CHAPTER 3

3. INPUT/OUTPUT TECHNIQUES

3-1 INTRODUCTION

Due to the type of applications in which they are used, the capability to efficiently handle
Input/Output (I/O) information is perhaps the most important characteristic of microprocessor systems. The
M6800 architecture incorporates supervisory controls and interface devices that permit a wide variety of I/O
techniques to be used. This Chapter describes the I/O characteristics of the M6800 system and their use in
typical applications.

Most /O information can be placed in one of two general categories: (1) control and status signals;
(2) data that is to be processed by the MPU. Much of the MC6800’s flexibility in handling control and status
information depends on three system features:

(1) Many of the routine peripheral control tasks can be delegated to the interface adapters.

(2) Because the design of the interface adapters allows the MPU to treat peripherals exactly like
other memory locations, the memory reference instructions that operate directly on memory are
also used to control peripherals.

(3) While all MPU’s must be able to continuously control simple peripherals under program
control, in many typical applications, the peripheral information to the MPU is often
asynchronous in nature and is best handled on an interrupt basis. The interrupt structure of the
MC6800 allows such applications to be processed in an orderly manner, that is, interrupts are
handled without disrupting other system tasks in progress.

The currently available interface devices are described in detail in Section 3-4. The various interrupt
control techniques are discussed in Sections 3-2 and 3-3.

In the M6800 system, all data movement between family elements (memory and/or peripheral
interface adapters) is normally done through the MPU via the Data Bus. This means that the transfers are
program controlled, that is, the movement is accomplished by execution of instructions such as Load, Store,
Push, Pull, etc. Numerous examples of programmed controlled data transfers are shown throughout this
manual. For example, a program for moving 8-bit bytes from a peripheral to memory (at the rate of 43,000
bytes per second) is described in conjunction with the floppy disk application discussed in Section 5-4.

In most system designs, it is possible to ‘‘speed up’’ data movement by surrendering program
control and transferring data directly between the other system elements. This bypassing of the MPU, usually
called Direct Memory Access (DMA), requires that the MPU be provided with supervisory signals. In addition,
external hardware for generating addresses and controlling the transfer must be provided. The MC6800’s
supervisory control features allow DMA to be accomplished in a variety of ways. The details of implementation
depend on the particular system configuration and timing requirements. Several methods and their relative
merits are discussed in Section 3-5 of this Chapter.

31

3-2 MC6800 INTERRUPT SEQUENCES

In a typical application, the peripheral devices may be continuously generating asychronous signals
(interrupts) that must be acted on by the MPU. The interrupts may be either requests for service or
acknowledgements of services performed earlier by the MPU. The MC6800 MPU provides several methods for
automatically responding to such interrupts in an orderly manner.

In the control of interrupts, three general problems must be considered: (1) Itis characteristic of most
applications that interrupts must be handled without permanently disrupting the task in process when the
interrupt occurs. The MC6800 handles this by saving the results of its current activity so that processing can be
resumed after the interrupt has been serviced. (2) There must be a method of handling multiple interrupts since
several peripherals may be requesting service simultaneously. (3) If some signals are more important to system
operation or if certain peripherals require faster servicing than others, there must be a method of prioritizing the
interrupts. Techniques for handling each of these problems with the MC6800 will be described in the following
paragraphs.

The MPU has three hardware interrupt inputs, Reset (l_lﬁ)‘ , Non-Maskable Interrupt (T\I_IJIT), and
Interrupt Request (ﬁ{(_)). An interrupt sequence can be initiated by applying a suitable control signal to any of
these three inputs or by using the software SWI instruction. The resulting sequence is different for each case.

3-2.1 INTERRUPT REQUEST (IRQ)

The IRQ input is the mainstay of system interrupt control. Inputs to IRQ are normally generated in
PIAs and ACIAs but may also come from other user-defined hardware. In either case, the various interrupts
may be wire-ORed and applied to the MPU’s IRQ input. This input is level sensitive; a logic zero causes the
MPU to initiate the interrupt sequence®. A flow chart of the TRQ sequence is shown in Figure 3-2.1-1.

After finishing its current instruction and testing the Interrupt Mask in the Condition Code
Register, the MPU stores the contents of its programmable registers in memory locations specified by
the Stack Pointer. (Operation of the Stack Pointer is discussed in Section 1-3 4.1.) This stacking process
takes seven memory cycles: two each for the Index Register and Program Counter, and one each for
Accumulator A, Accumulator B, and the Condition Code Register. The Stack Pointer will have been
decremented seven locations and is pointing to the next empty memory location.

The MPU’s next step of setting the Interrupt Mask to a logic one is an important aspect of system
interrupt control. Setting the mask allows the control program to determine the order in which multiple
interrupts will be handled. If it is desirable to recognize another interrupt (of higher priority, for example)
before service of the first is complete, the Interrupt Mask can be cleared by a CLI instruction at the beginning of
the current service routine. If each interrupt is to be completely serviced before another is recognized, the CLlI
instruction is omitted and a Return from Interrupt instruction, RTI, placed at the end of the service routine
restores the Interrupt Mask status from the stack, thus enabling recognition of subsequent interrupts.

Note that if the former metbod is selected (immediate enable of further interrupts), the original
interrupt service will still eventually be completed. This is due to the fact that the later interrupt also causes the
current status to be put on the stack for later completion. This process is general and means that interrupts can be

The bar convention over the symbols is used to indicate an active low signal condition.

2TRQ is a maskable input. If the Interrupt Mask Bit within the MPU is set, low levels on the IRQ line will not be recognized; the MPU
will continue current program execution until the mask bit is cleared by encountering the Clear Interrupt (CLI) instruction in the control
program, or an RTI is encountered.

32

Instruction
Finished?

Yes

Stack MPU
Contents

i

Set Iy

1

Load Program Counter
With Contents of Memory
Locations: FFF8 —@ PCyy
FFF9 —® PC|

i

Jump to Interrupt
Service Routine as
Determined by PC

Continue Executing

Current Program

—w SP-7
—> $P-6 CCR
SP-5 AcCCB
sPa ACCA
sp.3 INX
sP-2 TNX L
SP-1 PCry
sP PCL

FIGURE 3-2.1-1: Hardware Interrupt Request Sequence

CONTENTS ADDRESS
RES (Low Byte) FFFF
RES (High Byte) FFFE
NMI (Low Byte) FFFD
NMI (High Byte) FFFC
SWI (Low Byte) FFF8
SWI (High Byte) FFFA
iRQA (Low Byte) FFF9
TRQ (High Byte) FFF8
/——_“
FIGURE 3-2. 1-2: interrupt Vector, Per M y

«pested’’ to any depth required by the system limited only by memory size. The status of the interrupted
routines is returned on a Last-In-First-Out (LIFO) basis. That is, the last result to be stacked is the first to be
returned to the MPU.

After setting the Interrupt Mask, the MPU next obtains the address of the first interrupt service
routine instruction from memory locations permanently assigned to the IRQ interrupt input. This is
accomplished by loading the Program Counter’s high and low bytes from memory locations responding to
addresses, FFF8 and FFF9, respectively. The MPU then fetches the first instruction from the location now
designated by the Program Counter.

This technique of indirect addressing (also called vectoring) is also used by the other interrupt
sequences. The * ‘vectors’’ are placed in the memory locations corresponding to addresses FFF8 through FFFF
as shown in Figure 3-2.1-2 during program development.

The MPU places two of the address bytes in the range FFF8 — FFFF on the Address Bus during
interrupt sequences. It should be noted that the vector data is fetched from the memory locations that respond to
these addresses even though they may not actually be FFF8 — FFFF. For example, in the memory allocation
that was illustrated in Section 1-1 2.1 0of Chapter 1, the ROM was assigned the 1024 memory locations between
000 and C3FF (decimal 49152 to 50175) by tying Address Lines A1s and Au4 to the ROM'’s chip enables:

Address
Lines As Aia Az Az An Ao As As A7 As As As Az Az A Ao
ROM
Connections E E X X X X Ao As A7 As As As As Az A1 Ao

Not Connected

Notice that if the MPU outputs the address FFFF (all ones) while fetching the vector data for aReset,
it is actually addressing memory location C3FF in the system memory.

The significant point is that the eight locations that respond to FFF8 — FFEF must be reserved for
the interrupt vectors.

3-2.2 NON-MASKABLE INTERRUPT (NMD)

As implied by its name, the Non-Maskable Interrupt (I_\WI—I) must be recognized by the MPU as soon
as the NMI line goes to logic zero. This interrupt is often used as a power-failure sensor or to provide interrupt
service to a “‘hot’’ peripheral that must be allowed to interrupt.

Except for the fact that it cannot be masked, the NMI interrupt sequence is similar to IRQ (See
Figure 3-2.2-1). After completing its current instruction, the MPU stacks its registers, sets the Interrupt mask
and fetches the starting address of the NMI interrupt service routine by vectoring to FFFC and FFFD. (See
Figure 3-2.1-2).

323 RESET (RES)

The Reset interrupt sequence differs from NMI and IRQ in two respects. When RES is low, the
MPU places FFFE (the high order byte of the RES vector location) on the Address Bus in preparation for
executing the RES interrupt sequence. Itis normally used following power on to reach an initializing program
that sets up system starting conditions such as initial value of the Program Counter, Stack Pointer, PIA Modes,

34

E;

st

sk

the
for
am
es,

etc. It is also available as a restart method in the event of system lockup or runaway. Because of its use for
starting the MPU from a power down state, the RES sequence is initiated by a positive going edge. Also, since it
is normally used only in a start-up mode, there is no reason to save the MPU contents on the stack. The flow is
shown in Figure 3-2.3-1. After setting the Interrupt mask, the MPU loads the Program Counter from the
memory locations responding to FFFE and FFFF and then proceeds with the initialization program.

instruction
Finished?

