
XP640 EPROM Programmer

User Manual

©1984 GP Industrial Electronics

2

Contents

Introduction 5
XP640 EPROM Programmer . 5
XU620 Universal Programming Module . 5
XM512 EPROM Emulation Module . 5

1. General Operating Instructions 6
Supply voltage . 6
Using the Machine – Points to note . 6
Layout of the XP640 . 7
The Keypad . 7
16 Character Alphanumeric Display . 7
Video Display . 8
Video Display Format . 8
Discrete LED Indicators . 8
Firmware Version number . 8
Zero Insertion Force Socket . 8

2. Hex Editor 9
XP640 RAM Editing Functions . 9
STOP . 10
HEX KEYS . 10
FN . 10
CURSOR . 10
ENTER . 10
CLEAR . 11
MEM . 11
DATA . 11
PAGE . 12
ASCII . 12
DEFINE . 12

Using the Hex keys. 13
Using the cursor. 13

INVERT . 14
SHIFT . 14
COPY . 15
FILL . 15
SPLIT . 16
SHUFFLE . 16
INSERT . 16
DELETE . 17
REPLACE . 17
SEARCH . 18
LOCK . 18
PRINT . 18

3. PROM Functions 19
MENU . 19

Device Selection . 19
Electronic Identifier . 20

PROG . 20
VERIFY . 20
STORE . 22
SUM . 22
CRC . 23

User Manual XP640 EPROM Programmer

3

IBC . 24
BLANK . 25
ERASE . 25
EMU (Emulate) . 25

4. XP640 Interfaces 25
XP640 Serial Data Transfers . 25

Introduction . 25
Word Format . 26
The Serial Word: . 26

Handshaking . 26
Serial Output . 26
Serial Input . 26
Remote Operation of the XP640 . 27

Cursor Keys . 27
DUMP . 28

Internal Parameter Set-Up . 28
Method 1: . 28
Method 2 . 28

Main Port Configuration Menu . 29
The Printer Interface . 30

General . 30
Connection . 30
Description of Centronics Port Signals . 30
Centronics Port Timing Diagram . 31

Calibration Procedure 32
Calibration table: . 32
Potentiometer Identification . 32

A. Serial Data Transfer Formats 33
Intel Hex Data Format . 33

General . 33
Upper Segment Base Addresses (USBA) . 34

Motorola Exorcisor Format . 35
General . 35

GP Binary Format . 37
General . 37

Serial List Format . 38
General . 38

Tektronix Hex Format (TekHex) . 39
General . 39

MOS Technology Format . 40
General . 40

Signetics Absolute Data Transmission Format . 41
General . 41

The ASCII Space, Comma, Apostrophe and Percent . 42
General . 42
Data field . 42
Checksum field . 42

ASCII BPNF, BHLF & B10F Formats . 43
General . 43

DEC Binary and Binary formats . 44
General . 44

B. PROM Device Table 45

User Manual XP640 EPROM Programmer

4

Index 46

User Manual XP640 EPROM Programmer

5

Introduction

XP640 EPROM Programmer

The XP640 EPROM Programmer is designed to keep you ahead in the fast moving world of programmable
device technology. It combines both a reliable EPROM duplicator, RAM editor, video display and compre-
hensive input/output to make it one of the most sophisticated machines available anywhere.
The RAM editor can be "locked out" at any time to make the XP640 a very easy to use EPROM workstation.
This allows the machine to be used by unskilled personnel. for low volume production runs.
The XP640 works equally well in either true stand-alone mode or connected to your computer or develop-
ment system. Once connected, data can be transferred between the two machines and the programmer can
be remotely controlled to make it an integral part of your workstation.

XU620 Universal Programming Module

The XP640 EPROM Programmer is expandable with the XU620 Universal Programming module to support:

• Bipolar PROM from all major manufacturers.
• Single Chip EPROM Microcomputers.
• Programmable Array Logic (PALs).

XM512 EPROM Emulation Module

The emulation option provides up to 64k x 8 of emulation memory. Two modules can be connected for 16-bit
emulation. Data can be written from the target side to allow its use with microprocessor emulators.

User Manual XP640 EPROM Programmer

6

1. General Operating Instructions

Supply voltage

Machines supplied in the UK and Europe are set to operate at 240v, 50Hz supply. A mains cable is supplied
with the machine. The cores of the cable are colour coded as follows:

Live: Brown
Neutral: Blue
Earth: Green/Yellow.

The mains cable plugs into the XP640 via the fused connector located on the right-hand side, rear of the
unit. The unit is protected by a 500mA Anti-surge fuse located in the mains connector. Ensure mains voltage
is disconnected before attempting to replace the fuse.

Using the Machine – Points to note

To ensure trouble free operation, please observe the following points:

• Operate the machine on a vibration free surface.
• Do not locate the machine near any source of heat or in direct sunlight.
• Ensure no metal parts can fall into the machine.
• Disconnect from the mains supply when not in use.
• DO NOT switch the machine on or off with EPROM devices in the ZIF socket.
• Check the device type setting when inserting an EPROM into the ZIF socket.
• Periodically clean the ZIF socket with a stiff bristle brush to ensure good contact.
• Never force an EPROM into or out of the ZIF socket – It is a zero insertion force socket.

User Manual XP640 EPROM Programmer

7

Layout of the XP640

The Keypad

The keypad is divided into three separate sections.

• The right hand section is used for cursor and keyboard control.
• The centre section for the Hex editor.
• The left hand section is subdivided into input/output and PROM function keys.

The key functions are described in detail in the later sections of the manual.

16 Character Alphanumeric Display

This is the on-board display and allows the XP640 to be used without a video monitor. It is used to dis-
play keyboard commands, messages, address and data information. The display usually shows the cursor
address (current address of interest) and RAM and PROM data at that address, as illustrated below :

0000 FF 32 READY

Cursor Address RAM Data PROM Data Message

User Manual XP640 EPROM Programmer

8

Video Display

A composite video output is provided at the rear of the XP640.

Video Display Format

The video display is divided into four sections:

• A status section showing selected device type and input/output parameters.
• Data entry line – similar to the on-board line display.
• Address and data display showing the cursor address and PROM and RAM data at that address and

the ASCII equivalent of the RAM byte.
• A hex dump of 255 bytes with on-screen cursor.

Discrete LED Indicators

The programming socket has 3 LEDs associated with it. The active LED indicates when power is applied to
the ZIF socket. EPROMs should not be inserted or removed when the LED is on (the socket can be powered
down by pressing the STOP key). The other two LEDs indicate the location of pin 1 for the selected device,
depending on whether it has 24- or 28-pins.

Firmware Version number

When power is first applied to the XP640 an ’INITIALISE BUSY’ message is displayed whilst it performs a
system self check. When complete the firmware version number is displayed in the message ’XP640 V X.Y
READY’ where X.Y is the version number.

Zero Insertion Force Socket

The socket is a zero insertion force type and will give reliable service provided it is kept clean and used in the
proper way. The diagram below shows the correct way to load a PROM into the socket. The ZIF is designed
to accommodate both 24- and 28-pin PROMs.

User Manual XP640 EPROM Programmer

9

2. Hex Editor

XP640 RAM Editing Functions

This section gives a detailed description of the XP640 editing facilities taken one key at a time. Examples
are given on the use of each key by itself, and in conjunction with other keys. The table below gives a list of
the available RAM editing facilities.

KEY DESCRIPTION

STOP Power down ZIF socket, return to normal mode.
HEX Hexadecimal data keys
FN Function key to activate editing keys
CURSOR Move cursor up, down, left & right
ENTER Load hex entry from display buffer
CLEAR Clear last hex entry
MEM Move cursor to memory address
DATA Change hex data
PAGE Select a 255 byte page
ASCII Display ASCII dump on-screen
DEFINE Define a RAM block for editing & PROM functions
INVERT Invert data in RAM block
SHIFT Shift data with cursor keys or to any address
COPY Copy source block to destination
FILL Fill block with a data value
SPLIT 16 bit to 8 bit split
SHUFFLE 8 bit to 16 bit shuffle
INSERT Insert data at address
DELETE Delete data at address
REPLACE Change data strings to new strings
SEARCH Find occurrence of data string
LOCK Lock or unlock RAM editor

Note:

In the examples which follow, ’DISPLAY’ means the on-board fluorescent display. The video display
gives similar messages, but in expanded form.

User Manual XP640 EPROM Programmer

10

STOP

This will stop any function and return the machine to normal mode, ready to accept new keyboard commands.
After STOP, the ZIF socket is powered down and any previously defined block is now undefined.

HEX KEYS (0123456789ABCDEF)

These lower case keys are only enabled when the XP640 requires entry of hexadecimal data, otherwise they
are not directly accessible.

FN

This key is used to enable any editing key and must be used prior to any RAM editing function. Its use
prevents unintentional or accidental use of the editor.

Example: Select page 34 for display

KEYPRESS DISPLAY MEANING

FN FN RAM editor is enabled
PAGE PAGE_ prompt for page number
34 PAGE 34 enter the page number
ENTER 1400 FF - cursor address is 3400, RAM data FF, no PROM data

CURSOR

These are the arrow keys and can be used at any time to move the cursor up, down, left or right. Pressing the
key once will move the cursor one position. Holding the cursor key down will continuously move the cursor
as required.

