SECTION 5
PARALLEL PORT

5.00 GENERAL

The 8 bit parallel port is avalable from the 50 way expansion
connector - See 2,07 for connection data. The monitor program
written for the port will handle binary data transfers by hand-
shaking. The 2 handshake bits are PB6 and PB?.

Operation of the port is controlled from the keypad.

5.01 STROBED INPUT.

Thls allows data to be read from a peripheral in a 2 step
transaction. First the peripheral sets up data on the port,

PAO - PA7, strobes it into the input latch and notifies the
microprocessor that data is ready to be read. Second, the processor
reads the contents of the latch and resets the handshake signals

for the next transaction to take place. The timing diagram below
illustrates the procedure.

St
IBF PB6(out) !/ \

peripheral tph

input 'ﬂtps Xk
7/ X D N

tsw STB pulse width 300ns typical
tsi STB to IBF delay 200ns typical
tps - data setup 150ns typical

tph data hold %0ns typical

The strobe signal, STB, 1s an active low signal generated by the
peripheral to signify that data is valid on the trailing edge of
this pulse. The strobe 1s connected to PB7, Data is latched into
the input buffer on the tralling edge of STB.

The input buffer full signal, IBF, is an output from the port
controller on PB6. IBF is set by the leading edge of STB gand is

reset when the internal microprocessor has read the data from the
port,

IBF high tells the peripheral that peripheral data is latched and
waiting to be read by the EP8000 IBF goes low when the EPB000 has
read the data and informs the peripheral that the next transaction
can take place.

5.02 STROBED QUTPUT.

The port allows output of data to an asynchronous peripheral from
the EP8000 The CPU writes data into the output latch which creates
a handshake signal to strobe data into the peripheral's port.

The other signal involved in the transaction informs the EP8000 that
data transfer is complete and that the next operation can take
Pplace.

The timing diagram below illustrates the process.

OBF (out) PB6 (strobe out) \ /

ACK (in) .PB'? \ /

old data X new data

peripheral

The output buffer full signal, OBF, is an active low strobe
generated by the EPB000 and should be used to strobe data into
the peripherals input latch. OBF returns high when the answering
acknowledge signal, ACK is also high. The ACK signal is an actlve
high signal issued by the peripheral used to tell the EP8000 that
data has been latched into the peripheral‘s buffer. ACK returns

low when the peripheral requires the next transaction to take place.

5.03 DATA TRANSFER FORMAT

Because the software to operate the parallel port has been written
for binary data transfers between the EPB000 and some external
system, rather than transfer from the EPS000 and a printer (say),
a simple format has been devised where information is appended

to the data block being transmitted or recelved.

This takes the form of a 2 byte block length and a 2 byte checksum.
The block length is used by the EP8000 as a counter to indicate when
the transmission is complete, and the checksum is used in a .
comparison with a checksum performed on the inputted data block to
indicate whether or not data was received correctly. - this will
be shown as 'PASS' or 'FAIL' in the LED display. The format is
shown below.

START IO HI| LO | HI DATA BLOCK END

l block | check !
length -sum

data transfer format

5,04 CONNECTION TO THE PORT

This can be made using a 50 way 'mass termination' socket

e.g. Speedblock, blue Macs, Scotchflex etc., to connect to the

50 way expansion connector. Alternatively, MOLEX crimp sockets

can be used as an inexpensive and convenient method, which allows
the other pins on the expansion plug to be free for connection

to other devices.

Cables should be kept away from mains lines and should not be longer
than 2 feet.

5.05 ELECTRICAL CHARACTERISTICS

Parameter Conditions | Min | Max Units
VIH Logic 1 input voltage 2.0 | Vce+0.5 V
V1L Logic O input voltage -0.5 | 0.8 s
VOH Logic 1 output voltage|IoH=-100uA | 2.4 v
VOL Logic O output voltage|Iol= 2,0mA 0.4 v
I11 Input load current Vin=0v to +10 uA
5.25v
110 Output leakage current{High impedance +10 uA

5.06 OPERATING THE PORT

Example: Loading data from the peripheral bus to the RAM starting
at address 3020.

Key: PIN TO MEM 3020. This sets the port to input mode and

is ready_to receive data. PB7 has been configured as an input

for the STB line and PB6, as an output for the IBF line.

The first 2 bytes of data strobed into the port are the block
length, and this is counted down for each byte sent in the data
block. When the count reaches zero, the transmission is complete,
and the EPB000 ignores any further data placed on the peripheral
bus. A checksum is now performed on the stored data, and this is
compared with the 2 checksum bytes received from the peripheral.
Identical checksums will be shown by PASS in the LED display,

else FAIL if the checksums are different The EP8000 is now 1in the
Cl mode and ready for use.

Example: Writing data to the peripheral port. The object area of memory is

the programming socket.

Key: PROM TO POUT, The EP8000 performs a checksum and block length calculation
of the data in the EPROM sockei.

PB6 is configured as an output and PB7 an input. The first byte (block length 10)
is sent when PB7 is set low by the peripheral. Data is sent thereafter in
accordance with the handshake mode described above, When all the data has been
transmitted, the LED display will be restored and the machine is in C1 mode.

5,07 The Printer Interface
By using the GP1 interface the EP8000 may be interfaced to a Centronics type

printer. The data is transmitted as groups of sixteen bytes, preceded by
the address of the first byte in the group.

Printer Interface Specification

1/ The routine has been written to run printers with a parallel interface.
See section 2.08 of the manual for connector data. Handshake signals are
compatible with centronics type printers, using the GR1 interface.