M —————
— o SP-7
Stack MPU © SP-6 CCR
Contents
SP-5 ACCB
* sP-4 ACCA
SP-3 INX
Set Im SP-2 INX)
SP-1 PCH
+ sp PCL
Load Program Counter
With Contents of Memory

Locations: FFFC —#=PCh
FFFD— PC_

'

Jump to Interrupt
Service Routine as
Determined by PC

FIGURE 3-2.2.1: Non-Maskable Interrupt Sequence

Set Iy

'

Load Program Counter
With Contents of Memory
Locations: FFFE— PC
FFFF—-PC|

1

Jump to Interrupt
Service Routine as
Determined by PC

FIGURE 3-2.3-1: Reset Interrupt Sequence

35

3-2.4 SOFTWARE INTERRUPT (SWI)

The MPU also has a program initiated interrupt mode. Execution of the Software Interrupt (SWI)
instruction by the MPU initiates the sequence shown in Figure 3-2.4-1. The sequence is similar to the hardware
interrupts except that it is initiated by *‘software’’ and the vector is obtained from memory locations responding
to FFFA and FFFB. .

The Software Interrupt is useful for inserting break-points in the program as an aid in debugging and
troubleshooting. In effect, SWI stops the process in place and puts the MPU register contents into memory
where they can be examined or displayed.

—a» SP-7
Stack MPU l’.__‘> SP-6 CCR
Contents sps [Acce
* sp-4 ACCA
SP-3 INXH
Set Iy sp-2 INX L
sP-1 PCH
IR AR—
* sSP PCL
Load Program Counter
With Contents of Memory
Locations: FFFA PCy
FFEB PCy

'

Jump to interrupt
Service Routine as
Determined by PC

FIGURE 3-2.4-1: Software Interrupt Sequence

3-6

33 INTERRUPT PRIORITIZING

In the previous section, the various methods available for finding the ‘‘beginning’’ of an interrupt
control program were described. If there is only one peripheral capable of requesting service, the source of the
interrupt is known and the control program can immediately begin the service routine. More often, several
devices are allowed to originate interrupt requests and the first task of the interrupt routine is to identify the
source of the interrupt.

There is also the possibility that several peripherals are simultaneously requesting service. In this
case, the control program must also decide which interrupt to service first. The IRQ interrupt service routine in
particular may be complex since most of the I/O interrupts are wire-ORed on this line.

The most common method of handling the muitiple and/or simultaneous TRQ interrupts is to begin
the service routine by ‘‘polling”’ the peripherals to see which one generated the request. If the interrupts are
generated by peripheral signals coming in through a PIA or an ACIA, the polling procedure is very simple. In
addition to causing IRQto go low, the interrupting signal also sets a flag bit in the PIA’s or ACIA’s internal
registers. Since these registers represent memory locations to the MPU, the polling consists of nothing more
than stepping through the locations and testing the flag bits3.

Establishing the priority of simultaneous interrupts can be handled in either of two ways. The
simplest is to establish priority by the order in which the PIAs and ACIAs are polled. That is, the first /O flag
encountered gets the service, so higher priority devices are polled first. The second method first finds all the
interrupt flags and then uses a special program to select the one having highest priority. This method permits a
more sophisticated approach in that the priority can be modified by the control program. For example, it might
be desirable to select the lower priority of two simultaneous requests if the lower priority has not been serviced
for some specified period of time.

Software techniques can, in theory, handle any number of devices to any sophistication level of
prioritizing. In practice, if there are many sources of interrupt requests, the time required to find the appropriate
interrupt can exceed the time available to do so. In this situation, external prioritizing hardware can be used to
speed up the operation.

One method for implementing hardware prioritized interrupts is shown in block diagram form in
Figure 3-3-1. With this technique, each interrupting device is assigned its own address vector which is stored in
ROM memory similarly to the RES, SWI, IRQ, and NMI vectors. An external hardware priority encoder
selects the interrupt to be recognized and directs the MPU to the proper locations in memory for obtaining the
vectors.

Operation of the MPU itself is unchanged; after recognizing an IRQ, the MPU still outputs addresses
FFF8 and FFF9 as before. However, some of the address lines are no longer tied directly to memory but go
instead to a 1-of-2 Data Selector. The other set of inputs to the Data Selector are generated by a Priority Encoder
that outputs a binary number corresponding to the highest priority interrupt signal present at the time the
interrupt was recognized by the MPU.

Detection of the FFF8 and FFF9 addresses by the Address Bus monitoring circuitry then causes the
outputs of the priority encoder to be substituted for part of the normal address. Hence, even though the MPU
outputs FFF8 and FFF9, other locations in ROM are read by the MPU. Suitable vectors for sending the MPU
directly to the appropriate service routine are stored in these locations. Specific circuits for implementing this
prioritizing method are described in Section 4-2.1.

¥See Section 5-4 for a specific example of software polling.

3-7

Interrupt

Address
Decode Address Bus 2

]
12 >—
13 >— 1of-2 MPU
L4 Priorit Jot M
| promy b————N ows [T} wicmes%0
>:_ tnterrupt Selector ROM) Data
M) S Partial Address Bus
n >—
FIGURE 3-3-1: Hardware Interrupt Prioritizing Block Diagram
3-4 PROGRAM CONTROLLED DATA TRANSFERS

3-4.1 MC6820 PERIPHERAL INTERFACE ADAPTER

3-4.1.1 Input/Output Configuration:

The MC6820 Peripheral Interface Adapter (PIA) provides a flexible method of connecting
byte-oriented peripherals to the MPU. The PIA, while relatively complex itself, permits the MPU to handle a
wide variety of equipment types with minimum additional logic and simple programming. An Input/Output
Diagram of the MC6820 is shown in Figure 3-4.1.1-1.

Data flows between the MPU and the PIA on the System Data Bus via eight bi-directional data lines,
DO through D7. The direction of data flow is controlled by the MPU via the Read/Write input to the PIA.

The ‘“MPU side’’ of the PIA also includes three chip select lines, CS0, CS1, and CS2, for selecting a
particular PIA. Two addressing inputs, RS0, and RS1, are used in conjunction with a control bit within the PIA
for selecting specific registers in the PIA. The MPU can read or write into the PIA’s internal registers by
addressing the PIA via the system Address Bus using these five input lines and the R/W signal. From the MPU’s
point of view, each PIA is simply four memory locations that are treated in the same manner as any other |
read/write memory. :

The MPU also provides a timing signal to the PIA via the Enable input. The Enable (E) pulse is used
to condition the PIA’s internal interrupt control circuitry and for the timing of petipheral control signals. Since
all data transfers take place during the ¢2 portion of the clock cycle, the Enable pulse is normally 24,

The *‘Peripheral side” of the PIA includes two 8-bit bi-directional data buses (PAO-PAT7 and
PB0-PB7), and four interrupt/control lines, CA1l, CA2, CBI, and CB2. All of the lines on the *‘Peripheral
Side’” of the PIA are compatible with standard TTL logic. In addition, all lines serving as outputs on the “B”
side of each PIA (PB0-PB7, CB1, CB2) will supply up to one milliamp of drive current at 1.5 volts.

iSee Section 4-1.3 for exceptions required in some applications.

3-8

|\
N CAl f——
\-a{ TROA
. CA2 [4——
N 1RQB
ealim :> 0B¢ - DB7 <:>
- PAQ - PA7
h— @
h—
| RSP MC6820
N e RS1 Peripheral
A |— CS® Interface
wling A(dpali\t:’
N =i CS2
PBY - PB7 <:>
M R/W
” N8 Enable CB2 [———
a § ! Ros CB1 j———
2] g -
HEIREE
5 1&
e ol |§
<
2 0
J -

FIGURE 3-4.1.1-1: MC6820 PIA /O Diagram

3-4.1.2 Internal Organization:

An expanded Block Diagram of the PIA is shown in Figure 3-4.1.2-1. Internally, the PIA is divided
into two symmetrical independent register configurations. Each half has three main features: an Output
Register, a Control Register, and a Data Direction Register. It is these registers that the MPU treats as memory
locations, i.e., they can be either read from or written into. The Output and Data Direction Registers on each
side represent a single memory location to the MPU. Selection between them is internal to the PIA and is
determined by a bit in their Control Register.

The Data Direction Registers (DDR) are used to establish each individual peripheral bus line as
either an input or an output. This is accomplished by having the MPU write *‘ones’’ or “‘zeros’’ into the eight
bit positions of the DDR. Zeros or ones cause the corresponding peripheral data lines to function as inputs or
outputs, respectively.

The Output Registers, ORA and ORB, when addressed, store the data present on the MPU Data Bus
during an MPU write operation®. This data will also appear on those peripheral lines that have been

5As used here, an **MPU Write”’ operation refers to the execution of the **Store’” instruction, i.e., writing into Qutput Register A is
equivalent to execution of STAA PIAORA by the MPU. Similarly, an *“MPU Read’’ operation is equivalent to execution of the
*‘Load”’ instruction: LDAA PIAORA.

- —

IRQA 38 - la—— 40 CA1
fnterrupt Status
Control A 3g CA2
Control
Register A
DO 33 {CRA)
D1 32 -a— —N] Data Direction
D2 31 -a—o lﬁ V] Register A
D3 30 -——w Data Bus J I (DDRA)
Buffers
D4 29 -a— (DBB) Qutput Bus S Z
DS 28 —a—
D6 27 - la—a= 2 PAO
D7 26 | Ol_nput t—= 3 PAT1
Register A 4 PA2
{ORA)
iL Peripheral lt—w 5 PA3
Interface - 6 PA4
A
" lige—a 7 PAS
Bus Input @
Register 5 8 PAG
(BIR) g lat— 9 PAT7
Vee = Pin 20 le—»- 10 PBO
Vgg = Pin 1
Qutput J\ lat—w~ 11 PB1
Register B
(ORB) / let—»- 12 PB2
cs0o 22 —— Peripheral le— 13 PB3
Interface
cs1 24— e la— 14 PB4
cS2 23 — Chip lg— 15 PBS
Select
RSO 36 ——= and le—= 16 PB6
RS1 35 —W R/W 17 P87
R/W 21 » Control -
Enable 26 —#
Reset 34 ——®~
'_l l___ Data Direction
Control Register B
Register B (DDRB)
(CR8B)
L____.l le—18 cB1
fnterrupt Status
—— 1
TRQB 37 Control 8 19 cB2

FIGURE 3-4.1.2-1: MC6820 PIA — Block Diagram

programmed as outputs. If a peripheral line has been programmed as an input, the corresponding bit
position of the Output Register can still be written into by the MPU, however, the data will be
influenced by the external signal applied on that peripheral data line.

