains the ISIS kernel, that is, the resident system routines.

I1SIS.CLI

This file contains the command line interpreter which occupies part of the user
program area of memory.

8-92

iPDS™ User’s Guide System Programmer’s Reference

ISIS.TO

This file contains a program called TOBOOT. When the RESET button is pressed,
this file is read in from the disk. Once it is loaded into memory, TOBOOT begins
executing. This program reads the contents of ISIS.PDS and displays the ISIS sign
on message. If an attempt is made to initialize the system from a non-system disk,
TOBOOT displays the message:

NON-SYSTEM DISKETTE
on the screen. When running from a hardware reset, TOBOOT then returns control

to the initialization PROM. If running from a FUNCT-R (a software reset),
TOBOOT stops after attempting to initialize from the system diskette.

ISIS.LAB

The first nine bytes of this file contain the disk label stored as nine ASCII charac-
ters with a six-character name and a three-character extension.

The rest of the bytes are undefined except for the last 256 bytes (corresponding to
Track 1, Sector 4) which are filled with repetitions of the ASCII characters:

DIAGNOSTICSECTOR

These bytes are used by diagnostic programs described in Appendix A.

ISIS.DIR

Each disk contains one directory. This file contains 15 data blocks (3 for bubble
memory); each block has room for 16 directory entries. One entry is used for each
file on the disk, so there is room in the directory for 240 files (48 for bubble
memory). Each directory entry is 16 bytes long and is formatted as shown in figure
8-16.

PN
3 o * S e 33
“ B¢ 5 & Rk o
PR B et ‘x\;ﬂ%\ﬁz\,oc‘ ‘\e‘%\,%o\“

| [| |
|

|
6 7 (8 E] 10 1 CELC) w15

12 13

- INVISIBLE

- SYSTEM

- WRITE PROTECT
- RESERVED

(1T

PR ST T T O -
-

USER
- K DEFINED
ATTRIBUTES

-K
- FORMAT

0222

Figure 8-16 Directory Entry

8-93

System Programmer’s Reference iPDS™ User’s Guide

The following chart explains the field names used in figure 8-16.

PRESENCE is a flag which can contain one of three values:

OOH: The file associated with this entry is on the
disk.

7FH No file is associated with this entry; the con-
tent of the rest of the entry is undefined. The
first entry with its flag set to 7FH marks the
current logical end of the directory; directory
searches stop at this entry.

FFH The file named in this entry once existed on
the disk, but is currently deleted. The next
file added to the directory will be placed in
the first entry marked FFH. This flag cannot,
therefore, be used to find a file that has been
deleted, unless no other files have been
created or written since the deletion. A value
of FFH should be thought of as marking a
free directory entry.

FILENAME is a string of up to 6 non-blank ASCII characters
specifying the name of the file associated with the
directory entry. If the filename is shorter than six
characters, the remaining bytes contain 00H. For
example, the name ALPHA would be stored as
41H 4CH 50H 48H 41H 00H.

EXTENSION is a string of up to three non-blank ASCII charac-
ters that specify an extension to the filename. Ex-
tensions often identify the type of data in the file
such as OBJ for object module or PLM for PL/M
source module. As with filename, unused posi-
tions in the extension field are filled with zeroes.

ATTRIBUTES are bits that identify certain characteristics of the
file. A 1 bit indicates that the file has the attribute,
while a 0 bit means that the file does not have the
attribute. The bit positions and their corresponding
attributes are listed below (bit 0 is the low order or
rightmost bit, bit 7 is the leftmost bit):

0: Invisible. Files with this attribute are not
listed by the DIR command unless the I
option is used. All system files are invisible.

1: System. Files with this attribute are copied to
any disk being initialized as a system disk.

2: Write Protect. Files with this attribute
cannot be opened for output or for update,
nor can they be deleted or renamed.

3: Reserved.

4-6:], K, and L. User defined attributes.

8-94

iPDS™ User’s Guide

PamnY

7: Format. Files with this attribute are treated
as though they are write protected. Some of
the system files have this attribute. It should
not be given to other files.