2/ Signal timing:

Printer -» EPLOOO
PR7

/
— N

) |

1]
X vaiid data
t)

' | |

PB7 is set low by the printer when it is ready to receive data.
The EP8000 then sets up valid data on the peripheral port and sets PB6 high
(strobe) until PB7 is set high by the printer to indicate data has been received.

The handshake lines are now ready for the next transaction.

)

. . !
EP4000 -» Printer i
PR6 |
L

]

I

EPL000 ~-» Printer
DATA PAQ-PA7

The printer need only recognise the upper case ASCII characters 0-9, A-F,

and the carriage return and space characters,

SECTION 6

Serial Data Transfers
6.00 General

Serial data transfers made by the EP8000 are made in asynchronous format -
i.e. no common clock is shared by the EP8000 and the communicating device,
There are several formats of data transfer catered for by the EP8000's
internal program, These formats are described separately. Setting up for
data transfers is made using the keypad to enter an input or output word to
define various parameters. 3 ports are available - these are TTL, 20mA loop
and RS232,

6.01 WORD FORMAT
Each data word sent is composed of 1 start bit, 8 data bits, and 1 or more stop
bits, but no parity. Transmissions received by the EP8000 should follow the

same format.

marking line

START 8x data bits Stop bit(s)
BIT
6.02 GP Binary Format
This format is designed to transmit and receive binary data i.e. object code of

8 bits. The machine will receive ASCII files, but it will assume that this is

object code and no conversion of ASCITI data to object code will take place.

6.03 Block Length & Checksum - - in GP Binary

Prior to sending a data block the EP8000 will calculate the number of bytes in
the block and store the 2 byte result as a block lenath. At the same time, a

a sum is made of all the bytes in the data block, and this is stored as a two

byte checksum.
These four bytes precede the data block in all bit serial transmissions.

The format is shown below:

LO | HI |1LO | HI

I block 1e%§ Checksum Data block
The block length and checksum may or may not be used by the recelving system.

A sending device, making a transmission to the EP8000 should be arranged to append
these bytes to the data block.

The block length is used by the EP8000 as a counter to detect when the transmission
is complete. The checksum is used to verify that the data has been properly
received - since the machine performs a checksum on the stored data and compares
this with the transmitted checksum. The result of the comparison is shown by

PASS or FAIL in the status display, and this also indicates the end of the data
transfer.

6.04
Serial Data Transfer Examples using GP Binary

The TO key is used by the EP8000 to distinguish between an object memory area
and a target area. The SIN key is used to define the serial port as the 'object
area' and the SOUT key to define it as a target.
Example: Transfer EPROM data to the serial port. Transmission will be at 2400
baud. 1 stop bit per word.
Key RESET to set the output line to the markineg condition.
Key PROM TO SOUT to set the machine for a transfer. The output word entry is
requested by FL in the LED display.
Key CO09 as the output word. There is a delay before the transmission begins,
whilst the EP8000 calculates the blocklength and checksum bytes which will be
sent before the PROM data.
Example: Receive a 2k block of data from the RS232 port and store it in the
RAM, Baud rate is 1200, 8 data bits per word sent.
Key SIN TO RAM., This prepares the machine to receive from the serial port. The
input word entry is requested by FL in the LED display.
Key 3108 and transmit data from the external system. The EP8000 will load the
data and store it in the RAM starting at address 3000. The first 2 bytes received
are the block length - 2000 (10). 0800 (H), in this example and when this has
been counted down to zero, the EP8000 will ignore any further data appearing at
the port. 1i.e.the transmission is complete. A checksum is performed on the 2k
data block and this is compared with the 2nd pair of bytes received (checksum).
The result of the comparison is shown as PASS or FAIL in the LED display.
Notes: 1/ In the example above, the 2k block length is 0800 in HEX, and this
should be sent in accordance with the format shown in 6,02, i.e. 1st
byte is 00, 2nd byte is 08,
2/ Connection data for the ports is given in section 2,
3/ Although the 9600 baud rate has been included, some difficulty may be
experienced in using this speed. - this is due to the relation between

the software timing and monostable pulse width variation.

6.05 OFFSET ADDRESSES in the Motorola/Intel Serial Formats

Definition of Offset Addresses '

In order to load data into the RAM area of the EP8000 when using INTEL/
Motorola formats, it is necessary to specify an offset address,

That is, an address which the machine will subtract from the block start
address before adding the base address of the RAM. The offset address
is specified in the following way : To do a serial transfer at 2400 baud
in INTEL ASCII hex format :

TYPE FN SIN TO FN RAM

The machine will reply with FL TYPE 4118 —— 8 bits

L
2400 baud RS232 INTEL ASCII

The machine will reply AD

TYPE The offset address

Example: To store a program ORG'ED at 7000H in the start the RAM.

In Teply to AD type 7000

If it was wished to store the program at 3800H for example, the offset
would be given as 6800H,

To decide where to store the data the EP8000 carries out the following

operation; START ADDRESS OF BLOCK 7000H
- 0.S. ADDRESS 6800H

= 0OB800H

+ RAM START ADDRESS 3000H

ACTUAL LOAD ADDRESS 3800H

NOTE: If the load address does not lie between 3000H and 4FFFH, the
data will not be loaded and no error message will be produced.
6.06 INTEL ASCII Hex Format

The format is based upon the MOSTEK standard output definition. The EP8000

recognises two types of record. These are the data record (type 00) and
the end of file record type 01,
6.07 Data Record Format (type 00)

Byte Contents

Colon (:) delimiter

2-3 Number of binary bytes in the record.
Maximum 32 binary bytes (64 ASCII bytes)

L-5 MSB of start address

6-7 ISB of start address

8-9 ASCII zeros (Record type)

10 ..., Data bytes

Last two bytes Checksum of all bytes, except the delimiter, carriage

returns, line feed. (The checksum is the two's

complement of the binary sum of all the bytes in the

record),

6.08 End of File Record (type 01)

Byte Contents

1 Colon (:) delimiter

2-3 ASCIT zeros

45 MSB of transfer address
6-7 ISB of transfer address
8-9 Record type 01

10-11 Checksum

CRLF Carriage return, line feed.