During an MPU Read operation, the data present on peripheral lines programmed as inputs is
transferred directly to the system Data Bus. Due to differing circuitry, the results of reading positions
programmed as outputs differ slightly between sides A and B of the PIA. On the B side, there is three-state
buffering between Output Register B and the peripheral lines such that the MPU will read the current contents
of ORB for those bit positions programmed as outputs. (See Figure 3-4.1.2-2.) During an MPU Read of the A
side, the data present on the Peripheral lines will effect the MPU Data Bus regardless of whether the lines are
programmed as outputs or inputs. The bit positions in ORA designated as outputs will be read correctly only if
the external loading on the Peripheral lines is within the specification for one TTL load. That is, a logic one
level could be read as a logic zero if excessive loading reduced the voltage below 2.0 volts.

The two Control Registers, CRA and CRB, allow the MPU to establish and control the operating
modes of the peripheral control lines, CA1, CA2, CB1, and CB2. It is by means of these four lines that control
information is passed back and forth between the MPU and peripheral devices. The control word format and a
summary of its features is shown in Figure 3-4.1.2-3.

The Data Direction Register access bit (b2 = DDR Access) is used in conjunction with the register
select lines to select between internal registers. For a given register select combination, the status of the DDR
bit determines whether the Data Direction Register (bz of DDR = 0) or the Output Register (bz of DDR = 1) is
addressed by the MPU.

To Data

Bus PAX

From ORA O 1

0 = True Data

A) A — Side

From DDR

To Data Bus } E I

o ome >V —] >

1 = True Data

~——& PBx

B) B — Side -

FIGURE 3-4.1.2-2: PIA Output Circuit Configurations

3-11

Determine Active CA1 (CB1) Transition for Setting
interrupt Flag TRQA(B)1 — it b7)

b1 =0: IRQA(B)1 set by high-to-low transition on
CA1 (CB1).

b1 =1: 1RQA(B)1 set by low-to-high transition on
CA1(CB1).

IRQA(B) 1 Interrupt Flag (bit b7)

Goes high on active transition of CA1 (CB1); Automatically
cleared by MPU Read of Output Register A(B). May also be

CA1 (CB1) Interrupt Request Enable/Disable

b0 = 0 : Disables |RQA(B) MPU Interrupt by CA1 (CB1)
active transition.
p0 = 1 : Enable I|RQA(B) MPU Interrupt by CA1 (CB1)

active transition.
1. 1RQA(B) will occur on next (MPU generated) positive
transition of b0 if CA1 {CB1) active transition occurred
while interrupt was disabled.

—l__l:___‘|

cleared by hardware Reset.
b7

b6 b5 | b4 | b3 b2 b1 | b
IRQA(B)1 | IRQA(B)2 CA2(CB2) DDR cA1(CB1)
Flag Flag Control Access Control

|_____l

IROA(B)2 Interrupt Flag (bit b6)

CA2 (CB2) Established as Input (b5 = 0): Goes high on active
transition of CA2 (C82); Automatically cleared by MPU Read
of Output Register A{B}. May also be cleared by hardware
Reset.

CA2 (CB2) Established as Output {b5 = 1):
not affected by CA2 {CB2) transitions.

IRQA(B})2 =0,

R

ister Or Qutput

Determines Whether Data Di ion Regi
Register is Addressed

b2 = 0 : Data Direction Register selected.

p2 = 1 : Output Register selected.

—

CA2 (CB2) Established as Output by b5 =1

23

{Note that operation of CA2 and CB2

b5
output functions are not identical)

b3

1 [+]
—e= CA2

b3

0: Read Strobe With CA1 Restore

CA?2 goes low on first high-to-
low E transition following an
MPU Read of OQutput Register
A; returned high by next
active CA1 transition.

b3 =1: ReadStrobe with E Restore
CA2 goes low on first high-to-
low E transition following an
MPU Read of Output Ragister
A: returned high by next
high-to-low E transition.

L’CB2

b3 Write Strobe With CB1 Restore

CB2 goes on low on first low-
to high E transition foliowing
an MPU Write into Output
Register B; returned high by
the next active CB1 transition.

b3 =1: Write Strobe With E Restore

CB2 goes low on first fow-to-
high E transition following an
MPU Write into Output
Register B; returned high by the
next low-to-high E transition.

Set/Reset CA2 (CB2)

CA2 (CB2) goes low as MPU writes
b3 = 0 into Control Register.

CA2 (CB2) goes high as MPU writes
b3 = 1 into Control Register.

]

CA2(CB2} E lished as Input by b5=0

b5 b4 b3 |

4] T L CA2 (CB2) interrupt Request Enable/ |
Disable |
b3 =0: Disables IRQA(B) MPU

interrupt by CA2 (CB2)
active transition.!

Enables IRQA(B) MPU
Interrupt by CA2 {CB2)
active transition.

b3=1:

1. 1RQA(B) will occur on next {MPU
generated) positive transition of b3
if CA2 (CB2) active transition {
occurred while interrupt was
disabled.

Determines Active CA2 (CB2) Transition |

———
for Setting interrupt Flag TRQA(B)2 —
{bit b6)
b4 =0: IRQA(B)2setby high-to-low
transition on CA2 (CB2).
b4a=1: IRQA(B)2setby low-to-high

transition on CA2 {CB2)

EIGURE 3-4.1.2-3: PIA Control Register Format

i

Each Control Register has two interrupt request flags, b7 = IRQA(B)1 and bs = IRQA(B)2; they are

li
|
|
l
|
|

|

set by transitions on the CA1(CB1) and CA2(CB2) control lines and can be read by an MPU read Control
Register operation. The status of the interrupt flags cannot be altered by an MPU write instruction, that is,
IRQA(B)1 and IRQA(B)2 are Read Only with respect to the MPU. They are indirectly reset to zero each time
the MPU reads the corresponding Output Register or can be cleared with the hardware Reset.

Bits bo and bs of the Control Registers determine the CA1(CB1) operating mode. A **one’” written
into b by the MPU will cause subsequent positive-going transitions of the CA1(CB 1) input to set IRQA(B)1;if
b: = 0, negative-going transitions on CA1(CB1) cause IRQA(B)1 to set. If bo = 1 when the IRQA(B)1 flag
goes high, the PIA’s external interrupt request line, IRQA(B), immediately goes low, providing a hardware
interrupt signal to the MPU. The external interrupt is disabled if bo = O when the internal interrupt is set by
CA1(CB1). If b is later set by an MPU Write Control Register operation, the disable is immediately released
and a pending external interrupt request will occur.

When bs = 0, bs and b4 of the Control Register perform similarly to be and b1, controlling the
IRQA(B)?2 interrupt via the CA2(CB2) input. The IRQA(B) interrupt terminal, when enabled, responds to
either IRQA(B)1 or IRQA(B)2.

Ifbs = 1, CA2(CB2) acts as an output and will function in one of three modes. If by is also equal to
one, CA2(CB2) serves as a program-controlled set/reset output to the peripheral and follows ba as it is changed
by MPU Write Control Register operations. If bs = 0 when bs = 1, CA2(CB2) can be used in either a
pulse-strobed or handshake mode. Operation of the two sections differ slightly for these two operating modes.
In the handshake mode (bs = 0) CA2 is taken low by the negative transition of the MPU Enable Pulse following
an MPU Read Output Register operation and returns high when IRQAL1 is next set by CA1. This, in effect, tells
the peripheral it has been read and allows it to acknowledge via CA1. The *B™" Side operation is similar except
that CB2 is taken low following an MPU Write Output Register operation and returned high by the next CB1
transition; this tells the peripheral it has been written into and allows it to respond via CBI.

In the pulse-strobed mode (bs = 1), CA2 is again set low by a Read Output Register command, but is
now returned high by the negative transition of the next MPU originated Enable Pulse. CB2 operation is similar
except that an MPU Write Operation initiates the pulse. Relative timing waveforms for the strobe control
modes are shown in Figures 3-4.1.2-4 and 3-4.1.2-5. The use of A side for Read and B side for Write in those
figures is not meant to imply that the A and B sides must be used only for peripheral data in and out,
respectively. However, the strobe modes are implemented only as shown, i.e., a strobe is not generated by an A
side Write or a B side Read. Strobes can be generated for these cases by including ‘‘dummy’” instructions in the
program. For example, an A side Write instruction can be followed immediately by an A side dummy Read to
generate the strobe. Similarly, a B side Read can be followed by a dummy Write.

Enable

24V
Address
0.4V
paripheral 24V
Data . 0.4V
2.4V
Data Bus
0.4V
CA2 2.4V
(CRA-5 = CRA-3= 1, CRA-4=0)
04V
2.4V
cAl
o4V
CA2 24V
(CRAB=1, CRA-3= CRA-4= 0)
——— 04V

Loading = 30 pF and one TTL load for PAD-PATZ, PBO-PB7. CA2, cB2

= 130 pF and One TTL load for D0-D7, 'RAA, IRQB)

Delay Time, Address valid 10 Enable positive transition

Delay Time. Enable positive transition to Data valid on bus

Peripheral Data Setup Time

Data Bus Hold Time
Delay Time, Enable negative transition to CAZ2 negative transition

Detay Time, Enable negative transition 10 CA2 positive transition
Rise and Fall Time for CAl
Delay Time trom CA1 active transition 10 CA2
and Fall Time for Enable input

and CA2 input signals

positive transition

FIGURE 3-4.1.2-4: Read Timing Characteristics

3-14

Vgg + 2.4 V
Enable / 0.av _/

TAEW e le— tpsU

2.4V
Address gg \\/I X
| -8 oc4v
Twe l;'—
24V
Read/Write /
I 0.8V 04V
—a re—THw
XX 24V
Data Bus x 08 v Temos
T e Vee - o
T —-F ——————————————————— cc — 30%
PDW 12—0 . 24V
Peripheral Data 0.8 v
- 0.4V
— le—Tce2 — TRs1
24v
CcB2 20V
CRB-5=CRB-3=1,CRB4=0
! ’ B) Toc 04V
T, }<_
20V 24v
cB1 08 V
- 0.4V
Trs2
24V
cB2 i\2.0 A 20V
(CAB-5=1,CRB-3=CRB-4=0) 0.4V
Characteristic Symbol Min Typ Max Unit
Enable Pulse Width Te 0.470 - 25 s
Delay Time, Address valid to Enable positive transition TaAEW 180 - - ns
Delay Time, Data valid to Enable negative transition Tpsu 300 — - ns
Delay Time, Read/Write negative transition to Enable positive transition Twe 130 - - ns
Data Bus Hold Time Thw 10 — - ns
Delay Time, Enable negative transition to Peripheral Data valid Tepow - - 10 us
Delay Time, Enable negative transition to Peripheral Data Valid, CMOS Tcmos - - 20 us
(Veg - 30%) PAD-PA7, CA2
Delay Time, Enable pasitive transition to CB2 negative transition Tce2 - = 1.0 13
Delay Time, Peripheral Data valid to CB2 negative transition Tpg 0 - 1.5 us
Delay Time, Enable positive transition to CB2 positive transition TARS1 — - 1.0 us
Rise and Fall Time for CB1 and CB2 input signals tr tf - - 10 us
Delay Time, CB1 active transition to CBZ positive transition TRs2 - - 20 us

FIGURE 3-4.1.2-5: Write Timing Characteristics

3-15

3.4.1.3 Addressing and Initialization:

Chapters 6 and 7 of this manual include numerous examples of PIA addressing and initialization,
however, some basic considerations are discussed in the following paragraphs. As indicated in Section 3-4.1.1,
the MPU addresses the PIA via the five chip select and register select inputs and bit 2 of the Control Registers.
The correspondence between internal registers and the address inputs is shown in Figure 3-4.1.3-1.