Example: Move cursor right, left, down, up

KEYPRESS DISPLAY MEANING

Right Arrow 0001 FF FF Increment cursor address by one
Left Arrow 0010 FF FF Decrement cursor address by one
Down Arrow 0011 FF FF Increment cursor address by 16 (1 screen line)
Up Arrow 0000 FF FF Decrement cursor address by 16 (1 screen line)

Note:

• The cursor address is shown followed by RAM data and PROM data, both are hex FF in this
example.

• The video always shows a dump of RAM data. PROM data at the corresponding RAM cursor
address is also shown. If the PROM data is shown as ’–’ then the cursor is outside the range of
the selected EPROM (i.e. no PROM data is available).

ENTER

This is used during the course of hexadecimal data entry. E.g. address and data information, Fill parameter,
lock code. It is also an implied ’YES’ key to reply to questions asked by the XP640. The XP640 will only act
on the data entry once the ENTER key has been pressed.

User Manual XP640 EPROM Programmer

11

CLEAR

This can be used to clear a hex entry E.g. if a mistake has been made. it is also used as an implied ’NO’ key
for use in response to questions asked by the XP640.

Example: Move cursor address to 013F and correct the mistake.

KEYPRESS DISPLAY MEANING

(FN) MEM ADDRESS_ Prompt for memory address
013c ADDRESS 013C Enter address, but last digit is incorrect
CLEAR ADDRESS 013_ Last entry cleared
F OK, now enter the correct digit
ENTER 013F DE FF Cursor address is 013F, RAM data DE, PROM data FF

MEM (Memory address)

This moves the cursor to any RAM address within the 64k x 8 user RAM. The base address of the RAM is
0000 and corresponds to PROM (ZIF) address 0000. The last address of the RAM is FFFF. The last address
of the PROM depends on the size of the device selected.

Example: Move cursor to address FFFF.

KEYPRESS DISPLAY MEANING

(FN) MEM ADDRESS_ Prompt for new cursor address
FFFF ADDRESS FFFF Enter the address
ENTER FFFF FF – Cursor address is FFFF, RAM data FF, but no PROM

data because the selected device is smaller than the RAM

Note:

• Blanks are shown in the PROM data field if the cursor address is outside the range of the PROM.
• The cursor can also be moved with the cursor keys or the page select key.
• If no hex address entry is made & ENTER is pressed, the XP640 will substitute 0000 for the

required address as shown below.

KEYPRESS DISPLAY MEANING

(FN) MEM ADDRESS_ Prompt for new cursor address
ENTER 0000 FF FF No address entered, so XP640 substitutes 0000 at new cursor

address. RAM and PROM data is FF

DATA

This command allows keyboard entry of hex data at the cursor address.

User Manual XP640 EPROM Programmer

12

Example: Change data at address 8000, 8001, 8002 to 01, 23, 45

KEYPRESS DISPLAY MEANING

(FN) MEM ADDRESS_ Prompt for new cursor address
8000 ADDRESS 8000 Enter the address
ENTER 8000 FF – READY cursor address is 8000, RAM data is FF
(FN) DATA 8000 FF_ prompt for data entry
01 8000 FF 01 enter the data
ENTER 8001 FF – _ cursor moved to next address, enter data
23 8001 FF 23 keep entering data, cursor will increment after each entry
ENTER 8002 FF – _
45 8002 FF 45 cursor address is 8000, RAM data is FF
ENTER 8003 FF – _
STOP 8003 FF – READY data entry terminated

If no hex entry is made & the ENTER key is pressed, the XP640 will substitute 00 for the data as shown
below.

KEYPRESS DISPLAY MEANING

(FN) DATA 8003 FF_ prompt for data entry
ENTER 8004 FF – _ no data entry made so XP640 enters 00 and increments cursor
Left Arrow 8003 00 – _ review data entry – change data entry is required
STOP 8003 00 – READY data entry terminated

Note:

• The cursor keys can be used during data entry to move to a new address.
• Data entry mode is terminated with the STOP key.

PAGE

This is almost identical to the MEM key, but positions the cursor at the start of a 256 byte page. The cursor
is placed at the top left of the video.

Example: Select page 83 (put cursor at address 8300)

KEYPRESS DISPLAY MEANING

(FN) PAGE PAGE_ Prompt for page number
83 PAGE 83 Enter page
ENTER 8300 49 – READY Cursor moved to address 8300, RAM data is 49,

No PROM data available (Blanks in the PROM data field)

ASCII

Provides an ASCII dump of the on-screen hex dump. The cursor position is shown by a corresponding cursor
(inverted video) in the ASCII dump. This function is only usable with a video monitor connected to the XP640.

DEFINE

This is the powerful block define function for use with many of the PROM functions and editing keys. It
defines the start and end address of a RAM block.

User Manual XP640 EPROM Programmer

13

There are two different ways to define a block: using the hex keys or using the cursor keys.

Using the Hex keys.

Example: Define the block 0000 – 1FFF using the hex keys

KEYPRESS DISPLAY MEANING

(FN) DEFINE DEFINE_ Prompt for start address of RAM block
0000 BLOCK 0000_ Enter the start address
ENTER BLOCK 0000- Prompt for end address
1FFF BLOCK 0000-1FFF_ Enter the end address
ENTER BLOCK 0000-1FFF Block is now defined
(FN) FN 0000-1FFF Pressing FN before a command shows block limits.
STOP 875D 43 – READY Terminate edit command

Note:

• If a block is defined then the (FN) key will display the block limits before an editing command.
(This is a reminder that those editing functions that can act on a block will do so).

• The cursor can be moved through a defined block, the READY message being replaced by
DEF-D as a reminder that the block is defined.

• If a block has been defined, the PROM function keys will prompt for a ROM start address, and
the function will act on the block.

• When STOP is pressed, the block is undefined, but the previously entered limits are still available
and can be recalled by the key sequence (FN) DEFINE ENTER (i.e. define a block without
manually entering limits will define the block using the last entered limits).

• A block need not be defined to use the block editing functions (INVERT, SHIFT, COPY, FILL) as
these will prompt for start and end addresses if there is no previously defined block but a PROM
function will not prompt for block addresses since their block limits are taken to be the PROM
start and end addresses (see PROM function).

• A block remains defined until STOP is pressed.
• The cursor is not part of the block unless it is used to define the block, as shown in the following

example.

The previous example is typical for defining large data blocks for use with the PROM functions e.g. block
program, copy a PROM block to RAM etc.

Using the cursor.

The following example shows how the cursor can be used to define blocks.

Example: Define the block 1FFF–2000 using the cursor

KEYPRESS DISPLAY MEANING

(FN) MEM ADDRESS_ Prompt for new cursor address
1FFF ADDRESS 1FFF
ENTER 1FFF FF FF READY Put cursor at 1FFF
(FN) DEFINE DEFINE_ Prompt for block start
RIGHT ARROW 2000 FF FF 1FFF Move cursor, XP640 fixes address 1FFF

as start of the block
ENTER BLOCK 1FFF 2000 The block has been defined
STOP 875D 43 – READY Terminate edit command

User Manual XP640 EPROM Programmer

14

Note:

• The cursor can be moved in any direction to define a block.

INVERT

Inverts data in a RAM block. This is useful for micro-systems which have inverting buffers on the data bus.

Example: Invert the data in the block 0000 0011

KEYPRESS DISPLAY MEANING

(FN) INVERT DEFINE_ Prompt for start address of block to be inverted
0000 BLOCK 0000 Enter the start address
ENTER BLOCK 0000-_ Prompt for end address
0011 BLOCK 0000-0011
ENTER BLOCK 0000-0011 Block defined

INVERTING Busy inverting
DONE Function complete

Note:

• In the example, the block was defined as part of the INVERT function, however if the block had
previously been defined (using DEFINE), then no prompts would have appeared for the block
limits.

• The block remains defined until STOP is pressed.

SHIFT

This function shifts a defined block through memory using the cursor keys or direct to the cursor address.
Data is shifted without overwriting or loss of data. Data in front of the block is transferred to the other side as
the block moves through the RAM.

Example: Shift the block 0000 0001 to address F000.

KEYPRESS DISPLAY MEANING

(FN) MEM ADDRESS_ Prompt for new cursor address
F000 ADDRESS F000
ENTER F000 C3 READY Put the cursor at F000
(FN) SHIFT DEFINE_ Prompt for block start
0000 BLOCK 0000
ENTER BLOCK 0000_ Prompt for block end
0001 BLOCK 0000-0001
ENTER BLOCK 0000-0001 Define the block.

SHIFT TO F000 Data can be shifted to cursor position (see note)
ENTER

BUSY F000 D9 –DONE Shift complete

User Manual XP640 EPROM Programmer

15

Note:

• When the message ’SHIFT TO’ is displayed, a hex entry can be made as the address to where
the block is to be shifted, pressing ENTER (as in the example), the cursor is used as the shift
address.

• For small shift movements the cursor keys can be used to move the block when the ’SHIFT TO’
message is displayed.

• The block could have been defined using the define function.
• When shift is complete, the block remains defined until the STOP key is depressed.

COPY

This command will copy blocks of data within the RAM. When a copy has been completed, the source data
has not been changed, but has been duplicated at the destination address. The copy command is ’intelligent’
in that if the destination block overlaps the source block, then a complete copy is made at the destination,
the source overlap obviously having been overwritten. The data block can be defined as part of the COPY
command. or using the DEFINE function.

Example: Copy the block from 0000-0800 to the area starting at address 1000.

