Operating Manual
for

PP40, PP41 and PP42
Gang Programmers

Manual Revision 1

Stag Microsystems Ltd.
Martinfieid

Welwyn Garden City
Hertfordshire AL7 1JT
United Kingdom

Tel: (0707) 332148
Fax: (0707) 371503
Tix: 8953451 STAGWG

(Revision 1) Address 01

803 1008

Address-02

PP40 Series Addendum

Note: These additions will be incorporated into the PP40 series manual at the next
revisional reprint.

Additions to Existing Manual (PP40, PP41 and PP42 Rev.1)
Additional ‘Set’ Commands - pages 1.5-01 and 1.5-03

Set Verify: This allows selection of ‘Normal' verify and ‘Margin’ verify. Normal verification is
carried out with Vce at a steady 5V (typical). Margin verification is carried out with Vicc
being taken 5% higher and 5% lower than normal. Press Set followed by Verify.
Interchange between Normal and Margin is made by pressing the vertical cursor keys.
Press Exit to confirm. ’

Set Program: Allows the selection of pre-program checks. The options are: illegatl bit;
empty and none. Press Set followed by Program. Interchange between the options is
made by pressing the vertical cursor keys. Press Exit to confirm.

Software Data Protection for E2 devices - 100/101 modules: Press Set F3, use left/right
arrow keys to toggle the setting. Press Exit.

Remote Commands for Filling the PP41/PP42 RAM
The commands are: FFA - to fill with FFs
00" - to fill with 00s

Remote Commands for Setting the PP42 Set Configuration
The set configuration command takes the form:

ABCDD22]

where:

A - can be | or D for Identical or Different data.

B - is the number of devices per set (in decimal).

C - number of sets (in decimal).

DD - bit mode (expressed in hexadecimal e.g. 08,10 or 20).
22] - command

For example:

1160822] - 8-bit gang mode with 6 devices.

D221022] - 16-bit mode with two different sets of two devices each.

803 1037 Rev 7 APC

Erratum

Page 4.5-02 Substitute the word ‘set’ for the word ‘exit’ on line six (under second display
diagram).

40M101, 41M101 and 42M101 Modules
Description

These three modules program MOS PROMSs, EPROMs and EEPROMs in 24,28 and 32-pin
DIL packages.

Operation

These modules function in a similar manner to the 40M100, 41M100 and 42M100 modules
respectively as detailed in the manual apart from one function.

Set DE - to erase Seeq 48128 devices.

Press Set followed by D and E. If the wrong device type is selected, the message ‘NOT
APPLICABLE’ will be returned. If the comrect device type is selected, erasure will take place.

Waming: Extreme care should be taken to ensure that only Seeq 48128 devices are
socketed when the Device Erase function is used. Failure to comply may result in
damaged devices for which Stag and the semiconductor manufacturers can take no
responsibility.

40M102 and 41M102 Modules

Description

These modules program 40-pin DIL EPROMs and EEPROMs from most major
manufacturers.

Operation

These modules function in essentially the same way as the 40M100 and 41M100 as
detailed in the manual apart from one major difference. The 'M100 modules handle 8-bit
data but the "M102 modules handle 16-bit data. In the case of the 41M102 where there is a
RAM editor present, the data displayed in functions such as List, Edit, Delete etc. will bein
the form of a double byte (4 hex. digits) for any given address.

‘Byte Swap’ for 16-bit devices

Select the 16-bit device, e.g. 27C1024

Press SET F6

Press the down arrow key 3 times

Use the right and left arrow keys to swap the Hi/ Lo settings
Press EXIT

This will not affect the data in RAM, but will change the order in which data is presented to
the device when programming.

40M103/41M103
These modules support MROM (masked ROM) pinout EPROMs.

Operationally these are very similar to the other 40 series modules, but see Byte Swap
above.

41M200 - compatible with PP41 and PP42 mainframes.

Description

The 41M200 module will gang program 40-pin DIL, single chip microcomputers with data
loaded into RAM from a master micro, a master EPROM, direct keyboard entry or via one
of the dual RS232C ports.

Operation

The 41M200 operates in almost the same way as the 41M100 but for the following
exceptions:

Loading of Data from a Master Device

Data can be loaded from a master micro or from a master EPROM. To select between the
two master sockets, press Set followed by Load. This will display the default state
‘MASTER MICRO', which indicates that the 40-pin micro socket is to be used. To
interchange betwwen either of the sockets, use the vertical cursor keys. Press Exit to
confirm. A green LED will illuminate adjacent to Pin 1 of the relevant socket. To load the
data, insert the master device and press Load. Data will be loaded from addresses
comesponding to the size of the selected micro to be programmed. The address limits can
however be altered - see Section 3.9 of the manual.

Note: When loading data from a master EPROM, only 2764 and 27128 devices should be
used. The master EPROM should be the only device socketed during loading.

Electronic identifier
There is no Electronic Identifier function on the 41M200.

Margin Verify
There is no margin verify function on the 41M200

Security Bit Status and Encryption Table

Certain devices such as the 8751H have a security bit. If this bit (bit 1) is blown, the device
will function but the data cannot be read and no further programming of the device can be
carried out. For devices with two security bits such as the 87C51, operation is slightly
different. Blowing bit 1 will allow the device data to be read but will inhibit further
programming and blowing bit 2 will not allow the device data to be read.

Devices such as the 87C51 and the 8752BH support a data encryption facility. This enables
data within the device to be ‘exclusively NORed' with a 32 byte encryption tabie before
being read. The encryption code is entered into the programmer's memory immediately
after the data to be programmed.

For example: 8752BH

Device Address Lo: 0000h

Device Address Hi: 1FFFh

RAM Address Lo: 0000h

32 Byte Encryption Table: 2000h - 2031h (inclusive)
or:

Device Address Lo: 0000h

Device Address Hi: OFFFh

RAM Address Lo: 0000h

32 Byte Encryption Table: 1000h - 1031 (inclusive).

To select the security bit and encryption status option, press Set F3. To interchange
between bit 1, bit 2 or Encryption, press the vertical cursor keys. To interchange between
‘blown’ and 'intact’, press the horizontal cursor keys. Press Exit to confirm.

The selected security bits will be blown after the device has verified following
programming. The display will return the message ‘VERIFIED/SECURED'.

Interface Formats (Introduction)

There are thirteen formats available on the PP41/42, these are:

INT = INTELLEC

XINT = EXTENDED INTELLEC
HASC = HEX ASCl!

XOR = EXORCISOR

XXOR = EXTENDED EXORCISOR
TEK = TEK HEX

XTEK = EXTENDED TEK

PPX = STAG HEX*

BIN = BINARY

DBIN = DEC BINARY

BINR = BINARY RUBOUT
SBIN = STAG BINARY

MOST = MOS TECHNOLOGY

Standard formats

There are three standard manufacturer formats these are: INTELLEC, EXORCISOR and
TEK HEX which are used on most development systems.

Extended Formats

There are three protracted versions of the standard formats these are:
EXTENDED INTELLEC, EXTENDED EXORCISOR and EXTENDED TEK. The extended
formats can be used when a larger address field is required.

Hex. ASCII

The Hex ASCII format is the original base version of the standard formats. !t lacks the
facility of an address field and a checksum.

PPX (Stag Hex)*

The PPX format differs from the HEX ASCI! in that it has an address field and terminates
with a checksum of total bytes.

Binary

The Binary format is the most fundamental of all formats and can be used where fast data
transfers are required. It has no facility for address, byte count or checksum.

Binary Rubout

BINARY RUBOUT is similar to BINARY apart from the inclusion of the rubout character
(FF) at the start of the data.

DEC Binary

This is an improvement of binary in that it has a single address and a single checksum for
the entire block of data.

Structure and Conversion of Data between Serial Signal and the PP41/42 RAM

RAM
Locations 1017 1018 1019 101A 101B 101C 101D

(8[7]ofF[s]s[7lelcslelalela] |

Bytein RAM | 7 | E |
Ve \ ASCII Conversion

e
45| ASCII representation
e A ~ . -
//,/ // .

0011 i 0111 Binary representation 0100 | 0101

Extended Inteliec

The extended Intellec format when displayed consists of:

a. A start code, i.e. (colon)

b. The sum of the number of bytes in a particular record, e.g. 10

c. The address of the first byte of data in a individual record, e.g. 0000
d. The record types, i.e. 00 - Data Record

01 - End Record

02 - 'Segment Base Address’
record (SBA)*

*The SBA is the record that displays the intellec extension. This is achieved by the
provision of an extra digit which corresponds to the 4th character of the SBA insertion.
This 4th character is effectively the extension which lengthens the standard (FFFF)
limitation, into the Extended Intellec (FFFFF).

€. Data (in bytes) e.g. 44 6F 73 20
f. A checksum of an individual record e.g. 87
For example: START ADDRESS: 0000
STOP ADDRESS: 003F
OFFSET: 0000 0000
4th character of SBA insertion
|
| 0 000 | Extra 4 digits
Address of first byte ~"—————— available for
Start Code in each record extension in

SBA record

-l

102j0000J02[0000fF C|

(/1000000014 46F7320457175697320446F73204571(87)
:100010%0V5697320436F7320457175697320446H4F
[|10/0020/00(7320457175697320446F7320457175693C
{10/0030/001732044F67320457175697320446F73207A
:joojoooojo1ffFF -

N

NS
No. of data Record type Checksum of °
bytes in each each record

record

SBA Repetition
In some operations where an offset is in use the SBA can be displayed twice.

When the address field passes the maximum quantity for a four digit figure, i.e. (FFFF), a
second SBA record is specified.

For example: START ADDRESS: FFAO
STOP ADDRESS: FFFF
OFFSET: ‘ 0000 0018
:02001802[0000E¥ ————— — SBA RECORD
A/OFFBBOOFFOOFFOOFFOOFFOOFFOOFFOOFFOOFF004H
:10FFCB00OFFOOFFOOFFOOFFOOFFOOFFOOFFOOFFO0031
:10FFDBOOFFOOFFOOFFOOFFOOFFOOFFOOFFOOFFO0021
"10FFEBQOOFFOOFFQOFFOOFFOOFFOOFFOOFFOOFFQOO011
:0BFFFBO0OFFOOFFOOFFOOFFOODS
:0/2000002[1000ELC ———— NEW SBA RECORD
§8@§§§p0FFOOFFooFFOOFFOOEB
T10000800FFOOFFOOFFOOFFOOFFOOFFOOFFOOFFFFF1

:00FFBB0O148 i

Maximum address for four digits (FFFF)

The SBA is added to the address field in the following fashion:

‘Extension B | Extension A
digit | digit
1

1000 SBA insertion 0000 SBA insertion 1
! + 0000 ADDRESS FIELD + FFB8 ADDRESS FIELD
\‘ !
| = 10000 } = OFFB8 !

if required by the user

the remaining 3 digits of

the SBA insertion can be R
non zero:

Extended Exorcisor

The Extended Exorcisor is identical to the standard version when displayed up to the point
that the data’s address goes beyond FFFF and thus requires a 5th digit, e.g. 10000.
To compensate for this addition an extra byte is added to the address giving 010000.

When this occurs the record type changes:

The data record changes from 1 to 2
and the end record changes from 9 to 8.

Similarly when the data address goes beyond FFFFFF a 7th digit is required and likewise a
byte is added giving the address 8 characters: 01000000.

When this occurs:

The data record changes from 2 to 3
and the end record changes from 8 to 7.

The extended exorcisor when displayed consists of:

a. A start code, i.e. S

b. The record types, i.e. 1 - Data Record (Four Character address)
9 - End Record (Four character address)
2 - Data Record (Six character address)
8 - End Record (Six character address)
3 - Data Record (Eight character address)
7 - End Record (Eight character address)

c. The sum of the number of bytes in an individual record. eg. 1D

d. The address of the first byte of data in an individual record, e.g.

0000, 010000, 01000000.
Data in bytes, e.g. 12 34 56 78

Checksum of an individual record: 24

1 - Data Record (Four Character Address)

9 - End Record (Four Character Address) } 2bytes
For example: start address: 0000
end address: O0sF
oftset: 0000 0000

No. of bytes
Start code in each record

\\\\

11DOOOW1234567812345678123456781234567812345678123456781234277
t[1Djo0 1 5678123456781234567812345678123456781234567812345678ﬁ2I
111DI0034/123456781234567812DATA781234567812345678123456781234/F0
111D|004ES5678123456781234567812345678123456781234567812345678 ﬂ
11000681234567812345678123456781234567812345678123456781234953
1
9

DWW Onwn

11P082/5678123456781234567812345678]
03D00OFT] 1 /
\ \\\//
\ Address of first Checksum of
Record type byte in each record each record

1 - Data Record (Four Character Address)

9 - End Record (Four Character Address) | 2 DYtes

The Extended Exorcisor format stays identical in layout to that of the standard when the
address field stays below FFFF.

Transition from 2 Byte Address (4 Characters)
Through to 3 Byte Address (6 Characters).