87 Ccs1 CS¢ RS1 RSe
1

o
N

Data Direction Register A (PIADRA)
Output Register A (PIAOCRA}
Contro! Register A (PIACRA}

Data Direction Register B (PIADRB)
Output Register B (PIAORB)
Control Register B (PIACRSB}

PIA Not Selected

PIA Not Selected

PIA Not Selected

AXXSOOOOSS
XXX == =20SS
XXX=2900=29%¢

XXG ===

1
1
1
1
1
X
®

X

XX XX=28xX=>9

X = Doesn't Matter 1

FIGURE 3-4.1.3-1: PIA Register Addressing

Addressing a PIA can be illustrated in conjunction with the simple system configuration shown in
Figure 3-4.1.3-2°. The method shown is typical for assigning mutually exclusive memory addresses to the
family devices without using additional address decode logic. The connections shown in Figure 3-4.1.3-2
assign memory addresses as follows:

RAM 0000 — 007F
PIA 4004 — 4007
ACIA 4008 — 4009
ROM C000- C3FF

(Hexadecimal notation)

In most cases, the desired 1/O configuration and Control Register modes are established as part of an
initialization sequence. The steps involved depend on the particular application but canbe clarified by means of
a specific example.

Assume that a PIA is to be used as the interface between two peripherals. When interrupted by a
positive transition on a control line, the MPU is to fetch 8 bits of data from Peripheral #1 and then send an
acknowledgement pulse. The MPU must be able to transfer a byte of data to Peripheral #2 and receive
acknowledgement that it was accepted. Peripheral #2 must be provided with a control signal indicating that
there is data ready for it.

A suitable hardware configuration is shown in Figure 3-4.1.3-3. Peripheral Lines PAOQ-PA7 are
assigned to ‘‘read”’ Peripberal #1 and, hence, must be established as inputs. CAl provides the interrupt input
and must be conditioned to recognize incoming positive transitions. CA2 will be used to signal that data has
been read, hence, it must be established as an output using the pulse strobe mode, i.e., reading PIAORA will
automatically transmit a pulse to the peripheral.

Peripheral Lines PBO-PB7 are assigned for transmitting data to Peripheral #2 and, hence, must be
established as outputs. CB2 will be used as an output for signalling that there is data ready. CB1 will be

SFigure 34.1.3-2 is identical to Figure 1-1.2-1 and is discussed in Section 1-1.2 of Chapter 1.

TIn order to use symbolic labels instead of absolute addresses in the initialization program, the labets introduced in Figure 3-4.1 3-1will
be used to refer to PIA registers.

A

LA
START- j
up RESET g
BA :
-DB7
DBE DB0-DB]
02 02 2
7
crock [o MPU]
VMA « 02) _[™{7sC 11
= 2
45V HALT »
NMI g
R
VMA /W \;
AO- A5 VMA [
\
A
L1
/ : AG-A9 JAC-AS DBO-DB7 ”
ROM MA . 02 A
/ __ A5 e g VMA- 021
N e £ g
”
d g
”
]
/ AO- A6 Y A0-A6 DBO-DB7 <r g
g
Nl - MY
— -4
/ E £l rw /12
A A i RIW e
4 E 2E
I/ / (3]
o
a »
<A A0
|/ x | RSO]
/¥_— RS1 DBO-DB7?
N__az | \r
Ccso L
62
/\ VMA s A14 cs1 PIA e - g
N2 | s EEE)]
RIW 1
/// IROA ¢
CA2 IRQB 1
/ CA1 _PA__ PB CB1CB2 g
/
g
/ —_— 2
/ PARALLEL 1/0 {DATA AND CONTROL) »
LA
L\ g
/ 20wt rs DB0-DB7 g
___JEL;— cSo ; /‘_______/)
/ \YMA- ALs] AcIA ¢
A]! I VY
/ €52 E ‘__/A]
/ R/IW AA
IRQ LA
Tx Rx CTS DCD RTS tRQ 11
3 <
.pACL

n

N\

\ M\

SONONNNNNANNANNN

\ \

FIGURE 3-4.1.3-2: Family Addressing

3-17

AONNNNNONNNNNNNNNN

) —

DATA

Data Ready ., — ————
Data Accepted
P
PAQ [l——
PA1 |t
PA2 |-t Peripheral
PA3 |———— #1
PA4 (———
PAD [——— |
PAG r—————
PA7 tl———"""}
. N —
PBO
PB1
Peripheral
o #2
Data Ready

Data Accepted

FIGURE 3-4.1.33: Typical 1/0 Configuration

3-18

R

conditioned to accept a negative transition acknowledgement signal from Peripheral #2. CB2 is to be restored
by that transition.

If it is known that a hardware system Reset is to be applied prior to initializing, all PIA register bits
will be zero initially and the following sequence can be used:

10 LDAA #$2F SELECT ORA; SET MODE CONTROL
20 STAA PIACRA FOR ““A”’ SIDE

30 COM PIADRB ESTABLISH PBO-PB7 AS OUTPUTS
40 LDAA #3$24 SELECT ORB; SET MODE CONTROL
50 STAA PIACRB FOR “‘B’’ SIDE

The constant8 $2F = 00101111 loaded into the A Control Register by Instruction 20 has the following effect: b0
= | enables a CA1 interrupt; bl = 1 selects positive transition for interrupt recognition; b2 = 1 selects ORA
(the initial zeros in DDRA establish PAO-PA7 as inputs); b3 = 1, b4 = 0 selects read strobe with E restore; b5 =
1 establishes CA?2 as an output; b6 and b7 are don’t cares since MPU cannot write into those two positions:

b7 b6 b5 b4 b3 b2 bl n0
O 0 1 0 1 1 1 1 = 2F (Hex)

Instruction 30 writes ‘‘ones’’ into the B Data Direction Register, thus establishing PBO-PB7 as outputs. The
constant loaded into the B Control Register by instruction 50 has the following effect: b0 = 0 disables TRQB
interrupt by CB1 transition (it is assumed that the MPU will read flag bit b7 to check for acknowledgement
rather than allowing an interrupt); b1 = 0 selects recognition of negative transition on CB 1 for setting flag bit 7;
b2 = 1 selects ORB; b3 = 0, b4 = 1 selects Write strobe with CB1 restore; b5 = 1 establishes CB2 as an output;
b6 and b7 are don’t cares:

b7 b6 b5 b4 b3 b2 bl bO
0 0 1 0 0 1 0 0 =24(Hex)

If there is no assurance that the PIA internal register bit positions are initially zero prior to
initialization, the following sequence can be used:

10 CLRA SELECT
20 STAA PIACRA DATA DIRECTION REGISTER A
30 STAA PIACRB AND DATA DIRECTION REGISTER B.

40 STAA PIADRA ESTABLISH PAO-PA7 AS INPUTS.
50 LDAA #$2F SELECT ORA; SET MODE

60 STAA PIACRA CONTROL FOR ““A’’ SIDE.
.‘ 70 LDAA #$FF ESTABLISH
‘ 80 STAA PIADRB PB0-PB7 AS OUTPUTS.

90 LDAA #8324 SELECT ORB; SET MODE

100 STAA PIACRB CONTROL FOR “B”’ SIDE.

Note that if the initialization sequence is started from a known hardware clear only half as many instructions are
required.

8Refer to Figure 3-4.1.2-3 for derivation of the Control Register words.

i 3-19

3.4.1.4 System Considerations:

The information provided in the preceding paragraphs has been limited to only the more obvious
characteristics of the PIA. The features described greatly simplify /O processing, as will be seen in the
examples of later chapters. There are several general techniques worth considering as a system is configured.

The fact that the PIA registers are treated as memory combined with the fact that many of the MPU’s
instructions (CLR, ASL, COM, TST, etc) operate directly on memory makes possible a variety of 1/O
techniques. This characteristic should be given careful attention when hardware/software tradeoffs are being
considered.

The flexibility inherent in being able to change the 1/O direction of individual peripheral lines under
program control was not adequately stressed in the initialization discussion. A detailed example making use of
this feature to decode a switch matrix is included in Section 5-1.1.1.

Only a simple case of address assignment was considered. Other approaches may lead to a more
efficient system. As an example, consider the memory allocation that results from applying A0, and A1 of the
address bus to RSO and RS1, respectively:

RS1 RSO

(AD) (AD) T~
0 0 PIAORA
0 1 PIACRA
1 0 PIAORB
1 1 PIACRB

Here the registers alternate between output and Control® Registers. If AQis connected to RS1 and Al to RSO,

the following result is obtained:

RS1 RSO

(A0) (AD
0 0 PIAORA
1 0 PIAORB
0 1 PIACRA
1 1 PIACRB

Notice that the output registers are now in adjacent memory locations. This configuration can be used to
advantage in applications where 16 bits must be brought into memory. With both the A and B sides established
as input ports, the LDX and STX instructions can be used to efficiently transfer two bytes ata time. A specific
example of this technique is described in Section 5-4. If this allocation is selected, initialization routines such as

the first example of Section 3.4.1.3 can also be simplified:

10 LDX #$2F24 ESTABLISH CONTROL MODES
20 STX PIACRA FOR BOTH SIDES.

In this sequence, the single instruction STX causes the appropriate constant to be loaded into both Control
Registers.