6.09 INTEL ASCII 0/P
When the EP8000 outputs data in INTEL HEX format, the data records are 16 binary

bytes long. The first start address is entered by the user in response to the
prompt Ad on the LED display. All subsequent start addresses are assumed to

be sequential to this and calculated as such. The transfer address is the
address first entered by the user,

Exampie: Transfer contents of RAM to external machine at 2400 baud with 1 stop
bit. Reset the EP8000, set up the receiving machine to expect data. Then key RAM
TO SOUT. The LED display will prompt with FL., This indicates that it requires
set up data. The user then keys C099, The EP8000 will then prompt again,

this time with Ad indicating that it requires a start address (4 digits).

Once this is done, the display will blank, indiacting that the machine is

transferring data.

6.10 Notes

1/ The data transfer is ended when the end of file record is received.

2/ 1If the checksum calculation fails at any time during a transfer, the EP8000
will abort and show FAIL in the LED display. When all data has been
properly received, including the end of file record, the EP8000 will display
PASS,

3/ The maximum speed of transfer using the ASCII-Hex format is 2400 baud,

6.11 Example of SOUT using Intel Ascii O/P

Data in a development system is to be sent to the EP8000 for programming into
a 2716 EPROM, Speed is 1200 baud, using the Intel Ascii Hex format.,

Key SIN TO RAM sets up the system for transfer from the serial port to the RAM
starting at address 3000,

The EPB000 requests 'FL' in the status display for the serial input word.

Key: 3118
II__ vie... 8 data bits 1 start bit
eesv.s ASCII-Hex Intel format
«es... Portl - RS232
erees. Speed 1200 baud

Data has now been loaded to the correct area (3000-37FF) for transfer to a 2716
EFROM using the 'PROG' key.

6.12 Motorola Exorciser Format
The EP8000 handles two types of record. The data record (type S1) and the end
of file record (type S9).

6.13 Data Record Format (type S1)

Bytes Contents
1-2 S1 Start character
3-4 Byte Count - The number of data bytes plus 3
' (1 for checksum and 2 for address) in hexadecimal
5-6 MSB of address of 1st data byte in record.
7-8 1SB of address '
9 Data bytes
last two bytes Checksum. One's complement of binary summation of
preceding bytes in record (including byte count and
data bytes) in hexadecimal notation.

6.14 End of File Record (type S9)

Bytes Control

1-2 S9 start characters

3-4 Byte count = 03 in end of file record
5-6 MSB of address

7-8 LSB of address

9-10 Checksum

6.15 Motorola Exorciser 0/P

Each output record is 16 bytes long. The start address of the 1st record is
entered by the cursor. All following addresses being calculated by the EP8000.
The transfer address is the address entered by the user.

Example: Transfer block of data from the EP8000 to an external machine at 600
baud with one stop bit.

Define the block then key BLOCK TO SOUT, the machine prompts with FL. The user

then enters AOA9. The machine then requests a start address. Once the start

address is entered the machine starts the serial transfer,

6.16 Motorola Exorciser I/P
Each input block should be a maximum of 32 Hex bytes long.

The checksums are compared at the end of each record. Should any checksum

fail the machine will abort and display FAIL in the LED display. When all data,
including the end of file record has been received ,the EP8000 will display PASS,
Example: Download data from an external system to the EP8000 at 2400 baud via
the RS232 port.

Key SIN TO RAM., The EP8000 requests 'FL' in the status display, requesting the
serial input word.

Key 4128

Data will now be transferred to the EP8000, which will show PASS/FAIL dependent

upon whether the transfer was successful,

6.17 PORTS

Two ~ ports are available to the user to suit any particular application.

Al]l the output lines are driven by a common serial output line, so it is
possible to transfer data to 2 different peripherals. The port used for
serial input has to be selected to drive the serial input line to the
microprocessor, and this is done via the keypad.

1/ BS232 _

This port is usuaily used in noisy environments, or where the communicating
device is remote from the EP8000, and long cable lengths are involved. The
input port will accept any 'standard’' RS232 level, The output provides
marking (binary 1) of -5v and spacing (binary 0) of +5v, from a constant
current source.

2/ ITL

This is useful for communication between the EP8000 and a similar device
located close to the machine., Short cables should be used, and should not be
run close to mains cables. The output line is driven by a TTL compatible CMOS
buffer to give marking of 4,5v and spacing of 0.3v. The output line represents
an LS TTL load to the sending device.

6, 18 INPUT AND OUTPUT WORDS (Speed selection)

Once the EP8000 has been set up to make a serial transfer, it will request

an input or output word to define the speed of transfer (btaud rate), the number
of stop and data bits, and the type of serial port being used for recelving.
The word is entered by the keypad when the FL prompt is shown, and is a 4 digit
hex entry.

The tables below show the possible combinations for selection.