Start Address: FF80
Stop Address: FFFF
Oftset: 00000050

No. of bytes
Start code in each record

'STWFFD'D]123456781234567812345678123456781234567812345678123455—

11 qFFEAL5678123456781234567812345678123456781234567812345678‘83 .
21E}OIOOOTH234567812345678123456781234567812345678123456781234 1E
21El01001E|5678123456781234567812345678123456781234 5678123456787C
21d010038!123456781234567812345678123456781234567812345678@

03FFDOZG.

\ T~ \\
\ —
A(ﬁss of first Checksum of
Record type byte in each record each record

wwnn

(X%

Last address is a
repetition of the
first address

2 - Data Record (Six character Address)

8 - End Record (Six Character Address) } 3 bytes

For example: start address: 0000
stop address: 008F
offset: 00010000
No. of bytes

Start code in each record

, 11234567812345678123456781234567812345678123456781234707
szxem1oo1ﬁss7s1234se7a123455751234567512345675123456781234567880
521Eb100341234557812345678120ATA75123456781234567512345575123455
3215010045567312345673123456781234567812345673123455781234567840
521EO10068H234567812345678123456781234567812345676123456781234ﬁﬁ
Szhz‘100825678123456781234567812345678@@ -

10000FA] . -
b S
\ ~ .
1 ~ —

~__ 5 — 7‘ e .
\\ Address of first Checksum of
Iecord type byte in each record each record

2 - Data Record (Six Character Address)

3 - End Record (Six Character Address) } 3 bytes

3 - Data Record (Eight Character Address)

7 - End Record (Eight Character Address) } 4 bytes

For example: Start Address: 0000
Stop Address: 008F
Offset: 01000000

No. of bytes

Stan’ code in each record

,

S3MFP
S311FPp
S31FP
S311Fp
Si3113p

100001A56781234567812345678123456781234567812345678123456787F
1000034/123456781234567812DATA781234567812345678123456781234ED
100004E567812345678123456781234567812345678123456781234567848B
1000OSBH23456781234567812345678123456781234567812345678123489
100008256781234567812345678123456785F T

é3WF5100000Ar234567812345678123456781234567812345678123456781234?T

S7085p 100000059
I .
e

—_—
Address of first Checksum of

Record type byte in each record each record

3 - Data Record (Eight Character Address)
7 - End Record (Eight Character Address)

} 4 bytes

Binary, DEC Binary and Binary Rubout

Binary, DEC Binary and Binary Rubout are the most fundamental of all formats. ASCI!
code conversion never occurs. information is therefore limited to the interpretation of
pulses via the RS232C interface port into either ONES or ZEROS. Hence ‘Binary’. A visual
display is not possible, however a simple graphical representation can be made.

Binary

Binary is data only. It is devoid of a start code, address, stop code and checksum.

hypothetical representa

)6f4[F."A‘32§0,1i513*2: ot data bytes

data: conversion is limit.
binary

serial (TTL) output

=
[

.
—
)
]

(
(
l
I

The Binary format operation can only be stopped by pressing 'EXIT".

Binary is used mainty for speed of transmission and RS232C communication
problems, i.e. test.

DEC Binary

DEC Binary is an improvement of Binary. It has a start code, a null prior to transmission, a
byte count, a single address and a single checksum of ali data. It also has the facility for
an offset to be set.

For example:

Hypathetical recresertaion of DEC tinery nstnuctens. Datax corvesion s imded 10 bnery

10[x[olo[o\sjzﬁsn\sloio‘ [e]7

!M f m’ ByeCourt ‘m-sdusa,u{

G0CO000 10000001 101100100101 11007 11010100000000 100011
I OLEIn n

| R i i
N | S TR A O | T Ju .
Senal (TTL) Output The tansmesson sops an

checaum

Binary Rubout

Binary Rubout is similar to Binary in that it is devoid of Address, Stop Code and Checksum.
The data is preceded however, by the Rubout character (FF).

For example:
If a string of Binary data is represented thus:

64 F A20 1632 Hypothetical Representation of Data Bytes
N\

\

Start

then the same data in Binary Rubout format would be represented thus:

7F 64 FA2016 3 2Hypothetical Representation of Data Bytes
|
7F the Rubout character

Stag Binary

Stag Binary is for the rapid transfer of large amounts of data with error detection It allows
a textual header for identification purposes only. The format allows multiple blocks of data
up to FFFFFFFFh with any offset up to FFEFFFFFh, and these blocks may be in any order.

The file is terminated with a NULL block with zero data length.

Each individual block has a terminating checksum and for biocks greater than 1024 bytes,
an additional embedded checksum is provided for rapid error detection.

The Stag Binary format is as follows:

a) The file can have any amount of header information (for file identification, etc)
as long as it does not contain any ‘binary 1 bytes’ (00000001 binary / 01 hex.)

b) Block start. There can be any number of blocks terminated by a null block.
The file format proper starts with the first ‘binary 1 byte' The block checksum
is calculated from the next byte.

c) The next 4 bytes are the 32-bit unsigned length of all the data for this block.
where the first byte is the Most Significant Byte and the last byte is the Least
Significant Byte. If all 4 bytes are zero (00000000) then this is a null block and
therefore is the last block and the end of the transmission.
Note: This 4 byte data length is the length of the data only and does not include
any of the inserted checksums.

d) The following 4 bytes are the 32-bit unsigned offset of the data. The format is
the same as for the data length in (c) above.

e) Next follows the data. This can be of any length from 0 to FFFFFFFFh.
After each 1024 consecutive bytes, the current negated checksum is inserted,
(provided the next byte is not the final checksum anyway).
This checksum is a single 8-bit byte which is the negation (2's complement) of
the Least Significant Byte of the total checksum so far.
Thus, if the current calculated checksum is added to this inserted negated
checksum, the result should be zero. If it is not, the recipient has the option to
abort reception or at least to warn of the error. (In a practical system, if an
error is detected, it may be prudent to keep loading to prevent the sender from
‘locking-up’. Without this feature, a very long file couid be corrupted in the first
second, and not noticed untif the end of transmission.

f) The last byte in the block is the 8-bit negated checksum of all bytes immediately
after (but not including) the start byte and not including the inserted checksums.
The checksum therefore includes: the 4 byte data length; the four byte offset
and the data only. If this is added to the checksum calculated by the receiver,
the resuit should be zero.
This is the end of one block. I it is not a null block, the cycle continues with the
next block.

Interblock data is allowed if required providing it does not contain any ‘binary 1 bytes’
(00000001 binary / 01 hex.) Interblock data is not included in the checksum

A sample short file of only one data byte would look as foilows:

(Hex.) Interpretation

46 F (ASCIy

69 i (ASCH)

6C | (ASCII)

65 e {ASCII)

2 (ASCIi space character)
31 1 (ASCIl)

o1 start byte of one block (00000001 binary)

(Checksum starts from next byte)

first byte of data iength (Most Significant Byte)

sacond byte of data length

third byte of data length

last byte of data length (LSB) (indicates 1 byte of data in this example)
first byte of offset (MSB)

second byte of offset

third byte of offset

last byte of offset (LSB) (indicates no offset in this example)

88882888

o
N

the data byte (Checksum stops with pravious byte)
FD Negation of checksum (This is the end of one block)

There could be some interblock data here. It must not contain any binary 1 bytes
(00000001 binary / 01 hex.)

o
-

start byte of block

data format as before. Checksum starts here.

4 zeros means this is the terminator (null) block

Since this is the last block, the offset is irrelevant but must be read
and used to update the checksum to ensure that this is a genuine
null biock and not a corrupted data block

888888888

negation of checksum and file end.

Note: A FREE set of converter programs is available on IBM PC/AT disk by applying to Stag either in the UK.
orthe US.A

Arequest may be made to the same addresses for the 'C’ language source code.

CONTENTS

PP40, PP41 and PP42

GENERAL INTRODUCTION
Introduction

Mainframe and Modules
The Keyboard

Initial Setting-up procedure
List of ‘SET’ Commands

Section

-—l—l—l—l—l—l
5 AT CRIN

SELECTING A DEVICE
1 Device Type Selection
2 Electronic identifier

Section

DEVICE FUNCTIONS

1 Error Detection

2 Load (PP41 and PP42 only)
3 Checksum

4 Empty Test

5 Pre-Program Bit Test
6

7

8

9

Section

Programming

In-Program Verify

Device Address Limits —PP40

Device Address Limits—PP41 and PP42

PP41 and PP42 only

RAM FUNCTIONS
1 List
2 Edit
3 Insert
4 Delete
5
6
7

Section

Block Move
Filing The RAM
String Search

5 INTERFACE

5.1 Setting the Input/Output Interface Parameters
5.2 Input and Output Parameters

5.3 Error Reporting on Input/Output

Section

FORMAT DESCRIPTIONS
Interface Formats
Intellec

Hex ASCII

Motorola S-Record
Tek Hex

Extended Tek Hex
Stag Hex

Binary and DEC Binary
Binary

DEC Binary

MOS Technology

Section

N =

Contents 1-01

Section

7.
7.
7.
7.
7.

PWN =

Section

8.
8.
8.
8.
8.

HWN -

Section 9.
9.1
9.2

Section 10.
10.1
10.2
10.3

Contents 1-02

RS232C HARDWARE DESCRIPTIONS
RS232C Interface Port Connections
Connection Types

Hardware Handshake (7 or 8 Wire Cable-Form)
Non-Standard Connections

REMOTE CONTROL

Selection of Local or Remote Mode
Remote Control

Remote Control Commands
Remote Error Codes

PASS-THROUGH
Normal Mode
Remote Mode

PP42 ONLY

BIT MODES AND SET PROGRAMMING
8-Bit Mode

16-Bit Mode

32-Bit Mode

1.1 INTRODUCTION

The PP40, PP41 and PP42 are high-speed gang programmers, capable of
supporting EPROMs and EEPROMs in CMOS and NMOS technology.

The programmers are software controlled using a single level module
approach and have no need of adaptor modules. This ensures flexibility
and ease of upgrade for future devices. The modules support NMOS and
CMOS EPROM and EEPROM devices in both 24 and 28 pin DIL packages.
They feature algorithms for fast programming and support Electronic
Identifier technology for automatic device identification. The sockets all
have bi-coloured LEDs to enhance socket status indication and error
reporting. An auto-recall feature is incorporated whereby pre-set
parameters are recalled from a non-volatile memory on power-up. These
are the device and the I/0 parameters.,

{Revision 1) 1.1-01

1.2 PP40 MAINFRAME

Two polarised sockets provide
interconnections from the main frame
to the PP40 modules.

Four locating pins provide
automatic module alignment

S e e dvestadad

Keyboard: For data entry and
operating programmer
functions

1.2-01

16-Character green

alphanumeric display.

e

PP41 MAINFRAME

Two polarised sockets provide
interconnections from the main frame
to the PP40 modules. \

Four locating pins provide
automatic module alignment

- T
1
scoad =23
0% EEZED

Keyboard: For data entry and 16-Character green
operating programmer alphanumeric display
functions

(Revision 1) 1.2-02

PP42 MAINFRAME

Eprom & EEprom Moduic
428100

Two polarised sockets provide
interconnections from the main frame
to the PP40 modules.

Four locating pins provide
automatic moduie alignment

bensbhenonasacn

.

Keyboard: For data entry and 16-Character green
operating programmer alphanumeric display
functions

1.2-03

1.3 The Keyboard

For data entry and operating programmer functions.

PP40

1 set H

: ‘ TO SET FUNCTIONS OR PARAMETERS INTO
‘e J THE PROGRAMMER

eSU™ | 10 PERFORM A CHECKSUM

| ! WITHIN THE DEVICE ADDRESS RANGE
W J sPEciFiED

lexit

;_J TO EXIT FROM A MODE OR FUNCTION

—_—

verty |

: TO EXECUTE DEVICE VERIFICATION
WITHIN SPECIFIED ADDRESS LIMITS

Tempty
| TO EXECUTE AN EMPTY CHECK
J WITHIN SPECIFIED ADDRESS LIMITS

i ¢ i
| | i . HEXADECIMAL XEY

I TO ENTER DATA
i . OR TO SELECT
Il earameTERS
FTNG U3)L T[T AND SPECIAC
2 ! : s FUNCTIONS

CURSOR KEYS - TO MANIPULATE
DATA OR TO MOVE PARAMETERS ON
THE DISPLAY FOR EASE OF USE

| progmam
| TO EXECUTE A PROGAAMMING SEQUENCE
| WITH PRE-SET PARAMETERS FOR TEST
load | s 17 8 =
! i 5
; . h B i HEXADECIMAL KEY
;J TO LOAD A MASTER DEVICE OR DEVICES — L—‘ . %—J ——
finput » ~ s ls 4 ' TO ENTER DATA
e | ' OR TO SELEC”

. TO EXECUTE AN INPUT VIA THE RS232C

w_____J INTERFACE PORT

. © 7O EXECUTE AN OUTPUT via THE R5232C
4) INTERFACE PORT
T

) TO MODIFY THE RAM DATA

! TO SET AN ADDRESS AND DiSPLAY THE
\ J DATA IN THAT LOCATION

; i TO SET FUNCTIONS OR PARAMETERS INTO
‘) THE PROGRAMMER
TO PERFORM A CHECKSUM OF THE RAM

! | WITHIN THE DEVICE ADDRESS RANGE
___ __J SPECIFIED

|
Lo _J TOEXIT FROM A MODE OR FUNCTION

NS S P —— PARAMETERS

YT T T TN (g AND SPECIAL
2 1 - FUNCTIONS

o J

_“\:“.“‘v[v | '

o “ o T

[|

— L J
CURSOR KEYS TO MANIPULATE
DATA OR TO MOVE PARAMETERS ON
THE DISPLAY FOR EASE OF USE

' TO EXECUTE DEVICE VERIFICATION WITHIN
' SPECIFIED ADDRESS LIMITS

TO EXECUTE AN EMPTY CHECK WITHIN
~—- .~ SPECIFIED ADDRESS LIMITS

TO EXECUTE A PROGRAMMING SEQUENCE
N WITH PRE SET PARAMETERS FOR TEST

{Revision 1) 1.3-01

1.3-02

1.4 INITIAL SETTING UP PROCEDURE

Before attempting to apply power to your programmer ensure that it is
set to the correct operating voltage for your power source. The voltage
setting will be printed on the rear panel.