[
5This assumes that b2 of the Control Registers has been set to select the Output Registers.

3-20

34.2 MC6850 ASYNCHRONOUS COMMUNICATIONS INTERFACE ADAPTER
3-4.2.1 Input/Output Configuration

The MC6850 Asynchronous Communications Interface Adapter (ACIA) provides a means of
efficiently interfacing the MPU to devices requiring an asynchronous serial data format. The ACIA includes
features for formatting and controlling such peripherals as Modems, CRT Terminals, and teletype
printer/readers. An Input/Output Diagram of the MC6850 is shown in Figure 3-4.2.1-1.

Data flow between the MPU and the ACIA is via 8 bi-directional lines, DBO through DB7, that
interface with the MPU Data Bus. The direction of data flow is controlled by the MPU via the Read/Write input
to the ACIA.

The “*“MPU side”’ of the ACIA also includes (see Figure 3-4.1.3-2) three chip select lines, CSO,
CS1, and CS2, for addressing a particular ACIA. An additional addressing input, Register Select (RS), is used
to select specific registers within the ACIA. The MPU can read or write into the internal registers by addressing
the ACIA via the system Address Bus using these four input lines. From the MPU’s addressing point of view,
each ACIA is simply two memory locations that are treated in the same manner as any other read/write memory.

The MPU also provides a timing signal to the ACIA via the Enable input. The Enable (E) pulse is
used to condition the ACIA’s internal interrupt control circuitry and for the timing of status/control changes.
Since all data transfers take place during the ¢2 portion of the clock cycle, ¢2 is applied as the E signal.

The “‘Peripheral side’” of the ACIA includes two serial data lines and three control lines. Data is
transmitted and received via the Tx Data output and Rx Data inputs, respectively. Control signals
Clear-To-Send (CTS), Data Carrier Detect (BEB), and Request-To-Send (RTS) are provided for interfacing
with Modems such as the MC6860. Two clock inputs are available for supplying individual data clock rates to
the receiver and transmitter portions of the ACIA.

’\ N
Clk Tx
N TRG [~ Tx Data
<: - :> DBO - DB7 TTS [et—
M o= RS RTS [—»
] MC6850
- CSO Asynchronous DCD jp—
- = CS1 Communications
N ! ©57 Interface
Adapter
(ACIA}
Nt R/W
Nt E
s (l}— Rx Data
m »w
- 3 Clk Rx
HIF J
=
HIBE
o |16
F © J
]
& N\

FIGURE 3-4.2.1-1: MC6850 ACIA 1/0O Diagram

3-21

Clk Tx 4 ——

DO22‘—J

4=| Transmit
Clik. Gen.

\

Parity
Generation

Transmit Transmit
D1 21 < Data Reg. shift Reg. 6 Tx Datz
D2 20 -a—br
o3 jo-e—we DotaBus
Multiplexor/
g; 13 | Buffers
17 - f —
Transmit 24TTS
D6 16 - e] Control
D7 15 = Status
Register
N——
—————
G 7 Interrupt N Clock
Control I‘—kj Salect
—’__] 5 RTS
- J—
Control 23 DCD
Register
Receive Parity
cso 8 Controt Check
cs1 10 »>
CcsS2 9 Chip Select A
RS 11 and
R/W Control
R/W 13 o Receive Receive 2
3 14— Data Reg. Shift Reg. » * Rx Dit
3
Receive Sync.
Cclk Rx 3 Cik. Gen. Logic
FIGURE 3-4.2.2-1: ACIA Block Diagram
3.4.2.2 Internal Organization

An expanded Block Diagram of the ACIA is shown in Figure 3.4.2.2-1. While the ACIA appears (0
the MPU as two addressable memory locations, internally there are four registers, twWo that are Write Only and
two that are Read Only. The Read Only registers are for status and received data and the Write Only registers
are for ACIA control and transmit data.

The Status Register format and a summary of the status bits is shown in Figure 3-4.2.2-2. The first
two bits b0 and bl indicate whether the Receiver Data Register is full (RDRF) or if the Transmit Data Register is
empty (TDRE). b0 will go high when Rx data has been transferred to the Receiver Data Register (RDR). b0 will
go low on the trailing edge of the Read Data command (reading the Receiver Data Buffer) or by a master reset
command from bits b0 and b1 of the Control Register.

Status bit bl (Tx Data Register Empty) will go high whena transmitter data transfer has taken place
indicating that the Transmit Data Register (TDR)is available for new data entry from the MPU Bus. Bitb1 will
return low on the trailing edge of a write data command. bl will be held low if Clear-To-Send is not received
from a peripheral device (CTS = “17)

Status bits b2 (Data Carrier Detect) and b3 (Clear-To-Send) are flag indicators from an external
modem. Bitb2 (I_D_CT)_) will be high when the received carrier at the modem has been lost (ACIA’sﬁ]_) input is
high). Bitb2 will remain high until the interrupt is cleared by reading the Status Register and the Receiver Data
Register. Bitb3 (CTS) is low during reception of a Clear-To-Send command froma modem or other peripheral
device.

322

Data Carrier Detect

b2 =0: Indicates carrier is present.

b2 =1: Indicates the loss of carrier.

1. The low-to-high transition of the DCD in-
putcauses b2=1 and generates an interrupt
(b7=1), (IRQ=0)

2. Reading the Status Register and Rx Data
Register or master resetting the ACIA
causes b2=0 and b7=0.

Receiver Data Register Full

b0 = 0: Indicates that the Receiver Data
Register is empty.

b0 = 1: Indicates that data has been trans-
ferred to the Receiver Data Register

and status bits states are set (PE,
Interrupt Request OVRN, FE).

1. The Read Data Command on the high-to-
The interrupt request bit is the compiement of

tow E transition or a master reset causes
the TRG output. Any interrupt that is set and b0 = 0.
o o e gl the et registr 2 A i on the DGD nput causes b0=0
a ° put. and the receiver 1o be reset.

b7 b6 b5 ba b3 b2 b1 b0
IRQ OVRN FE CTs DCD TxDRE | RxDRF

T T

Framing Error

b4 =1: Indicates the absence of the first stop
bit resulting from character synchro-

nization error, faulty transmission, or
a Break condition.

Transmitter Data Register Empty
1. The internal Rx data transfer signal causes

L bt =1: Indicates that the transmitter data
bd=1 due to the above conditions and causes Register is empty.
b4=0 on the next Rx data transfer signal if b1 =0: Indicates that the transmitter data

conditions have been rectified. Register is full.

1. The internal Tx transfer signal forces b1=1.
2. The Write Data Command on the high-to-

Overrun Error low E transition causes b1=0.
b5 =1: Indicates that a character or a num- 3. A “high” on the CTS input causes b1=0.

ber of characters were received but

not read from the Rx data register
prior to subsequent characters being

— received.
1. The Read Data Command on the high-to-
low E transition causes bS=1 and b0=1 if an
overrun condition exists. The next Read
Data Command on the high-to-low E transi-
tion causes b5=0 and b0=0.
Parity Error Clem:o_Send R
b6 =1: Indicates that a parity error exists The CTS bit reflects the CTS input status for
) N PR vy use by the MPU for interfacing to a modem.
— The parity error bit is inhibited if no ——
parity is selected. NOTE: The C'l:S input does not reset the
. . transmitter.
1. The parity error status is updated during
the internal receiver data transfer signal,

FIGURE 3-4.2.2-3: ACIA Status Register Format

3-23

L R

Bit b4 (Framing Error) will be high whenever a data character is received with an impropet start/stop
bit character frame. The framing error flag b4 is cleared by the next data transfer signal if the condition causing
the framing error has been rectified. Bit b5 (Receiver Overrun) being high indicates that the Receiver Data
Register has not been read prior to a new character being received by the ACIA. This bit is cleared by reading
the Receiver Data Register. Status Register bit b6 (Parity Error) is set whenever the number of high (‘‘1’s’’)in
the received character does not agree with the preselected odd or even parity. Bit b7 (Interrupt Request) when
high indicates the ACIA is requesting interrupt to the MPU via the ACIA TRQ output and may be caused by b0
or bl or b2 being set. All of the Status Register bits (except b3) will be cleared by an ACIA Master Reset.

The Control Register is an eight bit write only buffer which controls operation of the ACIA receiver,
transmitter, interrupt enables, and the modem Regquest-To-Send control line. The Control Register formatand a
summary of its features is shown in Figure 3-4.2.2-3.

Control bits b0 and bl select a Master Reset function for the ACIA when both bits are high and

selects different clock divide ratios for the transmitter and receiver sections for the other combinations:

bl b0
(CDS2) (CDS1) Clock Division
0 0 + 1
0 1 =16
1 0 +64
1 1 Master Reset

The next 3 control bits, b2, b3, and b4, are provided for character length, parity, and stop bit

selection. The encoding format is as follows:

b4 b3 b2

(WS3) (WS2) (WS1) Character Frame
0 0 0 7 Bit + Even Parity + 2 Stop Bits
0 0 1 7 Bit + Odd Parity + 2 Stop Bits
0 1 0 7 Bit + Even Parity + 1 Stop Bit
0 1 1 7 Bit + Odd Parity + 1 Stop Bit
1 0 0 8 Bit + No Parity + 2 Stop Bits
1 0 1 8 Bit + No Parity + 1 Stop Bit
1 1 0 8 Bit + Even Parity + 1 Stop Bit
1 1 1 8 Bit + Odd Parity + 1 Stop Bit

The ACIA transmitter section is controlled by control bits b5 (TC1) and b6 (TC2). The four
combinations of these two inputs provide transmission of a break command, Modem Request-To-Send (RTY)
command, and a transmitter inhibit/enable for the ACIA Interrupt Request output. When both b5 and b6 are

low, the Request-To-Send (RTS) output will be active low and the transmitter data register empty flag is
enabled to the ACIAs Interrupt Request (ﬁa) output. If b5 is high and b6 is low the RTS output remains active
low but the transmit IRQ input is inhibited. To turn off the RTS output b6 should be high and b5 low. This
selection also enables the transmitter interrupt input to the 1RQ output. When both b5 and b6 of the contrd
register are high, Request-To-Send is on (RTS) = 0, IRQ is enabled for the transmitter, and a break is

transmitted (a space).