INPUT WORD TABLE

Digit 1 Baud Rate Digit 2 Port select| Digit 3 | Digit 4 Data bits

0 110 0 Cassette 0 GP Binary 1 1

1 300 1 RS232 1 INTEL Hex 2 2

2 600 2 TTL 2 Motorola 3 3

3 1200 Exorciser 4 L

4 2400 5 5

5 4800 6 6

6 6400 7 7

7 9600 8 8
Digit 1] Baud rate| Digit 2 Digit 3| Digit 4 Data bits & Stop bits

8 110 Enter 0 8 6P Binary 9 8 1

9 300 (not used)|9 Intel Hex A 8 2

A 600 A Motorola B 8 3

B 1200 Exorciser C 8 L

c 2400 D 8 5

D 4800 E 8 6

E 6400 F 8 7

F 9600

TheACassette Interface
?7.00 General

The interface provides a simple reliable method of storing object code from

the EP8000. The data is phase encoded and the system virtually eliminates
problems due to 'drop out', speed fluctuation and AVC systems.
The data is transferred at approximately 1200 baud with 2 stop and 2 start

bits in each record.

7.01 Cassette recorder

Any reasonable quality cassette recorder should work, Those without a tone
control are more simple to set up, as there is one less variable.

For machines with a tone control, this should usually be set to 'high'.

To ensure reliability it is essential to use high quality tape and to ensure

that the record /playbtack head{s) are free from dirt.

7.02 Interconnection

Connection to the cassette recorder is made from the RS232/cassette DIN socket
at the rear right of the EP8000 (viewed from the rear). Use a 3 pin or 5 pin
180 deg DIN plug for connection with a 2 wire screened cable.

pin 1 - Input from cassette (playback)

pin 2 - Ov common

pin 3 - output to cassette (record)

pin &4 - not used on cassette - do not connect
pin 5 - ' v

NOTES::

1/ The playbtack line should be taken from the earplece socket on the cassette
machine, or if this is not available, direct from the internal loudspeaker.

2/ Not all recorder manufacturers follow the DIN standard socket wiring.
Connection to the recorder should be checked.

3/ The record line should go to the'phono'or'line’ socket on the recorder.

7.03 File Number

This is a 2 digit hex code (i.e. a single byte) entered via the keypad prior
"to a dump or a load. It is used to identify a particular program recorded
onto tape. Any code may be used except OF (hex) which is used for AVC defeat.

It follows that up to 255 files of up to 8 each may be stored on cassette (i.e
approximately 2 megabyte of data). ’
During the course of a load from cassette, the EP8000 will, if necessary,
search the whole tape for a predefined file number, before actually loading
data to RAM,

This is useful if many small program patches have been stored close together

on tape, without any voice identification.

7.04 Data Format
Prior to transmission, a 16 bit checksum is calculated on the data block,
together with a 2 byte block length. These bytes, together with the filename

are saved as a leader block on the tape.

File format:
OF bytes File Block listing| Checksum | Data tytes
(256 bytes) | (2 bytes) | (2 bytes) (2 bytes) | (Up to 8k Bytes)

Preceding the file number is 256 OF (hex) bytes. The tone produced is used
to defeat the AVC of the recorder, before valid informatlon is transmitted.
These bytes also help to ensure that the transmission is synchronised.
During the course of a load, after the correct file number has been found,
the 2 byte block length is counted down to zero to indicate the end of the
transmission. When transmission is complete the EP8000 will perform a
checksum on the received data and compare this with the received checksum,

The result will be shown on the LED display as either PASS or FAIL,

7.05 Recording data onto Cassette

The interface is controlled from the keypad. Any memory area may be dumped
onto cassette as follows:

Example: Dumping page 20 contents to cassette,

Key PAGE 20 TO COUT - page 20 has been defined as the object area to be
dumped to cassette. This is an EPROM monitor area and is now shown on screen.
The machine is now requesting the 2 digit file number by showing FL in the
status display.

Start the cassette recording and enter the 2 digits (01 say). The display
will blank to indicate 'busy' and start dumping data to the cassette -

you may or may not hear the recording from your cassette (this depends upon
your recorder), When done, the EP8000 will be in C1 mode. Transmission

of a screen page will take about 7 seconds.,

7.06 Loading data from Cassette

A similar procedure is adopted for program loading.

Example: Loading pre-recorded data to RAM starting at address 3200.

Key CIN TO MEM 3200, The RAM address 3200 is defined by the TO key as the

target start address and the cassette interface as the object area.

Again the machine requests the file number by indicating FL in the status
window., Key(01 say) and start the cassette recorder on playback,

The EP8000 searches the tape for the 01 file number and when found, will start
to load data, Once done, PASS or FAIL will be indicated if the load was good
or bad.

Some initial setting up regarding the cassette recorder volume control setting
may be required. This is easily done by attempting to load a small program
recorded many times. Vary the volume setting slightly for each attempted load
until the correct setting is found. Once the correct setting has been found
(usually low to middle volume) the EP8000 will consistently load data reliably

with no error rate.

SECTION &
EPROM EMULATION

8.00 GENERAL

The principle of EPROM Emulation is that an EPROM device, currently
sitting in the addressing space of a system may be directly replaced
by a machine, which looks to that system, exactly like an EPROM.
The difference between the actual device and the emulator is that
data can be easily, and quickly written to the machine, from a

wlde variety of sources. This means that quick program changes

can be written, entered from the keypad, serial or parallel port,
and run in real time, at full speed, without the lengthy process

of EPROM programming and erasing.

To illustrate this process, several application examples are

given below:

8.01 EPROM EMULATION - EXAMPLES

Example 1: To produce a video circuit for the display of 200
different alpha-numeric characters. Character frequency is to

be 1MHz, so a 2716 EPROM could be used as the character generator.
No development system other than the EP800C0 is available.

Once the hardware has been built, it can be easily debugged.
All that 1s needed now is the character generator, residing
in a 2716 EPROM.