1. Plug the supplied power cable into the back panel socket.
2. Apply power to the machine from the power source.
3. Switch on the machine using the ON/OFF switch on the rear panel.

After ““POWER ON’* and without a Module inserted the display will read:

— ——

N bl |
RN L S {

=

 —

The main frame software revision can now be ascertained prior to the
module being inserted simply by pressing the key marked ‘SET’ followed
by the key marked ‘6', eg:

PPy

|) T Iz Ld 7
l:i..i. I(_Ill. LA

=
-

In order to make this manual as straightforward as possible the action of
pressing the key marked ‘SET’ followed by another key or keys will be
abbreviated to a single instruction, eg. ‘SET 6', ‘SET F6'.

Note

To ensure correct initialization, power down before inserting a module.
Always wait two seconds before applying power again.

(Revision 1) 1.4-01

INTRODUCTION OF A MODULE TO THE MAIN FRAME

Having completed the setting up procedure the programmer is ready to
receive its module. Controlling software for the machine resides in the
selected module, therefore the operation of the programmer is dependent
upon the type of module plugged into the main frame.

On power-up the programmer will be automatically configured to what it
was before the machine was last switched off,

This ensures that once any machine parameter has been set-up, it
needn’t be reset every time the machine is switched on.

For example with the PP40’s 40M 100 module inserted, the initial
configuration of the machine will be set on power-up and the display will
show the last entered manufacturer, device type and mode, such as:

'

!

— L

__\/{ R A “‘ﬁh{f':

.

1
I

To determine the software revision of the module press ‘SET 6’ and the
display will show, for example:

LI M7 TIZTIZ AT 7
e (] I e T o I BT

To remove press ‘EXIT'.

1.4-02

1.5 PP40Q LIST OF ‘SET' COMMANDS

selb

set8

[wn 0 7
it o ® ®
m n m m
» — ~ —

Aliows user to scan and select various
manutfacturers and device types.

Displays module software revision if module 1S
plugged in, or main frame software revision, if no
module is plugged in.

Calculates and displays CRC {Cyclic Redundancy
Check}

Allows the user to enter the two-key operation
of the Electronic Identifier mode. The device
signature is read and the manufacturer and
device type are displayed. To execute the
tunction the specified device function key must
be pressed again, eg. Prog.

Allows the user to enter the single-key operation
of the Electronic Identifier mode. The device
signature is read and the PP40 continues straight
on 1o execute the selected function.

Audible Alarm: To indicate end of program, test,
Or as a warning using a combination of bleeps
and tones. SET F1 can either enable or disable
this function.

Defines device address range.

(Revision 1)

1.5-01

PP41/PP42 LIST OF SET COMMANDS

Allows user to scan and select various
manufacturers and device types.

Selects interface parameters:
Baud Rate, Word Length, Stop Bits, Parity,
Format, Control Z and Pass-Through.

Sets programmer into ‘Remote Control’. (To
return to Local Mode: Power up with exit key
depressed).

7]
(4
—
~N

set3
Selects the Bit Mode on the PP42.

t4

8

Displays RAM size in hexadecimal.

Data complemented throughout entire RAM.

set6 Displays module software revision if module is
plugged in, or main frame software revision, if no
module is plugged in.

set8

Calculates and displays CRC (Cyclic Redundancy
Check).

String Search: The RAM is searched for a
specified string of data.

Fills entire RAM with 00.

n wn wn
2 ®]
m m

- o w

Fills entire RAM with FF.

_.
@
o
Xt

PP41/PP42 LIST OF ‘SET' COMMANDS —

Continued

setF|

setF2

setF4

setF6

set input

setoutput

Audible alarm: To indicate end of program, test,
or as a warning using a combination of bleeps

and tones. SET F1 both enables and disables this

function.

Fills RAM with arbitrary variable across an
arbitrary address range.

Re-locate RAM data. A block of data with pre-
selected address limits can be copied and then
re-located at another address within the RAM.

Defines RAM and device address ranges for all
functions which operate on the device.

Enters input address offset, start and stop
addresses and port selection.

Enters output address offset, start address and
stop address and port selection.

(Revision 1)

1.5-03

1.5-04

2.1 DEVICE TYPE SELECTION
Selecting the device using a 4 digit code

The compiete range of devices supported by the programmer’s module is
stored in the EPROM. Each individual device has its own four digit code.

(See device code list).
SET O—Allows code selection

SEQUENCE: Prior to SET ‘O’ the display will show the last entered
configuration.

For example:

" I— IZIN
= I Hi

[
L (Il

\

l_'

Y
)

‘-—J
'

-—
—

By pressing SET ‘0 the device code of this configuration will be
displayed:

[A
(.

-
. —ti

T/ T T
ALY DR 2 O N L.LJE

When the new device code to be entered is already known, (for example
AF44 is the code for a Fujitsu 2732 EPROM device), then the AF44 can
be entered directly onto the display from the keyboard replacing the old
code.

I~ r I |
v oo Lt f

o

|
1
:‘“
C
C

The seiection sequence can be completed by pressing EXIT whereupon
the new manufacturer and device type are displayed.

N O R e i LN
N I ‘ F'H\\HJ

(Revision 1) 2.1-01

Scanning device types and manufacturers by use of cursor keys

When a device code is not known or if the user wishes to scan the
devices available, selection can be made via the cursor keys:

oy

By pressing SET ‘O’ the code of the last used device is displayed:

1=

P -
;L } LE L.L.«T'r '[’.”.'LJ‘L_g

The manufacturer and device type can be changed by use of the cursor
keys:

The up/down keys scan the range of manufacturers.

¥+
‘ * changes manufacturer

The left/right keys scan the device range of a particular manufacturer.

!(—— l > .
changes device type

Note: If an invalid device code is selected, the programmer emits a
warning ‘bleep’ and defaults to AMD 2716.

2.1-02

2.2 ELECTRONIC IDENTIFIER

Important Note:
Devices which do not contain an Electronic Identifier can be irreparably
damaged if they are used in the Electronic Identifier mode.

Electronic Identifier is a term used to describe a code mask programmed
into a PROM which identifies the device type and manufacturer. The code
is stored outside the normal memory array and is accessed by applying
12 Volts to address line A9. This allows the programmers directiy to
identify any devices containing an Electronic Identifier and thus eliminates
the need for the user to select the device type.

The programmers presently uses two modes of Electronic Identifier
operation both of which only work with 28 pin devices.
Mode (i}: Two Key Operation

On pressing SET E1 the display will show:

S CTT O TT oA T i INIT
i1 Lo CiINT 1IOriiD

If any device function key such as ‘Program’ is pressed, the programmer
will first attempt to read the signature of any devices present. If no code
can be read or the code is not found in the programmer’s list of valid
codes the display will show:

T ‘T’n l_'l\l T !\vr‘lT ;_‘i_u In 1T
|

I I Y I R AV |)V L

if any devices are successfully recognised but are incompatable ie. they
use different programming algorithms the display will show:

T

—

b /
|

N
1

A
I~

———

-
b

]
v

)/
I\

-—

I
N

I
L

If neither of the above two fault conditions occurs then the manufacturer
and the device type will be displayed.

To execute the function the specified ‘device function key’ must be
pressed again eg. Prog

To exit from the Electronic Identifier mode select a device using SET O in
the usual manner.

(Revision 1) 2.2-01

Mode (ii): Single Key Operation

Pressing SET E2 will again display ““ELECT IDENT"",

— —

L IrmT O TT AT _ LN
T 1Nt 9HNE

Operation is similar to the previously described mode except that rather
than stopping to display the manufacture and device type the
programmer continues straight on to execute the selected function.

To exit from the Electronic Identifier mode select a device using SET 0 in
the usual manner.

2.2-02

3.1 ERROR DETECTION
Connect Errors

The programmers have the ability to detect connect errors but the
selected operation will not be interrupted unless the master socket or all
the slave sockets have connect errors. In such a case the display will
show:

\\ [T T T
i N\

FNITS

-
s

’.__.

Red LEDs indicate the failing socket(s).

Reversed or Faulty Device

If just one reversed or faulty device is detected, the selected operation
stops immediately with the message:

C_

N RV T
S Y DRV D

~

'.. '-

Device Address Bus Check

If a fault such as a shorted address line is detected the selected operation
will stop with the message:

s
__

T

I I
Pt

—

~Z
A

cd

il
B

—_
-
-
/'~

}

(Revision 1) 3.1-01

3.1-02

3.2 PP41 and PP42 only

Note: For a fuil explanation of Bit mode configuration on the PP42 the
user is advised to turn to section 10.

LOAD
Loading the RAM from a ‘master’ PROM

Insert the master devices into the master sockets. Press the load key.

The checksum will be displayed:

PP41 =t = O,
) S I O

PP42 _J O I Y| O T S
= - | RN
+

a number from

1 to 8 denoting

section of RAM

allocated to

device

Press or [~ | to obtain a checksum of the next master socket (if

applicable).

(Revision 1) 3.2-01

3.2-02

3.3 CHECKSUM
Press C/sum

to perform a checksum of the master device (PP40) or RAM (PP41, PP42)

The display will show:

PP40/ v — o
PP41 SR I S I I
1 I U B\ [T o I
PP42 L_ . Tt [—
/

a number from
1 to 8 denoting
section of RAM
allocated to device

l% 1 . .
Press to obtain a checksum of the next master socket if applicable.
CYCLIC REDUNDANCY CHECK (CRC)
The Cyclic Redundancy check applies a continuous process of shifting
and addition to the PROM data. This vields a coded representation of the
data which is sensitive to the ordering of the data bytes, unlike the
checksum which only considers their values.

Press SET 8

to perform a Cyclic Redundancy check on the master device (PP40) or
RAM (PP41, PP42)

The display will show:

PPaO/ | I [T 201 7
PP41 I PN b

) i _ 21—
PP42 I I— rL\ _ R

/
a number from

1 to 8 denoting
section of RAM
allocated to device

Press to obtain a Cyclic Redundancy check of the next master socket if
applicable.
{Revision 1) 3.3-01

3.3-02

3.4 PROGRAMMING SEQUENCE
Empty Test

If required an ‘empty test’ can be applied to the device or devices in the
slave sockets prior to programming. This can be done by pressing the
‘empty’ key. The device or devices will be examined for the
unprogrammed state and if they are entirely empty the display will show
thus:

|
l
[
|

i
i
L
L

LC™MOT v
Pt o

-

Should a device fail the ‘empty test’ the display will show:

CMIOOT v T
!!}"Jll I I

Red LEDs indicate the failed device(s). The cursor keys can be used to
move to each in turn, and the display will change to give information of
the format below:

008 By o A Y I D A e 0
] R Y I S I 4T =
i \ /
/ \ /
a number 4-digit device unprogrammed Data actually
from 1to 8 address at which state (expected found
indicating the failure occurs data)

failed socket

s = slave device

While the failed device data is displayed the red LED flashes, but stops
flashing when -> or <- is pressed to move to the next failed device.

Press EXIT

to skip to the next failing addresses.

Press EXIT

to return to Select Device mode.

if the empty test passes or is unnecessary the programming can begin.
Pressing the program key will automatically execute the ‘program’
sequence to the manufacturers’ specifications with pre-program (Bit Test)

and in-program (Verify) device tests.

(Revision 1} 3.4-01

3.4-01

PP40

PP41/
PP42

3.5 PRE-PROGRAM BIT TEST

The programmers automatically check that the pattern aiready within the
slave device is able to be programmed with the intended data from the
master device (PP40), or RAM (PP41, PP42),

If a device passes the bit test, programming begins automatically.

Should a device fail the bit test, the display will show:

I el V4 i O
[S [B N AN [

|

oT
[L

—

Red LEDs indicate the failed device(s). The cursor keys can be used to
move to each in turn, and the display will change to give information of
the format below:

0 ' i Mo = Ll
| P [| = |)
| A\ \
I \ \ /
a number 4-digit device Expected Data Data actually
from 1 to 8 address at which found

indicating the failure occurs

failed socket

m = master

__ ' P 0 T i Lt
— Pl I\ o - T T
| \
E \ /
a number from 4-digit device Expected Data Data actually
1to8 address at which found
indicating a fatlure occurs
the failed
socket

R = RAM

S:

slave

When the failed device data is displayed the red LED flashes, but stops
flashing when -> or <- is pressed to move to the next failed device.