3-24

Enable for Receiver Interrupt C ratio and M reset select used
in both tr itters and i i
b7 =1: Enables interrupt Output in
Recaiving Mode b1 b0 Function (Tx, Rx)
b7 =0: Disables Interrupt Output in o o 1
Receiving Mode [+] 1 +16
1 0 64
1 1 MASTER RESET

L L

b7 b6 b5 b4 b3 b2 b1 b0

RIE TC2 | TC1 WS3 | WS2 | WS1 [CcDS2 | CDS1

] |

]

Word Length, Parity, and Stop Bit Select

Transmitter Control Bits: Controls the Interrupt Output* and RTS b4 b3 b2 Word Length + Parity + Stop Bits
Output, and provides for Tr ission of a Break 00 0 7 Even 2
b6 bs Function o0 7 Odd 2
0 [+] Sets RTS = 0 and inhibits Tx interrupt (TIE) 01 0 7 Even 1
4] 1 Sets RTS = 0 and enables Tx interrupt (TIE) o 1 1 7 Odd 1
1 o Sets RTS = 1 and inhibits Tx interrupt (TIE) 1700 8 None 2
1 1 Sets RTS = 0, Transmits Break and inhibits T x 101 8 None 1
interrupt (TIE) 11 0 8 Even 1
*TIE is the enable for the interrupt output in transmit mode, 111 8 odd 1

FIGURE 3-4.2.3-4: ACIA Contro! Register Format

Bits b7 controls the Receiver Interrupt Enable to the IRQ output. When b7 is high IRQ will indicate
an interrupt request of the Receiver Data Register is Full (RDRF).

3-4.2.3 Addressing and Initialization

A specific example of ACIA usage is shown by the application described in Section 5-3, however,
some basic considerations are discussed in the following paragraphs. As indicated in Section 3-4.1.2, the MPU
addresses the ACIA via the chip select and register select inputs from the Address Bus. The correspondence
between internal registers and the address inputs is shown in Figure 3-4.2.3-1.

With the chip selects properly enabled and RS = 0, either the Status or Control Register will be
selected, depending on the current state of the Read/Write line: R/W = 0 = Write, Control Register is selected;

3-25

cs1 Cs¢ RS R/W

Control Register
Status Register
Transmit Data Register
Raceive Data Register
ACIA Not Selected
AC'A Not Selected
ACIA Not Selected

*XXOeOS ir/’l.l
XXX==290%
XX XS =29

KRG ===

X = Don’t Care

FIGURE 3-4.2.3-1: ACIA Register Addressing

R/W = 1 = Read, Status Register is selected. Similarly, when RS = 1, either the Receive Data Register (R'W
= 1 = Read) or the Transmit Data Register (R/W =0= Write) is selected.

Addressing the ACIA can be illustrated in conjunction with the simple system configuration shown
in Figure 3-4.1.3-21°. The method shown is typical for assigning mutually exclusive memory addresses to the
family devices without the use of additional decode logic. The connections shown assign memory addresses as

follows:
RAM 0000 — 007F
PIA 4004 — 4007
ACIA 4008 — 4009
ROM C000— C3FF

(Hexadecimal notation)

As voltage is applied to the ACIA during the power-on sequence, its internal registers are cleared to
zero'!by circuitry within the ACIA to prevent spurious outputs. This initial condition means that interrupts are
disabled, IRQ to the MPU is high (no interrupt request), and the Ready—To-Send,ﬁg , output is high. The first
step in preparation for using the ACIA must be a master reset via bits b0 and b1 of the Control Register, that is,
the MPU must write ones into those positions. Once reset, the ACIA operating mode is established by writing
the appropriate data into the Control Register.

3.4.2.4 System Considerations

The ACIA is used primarily to transfer serial data between the microprocessor and real time
peripheral devices such as teletypes, CRT terminals, etc. The most common data format used for the transfer of
real-time data is the asynchronous data format. Use of this format is generally limited to low transmission rates
—_ below 1200 bps or 120 chat/sec. For example, the maximum transmission rate of a teletype is 10 char/sec.
Here, the transmission of data to the MPU depends on the operator’s dexterity of depressing a key on the
keyboards. Since the transmission of data is dependent on the operator, gaps (non transmission of data)
between data characters occur as a general rule.

In the transmission of asynchronous data, there is no pre-synchronized clock provided along with
the data. Also, the gaps between data characters in this transmission mode requires that synchronization be
re-established for each character. Therefore, the receiving device must be capable of establishing bit and

10Fjgure 3-4.1.3-1 is identical to Figure 1-1.2-1 and is discussed in Section 1-1.2 of Chapter 1.

n :,f c})l(temal high signals are present on the DCD and CTS inputs, their respective bits, b2 and b3, in the Status Register will also be
igh.

326

character synchronization from the characteristics of the asynchronous format. Each character consists of a
specified number of data bits preceded by a start bit and followed by one or more stop bits as shown in Figure
3-4.2.4-1.

These start and stop elements do not contain any information and they actually slow down the
effective transmission rate. Since the asynchronous format is used in real time systems, the effect of the start
and stop bits on the transmission rate is negligible. The purpose of the start bit is to enable a receiving system to
synchronize its clock to this bit for sampling purposes and thereby establish character synchronization. The
stop bit is used as a final check on the character synchronization.

Since the MPU processes eight bit parallel bytes that do not include start and stop elements,
received serial data in an asynchronous format must be converted to parallel form with the start and
stop elements stripped from the character. Likewise, in order to transmit serial data the parallel data
byte from the MPU must be converted to serial form with the start and stop elements added to the
character. This serial-to-serial/parallel-to-parallel conversion is the primary function of the ACIA.

Desired options such as variable clock divider ratios, variable word length, one or two stop bits, odd
or even parity, etc. are established by writing an appropriate constant into the ACIA’s Control Register. The
combination of options selected depends on the desired format for a particular application. The general
characteristics of data flow through the ACIA are described in the following paragraphs.

A typical transmitting sequence consists of reading the ACIA status register either as a result of an
interrupt or in the ACIA’s turn in a polling sequence. A character may be written into the Transmit Data
Register if the status read operation has indicated that the Transmit Data Register is empty. This character is
transferred to a shift register where it is serialized and transmitted from the Tx Data output preceded by a start
bit and followed by one or two stop bits. Internal parity (odd or even) can be optionally added to the character
and will occur between the last data bit and the first stop bit. After the first character is written in the data
register, the Status Register can be read again to check for a Transmit Data Register Empty condition and
current peripheral status. If the register is empty, another character can be loaded for transmission even though
the first character is in the process of being transmitted. This second character will be automatically transferred
into the shift register when the first character transmission is completed. The above sequence may be continued
until all the characters have been transmitted.

Start Bit — “‘Space’” — Logic Zero
Start Bits — "’Mark’ — Logic One
Idling Bits — ‘“Mark’’

FIGURE 3-4.2.4-1: Asynchronous Data Format

3-27

Data is received from 2 peripheral by means of the Rx Data input. A divide by one clock ratio is
provided for an external clock that is synchronized to its data; the divide by 16 and 64 ratios may be used for
internal synchronization. Bit synchronization in the divide by 16 and 64 modes is obtained by detecting the
leading mark-to-space transition of the start bit. False start bit detection capability insures that a full half bit ofa
start bit has been received before the internal clock is syhchronized to the bit time. As a character is being
received, parity (odd or even) will be checked and the possible error indication will be available in the status
register along with framing error, overrun error, and receiver data register full. In a typical receiving sequence,
the Status Register is read to determine if a character has been received from a peripheral. If the receiver data
register is full, the character is placed on the Data Bus when the MPU reads the ACIA Receive Data Register.
The status register can be read again to determine if another character is available in the receiver data register.
The receiver is also double buffered so that a character can be read from the data register as another character is
being received in the shift register. The above sequence may be continued until all characters have been

received.

Data Flow Telephone
Network

Data
Coupler

MC6860

-—
-

Transmit
Data

Duplexer

Modulator

Receive
Filter

Receive
Data

De-
modulator

Asynchronous
Communications
Interface
Adapater

(ACIA)

Control
Threshold
Detector

Control Signals

Clock &
Timing

FIGURE 3-4.3.1-1: Typical MC6860 System Configuration

343 MC6860 LOW SPEED MODEM

3.43.1 Input/Output Configuration

The MC6860 Modem provides a very effective method of interfacing a MPU based system, viaa
MC6850 ACIA, to a telephone network as shown in Figure 3-4.3.1-1. The modem provides full automatic
answer/originate and initiate disconnect capability under MPU program control thru the ACIA. Data may be
asynchronously sent and received over the telephone network at data rates up to 600 bits per second.

328

The Input/Output configuration of the MC6860 when used with the MC6850 ACIA and the MC6800
MPU family is shown in Figure 3-4.3.1-2. Data flow from the terminal side of the modem enters in serial digital
format via the transmit data line of the modem. It is then digitally processed by the modulator section and exits
the telephone network side of the modem via the transmit carrier line. This digitized sinewave FSK signal is
post filtered by an output buffer/low pass filter. The filtered analog sinewave passes through a line duplexer to
the telephone line via a data coupler.

The returning analog signal from the remote modem at the other end of the telephone line passes
through the data coupler and duplexer and is applied to a bandpass filter/amplifier. The receive bandpass filter
bandlimits the incoming signal to remove noise and adjacent transmit channel interference. After being band-
limited the analog signal is full limited to a 50% duty cycle TTL level signal by the input limiter. This digital
signal is the receive carrier that is applied to the modem. The output signal from the bandpass filter is also
routed to a threshold detector to determine if the input signal to the limiter is above the minimum detectable sig-
nal level presented to the modem. When the signal input level exceeds the bias point of the threshold detector,
the detector’s output goes low at the threshold input pin to the MC6860 modem indicating that carrier is present.