Procedure: Knowing the inter-device connections of the hardware,
code can be written for the character generator to produce the .
required characters. Enter the code into the EP8000 RAM,
select 2716 and plug the machine into the vacant socket
Wwhere the character generator will eventually sit., Keying 'DMA'
will now let the external hardware access the EP8000's RAM,
clocking data as required, The video output can now be viewed
on a monitor., If any mistakes are seen - i.e., a character not
properly formed, 'DMA' can be keyed again to isolate the EP8000
from the video circuit, so that a modification can be made to
the data at those addresses which affect this character. Now
switch back to emulate by depressing the 'DMA' to observe the
effect of the modification on the character formation. The
procedure can be repeated as many times as required until all
the characters are properly formed. Finally the code is
transferred from the EP8000's RAM to a blank 2716 (see EPROM
programming section), for use by the video circuit.
The programmed EPROM can now be placed into the video circuit,
enabling the circuit to work correctly by itself,

Example 2: A commercial video game has to be modified to take
account of a new jackpot. The program dealing with the jack-
pot pay-out 1s located inside the machine and resides in a 2732
EPROM,

8.02 Emulation Procedure
The emulation plug at the rear of the machine gives direct access to the EP8000

RAM via line driver/buffers. These devices are not protected in the same way
in order to achieve the best possible access time of the emulator. For this
reason, use a recommended simulator cable, eithér a SSC (Standard simulator
cable), a buffered simulator catle, or a MESA8 multi-EPROM simulator adaptor.
Also in order to avoid damage to the buffers, particularly the data buffers,
ensure the external hardware has been thoroughly debugged and that no short
circuits exist on the buses,

Adopt the following procedure:

1/ Plug the simulator cable into the EP8000 26 way plug (cable down) -
Ensure proper connection.

2/ Plug the DIL plug into the host system in an EPROM socket. Pin 1 is
indicated by an arrow or 'i'.

3/ Select the required EPROM type with the 'DEV' key- the EP8000 will
configure the address and chip select lines so that it 'looks' like
the selected device.

4/ Remember - the external system has access to the EP8000 RAM only after
DMA has béen keyed - prior to this the host's EPROM socket is effectively
empty. Hold the external microprocessor reset until it is allowed to
access the EP8000. The RAM can be isolated at any time from the host
system by keying 'DMA' a second time.

8.03 BEmulation Characteristics

The table below compares the EP8000 emulation characteristics with those of a

typical EPROM - a 2716.

NOTE: 1/ No power is supplied by the EP8000 from the +5v rail when emulating
single rail devices, nor the +5v, -5v or +12v rails when emulating
3 rail devices,

2/ No current is taken from the host +5v rail at any time.

3/ When emulating three rail devices, 20mA is taken from the -5v and
+12v lines from the host system. These lines are used as references
by the EP8000,

4/ The EPROM emulation facility is READ only - do not attempt to 'PROGRAM'
the EP8000 !!

COMPARISON BETWEEN 2716 AND EP8000 CHARACTERISTICS

READ OPERATION

DC & Operating Characteristics

Parameter Symbol 2716 Limits EP4000 limits Unit Conditions
Min Typ Max Min Typ Max

Input load current ILI 10 LSTTL vA

Output leakage current | ILO +10 +20 uA Vout= 5.25/0.45v

Vpp current Ipp 5 0.02 mA Vpp = 5.85v

Vce current Icc 100 0 mA OE = CS = VIL

Input low voltage VIL -0.1 0.8 0.8 v

Input high voltage VIH 2.2 Veetl| 2 v

Output low voltage VOL 0.45 0.4 v I0L = 2.1mA

Output high voltage VOH 2.4 2.4 3.4 v IOH = -4OOuA
lAC CHARACTERISTICS

Address to output delay | tacc 250 50 300 ns OE = CS = VIL

OE to output delay (Pin 18) toe 280 450 70 ns CS = vIL

CS to output delay (Pin 20) tcs 120 20 ns OE = VIL

OE to output float tof 0 100 | 0 30 ns CS = VIL

Chip deselect to float tef 0 100 0 30 ns OF = VIL

Address to output hold tah 0 0 20 ns OF = T8 = VIL

READ TIMING WAVEFORMS 2716 / EP8000

|
: L
Addresses >< valid X
|
|
|
|
|
|
i
|
|

‘,
|
|
' I
r— toe "_)= ,
| |
{
s L '
‘ N
- tes If‘ ' ter
. N —> tof f—
k cC | N\

valid ,
OUTPUT HIGH Z ! J'/

Section 9
EPROM Programming & Erasing

9.00 EPROM Erasing
All the EPROMs handled by the EP8000 are erased'by exposure to shortwave ultra
violet light - 253,7nm except for the 48016 which is electrically erased by the

EP8000. There is no way to erase a part of a bit pattern, and after erasure all

bits are set to logic 1.

The recommended infegral dose is 15w.sec/cm2.

There 1s no absolute rule for erasing time, and the erasing equipment should be

calitrated as follows:

1/ Proeram a device so that all bits are set low.

2/ Erase the device for 1 minute, then 'blank check'. If not tlank, continue
to erase for a further minute, repeating until blank.

3/ Over erase the device by a factor of two. 1i.e, if the device appears erased
after 5 minutes, then continue to erase for a further 10 minutes for a total
of 15 minutes.