KEYPRESS DISPLAY MEANING

(FN) COPY DEFINE_ Prompt for source block start address
0000 BL0CK 0000
ENTER BLOCK 0000_ Prompt for block end
0800 BLOCK 0000-0800
ENTER COPY TO F002_ Prompt for destination address or

option to use the cursor address (F002)
1000 COPY TO 1000 But enter address 1000 as required
ENTER BUSY

1000 F4 1A DONE Block has been copied, cursor is
at 1000, RAM and PROM data are different

Note:

• In this example the cursor was at address F002 and would have been used as the destination
address if ENTER had been pressed when the ’COPY TO F002’ prompt had appeared.

FILL

Memory fill is used to fill all or part of the RAM with a specific value.

User Manual XP640 EPROM Programmer

16

Example: Fill the RAM block 0123-0234 with 0A

KEYPRESS DISPLAY MEANING

(FN) FILL DEFINE_ Prompt for block start
0123 BL0CK 0123
ENTER BLOCK 0123_ Prompt for block end
0234 BLOCK 0123-0234_
ENTER BLOCK 0123-0234 define the block

FILL WITH - prompt for fill parameter
0A FILL WITH OA
ENTER BUSY

0123 0A DONE Block is filled with 0A , cursor is at the start of block

Note:

• The block could have been defined using the DEFINE function.
• The filled block remains defined until the STOP key is pressed.

SPLIT

This divides the RAM block as specified by the device type selection into two. All data at even addresses
is stored in the lower half of the block, and all odd address data is stored in the top half. The effect is that
if 16 bit data had been loaded into the RAM (from the serial port) it can be split so that 2 EPROMs can be
programmed : one containing the data at even addresses, the other containing data at odd addresses.

SHUFFLE

This is the converse of SPLIT. The effect of shuffle is to interleave the data in the top half of the block with
data in the lower half i.e. a 16bit to 8bit shuffle. The block limits are defined by the device selected from the
menu.

INSERT (also see DELETE)

Inserts a free byte (FF) at any address in the RAM. The XP640 searches the RAM starting at the current
cursor address for the occurrence of 5 unused bytes (5 bytes at FF). If free space is found, the first byte at
FF is shifted back through the intervening data to the cursor address. The data at this address can now be
modified using the DATA function. Once the INSERT mode has been entered, pressing ENTER will insert
free bytes as often as required. if there are no free bytes or the RAM is completely cleared, a ’NO SPACE’
message is displayed. To exit from INSERT mode, press STOP.

Example: Insert data at address 0010. This example assumes the RAM is completely filled with data
except for 5 free bytes starting at address 0010.

KEYPRESS DISPLAY MEANING

0010 00 FF READY Position cursor at the insert address
(FN) INSERT BUSY locating free bytes

0010 FF FF INS insert complete
ENTER 0010 FF FF BUSY locating free bytes

NO SPACE no free bytes available

User Manual XP640 EPROM Programmer

17

Note:

• No data has been lost or added. The first FF in the 5 byte block has been shifted through
memory to the cursor address, no further insertions were possible because there was no more
free space.

DELETE (also see INSERT)

Deletes any byte in RAM provided there are at least 5 bytes of free space above the delete address. The
XP640 will search for free bytes starting at the cursor address and working to the top of the RAM. 0nce
found., the data at the cursor address will be deleted intervening data will be shifted down one address and
an FF will be added to the free bytes block.

Example: Delete data at 0005. This example assumes the RAM is completely filled with FF except
for a data block at 0000 0007.

KEYPRESS DISPLAY MEANING

0005 00 FF READY Cursor is at the delete address
(FN) DELETE 0005 0 FF DEL’ Delete first byte
ENTER 0005 0 FF DEL’ Delete again
ENTER 0005 0 FF DEL’ And again
ENTER 0005 FF FF BUSY

NO SPACE No more deletions possible, all data
from cursor to top of RAM is at FF

REPLACE (also see SEARCH)

Replaces a data string with a new data string. Any number of occurrences of a string can be found, (see
SEARCH) and changed to the new string. Maximum string length is 10 bytes. The search for strings begins
at the cursor address and works towards the top of the RAM.

Example: Replace the data strings at 0010, 0020 to 45, 67. This example assumes that the RAM is
filled with FF except for the 2 strings of 01, 23 at addresses 0010, 0020.

KEYPRESS DISPLAY MEANING

0000 FF FF READY Position cursor to start of RAM to begin search
(FN) REPLACE FIND_ Prompt for string to be found
0123 FIND 01 23
ENTER REPLACE WITH _ Prompt for new string data
4557 REPLACEWITH 45 67
ENTER HOWMANY SWOPS_ Prompt for the number of string changes
2 HOWMANY SWOPS2 Prompt for new string data
ENTER BUSY Busy searching

DONE All required strings have been replaced
STOP 0020 45 FF READY cursor is at the start of the last string to be replaced

Note:

• The maximum string length that can be changed is 10 bytes.
• Any number of strings can be replaced.

User Manual XP640 EPROM Programmer

18

SEARCH (also see REPLACE)

Searches the RAM for the occurrence of a specified data string. The search starts at the current cursor
address and proceeds until a match is found with the specified string. Subsequent or previous string occur-
rences can be found by using the cursor right and cursor left keys.

Example: Search the RAM for the data strings 30, 31 . This example assumes that the RAM is filled
with FF except for two strings of 30, 31 at addresses 0010, 0020.

KEYPRESS DISPLAY MEANING

0000 FF FF READY Position cursor at RAM start
(FN) SEARCH FIND_ Prompt for string data
30 31 FIND 30 31 _
ENTER BUSY search for first string

0010 30 FF NEXT found it at 0010
RIGHT ARROW 0020 30 FF NEXT next string found
RIGHT ARROW 0020 10 FF BUSY

DATA NOT FOUND no more strings in RAM

Note:

• The maximum string length that can be searched for is 10 bytes.

LOCK

This useful command will lock out the RAM edit or to prevent accidental use or use by unauthorised person-
nel. The PROM functions and cursor keys are not inhibited. A 4 digit code is required to lock and unlock the
editor.

Example: Lock and unlock the editor with code 01 21

KEYPRESS DISPLAY MEANING

(FN) LOCK LOCK_ Prompt for code
0121 LOCK-0121
ENTER 0020 30 FF READY Editor is locked out
(FN) UNLOCK- Pressing FN asks for unlock code
0121 0020 10 FF READY Editor unlocked

PRINT

This key outputs data in the currently selected format via the parallel port. The key requests start and end
addresses, and for records with address fields it also asks for an offset. Once all parameters have been
entered, it will print the data.

User Manual XP640 EPROM Programmer

19

3. PROM Functions

The table below briefly describes the PROM function keys, a detailed explanation is given later in this section.
Each function (except BLANK, ERASE, MENU, EMU) operates on a user defined block of data in the RAM
and device socket. If no block has been defined, then the function operates on the whole device and its
corresponding RAM area.

KEY DESCRIPTION

IBC Perform an illegal bit check on the PROM using RAM block data.
CRC Calculate the CRC value for the complete PROM or a specified RAM block.
SUM Calculate the checksum of the complete PROM or a specified RAM block.
STORE Copy PROM data starting at the specified address to the RAM block.
VERIFY Verify PR0M against RAM and show error data.
PROGRAM Program the PROM at any specified address with the RAM block.
BLANK Performs a blank check on the entire device.
ERASE Electrically erase EEPROM.
MENU Device table.
EMU Emulation function.

Note:

• The block is defined using the DEFINE key and defines a RAM block.
• If no block is defined, the function operates on the whole PROM and RAM areas.
• If the PROM start address is outside the range of the selected device it will be rejected and

requested again.

MENU (Device Selection, Electronic Identifiers)

Device Selection

The XP640 must be set up to correspond to the particular type of EPROM to be read or programmed. The
device type is selected using the MENU key and the cursor up, down keys or hex keys. By pressing the
MENU key the machine displays the current EPROM selected. The XP640 when supplied as new will default
to 2764 at power on however this default value can be changed at any time. (see SET PARAMETERS).
Depressing either the cursor up or cursor down keys will step the display through the EPROM list. Once the
required device appears in the display, Press ENTER to select it. A Device selection can also be made using
the hex keys followed by ENTER.

The currently selected device number always appears in the status section of the video display. To select
the correct device from the device menu, refer to the two tables listed overleaf.

PROM manufacturers are listed on the left hand side of the page, and their respective devices are listed
to the right. The correct selection for the XP640 is listed at the top of the page in the line labelled DEVICE
MENU. Some devices are apparently duplicated in the device menu. E.g. 2764N, 2764I, 2764A & 2764Q.
The suffixes (N, I, A or Q) refers to the programming method required by those devices as stipulated by the
EPROM manufacturers.

KEY DESCRIPTION

N Normal program (50ms pulse)
I Intelligent programming.
A INTEL ’A’ version of standard part.
Q Fujitsu Quick Pro programming method.

User Manual XP640 EPROM Programmer

20

It is important to match the XP640 with the devices you are programming E.g. A 2764A does NOT program
in the same way as a 2764. Damage to the devices or inadequate programming may result if the incorrect
setting is used.

Electronic Identifier

EPROM’s now provide high speed programming algorithms along with electronic identifiers (E.g. INTEL’s
intelligent identifier, SEEQ’s silicon signature) . These identifiers are provided to match the selected device
to the correct high speed. algorithm. Its main use is to prevent the use of a high speed programming
algorithm on non-intelligent devices (and thereby possibly under-program the device). If an intelligent device
is selected from the menu, the user is given the option to use the electronic algorithm identifier. In response
to the prompt ’AUTO SELECT ?’, key CLEAR for no (don’t use the identifier) or ENTER for yes (use identifier).