A complete listing and functional description of all I/O pins for the MC6860 (Figure3-4.3.2-1)is
provided in the following:

Data Terminal Ready (DTR)
The Data Terminal Ready signal must be low before the modem function will be enabled. To initiate
a disconnect, DTR is held high for 34 msec minimum. A disconnect will occur 3 seconds later.

Data Bus

N N W FK'I
Threshold
mMC
;* oy
G -
8R Ampiifier
L e_-l_ Limiter
DB¢ - DB7 \ =
N b—d —r— o Mode
Txc Rxc xTal T gx b
1 RTS DTR ar
L A0 as Tx
a3 Car " Low Pass +
N CcSo Tx Data Tx Data Filter
| A4 cs1 MC fix Dot ke Mc
A13 &5 G8ED x Data Rx Data 6860
—— Modem
B VMA$2 . ACIA cTs cTs
ES 4 |
f E ﬂ— R/W
o IRQ e DCD
g £ N1BQ gl 7RG
'g: 8 N AnPh RT SH
[+V -V
DT
J L SH CBT Data
Rt Coupler
- OH Telephone
Line
—— DA
= DR Gnd

1l

FIGURE 34.3.1-2: 1/0 Configuration For MC6860 Modem

3-29

| =0 4 Answer Phone

[
Data Terminal
Ready 200~
JE——— i
Clear-to-Send 23 O Auto 19 Ring Indicator
N Terminal Answer/ [
Break Release 9 Control Disconnect le——0O 21 Switch Hook
Logic Logic
Receive Break 3 Owd—] —»O 15 Mode
[— L
Fransmit Break 8 O—— ld——-o 7 Tnreshold Detect

Vvpp = Pin 12

Digital Carrier 11 :j————_‘A Vgg = Pin 1
Transmit Data 2 Modulator
Transmit Carrier 10 O-<—]
Receive Data 24 O 4——/‘\

Receive 4 De-
Data Rate © modulator
NOTE 1
Receive Carrier 17 O [=y
ESD = Enable Space Disconnect

\\

ELS = Enable Long Space Disconnect

€SS = Enable Short Space Disconnect
Crystal 13 O “
Test Clock 18 0O
o) O O O
SsifTest 16 22 5 6 ESS {Note 1)
ESD ELS

FIGURE 3-4.3-2-1: MC6860 Modem Block Diagram

Clear-To-Send (CTS)
Alow on the CTS output indicates the Transmit Data input has been unclamped from a steady Mark,

thus allowing data transmission.

Ring Indicator (ﬁ)

The modem function will recognize a receipt of a call fro
Hz ringing signal are present. The CBS RI signal must be level-converted from
interfacing it with the modem function. The receipt of a call from
present for at least 51 msec. This input is held high except during ringing. ATRI signal automatically places the

m the CBT if at least 20 cycles of the 20-47
EIA RS-232 levels before

modem function in the Answer Mode.

Switch Hook (SH)

ST interfaces directly with the CBT an
signal automatically places the modem function in the Originate Mode.

SH is low during origination of a call. The modem will automatically hang u
release of SH if the handshaking routine between the local and remote modem has not been accomplished.

330

the CBS is recognized if the RI signal is

d via a EIA RS-232 level conversion for the CBS. An SH ¢

p 17 seconds after the

Threshold Detect (TD)

This input is derived from an external threshold detector. If the signal level is sufficient, the TD
input must be low for 20us at least once every 32 msec to maintain normal operation. An insufficient signal
level indicates the absence of the Receive Carrier; an absence for greater than 32 msec will not cause channel
establishment to be lost; however, data during this interval will be invalid.

Answer Phone (An Ph)

Upon receipt of Ring Indicator or Switch Hook signal and Data Terminal Ready, the Answer Phone
output goes high [(SH + RDe D_TR_]. This signal drives the base of a transistor which activates the Off Hook
(OH) and Data Transmission (DA) control lines in the data coupler. Upon call completion, the Answer Phone
signal returns to a low level.

Mode

The Mode output indicates the Answer (low) or Originate (high) status of the modem. This output
changes state when a Self Test command is applied.

Transmit Break ('rlh'l()

The Break command is used to signal the remote modem to stop sending data.

A Transmit Break (low) greater than 34 msec forces the modem to send a continuous. space signal for
233 msec. Transmit Break must be initiated only after CTS has been established. This is a negative edge sense
input. Prior to initiating Tx Brk, this input must be held high for a minimum of 34 msec.

Receive Break (Rx Brk)
Upon receipt of a continuous 150 msec space, the modem automatically clamps the Receive Break
output high. This output is also clamped high until Clear-To-Send is established.

Break Release (Brk R)
Afterreceiving a 150 msec space signal, the clamped high condition of the Receive Break output can
be removed by holding Break Release low for at least 20 us.

Transmit Data (Tx Data)

Transmit Data is the binary information presented to the modem function for modulation with FSK
techniques. A high level represents a Mark.
Receive Data (Rx Data)

The Receive Data output is the data resulting from demodulating the Receive Carrier. A Mark is a
high level.
Receive Data Rate (Rx Rate)

The demodulator has been optimized for signal-to-noise performance at 300 bps and 600 bps. The
Receive Data Rate input should be low for 0-600 bps and should be high for 0-300 bps.

Digital Carrier (FO)
A test signal output is provided to decrease the chip test time. The signal is a square wave at the
transmit frequency.

3-31

Transmit Carrier (Tx Car)
The Transmit Carrier is a digitally-synthesized sinewave derived from the 1.0 MHz crystal
reference. The frequency characteristics are as follows:

Transmit
Mode Data Frequency Accuracy*
Originate Mark 1270 Hz —0.15 HZ
Originate Space 1070 Hz +0.09 Hz
Answer Mark 2225 Hz —0.31 Hz
Answer Space 2025 Hz —0.71 Hz

*The reference frequency tolerance is not included.

The proper output frequency is transmitted within the 3.0 us following a data bit change with no
more than 2.0 us phase discontinuity. The typical output level is 0.35 V (RMS) into a 200 k-ohm load
impedance.

The second harmonic is typically 32 dB below the fundamental.

Receive Carrier (Rx Car)

The Receive Carrier is the FSK input to the demodulator. The local Transmit Carrier must be
balanced or filtered out prior to this input, leaving only the Receive Carrier in the signal. The Receive Carrier
must also be hard limited. Any haif-cycle period greater than or equal t0 429 * 1.0 us for the low band or 235 £
1.0 ps for the high band is detected as a space.

Enabled Space Disconnect (TES—IS)

When ESD is strapped low and DTR is pulsed to initiate a disconnect, the modem transmits a space
for either 3 seconds or until a loss of threshold is detected, whichever occurs first. If ESD is strapped high, data
instead of a space is transmitted. A disconnect occurs at the end of 3 seconds.

Enable Short Space Disconnect (ESS)
ESS is a strapping option which, when low, will automatically hang up the phone upon receipt ofa
continuous space for 0.3 seconds. ESS and ELS must not be simultaneously strapped low.

Enable Long Space Disconnect (ELS)
ELS is a strapping option which, when low, will automatically hang up the phone upon receipt ofa
continuous space for 1.5 seconds.

Crystal (Xtal)
A 1.0-MHz crystal with the following parameters is required to utilize the on-chip oscillator. A
1.0-MHz square wave can also be fed into this input to satisfy the clock requirement.

Mode: Parallel
Frequency: 1.0 MHz +0.1%
Series Resistance: 750 ohms max
Shunt Capacitance: 7.0 pF max
Temperature: 0-70°C
Test Level: 1.0 mW
Load Capacitance: 13 pF

3-32

When utilizing the 1.0-MHz crystal, external parasitic capacitance, including crystal shunt
capacitance, must be <9 pF at the crystal input.

Test Clock (TST)

A test signal input is provided to decrease the test time of the chip. In normal operation this input
must be strapped low.
Self Test (ST)

When a low voltage level is placed on this input, the demodulator is switched to the modulator
frequency and demodulates the transmitted FSK signal. Channel establishment, which occurred during the
initial handshake, is not lost during self test. The Mode Control output changes state during Self Test,
permitting the receive filters to pass the local Transmit Carrier.

INPUTS OUTPUT
ST SH RI Mode
H L H H
H H L L
L L H L
L H L H

MODE CONTROL TRUTH TABLE

3-4.3.2 Internal Organization

The MC6860 Modem may be broken down into internal functional sections as shown in Figure
3-4.3.2-1. The terminal control logic and auto answer/disconnect logic sections are referred to as the
supervisory control section. This section contains digital counters which provide the required time out intervals
and necessary control gating logic. This provides logic outputs Clear-To-Send and Answer Phone from inputs
Ring Indicator, Switch Hook, and Data Terminal Ready. Also the control section has some local strapping
options available on pins 5, 6, and 22. These options provide time outs for line hang-up or termination of the
data communication channel.

The oscillator/timing blocks accept a 1.0 MHz clock into pin 13 either from an external clock source
or by connecting a 1.0 MHz crystal between pin 13 and ground. A test clock input is provided to allow more
rapid testing of the MC6860 timing chains used for various timeouts. This input must be strapped low during
normal operation.

The modulator section takes the input digital data and converts it to one of two FSK tones for
transmission over the telephone network. There are two tones for transmission and two tones used for reception
during full depulx operation. During data transmission from the call origination modem the transmit tones are:
1270 Hz for a Mark and 1070 Hz for a Space. This originating modem will receive two frequencies in the high
band which are: 2225 Hz for a Mark and 2025 Hz for a space. If the local modem answers the data call it will
transmit in the high band 2225/2025 Hz and receive in the low band 1270/1070 Hz. The modulator section
generates these frequencies digitally by synthesizing a sinewave with an 8 step D to A available on pin 10and a
digital square wave output at the above frequencies available on pin 11.

The demodulator accepts a 50% duty cycle TTL level square wave derived from amplifying,
filtering, and limiting the incoming line FSK analog signal. The binary data is recovered from the FSK signal
by detecting when the signal has a zero crossing and digitally using post detection techniques to discriminate

3-33

between the two incoming mark/space tones. A receive data rate input (pin 14) is used to optimize the post

detection filter at either 300 or 600 bits per second.
3.4.3.3 Handshaking and Control

The supervisory control section of the modem can function in four different modes. Two are
associated with data communication channel initialization (Answer Mode and Originate Mode) and two are for

channel termination or hang-up (Automatic Disconnect and Initiate Disconnect).