Press set
to skip to the next failing addresses.

(Revision 1)

3.5-01

3.5-02

3.6 PROGRAMMING

Once the device has passed the bit test, programming of that device will
start.

To provide an indication of how far programming has progressed at any
given time the address being programmed is displayed; for example:

COUNTER

|

1
{

o
=
1

T

S
T
o
i

=

FOUR DIGIT ADDRESS

In the case of the larger devices which use a fast algorithm only the two
most significant digits of the address are displayed.

COUNTER

’i:—f_H

N i
I T

—~—r—

TWO MOST SIGNIFICANT
DIGITS OF THE ADDRESS

If the data to be programmed into a particular location is the same as the
unblown state of that device, the programming sequence will
automatically skip to the next location. This function speeds up
programming considerably where large sections of the device are to
remain empty.

(Revision 1) 3.6-01

3.6-02

PP40

PP41/
PP42

3.7 IN-PROGRAM VERIFY

The algorithms of certain devices are such that an in-program verify is
performed. This is a feature whereby each location is checked to see that
its data is identical to the corresponding data in the master device (PP40)
or the RAM (PP41, PP42).

If a device passes the in-program verify at all locations an automatic
verify is performed.

Should a device fail the in-program verify, the display wili show:

N T O I e I I 7 R S i e
[AN I T N B A N Y I

Red LEDs indicate the failed devicel(s). The cursor keys can be used to
move to each in turn, and the display will change to give information of
the format below:

— Mo o I
I [O N Y B 7 o |
| \ 1 /
\ | /
a number 4-digit device Expected data Data actually
from 110 8 address at which found
failure occurs
m = master s = slave
_ | T PO o TR sl s B Ll
— [I T W B N [7T

R = RAM s = slave

While the failed device data is displayed the red LED flashes but stops
flashing when -> or <- is pressed to move to the next failed device.

Press Set
to skip to the next failing addresses.

(Revision 1) 3.7-01

AUTOMATIC VERIFY

The automatic verify function is particularly useful when the algorithm of
a device precludes the operation of the in-program verify.

If a device passes automatic verify the display will show:

1

72 Y et R N VA
|20 D AN

b
| |

A failure will cause the display to show:

\/ N I

Lo

I
b
-

Detailed information about the failure takes the same format as for the in-
program verify.

MANUAL VERIFY

This function can be applied at any time and not just during programming

by pressing the ‘verify’ key. its operation and display is identical to
automatic verify.

3.7-02

3.8 DEVICE ADDRESS LIMITS (SET F6)—PP40

All device-related functions on the PP40 are defined by two parameters:
the address limits. These are Address High and Address Low.

Press SET F6

to set the address limits. The display will show:

Ty T T M 202 (1 [
B0 R A R D S B A "0 T2 I

A new address limit can be entered using the hexadecimal keyboard.

Press or

to display:
Ty T AT Iy
L. ML 35047

A new address limit can be entered using the hexadecimal keyboard.

{Revision 1) 3.8-01

3.8-01

3.9 DEVICE ADDRESS LIMITS (SET F6)—PP41 and PP42

All device-related functions on the PP41 and PP42 are defined by three
parameters: the address limits. These are Address High, Address Low
and RAM Low.

Press SET F6

to set the address limits. The display will show:

11T NA LI AN AT
AN R I — e T
A new address limit can be entered using the hexadecimal keypad.
Press |V
to display:
mnmcas,Tir C b 2V A7
AV I] il
A new address limit can be entered using the hexadecimal keypad.
Press |+
to display:
mCisT I C L AL
0 U VB SR T il VR R N

The upper limit defaults to the size of the device but a new limit can be
entered using the hexadecimal keypad.

Pressing displays the address limits in the reverse order.

(Revision 1) 3.9-01

3.9-02

4.1 KEYBOARD EDIT ROUTINES

The comprehensive editor on the PP41 and PP42 enables the foliowing
functions:

LIST

This is a feature enabling the data content of the RAM to be scanned on
the display, without the danger of changing the RAM data.

It can be selected by pressing the list key: the first address will be
displayed with the data within the first address.

For example:

LOCATION (ZERO) DATA

CATM2 AT
Vb ot mo

The address can be scanned in two ways:

1. By use of the cursor keys: [,r I [(_] :_,]

{a) By using the right/left cursor keys the address can be incremented
or decremented a single location at g time.

(b) By using the up/down cursor keys the address can be incremented
or decremented 1610 locations at a time.

2. Any address with RAM limits can be directly entered by use of the
hexadecimal keypad.

For example:
SELECTED ADDRESS DATA

|

Al

!
|

S
LI
-

| R
v

I

1

=

*Note: if 16 or 32 bit configurations are selected on the PP42 the
address shown will be the true address and the data will be four or eight
digits in size.

(Revision 1) 4.1-01

4.1-02

LIST

EDIT

4.2 EDIT

This is a feature whereby the actual content of the RAM can be directly
modified by using the keyboard.

The edit mode can be selected in two ways.

{a) By pressing the edit key when the machine is in the normal operating
mode.

(b) By pressing the edit key when the machine is in the list mode. (The list
mode can be reselected in the same manner).

When switching from the list to the edit mode or visa versa the address
and data being displayed will be unaffected.

For example:

LOCATION DATA
4 O N i
it o ! i —

edit

LOCATION E DENOTES EDIT DATA

e I

T
/_I"”

—

'\

N

The data ‘29’ at location ‘01 FFO’ can now be changed by use of the
hexadecimal keypad into A3, for example.

LOCATION NEW DATA

fay A T o
Lerrorowl oY

-

As with ‘list’ the data can be scanned by use of the cursor keys; when
selection of address is made the information can again be changed by use
of the hexadecimal keypad.

Alternatively and usually more quickly an address can be directly entered
by switching back to the ‘List mode’ and using the hexadecimal keypad
to select the location. Switching back to the edit mode will not corrupt
this information.

Note: if 16 or 32 bit configurations are selected the address shown will
be the true address and the data will be four or eight digits in size.

(Revision 1) 4.2-01

4.2-02

4.3 INSERT

Insert is part of the edit mode and can be selected by pressing the edit
key once, when the machine is in the edit mode.

Information can be inserted into a particular location within the RAM. The
existing data content in and above the selected address is repositioned
one location higher. Apart from this shift in location the existing data
remains the same.

For example:
LOCATION | DENOTES INSERT DATA
7 i

71}
[/

|
7
N

T I
L

_

L

By pressing the SET key all data inclusive of location O01FFQ and above is
repositioned one iocation higher:

NEXT LOCATION UP

KR
|

Having pressed the set key, ‘00’ will be inserted into the selected
address.

iy L T 717
/28 I Y I B ' 1 V|

By use of the hexadecimal keypad the chosen data can now be inserted
for instance A6:

—

S

710 T T T
/ | A

_,i.

Other than the use of the set key, operation in the Insert mode remains
the same as when in the ordinary edit mode.
For graphic example see next page.

Note: if 16 or 32 bit configurations are selected on the PP42 the address
shown will be the true address and the data will be four or eight digits in
size.

(Revision 1) 4.3-01

A GRAPHIC EXAMPLE OF HOW THE INSERT FUNCTION WORKS IS
SHOWN BELOW:

INITIAL STATUS:
AL STATUS LOCATIONS
O1FED O1FEE O1FEF O1FFO 01FF1 01FF2 01FF3

E 3|7 9/F 3

T

RAMDATA 6 C |8 8| 4
RN

CURRENTLY DISPLAYED
LOCATION

By pressing the SET key all data inclusive of location 01FF0 and above is
repositioned one tocation higher. At the displayed location, ‘00" will be
automatically inserted:
LOCATIONS
01FED O1FEE O1FEF 01FFO 01FF1 01FF2 01FF3

ey

T T T~ 0 ——
RAM DATA 6 C I 8 8 ‘ 4 Ofo 0|2 .9 €, 37 @
| il) \’_-_x. I SRS IR G T 4

S \ - -

DATA REPOSITIONED

CURRENTLY DISPLAYED
ONE LOCATION HIGHER

LOCATION

By use of the hex-keyboard the chosen data A6 can be entered at location
01FFO:
LOCATIONS
O1FED O1FEE O1FEF O1FFO 01FF1 01FF2 O1FF3

9{5379r
1

T
RAM DATA 6 C 8 8 4
| !

L

"A6" ENTERED

o

CURRENTLY DISPLAYED
LOCATION

4.3-02

4.4 DELETE
Delete is also part of the edit mode and can be selected by pressing the
edit key twice when the machine is in the edit mode. Delete is the

opposite function to insert whereby data is removed ‘from’ a particular
location.

The data above the selection address is repositioned one location lower.
For example: 5B is the data to be deleted.

LOCATION D DENOTES DELETE DATA

sy PRI S

204 220177 177 Ta L T

M et | ~t L

By pressing the SET key all data above but not inciusive of location
00200 is automatically brought down one location. The information
previously at address 00201 replaces ‘Data 5B’ at location 00200.

For example:

Other than the use of the set key, operation in the delete mode remains
the same as when in the ordinary edit mode.

For graphic example see next page.
*Note: if 16 or 32 bit configurations are selected on the PP42 the

address shown will be the true address and the data will be four or eight
digits in size.

(Revision 1) 4.4-01

A GRAPHIC EXAMPLE OF HOW THE DELETE FUNCTION WORKS IS
SHOWN BELOW:

INITIAL STATUS: LOCATIONS
001FD 001FE 001FF 00200 00201 00202 00203

!
1

5B’ DELETED ™. . CURRENTLY DISPLAYED
LOCATION

By pressing the SET key all data above the displayed location 00200 is
brought down one location. (All data below the displayed location is left
unaffected).

LOCATIONS
001FD 001FE 001FF 00200 00201 00202 002G3

Y © 3[7 23 F

T
RAM DATA 1 7 (o] A 3
—

=<\ CURRENTLY DISPLAYED
LOCATION

4.4-02

4.5 BLOCK MOVE (SET F4)

SETTING ADDRESS LIMITS

This is a feature enabling a block of data with pre-selected address limits to
be relocated at another address within the RAM, without destroying the

original data.

Selection of this function is made by pressing SET F4.

The display will show:

ADDRESS LOW ZERO
0T T A N N e v |
Pod L0 — A

This defines the lower limit of the block in RAM to be re-located.
{Defaults to 0000)

The new lower RAM limit can be entered using the hex-keyboard

For example 00100:
NEW LOWER RAM LIMIT

VT [20 a1 7217
LI [R T R

If is pressed the display will show:

ADDRESS HIGH SIZE OF SELECTED DEVICE
T B Ld T A F’ o
Pty LrN bt i _t .

This defines the upper limit of the block in RAM to be relocated.
(Defaults to selected device size).

A new value for the upper RAM limit can be entered using the
hexadecimal keypad.

For exampie 00300:
NEW UPPER RAM LIMIT

l
J

N
|

-’

FAT70 372 A
bt i

-

L "
'S |

-
‘-—

(Revision 1) 4.5-01

LOWER LIMIT OF RE-LOCATED DATA

By pressing again the display will show:

TO ADDRESS
T 1 0T AT 727
Pt P O i e b

This defines the lower RAM iimit of where the block of data is to be
re-located (Defaults to 0000).

The re-located lower RAM limit can be entered using the hex-keyboard.

For example 00500:

LOWER LIMIT OF THE
NEW BLOCK OF DATA

T 0 LT T R s
I P44 111 Uit]

Pressing the exit key will initiate the block-move function. A series of
dashes will be displayed indicating the function is in progress:

The programmer will automatically return to the normal operating mode.

4.5-02

A GRAPHIC EXAMPLE OF HOW THE BLOCK MOVE FUNCTION WORKS
IS SHOWN BELOW:

00500 00700

RAM

\
v
v

TO ADDR 00500

PRE-SELECTED ADDRESS LIMITS

LOWE‘R ADDRESS LIMIT
OF RE-LOCATION

(Revision 1} 4.5-03

4.5-04

4.6 FILLING THE RAM

By pressing SET FF the RAM will be entirely filled with Fs.

By pressing SET FO the RAM will be entirely filled with Os (Zeros).
By pressing SET 5 the RAM data will be complemented. (1's
complement).

FILLING THE RAM WITH AN ARBITRARY VARIABLE*. (SET F2)

This function enables the user to fill the RAM with an arbitrary variable of
his own choosing.

The variable will be identically repeated at every word within address
limits specified by the user. Pressing SET F2 will display the lower
address limit which defaults to zero:

ADDRESS LOW LOCATION ZERO

|

=

71177
R

LAY

7
[

—n

12

—

J

| 7|
i

L o 7)
< /|

— 1t /_

The new lower address limit can be selected by using the hexadecimal
keypad, for example 00600:

LOCATION

|
|

| L 1 A rara

]
i i b bt

|

P

———

L

|

The upper address limit can be shown by pressing and this also
defaults to the device size.