4/ Repeat the calitration procedure every 4 weeks because the ultraviolet source

will age, and it's light intensity will reduce with time,

Before erasing devices, always remove gummed labels and clean ﬁhe window with
acetone, alcohol or methylated spirit. The gum from labels and greaéy finger
prints are opaque to UV light and affect the erasing characteristics of the
device.
Note: 1/ The same device type from various manufacturers seem to require
different doses for erasing. We recommend the use of UVi40 or UVi4i
EPROM erasers, and an erase time of 20 minutes,
2/ To prevent unintentional erasure by sunlight, or flourescent lighting,
cover the window with opaque tape or a label. Direct sunlight can erase
devices in 1 week, and fluorescent lighting within 3 years,
3/ Improperly erased devices - i.e, devices which appear to be erased,
but have not received the required integrated dose, when programmed,
will have long access times, and will be prone to 'bit setting' with

consequent unreliable operation.

9.01 EPROM Programming - General
Initially, and after each erasure, all bits in the device are set to logic 1.
Information is introduced by selectively programming O's into the required bit

locations. Programmed O's can only be changed to 1's by erasure.

The EP8000 is capable of programming four types of EPROM.-

1/ The '3 rail' devices, 2704, 2708, TMS2716.

The programming requirement for these devices is that the program enable
1ine be taken to +12v, then after data and address are set—up; 2 25v pulse
is applied to the programming pin. The procedure is applied to all
addresses on the chip, and then repeated 100 times.

2/ The 'single rail' devices 2508,2758,2716,2532,2732,256&,2764,2732A.

These devices require the program enable line at +25v or +21v then a 50ms
TTL level pulse applied to the programming pin, after data and address
have been set up. These devices require only one pulse per address so any
address can be programmed in sequence, OT at random.

3/ The 3rd type of device supported by the EPS000 is the motorola family 68
series. These are similar to the 3 rail devices in that they require a
pulsed Vpp line and multiple passes through all addresses.

4/ The fourth device type is the 48016 EZPROM from Hitachi.

Prior to programming, the EP8000 will electrically erase and blank check the
device. No erase is performed during block programming (i.e. when
programming a few bytes into a non-blank device).

NOTE: (1) Be careful of the difference between the 2 types of 2716.

One is single rail, the other three rail, and these depend upon the
manufacturers (as a general rule, the 3 rail types are prefixed by

TMS - i.e. TMS2716 is a three rail type).

(2) The 2732 and 2532 (4k) devices are not pin compatible in either the
read or program mode.

(3) The 2564 and 2764 are not compatible in either the read or program

mode.

9.02 Programming with the EPB000

There are 2 ways of transferring data from the EP8000 RAM to the ﬁrogramming
socket - i.e. programming EPROMs,

1/ Standard program.

This uses the PROG key to initlate the required programming cycle as indicated
by the device selector. In this mode, the emulation RAM area contents for

the particular device are transferred to the ZIF.

Data is transferred in accordance with the table on the next page:

Device RAM address ZIF address
2704 3000-31FF 6000~61FF
2708 3000-33FF 6000-63FF
2716(3) 3000-37FF 6000-67FF
2508 3000-33FF 6000-63FF
27584 3000-33FF 6000-~63FF
2758B 3000-33FF 6400~67FF
2516 3000~37FF - 6000-67FF
2716 3000-37FF 6000-67FF
48016 3000-37FF 6000-67FF
2532 3000-3FFF 6000-6FFF
2732 3000-3FFF 6000-6FFF
2732A 3000-3FFF 6000-6FFF
68732-0 3000-3FFF 6000~-6FFF
68732~1 3000-3FFF ?000-7FFF
68766 3000-4FFF 6000-7FFF
68764 3000-4FFF 6000-7FFF
2564 3000-4FFF 6000-7FFF
2764 3000-4FFF 6000-7FFF

Prior to programming the device, the EP8000 will first check if it is programmable

by performing an illegal bit check.

If the device is not programmable, this

will quickly be shown by faults in the LED display.

If the device passes the check, then the programming cycle is started.

When

programming is complete, the RAM data and the EPROM data is compared and the
result is shown in the LED display as PASS or FAIL.

Example 1:

the 'DEV' key and key RESET to power down the ZIF,

key PROG,

Programming a 2716 with RAM data at 3000-37FF. Select 2716 with
Insert a blank device and
The ZIF will power up, and after the initial illegal bit test,

programming will commence.
After the 100 second programming time, the EP8000 will verify the device, and
show PASS if the device is correct, or FAIL if there are any errors.

Example 2:
Procedure:

Transferring the data in 2 x 2716 into a single 2732.

1/ Select 2716 and place the 2716 whose data will reside in the
high part of the 2732 into the ZIF, '
2/ Key STOR to copy the device into the RAM at 3000-37FF.
data copy is confirmed by PASS in the LED display.

3/ Move the cursor to address 3000 by keying MEM 3000,
4/- Copy the data from 3000-37FF to 3800-3FFF by keying RAM TO MEM3800.
5/ Now replace the 2716 with the device whose data is to sit in

the lower 2k of the 2732, and key STOR. This transfers the EPROM
contents to 3000-37FF and verifies a correct transfer.

6/ The data has now been assembled into the RAM and can now be
transferred to a 2732 device,

7/ Remove the 2716, select 2732 with the 'DEV' key and key RESET,
Insert a blank 2732 and key PROG to start the programming sequence.

A corréct

2/ Block Program
The second method of programming is called 'block programming’ and this allows

selected areas of the device to be programmed, '
This means that any block or memory area can be transferred to any address
in a blank or partially programmed device.

Example: Transfer page 00 data to a 2716 device. Target starting address 1is
6321,

Key PAGE 00 TO MEM 6321, This defines the data on page 00 as the object data,
and transfers this via the programming cycle to the EPROM starting at address
6'321 .

An illegal bit check is performed on the device only on those addresses that
require programming. Once programmed, the block data is verified for correct

transfer as indicated by PASS or FAIL.