Answer Mode

Automatic answering is first initiated by a receipt of a Ring Indicator (RI) signal. This can be eithera
low level for at least 51 msec as would come from a CBS data coupler, or at least 20cyclesofa 20-47 Hz ringing
signal as would come from a CBT data coupler. The presence of the Ring Indicator signal places the modem in
the Answer Mode; if the Data Terminal Ready line is low, indicating the communication terminal is ready to
send or receive data, the Answer Phone output goes high. This output is designed to drive a transistor switch
which will activate the Off Hook (OH) and Data Transmission (DA) relays in the data coupler. Upon answering
the phone the 2225-Hz transmit carrier is turned on.

The originate modem at the other end detects this 2225-Hz signal and after a 450 msec delay (used to
disable any echo suppressors in the telephone network) transmits a 1270-Hz signal which the local answering
modem detects provided the amplitude and frequency requirements are met. The amplitude threshold is set
external to the modem chip. If the signal level is sufficient the TD input shouid be low for 20 s at least once
every 32 msec. The absence of a threshold indication for a period greater than 51 msec denotes the loss of
Receive Carrier and the modem begins hang-up procedures. Hang-up will occur 17 seconds after RI has been
released provided the handshaking routine is not re-established. The frequency tolerance during handshaking is
+100 Hz from the Mark frequency.

After the 1270-Hz signal has been received for 150 msec, the Receive Data is unclamped from a
Mark condition and data can be received. The Clear-To-Send output goes low 450 msec after the receipt of

carrier and data presented to the answer modem is transmitted.

Automatic Disconnect

Upon receipt of a space of 150 msec or greater duration, the modem clamps the Receive Break high.
This condition exists until a Break Release command is issued at the receiving station. Upon receipt of 2 0.3
second space, with Enable Short Space Disconnect at the most negative voltage (low), the modem
automatically hangs up. If Enable Long Space Disconnect is low, the modem requires 1.5 seconds of

continuous space to hang up.

Originate Mode

Upon receipt of a Switch Hook (§-ﬁ) command the modem function is placed in the Originate Mode.
If the Data Terminal Ready input is enabled (low) the modem will provide a logic high output at Answer Phone.
The modem is now ready to receive the 2225-Hz signal from the remote answering modem. It will continue to
look for this signal until 17 seconds after SH has been released. Disconnect occurs if the handshaking routine is
not established.

Upon receiving 2225 + 100 Hz for 150 msec at an acceptable amplitude, the Receive Data output is
unclamped from a Mark condition and data reception can be accomplished. 450 msec after receiving a 2225-Hz

3-34

signal, a 1270-Hz signal is transmitted to the remote modem. 750 msec after receiving the 2225-Hz signal, the
Clear-To-Send output is taken low and data can now be transmitted as well as received.

Initiate Disconnect

In order to command the remote modem to automatically hang up, a disconnect signal is sent by the
local modem. This is accomplished by pulsing the normally low Data Terminal Ready into a hi gh state for
greater than 34 msec. The local modem then sends a 3 second continuous space and hangs up provided the
Enable Space Disconnect is low. If the remote modem hangs up before 3 seconds, loss of Threshold Detect will
cause loss of Clear-To-Send, which marks the line in Answer Mode and turns the carrier off in the Originate
Mode.

If ESD is high the modem will transmit data until hang-up occurs 3 seconds later. Transmit Break is
clamped 150 msec following the Data Terminal Ready interrupt.

Each of the four above operational modes are shown in Figures 3-4.3.3-1 through 3-4.3.3-4.

Call Received
——i 51 ms |__
Min

cBs

Ring Indicator
|

Ring Indicator
et LU

Originate Answer {Low)
Mode {Answer V

Data Terminal On (Low)
Ready

Answer Phone 2225 Hz, 900 ms ~te2025 Hz or 2225 Hz

e 450 ms’T1270 Hz, 300 ms " 1070 Hz or 1270 Hz

Transmit Carrier

Receive Carrier \MN\/\/\/\J
—_—— (High)
Threshold Detect T T 1 T T T T T T T T T
— ff i
Clear-to-Send Oft (High) Low)
450 ms On (Low
Transmit (Mark
1 o
Data Space Clamped at Mark Unclampe A
Receive Mark A
Data Space f~ 150 ms j— 150 ms
Clamped te Unclamped

at Mark

FIGURE 3-4.3.3-1: Answer Mode

3-35

High
CBS High

Ring Ir

Ring Indicator

- Mode Answer (Low) cBT
Data Terminal On (tow)
Ready
Answer Phone I

- ————— 2025 Hz or 2225 Hz

Transmit Carrier
Continuous Space — 1070 Hz
~-1070 Hz or 1270 Hz+—oa s ESS or 1.5 5 ELS

Receive Carrier \/‘\/\/\/\/W\/\/\/\/\/\N\N\/\/\/\/\l

Threshold Detect T T T T T T T T T T T T

On (Low) l

Clear-t0-Send l
. [Mark
Transmit { Space | Clamped at Mark
Unclamped
Receive { Mark v I Clamped at Mark

Data Space

l_—— Unclamped

FIGURE 3-4.3.3-2: Automatic Disconnect - Long or Short Space

SH Can Be Released

Switch Hook -—1 V 7 7

Data Terminal On (Low)
Ready Originate (High)
Originate m
Mode
Answer Answer (High)

Answer Phone J 2025 Hz

]
|.———Establish Call e 2225 Hz, 450 ms ——efe— 2225 Hz, 450 ms _—4]- 222; Hz

Threshold Detect S D B B R S M T AN N O N O N D B L N LB B

Raceive Carrier

Receive Data

Clamped at Mark

1070 Hz or
450 ms 1270 Hz 1270 Hz™

Transmit Carrier N

Clear-to-Send 750 ms On (Low)
-
T it Dat:
ransmit Data Clamped at Mark
Enable Space On (Low)} Unclamped

Disconnect

FIGURE 34.3.3-3: Originate Mode

3-36

Switch Hook

Data Terminal

Ready
Mode

Answer Phone

Receive Carrier
Threshold Detect

Receive Data

Transmit Carrier

Clear-to-Send

Transmit Data

Enable Space
Disconnect

High

—-I

On (Low)

1

r—— 34 ms Pulse Initiates Space Disconnect

Originate (High)

Off Hook

~— 2025 Hz or 2225 Hz —}

On Hook

50 ms tnternal Threshold Detect Delay

On (Low)

Clamped at Mark

%

Unclamped

A

Clamped at Space

Off (High)

J

On (Low)

Clamped at Mark

FIGURE 3-4.3.34:

3-37

Initiate Disconnect

3-5 DIRECT MEMORY ACCESS

The term Direct Memory Access (DMA) is applied to a variety of techniques for speeding up overall
system operation by loading and unloading memory faster than can be done using an MPU control program.
DMA is often described as a means of allowing fast peripherals (perhaps another Microprocessor), to access the
system memory without “*hothering”’ the MPU. However, most DMA procedures do interfere with normal
operation to some extent. The capability for handling the various techniques is an often used figure of merit for
evaluating Microprocessors.

The MC6800’s supervisory control features permit any of three commonly used DMA techniques to
be used; (1) Transfer data with MPU halted; (2) Transfer data on burst basis (cycle stealing) with MPU running;
(3) Transfer data synchronously with MPU running. Methods for implementing each of these techniques are
described in Section 4-2.2 therefore, only qualitative descriptions are included here.

The simplest procedure for DMA merely uses the Halt control to shut the MPU down while the
DMA takes place. In the Halt state, the MC6800 effectively removes itself from the Address and Data Buses by
putting all buffers in the high impedence off state. This method has the disadvantage that it can take arelatively
long time for the MPU to ‘vacate”’ the buses. The MC6800 is designed to finish executing its current
instruction before entering the Halt or Wait state; the resulting delay depends on which instruction is being
executed and may be as much as 13 machine (clock) cycles. However, due to its simplicity this is the preferred
method if the delay can be tolerated and long transfers are required.

In contrast to this, the Three-State Control (TSC) may be used to obtain DMA control within 500
nanoseconds of initiation but must be used only for short transfers. Activation of TSC puts the MPU’s buffers in
the high impedence off state. This technique has the disadvantage that activation of TSC should be
synchronized with the ¢1 clock and both clocks must be ‘‘frozen”” (¢1 high, ¢2 low) for the duration of the
DMA. Due to the MPU’s address and R/W refresh requirements, the clocks can only be frozen for a maximum
of 5 microseconds, thus limiting the duration of the transfer.

A third method can be used that is completely transparent to the MPU. This technique takes
advantage of the fact that MPU data transfers take place only during ¢2 of the clock cycle. If the DMA control
signals are properly synchronized and the memory is fast enough, DMA canbe accomplished during ¢1 of each
clock cycle.

Each of these three methods is described in greater detail in Section4-2.2. It should be noted that the
faster methods impose additional external hardware requirements on the system.

The techniques described above of course do not exhaust all methods for performing DMA. As an
additional example, DMA can be program controlled in the sense that a control program and hence the MPU
can be used to establish the memory area to be used and to grant permission for the DMA., In this case the DMA
circuitry is treated as another peripheral from which status and control signals can be passed through a PIA.
This technique is also outlined in Section 4-2.2.

3-38

	page3-001.tif
	page3-002.tif
	page3-003.tif
	page3-004.tif
	page3-005.tif
	page3-006.tif
	page3-007.tif
	page3-008.tif
	page3-009.tif
	page3-010.tif
	page3-011.tif
	page3-012.tif
	page3-013.tif
	page3-014.tif
	page3-015.tif
	page3-016.tif
	page3-017.tif
	page3-018.tif
	page3-019.tif
	page3-020.tif
	page3-021.tif
	page3-022.tif
	page3-023.tif
	page3-024.tif
	page3-025.tif
	page3-026.tif
	page3-027.tif
	page3-028.tif
	page3-029.tif
	page3-030.tif
	page3-031.tif
	page3-032.tif
	page3-033.tif
	page3-034.tif
	page3-035.tif
	page3-036.tif
	page3-037.tif
	page3-038.tif