ADDRESS HIGH LOCATION ZERO

|

4T 2V
R M i ey b

=

Iz
A

A

L
)

The new upper limit can be selected using the hexadecimal keypad, for
example 01000:

LOCATION
2 7 T FA 0 1210527
[B AN | I gy e

(Revision 1) 4.6-01

B ! . .
The arbitary variable can be entered by pressing the |t again to display:

|

-
[}

I
A
l

1

s
/i

BN

F

)
~.

-

The data-selection can be made by using the hexadecimal keypad, for
example A1:

ARBITARY VARIABLE

Pressing ‘SET’ alone will implement this selection.

Every byte of RAM within and inclusive of the specified address limits of
00600 low to 01000 high is filled with ‘A1°.

“Note: if 16 or 32 bit configurations are selected on the PP42 the

address shown will be the true address and the data will be four or eight
digits in size.

4.6-02

4.7 STRING SEARCH

This function allows the RAM data to be searched for a particular string
of data.

Press SET 9 to display:

T T I | FZ/ATCATA 7
) LN — 1_J SN ANANNNE

The lower address limit of the area of RAM 1o be searched is now
displayed defaulted to zero. It can be altered using values input from the
keypad.

To display the upper limit:

Press @ or m

i |

[—

1 }_JT A~
I\ g

™
(]

——

-

-~ .o
Cr

/

— |
——

—
=

—

i

The upper address limit is shown defaulted to the size of the pre-selected
device, and like the lower limit it can be altered using values input from
the keypad.

Once the address limits have been set:

Press SET to display:

Hex Value Cursor
ASCIl equivalent {'space’)
To the extreme left of the display is the hex equivalent of the ASCII

character displayed on the immediate left of the cursor. In this case the
space character is displayed.

(Revision 1) 4.7-01

To increment or decrement the hex value and hence alter the ASCII
character displayed:

Press or |+

Alternatively and more quickly, the hex value can be entered directly from
the keyboard.

Note: Due to the limitations of the display some of the characters cannot
be represented accurately. Their value will however remain valid.

To move the cursor one space to the right and allow selection of the next
ASCIi character:

Press

i
__
A

/

-
~

N

Cursor

‘ '

-]

~—

First selected ASCII character

Hex value of character to immediate left of the cursor (in this case
‘space’)

The second character can now be selected in the manner previously
described. In this way a string of up to 11 characters (or data bytes) can

be entered.

When the desired string has been selected, to implement the String
Search:

Press SET

If a corresponding string is located within the specified area of RAM, then
the message ‘FOUND AT’ and the address of the first occurrence will be
displayed. Every subsequent occurrence can be located by continually
pressing SET until the entire specified area of RAM has been searched.

4.7-02

For instance:

L™ I 4
t o SR B A
1 X 2

\

cursor

The selected string
The ASCII value of the character to the immediate left of the cursor. (in
this case ‘G’)

The above string was searched for and the disptay showed the following
message:

! l
This means that the first occurrence of the string was found at location
00116.

ol
I~

[AN
!

™ 7 ™
1) f !

|
ML 7T)

if the string had not been found within the specified area of RAM the
display would have shown:

NS T Tt N T
N T T O

If a string has been entered and only part of it is to be used, then movifng
the cursor to the left will restrict the string to the desired length. The
original string will be retained however in its entirety, and moving the
cursor to the right will display it again.

Any entered string will be retained until the programmer is powered
down.

To abort the String Search at any time.

Press EXIT.

(Revision 1) 4.7-03

4.7-04

INPUT/OUTPUT
5.1 SETTING THE I/O INTERFACE PARAMETERS

It is possible to initiate an input or output without setting any of the
associated parameters. Simply press the input or output key. The offset
defaults to the offset last set; the start address defautlts to zero, the input
stop address defaults to the maximum RAM size and the output stop
address defaults to the device size.

Hardware Parameters

Pressing SET 1 displays the hardware parameters for Port 1:

NO. OF
WORD STOP
PORT NUMBER BAUD RATE LENGTH BITS PARITY
i 1 H 1
e B R el w B e SR o B e B vl o
AN I P i N AV VA S i B e
N ! H 1

To display the hardware parameters for Port 2:
Press SET 1
followed by Key 2 or just key 2 if SET has already been pressed.

The parameters for both ports can be changed. This is done by use of the
horizontal cursor keys.

Press

to move the chosen parameter field until it is immediately to the right of
PRT 1 or PRT 2.

Press to or | i
—
to modify the parameter.

Software Parameters

Pressing SET 1 followed by Key 3 displays the software parameters:

SOFTWARE PASS-THROUGH CONTROL
PARAMETER FORMAT OPTION Z OPTION
[I 1
LI TNT iToCo i
WX LN R £

Press I’T or ‘\l]

to select the required format.

<
Press |

1o enable selection of Pass-Through.

Press or ﬁ.

to select Transparent (Pass-Through mode} or Normal (non-Pass-Through
mode)
{Revision 1) 5.1-01

puy
Press

to enable the selection of Control Z

Press or !

to select Control Z

On completion of parameter selection press the Exit key to return to the
initial power-up display.

Display Abbreviations

PRT = Port

TRSP = Transparent
NRML = Normal
SWR = Software
Ccz = Control Z

5.1-02

The selection available in each category is shown in this table.

Key to Abbreviations

EP
(0]

NO PARITY CHECK
EVEN PARITY
ODD PARITY

FORMAT BAUD RATE WORD NUMBER OF PARITY
LENGTH STOP BITS
INT 38K4 8 2 .
HASC 18K2 7 1 EP
XOR 9600 6 OP
TEK 4800 5
XTEK 2400
PPX 2000
BIN 1800
DBIN 1200
MOST 600
300
150
110
75
50
FORMAT
Key to Abbreviations
INT = INTELLEC
HASC = HEX ASCII
XOR = EXORCISOR
TEK = TEK HEX
XTEK = EXTENDED TEK
PPX = STAG HEX
BIN = BINARY
DBIN = DEC BINARY
MOST = MOS TECHNOLOGY
PARITY

(Revision 1) 5.1-03

5.1-04

or

5.2 Setting the I/0 Address Parameters
The pre-settable address parameters are:

INPUT ADDRESS OFFSET OUTPUT ADDRESS OFFSET
INPUT START ADDRESS OUTPUT START ADDRESS
INPUT STOP ADDRESS OUTPUT STOP ADDRESS

Input Parameters

An incoming block of data originating from peripheral equipment can be
re-located at a lower address within the RAM, using an Input Offset.

Pressing ‘Set Input’ displays the last-entered offset Address, for example:

f
[I T b A 7 N VA VA N A N A A

T [(AVATATATZ J(ATA
|

An offset of 300 would look like this:

INCOMING BLOCK OF DATA Interface Port RAM
(OFFSET 300)

I NEW ADDRESS LIMITS AFTER
ADDRESS LIMITS OFFSET OF 300 HAS BEEN
INITIATED

The offset address can be changed using the hexadecimal keypad.
00000000 = No Offset

[T
Press [‘ i followed by Key 1
to select Port 1 for the data input.
Press 1_1 followed by Key 2
to select Port 2 for the data input.

Press [V |

1o display the Input start address.

—_,_—.._~

] }
{

Y
|
N

I
L

e
~—

\

[

!

i
._.L_

i
CS
F

¢ again

U -

Press

to display the Input stop address. Both addresses can be changed using
the hexadecimal keypad.
Pressing the input key initiates the input operation.

(Revision 1) 5.2-01

Output Parameters

An outgoing block of data originating from the RAM can be re-located at
a higher address, using an output offset. Presing ‘Set Output’ displays
the last-entered Offset Address, for example:

—— ———
ur ot T BBhaank

An offset of 300 would look like this:

QUTGOING BLOCK OF DATA Interface Port RAM
(OFFSET 300

/osoo 0A00
\ \/' FOUTPUT—

NEW ADDRESS LIMITS AFTER !
OFFSET OF 300 HAS BEEN ADDRESS LIMITS
INITIATED

The offset address can be changed using the hexadecimal keypad.
00000000 = No Offset

Press followed by Key 1

to select Port 1 for the data output.

)
Press “ | followed by Key 2

to select Port 2 for the data output.

Press D

to display the output start address.

i
-

U R N VATA 307 77
-

(720 I V2SN I Y VA I T2
Press B again

to display the output stop address. Both addresses can be changed using
the hexacecimal keypad.

5.2-02

FORMAT OFFSET TYPES

NO. OF RELEVANT

DISPLAY DIGITS IN
FORMAT ABBREVIATION ADDRESS FRAME
INTELLEC INT 5 Digits
HEX ASCII HASC 0 Digits
MOTOROLA S-RECORD| XOR 8 Digits
TEK-HEX TEK 4 Digits
EXTENDED TEK XTEK 17 Digits
STAG HEX PPX 4 Digits
BINARY BIN O Digits
DEC BINARY DBIN 4 Digits
MOS TECHNOLOGY MOST 4 Digits

Eight characters are always displayed even when only 4 digits are
required. Pressing the output key initiates the output operation.

{Revison 1) 5.2.03

5.2-04

5.3 ERROR REPORTING ON INPUT/OUTPUT

The following table shows the 12 possibie error messages that will be
displayed instead of the checksum on completion of either input or output

or when ‘exit’ is pressed.

Reported at the end of data transfer

(1) PARITY ERROR

{2) FRAMING ERROR

(3) PTY/FMG ERROR

{4) OVERRUN ERROR

{5) PTY/OVN ERROR

(6) FMG/OVN ERROR

(7} PY/FR/O/ERROR

(8) L CSUM ERROR

{9) NON-HEX ERROR

A parity error was detected.

A pulse on the serial signal was not of an
acceptable size.

Parity/Framing: A combined parity and framing
error was detected.

Data was lost due to overwriting of secondary
information in UART.

Parity/Overrun: A combined parity and overrun
error was detected.

Framing/Overrun: A combined framing overrun
error was detected.

Parity/Framing/Overrun: A combined parity,
framing and overrun error was detected.

Line Checksum Error: A checksum failure in a
record (line) was detected.

A non-hex character was received where a
hex character was expected.

(Revision 1) 5.3-01

5.3-02

6.1 TRANSLATION FORMATS (INTRODUCTION)

There are nine formats available on the PP41 and PP42:

INT = INTELLEC

HASC = HEX ASCIl

XOR = MOTOROLA S-RECORD
MOST = MOS TECHNOLOGY
TEK = TEK HEX

XTEK = EXTENDED TEK

PPX = STAG HEX

BIN = BINARY

DBIN = DEC BINARY

STANDARD FORMATS

There are four standard manufacturer formats these are: INTELLEC,
EXORCISOR, TEK HEX and MOS TECHNOLOGY which are used on most

development systems.
EXTENDED FORMATS

There is one protracted version of the standard formats:
EXTENDED TEK. The extended format can be used when a larger address
field is required.

HEX ASCII

The Hex ASCII format is the original base version of the standard
formats. It lacks the facility of an address field and a checksum.

PPX (Stag Hex)

The PPX format differs from the HEX ASCIl in that it has an address field
and terminates with a checksum of total bytes.

BINARY

The Binary format is the most fundamental of all formats and can be used
where fast data transfers are required. It has no facility for address, byte
count or checksum.

DEC BINARY

This is an improvement of binary in that it has a single address and a
single checksum for the entire block of data.

{Revision 1) 6.1-01

STRUCTURE AND CONVERSION OF DATA BETWEEN SERIAL
SIGNAL AND THE PROGRAMMER’'S RAM

RAM locations. 1017 . 1018 . 1019 . 101A . 1018 . 101C . 101D .

[ef7fofel] RMclslelofels]

ASCli Representation [X
b J

/,/
Binary /

Representation 0 O | llO [010 O'O I 0 1

Serial (TTL)
Input/Output

6.1-02

A

-~ bl

hadad ol o

The intellec format when displayed consists of:

For example: START ADDRESS: | 0000

A start code, i.e. (a colon):

. The sum of the number of bytes in an individual record, e.g. 1A.
. The address of the first byte of data in an individual record, e.g. 0000.

. The record types, i.e. 00-Data Record

01-End Record.

Data in bytes, e.g. 12 34 56 78.

Checksum of an individual record, e.g. 28.

STOP ADDRESS: | 008F
OFFSET: 0000

ADDRESS OF FIRST

START CODE BYTE IN EACH RECORD.