APPENDIX A EP8000 Memory Map Addressing
The microprocessor used to control the function of the EP8000 is the INS8060,
commonly called the SC/MP,

EP8000 Memory Map.

A1l four high order address lines have been decoded from the data bus, and are
taken to the expansion connector for use by external-progfamming modules and
Only 32k of memory is decoded within the machine, which leaves
a further 32k for use by external modules.

Memory decoding is arranged as follows:

peripherals.

Address Device

0000~-0OFFF Monitor in 2732
1000-1FFF Monitor in 2732
2000~-2FFF Monitor in 2732
3000-4FFF Main RAM

5000-57FF Video RAM

5800~-5BFF Ports & Configurator
5C00-5FFF Scratchpad RAM (PAD)
6000-7FFF ZIF Socket

The ZIF socket addresses used by the monitor depend upon the device selected,
although all addresses are accessible., These are as follows:

Device Address

2704 6000-61FF
2708 6000-63FF
2716(3) 6000-67FF
2508/27584 6000-63FF
2758B 6400-67FF
2516/2716/48016 6000-67FF
2532 6000-6FFF
2732 6000-6FFF
68732-0 6000-6FFF
68732-1 7000-7FFF
68766/6876l 6000-7FFF
2564/2764 6000-7FFF

fR1 PRINTER INTERFACE FOR EP4000 GP Industrial Electronics Ltd.,

Unit E, Huxley Close,
Newnham Ind, Estate,

Connectine the interface to the EP4000 Huxley Close, PLYMOUTH PL7 4JN.

Cable downwards

k//// from socket

EPL000 Side view /

Printer

Use 'Print' Key

Example Fri Print Fn RAM, prints entire RAM contents
Fn Print Block, prints highlighted block
NB: If 'Print' key gives a flashing 'NO' message, your EP4000 monitor

EPROM set requires upaating -- Please contact the sales desk or your local

distributor.

|6] INTERFACE

24

1. Input Connector ‘ . .
Use a connector, AMP CHAMP 36 BAIL LOCK TYPL, fo ::E.p data into
the Printer. Pin configuration and its signals of the receptacle in left rear
of the Printer are described below.

017K 1514131211109 8 7 6 8 4 % 2 1

@%

36 383433123 029M27 26 25M 21222t d:.

PIN| SIGNAL PIN SIGNAL]
1 | STROBE 19 | TWISTED PAIR GND (PAIR WITH | PIN)
2 | DATA 1 20 | TWISTED PAIR GND (PAIR WITH 2 PIN)
3| DATA2 21 | TWISTED PAIR GND (PAIR WITH 3 PIN)
4 | DATA 3 22 | TWISTED PAIR GND (PAIR WITH 4 PIN)
5 | DATA 4 23 | TWISTED PAIR GND (PAIR WITII 5 PIN)
6 | DATAS 24 | TWISTED PAIR GND (PAIR WITH 6 PIN)
7 | DATA 6 25 | TWISTED PAIR GND (PAIR WITH 7 PIN)
8 | DATA 7 26 | TWISTED PAIR GND (PAIR WITH 8 PIN)
9 | DATA 8 27 | TWISTED PAIR GND (PAIR WITH 9 PIN)

10 { ACK 28 | TWISTED PAIR GND (P AIR WITHIOPIN)
11 | BUSY 29 | TWISTED PAIR GND (PAIR WITHI11PIN)
12 | LOW 30 | GND
13 | NC 31 | INITIAL (PAIR WITH14PIN)
14 | GND 32 | ERROR (PAIR WITH15PIN)
15 | GND 331 GND
16 | GND 34| CLK (PAIR WITH33PIN)
17 | CHASSIS GND | 35 | TEST (PAIR WITH16PIN)
18 | 45V 80mA Max. uo! +5V
NOTES: 1. LOW of pin 12 is a “LOW” level output of TTL.

2. The combined output of pins 18 and 36 is 80 mA maximum.
3. NC stands for no connection,

2. Input/output Signals

(1) Input signals to the Printer
* DATA I
DATA 2
DATA 3

DATA 4 ; 8-bit data signals.

m»w» m Signal “HIGH” represents Logic ‘1°.

DATA 7
DATA 8

STROBE The strobe signal is used to read in 8 bits of data. Data is
read in when the signal goes ‘LOW".

INITIAL This signal is used to set the Printer to an initial state and is
normally “HIGH”. Bringing the line “LOW" and returning
it “HIGH” starts the clearing action which sets the Printer
to an initial state.

This signal is used for the sclf-printing test which is ex-
ecuted by bringing the line “LOW”

* TEST

(2) Output signals from the Printer

* BUSY This signal indicates the BUSY status of the Printer. When
. “HIGH” the Printer can not accept data.
* ACK This signal is output at the end of the BUSY signal without
fail and is used to indicate that the Printer is awaiting data.
NOTE:

The BUSY and ACK signals are always output when the Printer

accepts data input.

* ERROR A printer error condition causes this signal to go “LOW™,

When this happens all the control circuits internal to the

Printer halt. There are two ways to correct this situation.

® Turn the Printer off — and then back on two seconds
later,

® Input the INITIAL signal

An ERROR occurs if the dot timing goes bad.

This is a 400 KHz clock signal. It can be used with an inter-

face if needed.

* ClK

25

BSC-8 Buffered Simulator Cable for EP8000 EPROM Programmer

l: Introduction

The BSC-8 has been designed to provide a convenient length of
simulator cable without impacting emulation access time & to
reduce bus loading. The unit is powered from the host system
(typical supply current is 80ma).