Attributes can be written with the ATTRIB com-
mand or the ATTRIB system call.

EOF COUNT contains the number of the last byte in the last
data block of the file minus 1. If the value of this
field is 80H, for example, the last byte in the file is
byte number 129 in the last data block.

NUMBER OF DATA BLOCKS is a two-byte variable indicating the number of
data blocks currently used by the file. To calculate
the current number of bytes in the file, use the fol-
lowing formula:

(NUMBER OF DATA BLOCKS) * 256 + EOF COUNT + 1

HEADER BLOCK POINTER is the address of the file’s header block. The low
order byte in this field is the sector number, and
the high order byte is the track number. The
system finds a disk file by searching the directory
for the name, then using the header block pointer
to seek the beginning of the file.

ISIS.FRE

This file contains a bit map of the disk, with each bit position representing one
cluster of the disk. A cluster is 4 blocks or 4 sectors of the disk. Since there are 32
sectors/track, each byte of the bit map represents one track on the disk. For
diskettes, the bit map is 80 bytes long and for bubble memory the bit map is 16
bytes long.

If a bit in the bit map is 1, the corresponding cluster is allocated, that is, in use as a
pointer block and/or as data blocks. If a bit in the bit map is 0, the corresponding
cluster is free space on the disk. When a file is deleted, the bits that correspond to
the clusters it previously occupied are reset to 0.

Table 8-5 shows the values of the bit maps for the system files located at tracks
00H, 01H, and 27H on the mini-diskette and tracks 0 and 1 on the bubble memory.

Table 8-5 Values of System File Bit Maps

Track OOH Track O1H Trace 27H
Mini-diskette OFFH O1H O1FH
ISIS.TO iSIS.LAB ISIS.FRE
ISIS.DIR
Bubbie Memory OF3H 01H

ISIS.TO ISIS.LAB

ISIS.DIR

ISIS.FRE

System Programmer’s Reference

8-95

System Programmer’s Reference

8-96

ISIS uses a pre-allocation scheme to allocate disk space to requesting programs. A
pre-allocation table is maintained in memory containing a list of available clusters.
These clusters have already been set on in the bit map, so they will not be allocated
by any other program.

If a program requests disk space and there are no clusters available in the pre-
allocation table, ISIS gets 5 clusters and sets the bit map in ISIS.FRE for these 5
clusters. One of these clusters is made available to the requesting program. The
other four are saved in memory in a pre-allocation table for future requests.

This technique saves time since ISIS only has to access the disk one time to allocate
5 clusters. Thus, if the system is reset before clusters 2-5 are used, they will
remain allocated but will never be usable again.

Disk File Structure Summary

Figure 8-17 provides an overall view of the most important elements in the file
structure. Some simplifications have been made for clarity. There are only four
directory blocks, pointer blocks contain only four data block addresses, and so on.
However, the key relationships of file elements are shown.

iPDS™ User’s Guide

SN’

rreiet

iPDS™ User’s Guide System Programmer’s Reference
T DIRECTORY
PB. LINK POINTERS HEADER
BLOCK
DR | DR | DIR | DR
1 2 3 4
DIRECTORY
v |
DIRECTORY 1 DIRECTORY 2 DIRECTORY 3 DIRECTORY 4
%
v ALPHA] BETA peLTa | Jepsiton| zeTa | ETA | THETA I0TA
i A
L I]
TO FILE HEADER BLOCKS
‘ nlo-rAn
P.B. LINK POINTERS HEADER
BLOCK
DATA | DATA | DATA
2 3 4
‘ { {
DATA BLOCK 1 DATA BLOCK 2 DATA BLOCK 3 DATA BLOCK 4
FILE
OTA"
HOTA"
PB. LINK POINTERS 2ND POINTER
- BLOCK
DATA | DATA | DATA
PREV A el i
A ‘ ¢
DATA BLOCK 5 DATA BLOCK 6 DATA BLOCK 7 DATA BLOCK 8
yx
EOF
POINTER 7 // DELETED CURRENTLY
VALUES: % UNDEFINED

Figure 8-17 Disk File Structure Summary

0223

8-97/8-98