(N1 224546781 CZA547B1022454781 0545678103456 78107 SL781274
OA567812T456781207456781 73456781 CT4547812T456781234567H

H A1224546781274546781 DATA 67B1234546781224567B12°7454678 1224

1 ROOAEASA7B1 23456781234 2T456781234547812°454781 2745674
11 APO0LBOA1I D454 781207456761 TT4567812T4546781 274546781 22456781274
IOEOBAVASL781234567E1 2045678122456 7854)

: 1000000 1F B /
NO. OF DATA BYTES\ CHECKSUM OF

IN EACH RECORD RECORD TYPE EACH RECORD

(Revision) 6.2-01

AND WITH AN OFFSET OF (8000}

ADDRESS OF FIRST
START CODE BYTE IN EACH RECORD

i TTASATRICIASETEITTASeTEICTALATEIZTASSTEIZTA4SETE 2T
HM ATLTE1224587B10T4548TEIITALeTEITTAD 5781:"4"6781::4_&.’
AT DT ASSTRITTASATEI 2 DATA 7B1 245671 1AL TEINT ‘b"&l
1IABOAEOAELETBIZTASLTEID 2450 /0 JTASETEI2T45L781 07T c,781 _.c.7 e
IABUEE I ITAS5eTRINTALLTYB1 1745781 ITALSTE! :7-’15:,’81:"_-4567812"4 .
: l.PEBClE:’ZlCFéJEl 1274567R2127454781 ::45&7%

Fle SININTE &) \\

74
NO. OF DATA BYTES CHECKSUM OF
IN EACH RECORD RECORD TYPE EACH RECORD

6.2-02

CALCULATION OF THE INTELLEC* CHECKSUM

PIAGOOOO01 DTSRI 4SS TS ITASLTE 1 O

CIo IS TAL T

TULOOUOTFE

ABETEINTASeTL I LT TRL L T

Example: THE SECOND ‘DATA RECORD’ OF THE ABOVE FORMAT.

(i)

(i}

(iii)

{iv)

(v)

(vi)

{vii)

{viii)

This is:

The start code and the
checksum are removed:

Five Bytes remain:

These are added together:

:01 00 1A 00 56 8F

:8F

01 00 1A 00 56

01 + 00 + 1A + 00 + 56 = 71

The total ‘71’ is converted into 7 1
Binary: 0111 0001
The Binary figure is reversed. 8 E
This is known as a complement: 1000 1110
A one is added to this 8 F
compliment. This addition 1000 "

forms a "'2's complement’’:

8F is the checksum as above:

:01 00 1A 00 56 .

*This calculation also applies to the extended version.

When addition of information occurs in longer records the checksum may
consist of more than one byte. When this occurs the least significant byte
is always selected to undergo the above calculation.

(Revision 1) 6.2-03

6.2-04

6.3 HEX ASCII

The Hex ASCII format when displayed consists of:

DATA ALONE

However, invisible instructions are necessary for operation. These are:

{A hidden start character known as Control B.
(02: ASCll Code, STX ASCH character).

A hidden stop character known as Control C.
(03: ASCll Code, ETX ASCII character)

A hidden ‘space’ character between data bytes
{20: ASCII Code, SP, ASCII character)

For exampie:

START ADDRESS

0000

STOP ADDRESS:

008F

OFFSET: NONE REQUIRED AS
HEX ASClII ALWAYS LOADS AT ZERO

HIDDEN START CHARACTER

{Control B)

12 74

HIDDEN SPACE CHARACTERS

o~
. 4
i)

,
N
w

LNLEUNLE

oo
L A (G (I
~

s3]

78
TE
78
78
7e
7a
7e
7e
780

o

[

KEUNUE LG R
- o

(LS G L

o

-~
HIDDEN STOP CHARACTER

(Contro! C)

16 bytes per line

on output

(Revision 1)

6.3-01

6.3-02

6.4 MOTOROLA S-RECORD
The Motorola S-Record when displayed consists of:

a. A start code, i.e. S

. The record types, i.e. 1 - Data Record
9 - End Record

The sum of the number of bytes in an individua! record, e.g. 1D

. The address of the first byte of data in an individual record, e.g. 0000
Data in bytes, e.g. 12 34 56 78

Checksum of an individual record, e.g. A4

o

™S o a0

For example: [GTART ADDRESS: | 0000
STOP ADDRESS: | 008F
OFFSET: 0000

NO. OF BYTES THIS IS AN ADDITION OF: THE CHECKSUM
START CODE IN EACH RECORDS BYTE + THE ADDRESS BYTES - ALL DATA BYTES

DFOOUL 274587810456 TB1 00456781 ZT4557810745£781274546781°04

ADDRESS OF FIRST CHECKSUM OF
RECORD TYPE BYTE IN EACH RECORD EACH RECORD

(Revision 1) 6.4-01

AND WITH AN OFFSET OF (8000)

No. OF BYTES
START CODE IN EACH RECORD
IOl 22454781 2145878101454 781 27454781 STALeTHIDTASATHI LT

1DECIAG67E12745L7E10 S67810745L7BI0TAS6T8IIT4567R10TAS Y
1DBGTA1 2TAS6781 2045878100456 DATA 4547812245478 1 27454781200
1DEOAEL6781074S67B12745478120 S4TgTBIII4567810T456781074547
1DBO6HI 27456781 27454781 22454 78122454781 2345478127458 78127
11BUBTES7812034567B1 07456781 °74567
TR0 :a

LTIy

ADDRESS OF FIRST CHECKSUM OF
RECORD TYPE BYTE IN EACH RECORD EACH RECORD

6.4-02

CALCULATION OF THE EXORCISOR* CHECKSUM

SLIDGo Gl 2745073127450 T8 0T, e 0

SNRBBOC P IR £33

SP0T waF D

e T oilTaL L Tar s

Example: THE SECOND ‘DATA RECORD’ OF THE ABOVE FORMAT.

(i) This is:

(i} The start code, the record type

and the checksum are removed:

(i)} Four Bytes remain:
{iv) These are added together:

(v} The total ‘74’ is converted into
Binary:

(vi} The Binary figure is reversed.
This is known as a compiement:

{vii) 8B corresponds to the
checksum as above:

$10400 1A 56 8B

S18B

04 00 1A 56

04 + 00 + 1A + 56 = 74

7 4
0111 0100
8 8
1000 1011

S1 04 00 1A 56

When no additional figures are added to this calculation it is called a 1's

{One’s) complement.

*This calculation also applies to the extended version.

When addition of information occurs in tonger records the checksum may
consist of more than one byte. When this occurs the least significant byte
is always selected to undergo the above calculation,

(Revision 1) 6.4-03

6.4-04

6.5 TEK HEX

The Tek Hex format when displayed consists of:

a. A start code, i.e.

b. The address of the first byte of data in an individual record, e.g. 0000
c. The sum of the number of data bytes in an individual record, e.g. 1A

d. Checksum 1 which is a nibble addition of the address (4 characters) and
the byte count (2 characters), e.g. 0B

€. Datain bytes, e.g. 12 34 56 78
.. Checksum 2 which is a nibble addition of all data.

g. An end record which automatically stops the operation when 00 is
specified in the byte count (c).

For example: oy BT ADDRESS: T 0000
STOP ADDRESS: | 008F
OFFSET. 0000

NO. OF DATA BYTES
START CODE IN EACH RECORD

00U ‘AP 122454678122454781 73 SE78102456781274546781 23454781074
D01/41A 678123456781234567812345678123456781::-. S67812345674
MOOT.4{1 Al 2 23454781274567812 DATA781 234567B1274567812745467810°54
VIOORE]1 Al 6781::45678123456781:3456781:‘?-456781:3456781:‘34567
!
It

Voosa1 A 2345678107456 7812T456781234 S678127454768127456781227.4
C 67B12T45678107456781274567

DOOOIVN O
ADDRESS OF FIRST CHECKSUM OF THE ADDRESS CHECKSUM OF DATA IN
BYTE IN EACH RECORD AND THE BYTE COUNT IN EACH RECORD IN NIBBLES

NIBBLES

(Revision 1) 6.5-01

AND WITH AN OFFSET OF (8000)

START CODE NO. OF DATA BYTES
IN EACH RECORD

OOUTATIN 2745478127 5678}:34567812345&»7813345&781:345&.78123- 3
/BOIARIAIEE67E1 27456781 23454781 C74567810T4546781 0745678123454 78
BOT4{IAIAIIDT4S6781274546781 - DATA 78122456781 0345678127454781 724

/BOAEI AR FEELTB12T456781 23456761 2745678127456 7810T456781274 S&7H
/BOLBI AL 11 234546781 2°34546781274 SE78127456781224548781 22456781224
/BOB OER UG L7811 2345678105454 781 074547

[alele Rl)
ADDRESS OF FIRST CHECKSUM OF THE ADDRESS CHECKSUM OF DATA IN
BYTE IN EACH RECORD AND THE BYTE COUNT IN EACH RECORD IN NIBBLES

NIBBLES

6.5-02

CALCULATION OF TEK HEX CHECKSUMS

Unlike the other PP39 formats, the Tek Hex has two checksums which are
both the resuit of nibble additions, as opposed to byte additions.

Checksum 1 is a nibble addition of the ‘address’ and the ‘byte count’
which make 6 characters in total.

Checksum 2 is a nibble addition of data alone.

/00001AOB1234567&12?45&781:?456781:?45;781:745&781:345&7&1fﬁﬂEl
1 ECKS”4215781:3456781::4567812:45&781:?450781:?45;78?:

1245018

/00000000

Example: THE THIRD “DATA RECORD" OF THE ABOVE FORMAT

CHECKSUM 1
(i) This is: /10034030A
The start code and the checksum
are removed: /0A
(i} Six nibbles remain: 003403
liv) They are added together: 0+0+3+4+0+3 = A
{v) OA is the checksum which is
displayed in byte form as above: /1003403
CHECKSUM 2
(i) This is: 12345615
{ii} The checksum is removed: 15
(i) Six nibbles remain: 123456
{iv) These are added together: 1+2+3+4+5+6 = 15
(v) 15 is the checksum as above: 123456 @

When addition of nibbie information occurs in longer records the checksum
may consist of more than one byte. When this occurs the least significant
byte is always selected to undergo the above calculation.

{Revision 1) 6.5-03

6.5-04

6.6 EXTENDED TEK HEX

The Extended Tek Hex when displayed consists of:
a. A start code: % (percentage)
b. A count of the nibbles in an individual record, e.g. 3B

¢. The record types, i.e. 6~ Data Record
8—End Record

d. A checksum of the whole of an individual record excluding the %, e.g. F7

e. *The number of nibbles comprising— ""the address of the first byte in
each record”’, e.g. 1, 2, 3 etc.

f. The address of the first byte of data in an individua! record, e.g. 0, 1A,
104

For example: ["START ADDRESS: | 0000
STOP ADDRESS: | 0140
OFFSET: 0000 0000

NUMBER OF
START CODE RECORD TYPE NIBBLES IN ADDRESS

4{>HY P 2T4567B123456781254567681°T456781 0 S67B127454781274

42441 1AS67812745678127 SE7B12TA547BI0TASL7BITI4S547B10T45678
L Ca Oz 2456768123456 781 0 S67B12T45£78127.456781°T456781 004
S04 EMES 678122456781 23456721 07 S67812°04567810T4567B1 2745678
viade) 234567812345679123456781:34567812345&781:3456781234

1

D

1678123456 7B12T456721234 DATA 1 ©34567B1234567812345678
I OQahERE 23456781234567812’:45678"m567912345678123456781234

1

)

C

BaS678123456781 207 S67812345478123456781234567812345678
’ D'12345678X23456781234567812345678x2345678123456731234
7 108 6781234567812345678!2345678123456781234567812345679
74 ed DO G4l 224546781 074546781202 56781234567912345678123456781234
74 a4 1E311 67B812T45678123454678123 S6781234567B12°34567812°345678
7] BCHI 3812245678123 547812

> 7811 o1 ko

1 CHARACTER
2 CHARACTERS
3 CHARACTERS

NUMBER OF NIBBLES CHECKSUM OF THE ADDRESS OF THE FIRST
IN EACH RECORD EACH RECORD BYTE IN EACH RECORD

(Revision 1) 6.6-01

*Sections (e) and (f) are integrated:

As the operation progresses the address field lengthens. More characters
are added to show this expansion. The nibble count of section (e) reflects
this, e.g.:

2/1A 6/100000 A/1B4625DC95
2 Characters 6 Characters A Characters {10 in Decimal)

The nibble count has the facility to rise to ‘F’ making a 15 (DECIMAL)
character address field possible.

EXTENDED TEK HEX WITH AN OFFSET, DISPLAYING TRANSITION
FROM 4 CHARACTER ADDRESS FIELD TO 5 CHARACTER ADDRESS
FIELD.

For example: [gTART ADDRESS: | 0000
STOP ADDRESS: 00AF
OFFSET: 0000 FFCO

NUMBER OF
START CODE RECORD TYPE NIBBLES IN ADDRESS

COI234567681 0245678122456 781 0045678123456 781 23456781204

FFDAS678125456781234567B127456781 23456781 23454761 2345678

FF41 274546781 2456781 2345678 " 7454781 234546781 20456781274
1000EEL78122456781 2345672122 DATA g1 22454781 22454678123454678
100281 27456781 27456781 0T456781 074548781 27456781 207456781224
1004676122456 781 224546781 20454781 074546781 23456781 03454678
1G0SQITT4567B1 0745678120456 7812T4567812T45676

FCO

4 CHARACTERS
5 CHARACTERS

NUMBER OF NIBBLES CHECKSUM OF THE ADDRESS OF THE FIRST
IN EACH RECORD EACH RECORD BYTE IN EACH RECORD

6.6-02

CALCULATION OF THE EXTENDED TEK HEX CHECKSUM

Unlike the standard version the Extended Tek Hex has only one checksum.