PROG (Program)

Programs the PROM with RAM block data after performing an illegal bit check to test for programmability.
Once programming is complete, the PROM is verified and a checksum displayed.

Example: Program entire PROM. The PROM is programmed with data starting at PROM & RAM
address 0000.

KEYPRESS DISPLAY MEANING

STOP READY Remove any block definition & power down the ZIF socket.
PROG BIT CHECKFAIL Fail bit check, ZIF is powered down.

PROGRAM BUSY Bit check pass, program cycle in progress.
PROGRAM - F01E Programming complete, verify pass, checksum displayed.
PROGRAM FAIL Fail to Program, enter verify mode.
0024 00 FF VMODE First error is at RAM & PROM address 0024, RAM data is 00,

PROM data is FF. (Error data is available because RAM
& ROM start addresses are the same).

Note:

• See VERIFY function for a description of VMODE.

Example Program the RAM block 8000 8010 into the PROM starting at PROM address 0000.

KEYPRESS DISPLAY MEANING

(FN) DEFINE DEFINE _ Prompt for start address of block.
8000 BLOCK 8000
ENTER BLOCK 8000 _ Prompt for end address.
8010 BLOCK 8000-8010_
ENTER BLOCK 8000-8010 RAM block defined.
PROG ROM START _ Prompt for ROM address.
0000 ROM START-0000
ENTER PROGRAM BUSY Block program in progress.

PROGRAM = CD0F Program PASS & block checksum displayed.

VERIFY

Compares a user-defined RAM block with the PROM. If no block is defined, then the entire PROM is verified
against RAM data starting at address 0000. If the RAM and PROM contain identical data then a PASS

User Manual XP640 EPROM Programmer

21

message is displayed. If the PROM falls to verify then verify mode is entered to display error data.
Once in verify mode the following points apply:

• If the cursor lies outside the RAM area corresponding to the PROM it is automatically moved to address
0000.

• The search for errors always starts from the current cursor position proceeding to the top of RAM.
• The display shows the first error encountered and this is the new cursor position.
• All errors on a video page are shown, and these are shown as highlighted bytes, the cursor being

shown as a highlighted nibble.
• The cursor left and cursor right keys can be used to move to the previous or next error occurrence -if

no more errors are present the display will show an ’OUT OF RAM’ message.
• If a block has been defined and verify errors are present, the search for the first error always starts

from the start address of the block. Only block data is shown, other bytes not in the block are shown
as blanks on-screen.

• Provided that the RAM block start address is the same as the PROM start address, then actual error
data is shown. If the blocks are at different addresses, the RAM error address is always shown along
with RAM and PROM data at that same address.

Example: Verify a complete PROM against RAM data.

KEYPRESS DISPLAY MEANING

STOP READY Remove any unwanted block definition.
VERIFY VERIFY PASS RAM and PROM contain identical data

VERIFY FAIL Errors are present
1024 00 FF VMODE The search started from the current cursor position.

First error is at the new cursor address at 1024,
RAM data is 00, PROM data is FF.

Note:

• Use the cursor left key to view previous errors and the cursor right key to view next errors.

Part of a PROM can be verified with any user specified RAM block as illustrated in the following example.

Example: Verify the RAM block 8000 8010 with a 2716 EPROM starting at PROM address 0000.

KEYPRESS DISPLAY MEANING

(FN) DEFINE DEFINE _ Prompt for RAM block start address
8000 BLOCK 8000 Enter start address
ENTER BLOCK 8000 _ Prompt for end address
8010 BLOCK 8000-8010_ Enter end address
ENTER BLOCK 8000-8010 Block is now defined.
VERIFY ROM START _ Prompt for PROM start address
0000 ROM START-0000 Enter PROM start
ENTER VERIFY BUSY Comparing PROM and RAM data

VERIFY PASS Verify complete
VERIFY FAIL Verify mode entered, first error is at RAM address 8001
8001 00 00 VMODE (PROM address 0001). This is the first error address to be

found, but no error data is available because the RAM block
start and PROM start addresses are different.

User Manual XP640 EPROM Programmer

22

STORE

Stores data from the PROM to the RAM, verifies PROM against RAM data, then calculates and displays a
checksum. A complete device can be stored, or part of a device may be stored using the DEFINE function.

Example: STORE a 2764 into the RAM.

KEYPRESS DISPLAY MEANING

STOP READY Un-define any RAM block
STORE STORE BUSY Copy the PROM to the RAM starting at RAM address 0000,

then verify and checksum the PROM
STORE 2D9A Store successful & checksum displayed
STORE FAIL Store unsuccessful (fail verify)
0044 00 FF VMODE Verify mode entered use cursor left or right keys to view error

data. (First error is at 0044, RAM data 00, PROM data FF).

Note:

• For a description of the verify mode and how error data is displayed, see VERIFY function.

Part of a PROM can be stored to any RAM start address as shown below:

Example: STORE PROM block 0010-001F to RAM block 2030-203F.

KEYPRESS DISPLAY MEANING

(FN) DEFINE DEFINE _ Prompt for RAM block start address.
2030 BLOCK 2030 Enter block start.
ENTER BLOCK 2030 _ Prompt for RAM block end address.
203F BLOCK 2030-203F Enter the block end.
ENTER BLOCK 2030-203F Block defined.
STORE ROM START_ Prompt for PROM start of block.
0010 ROM START 0010 Enter PROM start.
ENTER STORE BUSY Stores the data block & verifies RAM.

C’SUM 0769 Store successful, display RAM block checksum.
STORE FAIL Store unsuccessful.
2034 AA AA VMODE Error is at address 2034, but both PROM and RAM data are

AA at this address (actual data cannot be shown because
the RAM & PROM blocks do not start at the same address).

Note:

• See DEFINE function for more details on block defining.
• See VERIFY function for details of VMODE(verify node).

SUM (Checksum)

Calculates the 2 byte checksum of any length RAM block or of the entire PROM. The checksum is the 16 bit
addition of all the bytes in the block. The carry from the 16th bit is discarded to give a 2 byte value.

User Manual XP640 EPROM Programmer

23

Example: Calculate the checksum for the RAM block 0000-1FFF.

KEYPRESS DISPLAY MEANING

(FN) DEFINE DEFINE _ Prompt for start address of block.
0000 BLOCK 0000 Enter the start address.
ENTER BLOCK 0000 _ Prompt for RAM block end address.
1FFF BLOCK 0000-1FFF Enter end address.
ENTER BLOCK 0000-1FFF Block now defined and highlighted on-screen.
SUM RAM C’SUM BUSY Calculate checksum.

RAM C’SUM = FO1E Display checksum (F01E in this case).

Note:

• Once a block has been defined it is highlighted on screen and shown by DEF-D on the fluores-
cent display. To clear the block definition, press STOP.

• The block could have been defined using the cursor keys. (See DEFINE function).

A complete device can be quickly checksummed as shown in the following example:

Example: Calculate the checksum of a 2716 EPROM (select 2716 from the device menu).

KEYPRESS DISPLAY MEANING

STOP READY Un-define any unwanted block.
SUM CHECKSUM BUSY Calculating the checksum.

CHECKSUM 25AD Display checksum (25AD in this case)

Note:

• To calculate the PROM checksum no block must be defined a defined block operates on the
RAM, not the PROM.

CRC (Cyclic Redundancy Check)

The cyclic redundancy check is a complex algorithm which produces a unique number to ’describe’ a block of
data. it is similar in many respects to a checksum, but is more reliable as a check value, since any changes
in the data will always produce a new CRC value (this is not always the case with checksum). The CRC
function will calculate a value for any length RAM block or produce a value for the entire PROM.

Example: Calculate the CRC for the RAM block 0100-01FF.

KEYPRESS DISPLAY MEANING

(FN) DEFINE DEFINE _ Prompt for start address of block.
0100 BLOCK 0100 Enter block start
ENTER BLOCK 0100 _ Prompt for end address of block.
01FF BLOCK 0100-01FF Enter block end address.
ENTER BLOCK 0100-01FF Block now defined & highlighted on screen.
CRC RAM CRC BUSY Calculating CRC of block.

RAM CRC = EF57 CRC for the RAM block is displayed (EF57 in this case)

User Manual XP640 EPROM Programmer

24

Note:

• The block remains defined unless the STOP key is pressed.
• The block could have been defined using the cursor keys (See DEFINE section).

Example: Calculate the CRC of a 27128 EPROM (27128 selected from device menu).

KEYPRESS DISPLAY MEANING

(STOP READY Clear any defined block.
CRC CRC BUSY Calculating PROM CRC.

CRC = E5CF CRC for the PROM is displayed (E5CF in this case).

Note:

• To calculate the PROM CRC, no block must be previously defined since a defined block operates
on the RAM, not the PROM.

IBC (Illegal Bit Check)

Performs an illegal bit cheek on the PROM using RAM block data starting at a specified PROM start address,
The IBC is a check for programmability it checks that all bits in the device can be set to the required pattern in
the RAM. ’0’ ’1 ’ A programmed bit cannot be set to a 1 without exposure to UV light (EPROMs), or electrical
erasure (EEPROMs).

Example: Illegal bit check an entire device with RAM data starting at address 0000. (Select the
required device from the menu).

KEYPRESS DISPLAY MEANING

STOP READY ZIF powered down, insert device, un-define any RAM block.
IBC BIT CHECKBUSY Perform IBC on PROM using RAM data starting at 0000.