The unit comprises 4 sections:

long cable for connection to the EP8000 simulator plug.
short 24 pin cable for emulating 24 pin EPROMs.

short 28 pin cable for emulating 28 pin EPROMs.

pod containing the buffers and personality selector.

VO S
b i i

2: Connection

Select either the 24 pin or the 28 pin short cable and plug it
into the Buffer Pod (the case easily splits apart to facilitate
this).

Plug the long cable into the EP8000 Simulator plug - ensure proper
connection - the cable should feed downwards from the socket.

Plug the dual in line plug into the host system EPROM socket.

Pin 1 is indicated by a '1° or an arrow. Ensure correct
orientation otherwise the buffers will be damaged.

3: Personality Selector

This comprises 2 DIL switches inside the buffer pod. The single
pole switch determines 24 or 28 pin emulation. The 8 pole switch
is used to select which EPROM pins are used as chip select. The
switches should be set up in accordance with the table below.

EPROM Type 8 pole switch position l pole switch position

2704 7 0

2708 7 0

2716(3) 8 0

2508 7 0

2758A 7 0

27588 7 0

2716 7 0 Switch button moved

48016 7 0

2532 6 g =¥ay from racial

2732 7 0 capacitor

68732-0 6 0

68732-1 6 0

68766 6 0

68764 6 O

2564 5 1 Switch button moved

2764 4 1 towards radial
capacitor

GP Industrial Electronics Ltd

SA27128 GP Industrial Electronics Ltd.,
Unit E, BHuxley Close,
Newnham Ind Estate, PLYMOUTH

SA- 27128 Programming Adaptor for the INTEL 27128

General: The SA27128 has been designed for quick connection to
the EPB000 to allow it to program and read the INTEL (and
others) 27128 EPROM. The module configures the high order
address lines, output enable and chip select as required for
read and program modes.

Since the EP8000 has 8k x 8 RAM, the 27128 (l6k x 8) must be
programmed in 2 halves, and a DIL switch is provided for 8k
block selection (i.e. Al3 logic high or low).

Connection and Use:

1) Press reset on the EPB8000 to power down the ZIF socket.

2) Select 2764 using the device select key.

3) Plug the adaptor into the EP8000 ZIF socket and <close the
lever. The adaptor box should rest in the ZIF, and on the edge
of the EP8000 case with the adaptor’s ZIF lever furthest from
the ZIF LED. Pin 1° is in the same relative position as on the
EP8000 - i.e. top left hand corner of the adaptor ZIF furthest
from the ZIF lever (red dot indicates).

4) Select the required 8k block with the DIL switch - "1°
indicates Al3 high, ‘0" indicates Al3 logic low.

5) Plug in the 27128 device and use the EP8000 in the usual
way.

DO NOT attempt to read or program any device other than 27128’s
in the adaptor - always select A-2764 on the EPS8(CO00.

NOTE: In common with all devices repeatedly inserted into the
TEXTOOL ZIF sockets, device leads eventually become pitted and
dirty at the point of contact. This will cause erratic device
read and program operation. Always ensure the adaptor ZIF
connector pins are clean - This also applies to '‘Master’” EPROMs
which undergo repeated insertion into the ZIF socket.

Also clean the ZIF socket itself from time to time with a stiff
bristle brush only.

ZIF

AIS:::—J- l

FROGRAMMING AN EPRON USING TxE EF8000.

1. 3witch on mains supply. The display will show CL 3000 FF to indicate mode CIl,

7. Press reset R

and that the cursor is at address 3000, and that the data at that address is FF.
Set the device selection to the required device type. By pressing function (FN)
and then the DEV key, the device select mode is entered. The current device

type is shown in the LED display and is highlighted in the video display. The
device type may be changed by using the cursor key to scroll through the list

of devices. v

Press the reset key RST to power down the zero insertion force (ZIF) socket.
Insert the device to be copied in the ZIF socket and close the leaver flush
with the ZIF socket and the panel - check that the device is the correct way
round, not misplaced, and properly seated. Fonttiow (F“9 S13¢£.(k)k£y

Copy the contents of the EPROM to RAM by using the following keys. Press
function (FN) PROM, TO, (FN) RAM, this stores the contents of the EPROM to

the RAM starting at address 3000(H). '

Verify the EPROM. This is done to check that the RAM contains a true record of
the contentg'of the EPROM by using the following keys, Function (FN) VFY.

PASS will be shown in the LED display if the data is identical, else FAIL will
be shown. Lf a FAIL occurs the differences Wil} be highlighted, but only if the
page displayed is a RAM page corresponding‘to ﬁhe EPROM. Each page can be checked
by keying function (FN) PAGE and using the cursur keys #¥+to allow the screen to
be moved through the memory, page at a time.

Press function (¥N) CHCK. This will do a checksum by adding all the bytes in the
EPROM defined by the device sellection. The checksum is shown in the address
section of the LED display and the HEX NUMBER should bve noted to check, the

copy EPROM. The values of a 'blank check' checksum of an EPROM are shown in the

manual. eg. a 2716 blank checksum is F800.
ST to power down the ZIF socket and then remove the master EFPROIL.

8. Fit blank EPROM to ZIF socket and close leaver flush with ZIF socket and tne

10.

panel - check the device is correctly fitted.

(c)
Program LPROM by pressing the following keys, function (FN) PROG. This will

EFROM. Once programming is complete the
or FAIL and highlighting any discrepancy
ow fault B and tae

transfer the contents of the RAM to the
machine verifies the data, showing P35

bytes. If the device is not programmable the display Will sh

reset must be keyed to continue.
A checksum should be carried out and a comparison of the HEX NUMB:R made with tre

checksum number noted on the master EPROM.

‘17/[7 AN CHEUCSUM [800