LISB6FT 101274854781 ZTASLTBISTASLTE I AS e TR STASETHIZTASLTOITTG
ZICH1421RELTRIZTASLTE] CT4SLTEIDTASATBITTAS 7] ITAL5L7EITTASeTE

ZOTE1010

Example: THE THIRD LINE OF THE ABOVE FORMAT.

(i} This is: % 0AB61C23412
(i) The start code and the
checksum are removed: % 1C
(iii) Eight nibbles remain: 0A623412
{iv) These are added together: 0+A+6+2+3+4+1+2 = 1C

{v) 1C is the checksum as above: % 0A6 @ 23412

When addition of nibble information occurs in longer records the checksum
may consist of more than one byte. When this occurs the least significant
byte is always selected to undergo the above calculation.

(Revision 1) 6.6-03

6.6-04

6.7 PPX or (STAG HEX)

The PPX format when displayed consists of:

a. A start code, i.e. * (an asterisk, 2A — ASCI| Code)

b. The address of the first byte of data in an individual record, e.g. 0000

c. Data in bytes, e.g. 12 34 56 78

d. A stop code, i.e. $ (a dollar sign, 24— ASCI| Code)

€. A checksum start code: S

f. A checksum of all data over the entire address range. (The displayed
checksum is the two least significant bytes.)

g. An invisible space character between data bytes (20-ASCll Code)

For example:

START CODE

ADDRESS OF THE FIRST STOP CODE

START ADDRESS: | 0000

STOP ADDRESS: | 008F

OFFSET: 0000

HIDDEN SPACE CHARACTERS

12 24
12 24
12 Za4
12 24
12 =4

1z
12 =
1z

12

BYTE IN EACH RECORD

Sé

<
S&

S&
So

Se

12 T4

CHECKSUM CODE

CHECKSUM OF “ALL" DATA
TWO LEAST SIGNIFICANT BYTES

(Revision 1) 6.7-01

And with an Offset of 8000

START CODE

3000
5301 0
3¢)V’_“(')
BO I
BO4 O
IBOSC
BO&0)
B 7

808y,

HIDDEN SPACE CHARACTERS

ADDRESS OF FIRST BYTE
IN EACH RECORD

6.7-02

Se 78

S
=T

DATA’E
13
So
S6

Se

STOP CODE

12 24 Se 7B

CHECKSUM CODE

Se 78

CHECKSUM OF “ALL” DATA
TWO LEAST SIGNIFICANT BYTES

CALCULATION OF THE PPX CHECKSUM

"“Data alone’”, in bytes over the entire address range (as opposed to
individual records) is added together to give the checksum. The address is
not included in this calculation.

¥
VUL 1T T4 %g TE $30114

Example: THE SEGMENT OF DATA ABOVE
(i) This is: *0000 1 34 56 78 $S0114

(i) The start code, the address, the
stop code, the checksum code
and the checksum are removed: *0000 $S0114

{ii) Four bytes remain: 12 34 56 78
(iv} These are added together: 12+34+56+78 = 114

{v) 114 is the checksum which is

displayed in two byte form B
as above: *0000 12 34 56 78 $S 0114

As the PPX checksum is an addition of all data the total will invariably
constitute more than two bytes. When this occurs the least significant
‘two’ bytes are always selected to undergo the above calculation.

(Revision 1) 6.7-03

6.7-04

6.8 BINARY AND DEC BINARY

Binary and DEC Binary are the most fundamental of all formats. ASCII
code conversion never occurs. Information is therefore limited to the
interpretation of pulses via the RS232C interface port into either ONE'S or
ZERO'’s. Hence ‘Binary’. A visual display is not possible.

6.8.1 BINARY
Binary is data only. It is devoid of a start code, address, stop code and

checksum.

HYPOTHETICAL REPRESENTATION

64 F)A!2]O]116:3|2IOFDATABYTES

DATA: CONVERSION IS
LIMITED TO BINARY

i H

011001001111 10100010000000010 ! 10001100 10’

SERIAL {TTL)
OUTPUT

THE BINARY FORMAT OPERATION
CAN ONLY BE STOPPED BY
PRESSING EXIT.

Binary is used mainly for speed of transmission and RS232C
communication problems, i.e. test.

(Revision 1) 6.8-01

6.8-02

6.8.2 DEC BINARY

DEC Binary is an improvement of Binary. It has a start code, a null prior to
transmission, a byte count, a single address and a single checksum of all
data. It also has the facility for an offset to be set.

HYPOTHETICAL REPRESENTATION DATA: CONVERSION IS
OF DEC BINARY INSTRUCTIONS LIMITED TO BINARY

olijoloblesj2iej7[slo]o] [c]7

BYTE COUNT | ADDRESS OF

| START | NULL | MAX FFFF ' FRSTBYTE '@ CHECKSUM
00000001 000000001 101100100101 11001 1 1010100000000 1100l

SERIAL (TTL)
OUTPUT
JL

THE TRANSMISSION
STOPS ON CHECKSUM
The DEC Binary checksum is an addition of all data (data only). The ieast
significant byte is selected to represent the checksum.

DEC Binary is used for speed of transmission.

{Revision 1) 6.8.2-01

6.8.2-02

6.9 MOS-TECHNOLOGY

The MOS-TECHNOLOGY format consists of:

iii

a start code, ie: ; {semi-colon)

a byte count—that is the sum of the number of data bytes in an
individual record, eg: 05

the address of the first byte of data in an individual record, eg: 0000

data in bytes, eg: 11 22 33 44 55, {The data bytes must consist of
valid hexadecimal digits).

a checksum which is displayed as two hexadecimal bytes. It is the
addition of the preceeding data bytes in the record including the
address and byte count in hexadecimal form.

For example:

START BYTE START DATA CHECKSUM

CODE COUNT ADDRESS /

; 05 0000 1122334455 0104 «———_ Data Record

00 0001 00071 <— End of file record

A\

START BYTE RECORD CHECKSUM
CODE COUNT COUNT

(Revision 1) 6.9-01

Calculation of MOS-Technology checksum

. 05 0000 11 22 33 44 55 0104
. 00 0001 0001

Example: the first iine of the above format.
i thisis; 05 0000 11 22 33 44 55 0104
ii. the start code and the checksum are removed: ; 0104
ili. this leaves:
the byte count: 05
the address of the first byte in the record: 0000
and five data bytes: 11 22 33 44 55

iv. these are added together:
05 + 0000 + 11 + 22 + 33 + 44 + 55 = 0104

v. 0104 is the checksum as above: : 0500001 122334455@

6.9-02

7.1 RS232C INTERFACE PORT CONNECTIONS

The PP41 and PP42 are linked to peripheral equipment via their two
RS232C interface ports.

LINK-UP TO PERIPHERAL EQUIPMENT

There are two distinct types of machine:
(i) Data Terminal Equipment (DTE)

(i} Data Communication Equipment (DCE)

The PP41 and PP42 fall into both categories: Port 1 is configured as DTE,
Port 2 is configured as DCE.

On the male connector only 8 of the 25 available pins play an active role
in data transfer. These are numbers 1,2,3,4,5,6,7, 8and 20.

1.* PG PROTECTIVE GROUND

2. TXD TRANSMITTED DATA

3. RXD RECEIVED DATA

4. RTS REQUEST TO SEND

5. CTS CLEAR TO SEND

6. DSR DATA SET READY

7. SG SIGNAL GROUND

8. DCD DATA CARRIER DETECT
20. D.T.R. DATA TERMINAL READY

*Pin Number 1 is present in all connections, it represents the Protective
Ground surrounding all the other cables.

(Revision 1) 7.1-01

7.1-02

7.2 CONNECTION TYPES

The programmers support the two most popular types of connection,

these are:
XON/XOFF (3 wire cable-form connection) and (7/8 wire cable form)

hardware handshake. The most straightforward of these two is the
XON/XOFF.

XON/XOFF (3 wire cabie-form connection)
a. For connection of two alike machines a ‘cross over' is required.

DCE to DCE and DTE to DTE:

1PG O— —0 1PG
2 TXD O— —Q 2TXD
3RXD O X -O 3 RXD
756 O— 078G

b. For connection of two unalike machines ‘no’ cross over is required.

DCE to DTE and DTE to DCE: Straight

1PG O— —0O 1PG
2TXD O— —O 2TXD
3 RXD O— - —O 3RXD
756 O— —O 756

NOTE: Some machines do not have internal pull-ups and require extra
connections within the cable form. Puil-ups may be required on pins 5, 6
and 8 of the external device if it is DTE or pins 4, 6 and 20 if it is DCE.

(Revision 1) 7.2-01

7.2-02

7.3 HARDWARE HANDSHAKE (7 OR 8 WIRE CABLE-FORM)

DCE TO DCE AND DTE TO DTE CROSSOVER 8 WIRE CABLE-FORM
DCE TO DTE AND DTE TO DCE STRAIGHT 7 WIRE CABLE-FORM

a. For connection of two alike machines a ‘cross over’ is required.
DCE to DCE and DTE to DTE:

PG O— —O 1PG

2TXD O— —O 2TXD
3RXD O— X —O 3RXD
4RTS 4RTS

5CTS /—~——o 5CTS
6 DSR O— *\ / —O 6DSR
756 O— —O 755G

8DCD O— -O 8DCD

20DTR O— —O 20 DTR

EXISTS AS STAG PART No. 10-0250

(Revision 1) 7.3-01

b. For connection of two unalike machines 'no’ cross over is required.

DCE to DTE and DTE to DCE: Straight

1PG O— —0 1PG
YTXD O— —O 2TXD
3RXD O- —O 3RXD
IRTS O— —0O 4RTS
5 CTS O— —O 5CTS
'SG O— —0 756G
DCD O— —O 8DCD
DTR O— —0O 20DTR

NOTE: Pin 6 on the straight version b. will be pulled-up internally.

EXISTS AS STAG PART No. 10-0251

7.3-02

7.4 NON-STANDARD CONNECTIONS
HARDWARE HANDSHAKE (5 WIRE CABLE-FORM)

This is a link-up to an unalike connector using “CTS-RTS"” handshaking, it
is made possible by the fabrication of a non standard cable-form.

RTS is a signal normally made active, but it remains inactive to inhibit data
transmission to it, from external devices.

CTS is a pin kept inactive, to prevent signal transmission from it.

For DTE to DTE the following cable-form will be required.

1PG O— —O 1PG
2TXD O— —O 27TXD
3RXD O— X —O 3RXD

—O 4RTS

—O 5CTS

5CTS O— /
6 DSR O— / —0O 758G
20 DTR O— “RTS/CTS” DTE

(Revision 1) 7.4-01

7.4-02

(

8.1 SELECTION OF ‘LOCAL’ OR ‘REMOTE’ MODE
To select Local Mode

If the machine is in remote mode on power-up, one of two seguences can
be performed:

(i) If the programmer is connected via the remote 1/0 port to a computer
or terminal keyboard then the sequence of pressing Key ‘Z’ followed
by the 'RETURN’ key will bring control back to ‘local’ on the
programmer’s keyboard.

(i} Iif the programmer is in stand-alone mode on power-up, but still under
the ‘remote’ setting, the operator must power down, wait two
seconds and then power up again with the "EXIT' key simultaneously
depressed to read ‘iocal’ mode.

When either sequence (i) or (ii) is performed the display will show
manufacturer, device type and bit mode. A typical ‘local’ mode setting
might be:

Manufacturer Device Type

— — ——I_

|

I]
Ly S R B I Y

-t

In local mode all functions of the programmer are controlled from its own
keyboard.

{Revision 1) 8.1-01

8.1-02

8.2 REMOTE CONTROL
To select remote control Press Set 2

The display will show:

oT | L R S S Dl
II AN N 223D DO
|

Defaults to last port selected

Press | or D to change to Port 2

By pressisng set again, the display will show:

L T I \lv i [\/n T C
R I N P 7N N

| I

Remote port 1 or 2

|

Moving star shows
input or output
operation in
progress

In remote mode the programmer is operated remotely from a computer or
terminal. The programmer’s keyboard is inoperative at this time.

Note: If Pass-through has been selected then pressing Set 2 gives the

display:
L M CCTOONITY TN/
N Hid —J PN L 17 |

A full description of Pass-through and its remote mode of operation is

found in Section 9.

(Revision 1) 8.2-01

8.2-02

REMOTE CONTROL COMMANDS

h = one hex digit

RETURN

SET UP FOR

hhhh@

Executes a command for instance G RETURN,
ABAF< RETURN,[RETURN, 11A RETURN etc.

Software revision number. This command issues a 4-digit
hex number representing the software configuration in the
programmer.

Exits from remote control.

No operation. This is a null command and always returns a
prompt character {>)

DEVICE/RAM FUNCTIONS

* A four digit code sets up programming for a particular
device. (The first two digits represent the manufacturer
code and the second two represent the pin out code).