BIT CHECKPASS Device can be programmed with RAM data.
BIT CHECKFAIL Fail IBC.

An illegal bit check can also be performed using the block DEFINE function:

Example: Illegal bit check a PROM block starting at PROM address 0200 using a pre-defined RAM
block at 0400-0500.

KEYPRESS DISPLAY MEANING

(FN) DEFINE DEFINE Prompt for RAM block start address.
0400 BLOCK 0400 Enter start address.
ENTER BLOCK 0400 _ Prompt for RAM block end address.
0500 BLOCK 0400-0500 Enter end address.
ENTER BLOCK 0400-0500- Block defined.
IBC ROMSTART _ Prompt for ROM start address.
0200 ROM START-0200 Enter PROM start.
ENTER BIT CHECKBUSY- Performing bit check.

BIT CHECKPASS PROM can be programmed successfully.
BIT CHECKFAIL Fail illegal bit check.

User Manual XP640 EPROM Programmer

25

Note:

• See DEFINE function for details of block defining.

BLANK

Performs a blank check on the selected device. If all bytes in the selected device are Hex FF, a PASS
message is displayed.

ERASE

Electrically erases the selected EEPROM then performs a blank check to give a PASS or FAII message. The
device type selected must be an EEPROM any other selection will give an error message.

EMU (Emulate)

Sends RAM data to the optional XM512 Emulator Module via the parallel port. The data sent is the same
length as the currently selected device and starts at address 0000. Typical time to transfer the entire RAM
(64k x 8) is 6 seconds.

4. XP640 Interfaces

XP640 Serial Data Transfers

Introduction

The XP640 has a bidirectional RS232C port as standard . This port nay be used to receive data for device
programming, from a host computer, transmit data to a host computer or printer, or used as a communications
link to an RS 232C terminal for remote operation. The RS232C port will support transmission/reception baud
rates between 110 and 19200 baud. The data may be received in any one of 15 formats, and transmitted in
16.

Serial Data Transfer Formats

1. MOS TECHNOLOGY
2. SIGNETICS ABSOLUTE
3. TEKTRONIX HEXADECIMAL
4. BINARY
5. DEC BINARY
6. ASCII HEX COMMA
7. ASCII HEX APOSTROPHE
8. ASCII HEX PERCENT
9. ASCII HEX SPACE

10. BIOF
11. BHLF
12. BPNF
13. LIST (Output only)
14. MOTOROLA EXORCISER
15. INTEL HEX
16. GP BINARY

User Manual XP640 EPROM Programmer

26

These formats are all described in detail in Appendix A.
A full specification of the serial formats will be found in the appendix. The speed , format, word format and
handshaking selections are made using the XP640 menu selection.

Word Format

XP640 word format

START BITS 1
STOP BITS 1 or 2
DATA BITS 7/8
PARITY ON/OFF/ ODD/EVEN

The Serial Word:

Handshaking

The XP640 uses hardware handshaking via CTS/DTR and DSR/RTS. When the XP640 is receiving the DTR
and RTS line (pin 20 and pin 4) must be used to control the data flow into the programmer. A high level
(+12V) on the RTS & DTR line indicates ready to receive. A low level (-12V) indicates not ready. Before the
XP640 will output data, the input handshake lines CTS and DSR, (pins 5 & 6) must taken to a high level (>
5V).If a handshake line changes state during a byte, the XP640 expects the transfer to continue until the end
of the next stop bit.

Serial Output

The serial output key instructs the programmer to output data. The programmer will prompt for start and end
addresses for the data to be transmitted Once the limits have been entered, the XP640 will prompt for an
offset address. This address is added to the actual address of the data and transmitted in the address field
of those formats that have address information. Once this has been entered, the XP640 will either transmit
the data and display the message ’DONE SOUT’ or it will show ’TIMEOUT ERROR’ if the handshake lines
are preventing serial output.

Serial Input

The serial input key instructs the XP640 to load data from the RS232 port into the RAM in the currently
selected data format. Once the key has been pressed the XP640 will prompt for an ’OFFSET ADDRESS’.
This is either taken as the start address of data for formats with no address information, or it is added to the
address of those formats which include address information. If the currently selected format does not have a
byte count facility’ the XP640 will prompt for a "length" of the data being input. Once these parameters have
been entered the XP640 will load in the data and display ’DONE’. If for any reason no data is transmitted to
the XP640, it will display ’TIMEOUT ERROR’.

User Manual XP640 EPROM Programmer

27

Remote Operation of the XP640

Pressing the Remote Key on the XP640 causes the XP640 to transfer control to the RS232 port. The first
operation of the remote mode for the XP640 is to send out a menu of possible commands. All communication
is at the settings previously defined from the port menu. Once the Command Menu has been sent, the XP640
outputs the ’>’ prompt indicating that it is ready to receive a command. Commands are entered by typing
all or part of the menu commands, followed by a carriage return. If you enter an ambiguous command the
XP640 will interpret it as being the first matching command in the Menu.

The Command Menu is listed below:

COMMAND OPERATION

MENU Define a block
SHIFT Shift a block
FILL Fill a block
MERGE Combine 16 bit data
DELETE Delete byte at cursor
FIND Find string
DATA Data entry
DUMP Hex dump of memory
INVERT Complement memory
COPY Copy a block
SPLIT Split 16 bit data
INSERT insert FF at current cursor
REPLACE Replace string
MEM Define cursor address
PAGE Define current page
PRINT Parallel print
SOUT Serial output
VERIFY Verify device against RAM
CHECKSUM Checksum
BITCHECK Illegal Bit Check
ERASE Erase EEPROM devices
PARALLEL SELECT Select list format
STATUS List XP640 status
SIN Serial input
PROGRAM Program device
STORE Copy device data into RAM
CRC Cyclic redundancy cheek
BLANKCHECK Blank check
DEVICE SELECT Device selection
EMULATE Emulation function
LOCAL Return command to XP640

All functions work in the same way as in the local mode, with the following addition:

Cursor Keys

The cursor keys are implemented as:

H Cursor Right
G Cursor Left
T Cursor Up
Y Cursor Down

User Manual XP640 EPROM Programmer

28

A function may be terminated by keying ’Q’, to which the XP640 will reply ’ABORTED’ and then it will
redisplay the prompt. Selection of device and parallel formats is made by typing in the name of the device
format after selecting the selection mode, The XP640 confirms this selection by displaying your choice.
The ready prompt is displayed together with cursor and block information.

AAAA DD PP XTZ&B
Cursor address RAM data PROM data Machine status

BLOCK WXYZ-ABCD Block limits

DUMP

This is used to display hexadecimal data. It prompts for start and end addresses, once given it will print Hex
data on the screen. Dump may be interrupted by keying CTRL–S which will cause the display to stop at the
end of the current line. The dump may then be resumed with a carriage return or ended with ’Q’.

Internal Parameter Set-Up

All parameters of the XP640 operating system (other than the device type) are set up using the port key. The
parameter selection is menu driven with the menus being visible on both the video display and the vacuum
fluorescent display. On the video display a complete menu is displayed, with the current selection indicated
by a cursor on the active line of the menu. The vacuum fluorescent display shows only the current line. On
the left hand side of each menu line is a 2 digit number, this gives the line number of the menu entry (in
Hexadecimal) . Selection from the menu may be made in one of two ways:

Method 1:

Use the Up and Down cursor keys to select the required line of the menu and press ENTER to select it.

Method 2

Press the HEX keys to select the desired line number. As soon as the first hex key is pressed the display
shows ’SELECT _’ . The CLEAR and ENTER keys are used as for the all other hex entry. If an invalid
selection is made, the XP640 will beep and re-prompt with ’SELECT _’.

All of the sub menus return control to the the main menu.

To return to the XP640 ready mode, options 7 or 8 should be selected.

User Manual XP640 EPROM Programmer

29

Main Port Configuration Menu

Cursor Keys

00 BAUD RATE Set up serial speed
01 SERIAL FORMAT Select serial data transfer format
02 PARALLEL FORMAT Select print data format
03 WORD FORMAT Set up serial word format
04 EMULATION Select 8 or 16 bit emulation
05 KEYBEEP Switch key beep on/off
06 STATUS Display of current status. (Nothing may be changed)
07 CALIBRATE Calibrate procedure
08 SET PARAMETERS Save parameters in internal EEPROM and return to command
09 END Return to command level

The baud rate, serial format & parallel options present lists of speeds/formats which may selected.

Word Format The word format option goes through a series of questions. These are:

Word Format Options

DATA BITS – Answer 7 or 8
STOP BITS – Answer 1 or 2
TEST PARITY ? – ENTER= YES, CLEAR = NO
ODD PARITY ? – Only if YES to above, then ENTER = YES, CLEAR = NO
HANDSHAKE ? – ENTER =YES, CTEAR = NO

Returns to main menu

Emulation The emulation option asks whether emulation is 8 or 16 bits. The appropriate value should be
entered.

Keybeep The key beep option asks: KEYBEEP ON ? (Enter ȲES, CLEAR N̄O)

Status The status option gives the following display:

00 Device type
01 Baud rate
02 Message saying ’SERIAL’. (aids use with fluorescent display)
03 Serial format
04 Message saying ’PARALLEL’. (aids use with fluorescent display)
05 Parallel format
06 Stop bits
07 Data bits
08 Parity
09 Handshake
0A Emulation

The cursor keys may be scrolled through the display to show the current parameters.
Selecting any option causes a return to the main menu.

User Manual XP640 EPROM Programmer

30

Calibrate The calibrate option allows the user to check the internal voltages of the XP640. See Section 4
below on calibration.

Set Parameters Saves the selection made in the internal EEPROM so that they will always be recalled on
power up.

End Configures the machine with the new parameters, but does not save them.

The Printer Interface

General

The XP640 printer interface is a parallel interface. It is compatible with the Centronics type port which the
majority of printers are equipped.

The data is transmitted in standard ASCII code with the 8th bit set to a zero. Carriage Returns and Line
Feeds are sent at the end of each line.

Connection

The printer port is the 26-pin IDC connector on the rear of the XP640. It may be connected to any Centronics
type printer via an IDC/CENTRONICS cable.
The pin out of the connector is shown in the table below:

Connector Pin Out

Pin Signal Pin Signal

1 STROBE 14 Twisted Pair Ground(pin 1)
2 DATA 1 15 Twisted Pair Ground(pin 2)
3 DATA 2 16 Twisted Pair Ground(pin 3)
4 DATA 3 17 Twisted Pair Ground(pin 4)
5 DATA 4 18 Twisted Pair Ground(pin 5)
6 DATA 5 19 Twisted Pair Ground(pin 6)
7 DATA 6 20 Twisted Pair Ground(pin 7)
8 DATA 7 21 Twisted Pair Ground(pin 8)
9 DATA 8 22 Twisted Pair Ground(pin 9)
10 NC 23 Twisted Pair Ground(pin 10)
11 BUSY 24 Twisted Pair Ground(pin 11)
12 NC 25 GND
13 NC 26 NC

Description of Centronics Port Signals

STROBE This is an active low output signal which is output to indicate that there is valid data on the port.

BUSY When this input is high the XP640 will not output data. It is used to indicate that the printer is not
ready to receive data.

DATA 1-8 These lines carry the output data.

GND All of the ground lines are linked to the XP640 system ground. Problems with parallel interfaces often
stem from bad grounds, hence ensure that all grounds are connected.

User Manual XP640 EPROM Programmer

31

Centronics Port Timing Diagram

RS232 Connector Pin out

Pin Name Direction Description

1 Shield Protective ground.
2 TXD OUT Output data from P9000.
3 RXD IN Input data from P9000.
4 RTS OUT Paired with DTR.
5 CTS IN Handshaking input (controls data output).
7 GND Signal ground.
20 DTR Out Handshaking output (controls data input).

User Manual XP640 EPROM Programmer

32

Calibration Procedure

The XP640 is a precision made machine. All timing for program pulses, set up times etc. are software
controlled by the Z80 microprocessor and are therefore crystal controlled and fixed. The power supply
voltages are pre set and computer tested before they leave the factory. These voltages may need adjustment
from time to time. Before attempting to calibrate the XP640, first check that it is required:
Select CALIBRATE from the port menu. Follow the sequence of steps listed below and measure the voltage
as specified. Move to the next step by pressing the UP ARROW key. To exit from calibrate mode, press
’STOP’.
If one or more of the measured voltages are outside those specified in the table then repeat the procedure
and adjust the pre set potentiometers numbered below.
To gain access to the potentiometers, remove the XP640 top cover. Please follow the instructions on its
removal as given in the XP640 Service Manual.

• There are dangerous voltages inside the XP640 and calibration should only be carried out by a
competent electronics engineer or technician.

• When reassembling the XP640 please follow the procedure given in the Service Manual.
• Damage caused by incorrect calibration or inexpert dismantling of the XP640 will void the war-

ranty.

Calibration table:

Step Pin Lo Limit Hi Limit Adjust Pot

One 28 5.90 6.20 1
Two 28 4.80 5.20 4
Three 1 24.70 25.50 6
Four 1 20.70 21.50 1
Five 1 11.70 12.40 2
Six 1 4.80 5.20 5

Seven Measure the TTL pulses on pin 27 of the copy socket to be
of 1ms (approx) mark/space ratio. This checks that the system
clock (crystal controlled) is OK to guarantee software timing.
No adjustment is possible or should ever be necessary.

Potentiometer Identification

User Manual XP640 EPROM Programmer

33

A. Serial Data Transfer Formats

Intel Hex Data Format

General

The Intel Hex format is a widely used format for the transfer of binary data. It transmits the data as short
data records in ASCII code each, record having a checksum in order to ensure integrity of the data. There
are several record types within the definition of Intel Hex, but the XP640 only uses three of them. These are:
type 00 – data record, type 01 – the end of file record and type 02 – the extended address record. If the
XP640 receives any other records it just discards them.

Intel Data Record Format (type 00)

Byte
1 Colon (:) delimiter
2 – 3 Number of binary bytes of data in this record. The maximum is 32 binary bytes

(64 ASCII bytes).
4 – 5 Most significant byte of the start address of the data.
6 – 7 Least significant byte of the start address of the data.
8 – 9 ASCII zeroes. The ’record type’ for a data record.
10 – Data bytes. Each binary byte is sent as two ASCII characters each one

representing one nibble of the Hex representation of the byte.
Last two bytes Checksum of all bytes in the record, excluding the delimiter, carriage

return and line feed.The checksum is the negative of the modulo 256 binary
sum of all of the bytes in the record.

CR/LF Carriage return/line feed.

Intel Data Record Format (type 02)

Byte
1 Colon (:) delimiter
2 – 3 ’02’ The record length.
4 – 5 ASCII zeroes.
6 – 7 Record type ’02’.
8 – 9 USBA Upper segment base address. (the top 16 bits of a 24 bit address)

It is used in Intel’s 16 bit data records. If no 02 records are sent, the USBA is set to zero.
If an USBA is specified, then the bottom 12 bits are added to the offset address
of the data records.

10 – 11 Checksum of all bytes in the record, excluding the delimiter carriage return and line feed.
The C’sum is the negative of the modulo 256 binary sum of all of the bytes in the record.

CR/LF Carriage return/line feed.

Intel End of File Record (type 01)

Byte
1 Colon (:) delimiter
2 – 3 ASCII zeroes.
4 – 5 Most significant byte of transfer address (Not used by XP540 ; Set to zeroes).
6 – 7 Least significant byte of transfer address (Not used by XP640 ; Set to zeroes).
8 – 9 Record type 01. Indicates end of record.
10 – 11 Checksum.
CR/LF Carriage return/line feed.

Note: All ASCII code is sent as seven bits.

User Manual XP640 EPROM Programmer

34

The data stream 25 45 AF B1 D0 77 to be sent to start at address 0000.

The Record would be: : 05 00 00 00 25 45 AF B1 D0 77 EB 0D 0A

Which may be broken down as :

Delimiter :
Number of Bytes in the Record 06
Start Address High 00
Start Address Low 00
Record Type 00
Data 23 45 AF B1 D0 77
Checksum EB
CR 0D
LF 0A

Where the Checksum is calculated as follows:
CS = 06+00+00+00+25+45+AF+B1+D0+77 = 315
Modulo 256 = 15
Negative = EB

Note: The above checksum calculation was performed in Hexadecimal.

Upper Segment Base Addresses (USBA)

The Intel Hex records which may be received by the XP640 may be either the standard 8 bit format (record
types 0 & 1) or the extended 16 bit format (additional record type z). The USBA is a 16 bit number which is
used to set the current segment base. (This terminology is derived from the Intel 8086). In effect this means
that the 16 bit number is shifted right four times and added to the 16 bit address of the type 00 data records.
This results in a 24 bit address. The XP640 actually uses the 16 least significant bits only.

Upper Segment Base Addresses (USBA)

USBA = 1263h
Address in data record = 3334h
Actual Address of data = 12340h

+ 3334h
15674h

In the XP640 this would be 5674h

User Manual XP640 EPROM Programmer

35

Motorola Exorcisor Format

General

The Motorola format provides for the transmission of data in printable ASCII format. The data is divided into
records. The XP640 recognises and uses three types of record„ these are: ’S1’ and ’S2’ – the data records,
and ’S9’ – the end of file record.

Exorcisor Data Record Format (type ’S1’)

Byte
1 ’S’ character delimiter
2 ASCII 1. The record type for data.
3 – 4 Byte count. The number of binary data bytes in the record plus three

(1 for checksum and 2 for address).
5 – 6 Most significant byte of the start address of the data record.
7 – 8 Least significant byte of the start address of the data record.
9 Data bytes. Each byte is sent as two ASCII characters, each representing one

nibble of the hex representation of the byte.
Last two bytes Checksum of all bytes in the record excluding the delimiter and record type.

The checksum is the 2’s complement (NOT) of the modulo 256 binary sum of the
bytes in the record.

CR/LF CR and LF are output from the XP640, but are not checked when input.

Exorcisor Data Record Format (type ’S2’)

Byte
1 ’S’ character delimiter
2 ASCII 2. The record type for data.
3 – 4 Most significant byte of start address of the data record.
5 – 6 Next most significant byte of the start address of the data record.
7 – 8 Least significant byte of the start address of the data record.
9 Data bytes. Each byte is sent as two ASCII characters, each representing one

nibble of the hex representation of the byte.
Last two bytes Checksum of all bytes in the record excluding the delimiter and record type.

The checksum is the 2’s complement (NOT) of the modulo 256 binary sum of the
bytes in the record.

CR/LF CR and LF are output from the XP640, but are not checked when input.