*The programmer sends a four digit hex code of the device
in use. (The first two digits represent the manufacturer code
and the second two represent the pin out code).

Test for illegal bit in the device.

Blank check, sees that no bits are programmed in the
device.

Respond indicates device status for instance: OOFFF/8/0>:
The first 5 digits reflect the working RAM limit relevant to
the device. The 6th digit is the byte size measured in bits.
The 7th digit reflects the unprogrammed state of the device
selected. The 7th digit can be either 1 or O.

0 = Unprogrammed state 00.

1 Unprogrammed state FF.

(Revision 1) 8.3-01

Set up for device/RAM functions (Continued)

Device/RAM address limits.

RAM low address

hhhhh < This defines the lower address limit in RAM.

Block Size

hhhhh; This defines the block size within the device or devices.
Device start address

hhhhh: This defines the start address for the device or devices.

h = one hex character. One to five characters may be specified when
setting the address limits.

LOADS device data into RAM.

PROGRAMS RAM data into device.

VERIFIES device against RAM.

CHECKSUM causes programmer to calculate checksum of
RAM data.

nwcor

Note: on the PP42 a # command can precede the device address or
checksum to indicate a particular socket. For example 6 # hhhhh: sets
the lower address limit in the sixth device. If the command is omitted, the
function defaults to socket 1 (leftmost socket).

By initiating the load, program, verify, bit check, empty check or

checksum operation, data transference will commence between the RAM
and devices inclusive of any selected parameters specified above.

8.3-02

SET UP FOR INPUT AND OUTPUT

Selection of Translation Formats A.

10A BINARY

11A DEC BINARY

50A HEX-ASCII (Space)

51A HEX-ASCIi (Percent)
52A HEX-ASCI! (Apostrophe)
53A HEX-ASCIli {Comma)
59A STAG HEX

82A MOTOROLA S-RECORD
83A INTELLEC 86

86A TEK HEX

96A EXTENDED TEK HEX
81A MOS TECHNOLOGY

Input/Output Address Limits

h hhhh<

h hhhh;

All covered by
standard HEX-ASCII

Sets a five digit figure defining the lower address limit.

Sets the number of bytes of data to be transferred, which in
effect defines the upper address limit.

hhhh hhhhW Sets the offset required for data transference for both

0]

INPUT and OUTPUT.

INPUTS data from the computer/terminal to the

programmer’s RAM

OUTPUTS data from the programmer to the

computer/terminal.

By initiating either the INPUT or the OUTPUT operation data transfer will
commence, inclusive of any pre-selected parameters specified above.

To select Port 1 or Port 2 preceed f or O witha ‘1’ ora ‘2", iIf the port
number is not specified the programmer defaults to the last selected port.

{Revision 1) 8.3-03

8.3-04

ERROR RESPONSES

F Error-status inquiry returns a 32-bit word that codes errors
accumulated. Error-status word resists to zero after
interrogation. (See remote error words).

X Error-code inquiry. Programmer outputs error codes stored
in scratch-RAM and then clears them from memory. (See
remote error codes).

H No operation. This is a null command and always returns a
prompt character (>).
PROGRAMMER RESPONSES

> CR Prompt character. Informs the computer that the
programmer has successfully executed a command.

F cr Fail character. Informs the computer that the programmer
has failed to execute the last-entered command.

? CR Question mark. Informs the computer that the programmer
does not understand a command.

CrR = Carriage return.

{Revision 1) 8.3-05

8.3-06

8.4 Remote Error Codes

Code
20
21

Name

Blank check Error
llegal bit Error
Programming Error
Verify Error

Device Faulty
Buffer Overflow
Checksum

Invalid Data

Description

Device not blank

The device selected could
not be programmed

Either faulty part or
reversed part

{Revision 1) 8.4-01

REMOTE ERROR WORD

BIT
NUMBER
K}
30

28

15
14
13
12

1
10

SOo

O=NW

8.4-02

RECEIVE ERRORS

if any error has occurred, this bit is set
Not used

Not used

Not used

Not used

Serial-overrun error (42)

Serial-framing error (41, 43)

Command-buffer overflow, i.e. > 16 characters (48)

PROGRAMMING ERRORS

Any device-related error

Device appears faulty to the machines electronics (26)
Device start and Block size > Device max. address
Not used

Device not blank (20)

lliegal bit (21)

Non verify (23)

Incomplete programming or invalid device (22)

I/0 ERRORS

It any 1/0 error has occurred, this bit is set
Not used

Not used

Not used

Checksum error (82)

Not used

Address error, i.e.> word limit

Data not hexadecimal where expected (84)

RAM ERRORS
RAM —hardware error

Not used
RAM start and Block size > RAM max. address

Not used

Not used

No RAM or insufficient RAM resident

RAM write error, or program-memory failure
Not used

INTERPRETATION OF THE ERROR STATUS WORD
EXAMPLE: 80C80084

8 —The word contains error information
O —Noreceive errors

C —(=8+ 4); 8 = Device error
4 = Start line not set high

8 —Deviceis not blank

0 —Noinput errors

O —Noinput errors

8 —RAMerror

4 —lInsufficient RAM resident

(Revision 1)

8.4-03

8.4-04

PASS-THROUGH

The PASS-THROUGH mode allows communication between a terminal,
the programmer and a computer by utilizing only one connection on the
terminal and the computer.

Note: in order for PASS-THROUGH to work the computer must be
connected to the programmer via the RS232(1) female port (configured
as DTE) and the terminal must be connected via the RS232(2) male port
(configured as DCE).

PASS-THROUGH INTERFACE CONNECTIONS

TERMINAL COMPUTER

KEYBOARD l

Serial |l
Male Port

Serial |
/ Female Port

PRO(IERAMMER

Pass-Through mode is selected by pressing Set 1 followed by Key 3, -

and or

There are two modes of operation for Pass-Through:
(i) Normal Mode
(ii) Remote Mode

9.1 (i} Normal Mode

The programmer appears to be transparent in data transfer between the
terminal and the computer. Pass-Through continues until the input or
output key is pressed on the programmer, causing it to display the
message ‘Stand By’. Nothing further is transmitted until either the
programmer receives a ‘Control O’ sequence from the computer or its
own ‘Set’ Key is depressed. The input or output function is then
implemented.

When the input or output is finished or the exit key is used to abort the
tunction, the programmer goes back to Pass-Through.

(Revision 1) 9.1-01

8.2 (ii) Remote Mode

Press Set 2
to enter Remote.
If Pass-Through (i.e. Transparent) has been selected, the programmer

displays the message ‘Remote Stand By’ until it receives a ‘Control o,
Carriage Return’ from the computer. On receipt of this key sequence, the
programmer ceases to Pass-Through, and goes into Remote mode under
computer control. Operating continues in Remote Control until the
sequence ‘Z, Carriage Return’ from the computer, when the programmer
returns to Remote Standby and starts to Pass-Through again.

To leave Remote Standby press ‘Exit’.

9.1-02

(i)

(i)

BIT MODES AND SET PROGRAMMING

The PP42 can be configured to 8, 16 or 32 bit mode using Stag's
“Interlace’’ concept. A wide range of set programming options are
available, selected by pressing:

SET 3
The display will show the last-entered bit mode configuration. To change

configuration press or |t

10.1 8-BIT MODE
There are four options available.

I I e
d) L

—rn
— !
—

C_l

In this gang mode the devices all receive the same data from the RAM
and are therefore identical.

A A A A M = master,
S S S S S = slave

A A A
MS S S

n

This configuration is abbreviated when displayed with other information,
for example:

T NI T 1 7 1 i

LN L l://l'_'l.-J!_ "".'“l'// 1'
Jd_ O TT Ll [=3
EJ B I 1 LtF E_'

This mode consists of four identical sets of two devices. The two devices
within the set differ from each other in the data which they receive from
the RAM.

A B A B

B A B M = t
mMs| [ms] [s s S - master,

S S S = slave

">

This configuration is abbreviated when displayed with other information,
for example:

TNITI!I 955] —
_Ll\\ll!_l“//“ 1 L/

(Revision 1) 10.1-01

O

4
L

1T
S

Mo
r

i

——

F Yy

This mode consists of two identical sets of four devices. The four devices
within the set differ from each other in the data which they receive from
the RAM.

A
MS

B
MS

C
MS

D
MS

A
S

C
]

B D
S S

M = master,

S = slave

This configuration is abbreviated when displayed with other information,

for example:

T INUT N7 D Tz
I\ /o0 o.cC/ T
o T T T [I O R
I I | Lt (I
In this mode the devices all receive different data from the RAM. Each is
therefore unique.
A B C D E F G H —
Ms| [Ms| [Ms| |ms| [ms]| [ms| [ms| |ms “S" = Master
= Slave

This configuration is abbreviated when displayed with other information,

for example:

r-

7

~N

10.1-02

10.2 16-BIT MODE

In this mode 16 data bits are split between two eight-bit devices.

A graphic example of how the 16-Bit Mode works on both LOAD and
PROGRAM is shown below:

For clarity the following example will show a fixed device size: 1FFF
(2764 EPROM)

BYTE 2
BYTE 1 1" wew ' Second device:
: address limit 1FFF

First device:
address limit

1FFF 16-Bit Mode

The RAM address field is equal
to the two devices combined.

0000 3FFF

PR ’i‘;&\\}
NN

I : s \Ett.j
'ﬁ\\ﬁé‘xﬁ

RAM

in the first operation: PROGRAM or LOAD is made to and from a singie
8-Bit device with only the most significant byte ‘MSB’’ of a 16-Bit Word
undergoing data transfer.

In the second operation: PROGRAM or LOAD is made to and from a

single 8-Bit device with only the least significant byte “'LSB’’ of a 16-Bit
word undergoing data transfer.

(Revision 1) 10.2-01

Two bytes of data make up one word in the 16-Bit Mode:

BYTE 2
BYTE 1

First
device

RAM locations

: \
0000 (12 38) (ssﬁ (2] 3@ tssh (2 Tj (6 [78) (2] 30 Section of

RAM data

MSB LSB
BYTE 1 BYTE 2 16-Bit Mode: word size = 2 Bytes

10.2-02

(i)

(ii}

There are two options available:

T T
AL 1]

T NT 1
LLiIN D LM

The two devices function interactively, although they differ from each
other in the data which they receive from the RAM. Together they form a
set. Four such identical sets are possible.

A

A
MS

B
MS

A
S

B A
S S

S

iﬂ

M:
S =

Master
Slave

This configuration is abbreviated

when displayed with other information,

for example:

Tl OO ' T
LHHL_L/CbD 1. L
' M T T Ti T T NIT
| -0 4 L ERENT

The two devices function interactively,
other in the data which they receive fro

set. Four such sets are possible, each unique.

although they differ from each
m the RAM. Together they form a

A B P Q C D R S
M = Master
MS MS MS MS MS MS MS MS S = Slave
This configuration is abbreviated when displayed with other information,
for example:
T NIT 17 T
LN /o0 1, 1y

(Revision 1)

10.2-03

10.2-04

10.3 32-BIT MODE

In this mode 32 bit data bits are split between four eight-bit devices.

A graphic example of how the 32-Bit Mode works on both LOAD and
PROGRAM is shown below:

BYTE4
BYTE 3 | pume

] The address limit of
each device is 1FFF

The RAM address field is equal
to the four devices combined.

AR

RAM

In the first operation: PROGRAM or LOAD is made to and from a single
8-Bit device with only BYTE 1 the "‘most significant byte’’ of a 32-Bit
Word undergoing data transfer.

This sequence is repeated for the next three devices with bytes 2, 3and
4 respectively undergoing data transfer.

{Revision 1) 10.3-01

Four bytes of data make up one word in the 32-Bit Mode:

RAM locations

l

ADR G0 @1 G2 3\ 040506 107 08 09 0A 06 Of OD OE OF

o000 (12[3856 79 (12 341 % | 79 Gz |01 %6179 (2 9] %[oeione’

MSB LSB
BYTE1 BYTE2 BYTE3 BYTE4 32-Bit Mode: word size = 4 Bytes

MSB —The “most significant BYTE" in binary code
LSB—The ‘’least significant BYTE'’ in binary code

10.3-02

(i)

(ii)

There are two options available:

T T TICANI T T
ol TODENTICO

-
S

The four devices function interactively, although they differ from each
other in the data which they receive from the RAM. Together they form a

set. Two such identical sets are possible.

A B C

D
MS| |Ms| [Ms]| |Ms Master

Slave

nr
" m
"o
mo’

M
S

This configuration is abbreviated when displayed with other information,
for example:

T NI T 17 i)T
LiNni L J/5E S0, 1
7 oT T T CCIrTNIT
_J'___UJ'_! _'_’LIE_ILI:ITICI\II

The four devices function interactively, although they differ from each
other in the data which they receive from the RAM. Together they form a
set. Two such sets are possible, each unique.

R

B C D S
MS! IMs

A
MS| [MS| [Ms] [ms

2o
So

M = Master
S = Slave

This configuration is abbreviated when displayed with other information,
for example:

[
.

T 7T

A |

NI
L N

- =

0
L
i

-

(Revision 1) 10.3-03

10.3-04