Exorcisor End of File Record

Byte
1 ’S’ character delimiter
2 ASCII 9. Indicates end of file record.
3 – 4 Byte count 0̄3 in end of file record.
5 – 6 Most significant byte of start address (not used in the XP640; set to zero).
7 – 8 Least significant byte of start address (not used by the XP640; set to zero).
9 – 10 Checksum.
CR/LF Carriage return and line feed are output from the XP640, but are not checked when input.

User Manual XP640 EPROM Programmer

36

To send data 67 A0 4A 2B to start at 213F would be:

S1 07 21 3F 67 A0 4A 2B 1C 0D 0A

Which consists of:
Delimiter S
Record Type 1
Byte Count (Data + 3) 07
Start Address High 21
Start Address Low 3F
Data 67

A0
4A
2B

Check sum 1C
CR 0D
LF 0A

Where the Checksum is calculated as follows:
CS = 07+21+3F+67+10+4A+2B 1E3
Modulo 256 E3
1’s Complement 1C

N. B. : The calculations were performed in hex

User Manual XP640 EPROM Programmer

37

GP Binary Format

General

This is a simple format devised by GP specifically for users writing there own formats. It is designed to be as
simple as reasonably possible to write drivers/ receivers for. All data is sent in 8 bit binary, LSB first.

Format of GP Binary Record

The data is preceded by a 4 byte block consisting of a block-length and a checksum:

Byte
1 Least significant byte of the block length.
2 Most significant byte of block length.
3 Least significant byte of the checksum.
4 Most significant byte of the checksum.
5 – Data bytes.

The block length is the number of bytes in the data record.
The checksum is the modulo 65536 binary sum of the data being transferred.

A GP Binary record to send the following data 23 67 8F 2A would be:

Low Block Length 04
High Block Length 00
Low part of Checksum 43
High part of Checksum 01
Data 23

67
8F
2A

Where the checksum was calculated as follows:

CS 23+67+8F+2A=143

N.B.: The above calculation was performed in Hexadecimal

User Manual XP640 EPROM Programmer

38

Serial List Format

General

This is an output only format designed primarily to drive a serial printer. Data is output as ASCII characters
in rows of 16 characters, each row being preceded by the address of the first character in the row. Each row
is terminated by carriage return and line feed.. The data is sent in blocks of 256 bytes. After every third block
a form feed is sent to prevent data being printed on the perforations of the paper.

Example of serial list output

0000 E4 AA CD 00 99 C9 E5 F5 E1 F1 4F 7D ED CF 21 01
0010 21 FF FF 0A E4 C4 01 C9 22 FD 22 E4 14 C3 FF FF

.

.

.
01E0 A4 B9 27 C9 22 FD 14 99 4F 6C CF FF FF FF FF FF
01F0 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

User Manual XP640 EPROM Programmer

39

Tektronix Hex Format (TekHex)

General

This format provides for the transfer of data blocked into records of printable ASCII characters. There are 2
types of records used and recognised by the XP640. These are the data record and the end of file record.

TekHex Data Record.

Byte
1 ’/’ delimiter
2 – 3 Most significant byte of the start address of the data record.
4 – 5 Least significant byte of the start address of the data record.
6 – 7 Byte count. The number of binary data bytes in the record.
8 – 9 First checksum, sum of all bytes, modulo 256 of the six hex digits of the load

address and byte count.
10 – Data bytes. Each byte is sent as two ASCII characters, each representing one

nibble of the hex representation of the byte.
Last two bytes Checksum of all the data bytes in the record, calculated as the modulo 256 sum

of all the nibbles making up the data bytes.
CR/LF CR and LF are output from the XP640, but are not checked when input.

TekHex End of File Record.

Byte
1 ’/’ delimiter
2 – 3 MSB of the start address of the data record (not used in the XP640; set to zero).
4 – 5 LSB of the start address of the data record (not used in the XP640; set to zero).
6 – 7 Byte count. 00 in end of file record.
8 (not used in the XP640; set to zero).
9 – 10 Checksum of all bytes in the record excluding the delimiter and record type. The checksum

is the modulo 256 binary sum of the nibbles making up the bytes in the record.
CR/LF CR and LF are output from the XP640, but are not checked when input.

To send the data 25 00 A8 A9 17 04 the data format would look like:

/000006062500A8A91704160D0A

Which consists of:
Delimiter ’/’
Start Address 0000
Byte Count 06
Checksum of Address field 06
Data 25 00 A8 A9 17 04
Checksum 16
CR 0D
LF 0A

Where the checksums were calculated as follows:
Address Checksum 0+0+0+0+6 = 6h
Data Checksum 2+5+0+0+A+8+A+9+1+7+0+4 = 36h

User Manual XP640 EPROM Programmer

40

MOS Technology Format

General

In this format the data is divided into records and sent as printable ASCII characters. There are two types of
record used and recognised by the XP640. These are the data record and the end of file record.

MOS Data Record.

Byte
1 ’; ’ delimiter
2 – 3 Byte count. The number of binary data bytes in the record.
4 – 5 Most significant byte of the start address of the data record.
6 – 7 Least significant byte of the start address of the data record.
8 – Data bytes. Each byte is sent as two ASCII characters, each representing one

nibble of the Hex representation of the byte.
Last four bytes Checksum. Sum of all data bytes in the record. It is the modulo 65536

binary sum of all bytes in the record including the block length and address, but
excluding the delimiter and checksum. It is transmitted high byte then low byte.

CR/LF CR and LF are output from the XP640, but are not checked when input.

MOS End of file record.

Byte
1 ’; ’ delimiter
2 – 3 Byte count. 00 in end of file record.
4 – 5 Most significant byte of sum of total bytes sent in all records.
6 – 7 Least significant byte of sum of total bytes sent in all records.
8 – 9 MSB of checksum
10 – 11 LSB of the checksum of all bytes in the record excluding the delimiter and record type.

The checksum is the modulo 65536 binary sum of the bytes in the record.
CR/LF CR and LF are output from the XP640, but are not checked when input.

To send the data 86 AF E5 64 98 99 99 00 the MOS record would be:

;08 00 00 86 AF E5 64 98 99 99 00 04 48 0D 0A

Which consists of:
Delimiter ’;’
Byte Count 08
Start Address 0000
Data 86

AF
E5
64
98
99
99
00

Checksum 0448

The checksum is calculated as follows:
Checksum 86+AF+E5+64+98+99+99+00 = 0448

User Manual XP640 EPROM Programmer

41

Signetics Absolute Data Transmission Format

General

In this format data is divided into records of printable ASCII characters. The XP640 uses and recognises two
types of data record. The data record and the end of file record.

Signetics Absolute Data Record.

Byte
1 ’:’ delimiter
2 – 3 Most significant byte of the start address of the data record.
4 – 5 Least significant byte of the start address of the data record.
6 – 7 Byte count. The number of binary data bytes in the record.
8 – 9 Checksum of the bytes in the address and data fields calculated by EXORing

each byte with the previous byte, then rotating the resultant byte left one bit.
10 Data bytes. Each byte is sent as two ASCII characters, each representing one

nibble of the Hex representation of the byte.
Last two bytes Checksum. Sum of all data bytes in the record, the checksum

is calculated in the same way as the first checksum.
CR/LF CR and LF are output from the XP640, but are not checked when input.

Signetics Absolute End of File Record

Byte
1 ’:’ delimiter
2 – 3 MSB of the start address of the data record. (not used in the XP640 ; set to zero).
4 – 5 LSB of the start address of the data record. (not used by the XP640 ; set to zero).
6 – 7 Byte count. 00 in end of file record.
8 – 9 Checksum of the bytes in the address and data fields calculated by EXORing

each byte with the previous byte, then rotating the resultant byte left one bit.
CR/LF CR and LF are output from the XP640, but are not checked when input.

To send the data 23 EE F1 2A D4 55 99 the MOS record would be:

;:00 00 07 0E 23 EE F1 2A D4 55 99 46 0D 0A

Which consists of:
Delimiter ’:’
Start Address 0000
Byte Count 07
First Checksum 0E
Data 23

EE
F1
2A
D4
55
99

Second Checksum 46

The checksums are calculated as follows:
1st checksum (((00 Xor 00)*2 Xor 00)*2 Xor 07)*2 = 0E
2nd checksum ((((((23 Xor EE)*2 Xor F1)*2 Xor 2A)*2 Xor D4)*2 Xor 55)*2 Xor 99)*2 = 46

User Manual XP640 EPROM Programmer

42

The ASCII Space, Comma, Apostrophe and Percent

General

Data in these formats is transmitted in sequential, two character groups representing hex bytes followed by
the execute code ’space’, ’percent’, ’apostrophe’ or ’comma’. Data may be transmitted as either 4 or 8 bits.
The XP640 assumes that the two characters prior to the execute code were a valid character. If only one
character was received prior to the execute code then a leading zero is assumed.

When the XP640 is receiving in these formats, it recognises 3 types of information; these are Address infor-
mation, Data and Checksum. The data transmission must be preceded with an <STX> character (02h) which
may then be followed immediately with data or by an address field. The transmission must be terminated
with an <ETX> (03h) followed by either a checksum field or at least 16 nulls.

Data field

Each time an execute code is received the two previous bytes are assumed to be valid data. If there have
not been two valid ASCII Hex bytes prior to the execute code then the programmer assumes leading zeroes.
Address field ’rt’ ,A" When the XP640 receives a followed by an it then expects 4 ASCII Hex digits giving the
address of the first data field. This address must be terminated by a comma (except in the ’Comma’ format
where it is terminated by a full stop).The input data will then be loaded, starting at this address.

Checksum field

The data field must be terminated with an <ETX> this may optionally be followed with a checksum. The
checksum is expected as $ followed by ’S’ followed by the four bytes of the checksum. The checksum must
be terminated with a comma (or for the comma format a full stop). The checksum is calculated as the modulo
65536 sum of all of the data sent since the previous <STX>. If the checksum is not sent then at least 16
characters must follow the <STX> to prevent a time-out error.

ASCII SPACE data transmission

<STX>$A000,<CR><LF>
31 FF 77 C7 FF FE 76..........<ETX><CR><LF>
$S1234,<CR><LF>

ASCII COMMA data transmission

<STX>$A0000.<CR><LF>
31,FF,77,C7,FF,FE,76..........<ETX><CR><LF>
$S1234.<CR><LF>

ASCII PERCENT data transmission

<STX>$A0000.<CR><LF>
31%FF%77%C7%FF%FE%76..........<ETX><CR><LF>
$S1234,<CR><LF>

ASCII APOSTROPHE data transmission

<STX>$A0000.<CR><LF>
31’FF’77’C7’FF’FE’76..........<ETX><CR><LF>
$S1234,<CR><LF>

User Manual XP640 EPROM Programmer

43

ASCII BPNF, BHLF & B10F Formats

General

In these formats each byte of data is transmitted as an ASCII ’B’ followed by eight ASCII bytes representing
the bits of the data byte. Zeroes and ones are represented respectively in the two formats by: ’N’, ’P’ or ’H’,
’L’ or ’1’, ’0’. Each byte is terminated with the ASCII character The data is transmitted least significant bit first.
The entire data stream must be started with a non-printable <STX> and ended with a non-printable <ETX>.
The data output from the XP640 is formatted to suit a list device by outputting a space between each byte,
and a <CR><LF> at the end of each line of six bytes.

An example data stream 0F 84 73 21 is shown in each format below:

BPNF format.

<STX>BPPPPNNNNF BNNPNNNNPF BPPNNPPPNF BPNNNNPNNF<ETX>

BHLF format.

<STX>BHHHHLLLLF BLLHLLLLHF BHHLTHHHLF BHLLLLHLLF <ETX>

B10F format.

<STX>B11110000F B00100001F B11001110F B10000100F<ETX>

User Manual XP640 EPROM Programmer

44

DEC Binary and Binary formats

General

In both of these formats data is transmitted as a string of binary information. The only difference in the two
formats is the start of record. For Binary the record starts with any number of nulls followed by a rubout
(FFh). In DEC binary the format starts with any number of rubouts followed by a null. The data after the
record start is a string of binary data with no checksum or byte counts and no print formatting. As there is no
end of file delimiter, the receiving machine must have been told how many bytes to expect. In the XP640 this
is entered from the keyboard.

User Manual XP640 EPROM Programmer

45
B. PROM Device Table

Devices recognised by the XP640

Manufacturer 2508 2708A 2708B 2716 2815 2816 48016 9716 2532 2732 2732A 2564

AMD 2716DC 2732DC 2732ADC
Eurotechnique ET2716 ET2732
Fujitsu 8516 MBM2732 MBM2732A
Hitachi HN462716 HN48016 HN482532 HN482732
Intel 2758A 2758B 2716 2815 2816
Mitsubishi M5L2716K M5L2732K
Motorola MCM2716 MCM2532

MCM27A16
National MM2716 NMC2816 NMC9716 NMC2532 NMC2732

NM27C16 NMC27C32
NEC UPD2716D UPD2732D UPD2732AD
OKI 2716 2732A
Rockwell R5213 R87C32
SGS 2816A

5516A
Texas Inst TMS2508 TMS2532 TMS2732 TMS2564
Toshiba TMM2732D

Devices recognised by the XP640

Manufacturer 2764N 2764I 2764A 2764Q 27128N 27128A 27128I 27128Q 27256I 27256Q 27512I

AMD 2764DC 27128DC 27256DC 27512DC
Eurotechnique ET2764
Fujitsu MBM2764 MBM27128 MBM27C256

MBM27C64
Hitachi HN27C64 HN4827128

HN482764
Intel 2764 2764A 27128 27256
Mitsubishi M5L2764K
NEC UPD2764D UPD27128D

UPD27C64
OKI MSM2764RS
Rockwell R2764

R87C64
SEEQ 2764 27128
SGS M2764
Texas Inst TMS2764
Toshiba TMM2732D TMM27128D

U
serM

anual
X

P
640

E
P

R
O

M
P

rogram
m

er

Alphabetical Index

ASCII, 12

BLANK, 25

Calibration
Potentiometers, 32
Procedure, 32
Table, 32

Centronics
Connection, 30
Signals, 30
Timing, 31

Checksum, 22
CLEAR, 11
COPY, 15
CRC, 23
CURSOR, 10
Cyclic Redundancy Check, 23

DATA, 11
DEFINE

Using the cursor, 13
Using the Hex keys, 13

DELETE, 17
Discrete LED Indicators, 8
Display

16 Character Alphanumeric, 7
Video, 8

DUMP, 28

Electronic Identifier, 20
EMU, 25
Emulate, 25
ENTER, 10
ERASE, 25
Exorcisor Format

Example , 35
Record Type S1 , 35
Record Type S2 , 35
Record Type S9 , 35

Expandability
XM512, 5
XU620, 5

FILL, 15
Firmware Version number, 8
FN, 10

GP Binary Format
Example, 37
General, 37

Hex Editor, 9

IBC, 24

Illegal Bit Check, 24
INSERT, 16
Intel Hex Format

End of File Record, 33
Record Type 00, 33
Record Type 01, 33
Record Type 02, 33
USBA, 34

Interfaces, 25
Centronics Port, 30
Parallel, 30
Printer, 30
RS232, 25

INVERT, 14

Keypad, 7

Layout of the XP640, 7
LOCK, 18

Main Port Configuration Menu, 29
Calibrate, 30
Emulation, 29
End, 30
Keybeep, 29
Set Parameters, 30
Status, 29
Word Format, 29

MEM, 11
MENU, 19

Device Selection, 19
MOS Technology Format, 40

PAGE, 12
PRINT, 18
Printer Interface

Pinout, 30
PROM Functions, 19

RAM Editing Functions, 9
Remote Operation

Cursor Keys, 27
RS232, 27

REPLACE, 17
RS232

Pinout, 31

Screen Display Format, 28
SEARCH, 18
Serial Data Transfer, 25

Handshaking Protocol, 26
Supported Formats, 25
Word Format, 26

Serial Data Transfer Formats, 33
GP Binary Format, 37

47

Intel Hex Data Format, 33
MOS Technology Format, 40
Motorola Exorcisor Format, 35
Serial List Format, 38
Tektronix Hex format (TekHex), 39

Serial Input, 26
Serial Output, 26
SHIFT, 14
SHUFFLE, 16
SPLIT, 16
STOP, 10, 12
STORE, 22

Full Device, 22
Partial Device, 22

SUM, 22
Full Device, 23
RAM Block, 22

Supply voltage, 6

TekHex
Data Record, 39
End of File Record, 39
Example, 39

Tektronix Hex Format, 39
The Serial Word, 26

VERIFY, 20
Video Display

Format, 8
VMODE, 20, 21

ZIF Socket, 8
Device Insertion, 8
Device Position, 8
Maintenance, 6

User Manual XP640 EPROM Programmer

	Introduction
	XP640 EPROM Programmer
	XU620 Universal Programming Module
	XM512 EPROM Emulation Module

	General Operating Instructions
	Supply voltage
	Using the Machine – Points to note
	Layout of the XP640
	The Keypad
	16 Character Alphanumeric Display
	Video Display
	Video Display Format
	Discrete LED Indicators
	Firmware Version number
	Zero Insertion Force Socket

	Hex Editor
	XP640 RAM Editing Functions
	STOP
	HEX KEYS
	FN
	CURSOR
	ENTER
	CLEAR
	MEM
	DATA
	PAGE
	ASCII
	DEFINE
	Using the Hex keys.
	Using the cursor.

	INVERT
	SHIFT
	COPY
	FILL
	SPLIT
	SHUFFLE
	INSERT
	DELETE
	REPLACE
	SEARCH
	LOCK
	PRINT

	PROM Functions
	MENU
	Device Selection
	Electronic Identifier

	PROG
	VERIFY
	STORE
	SUM
	CRC
	IBC
	BLANK
	ERASE
	EMU (Emulate)

	XP640 Interfaces
	XP640 Serial Data Transfers
	Introduction
	Word Format
	The Serial Word:

	Handshaking
	Serial Output
	Serial Input
	Remote Operation of the XP640
	Cursor Keys
	DUMP

	Internal Parameter Set-Up
	Method 1:
	Method 2

	Main Port Configuration Menu
	The Printer Interface
	General
	Connection
	Description of Centronics Port Signals
	Centronics Port Timing Diagram

	Calibration Procedure
	Calibration table:
	Potentiometer Identification

	Serial Data Transfer Formats
	Intel Hex Data Format
	General
	Upper Segment Base Addresses (USBA)

	Motorola Exorcisor Format
	General

	GP Binary Format
	General

	Serial List Format
	General

	Tektronix Hex Format (TekHex)
	General

	MOS Technology Format
	General

	Signetics Absolute Data Transmission Format
	General

	The ASCII Space, Comma, Apostrophe and Percent
	General
	Data field
	Checksum field

	ASCII BPNF, BHLF & B10F Formats
	General

	DEC Binary and Binary formats
	General

	PROM Device Table
	Index

