
GCB11
Networked
Microcontroller

REFERENCE
MANUAL

AESTHETICS, INC

VERSION 1.4

GCB11
Reference Manual

Disclaimers

Coactive Aesthetics reserves the right to make changes without further notice to any product herein to improve reliability,
function, or design. Coactive Aesthetics does not assume any liability arising out of the application or use of any product
or circuit described herein; neither does it convey any license under its patent rights nor the rights of others. Coactive
Aesthetics products are not authorized for use as components in life support devices or systems intended for surgical
implant into the body or intended to support or sustain wet life. Buyer agrees to notify Coactive Aesthetics of any such
intended end use whereupon Coactive Aesthetics shall determine availability and suitability of its product or products for
use intended.

Use, duplication, or disclosure by the United States Government is subject to restrictions as set forth in subparagraph (c)
(1) (ii) of the Rights in Technical Data and Computer Software clause at CFR 52.227-7013. Coactive Aesthetics, Inc. P.O.
Box 425967 San Francisco, California 94142.

Trademarks

Motorola is a registered trademark of Motorola, Inc.
UNIX is a registered trademark of American Telephone and Telegraph Co.
IBM is a registered trademark of International Business Machines, Inc.
MS-DOS is a registered trademark of Microsoft Corp.

Copyrights

Copyright (c) 1993 by Coactive Aesthetics.
All rights reserved.

Version 1.4

Covers:

GROM Version 1.4:
GIOS Version 2.0
GBUG Version 2.4
GNET Version 1.3
GAPP Version 1.3

PCB Version C

Coactive Aesthetics
P.O. Box 425967
San Francisco, California 94142

Table of Contents

Table of Contents

CHAPTER 1 Introduction
1.1 The C Programming Language 1

1.2 Companion Disk 1

1.3 Symbolic Names 1

1.4 Chapter Descriptions 1

CHAPTER 2 Hardware
2.1 Introduction 1

2.2 Specifications 2

2.3 Internal Bus Speed 2

2.4 Power 3

2.5 Asynchronous Serial Communications 3

2.6 Connectors and Jumpers 5
2.6.1 Overview 5
2.6.2 Power 7
2.6.3 Reset 7
2.6.4 Memory 7
2.6.5 Asynchronous Serial Communications 7
2.6.6 I/O Ports 10
2.6.7 Expansion Buses 11

2.7 Tables and Drawings 13

CHAPTER 3 GROM
3.1 Introduction 1

3.2 Memory Map 1

3.3 M68HC11 I/O Registers 3

3.4 RAM Data 3

3.5 Interrupts 3

3.6 GCB Registers 4

3.7 GAPP, GBUG, GIOS, and GNET 4

Table of Contents

GCB11 REFERENCE MANUAL

3.8 Constant Data 5
3.8.1 GCB Registers 5
3.8.2 Stream Driver Configuration Tables 5
3.8.3 Crystal Speed Dependent Constants 5

3.9 Call Table 6

3.10 Stack Requirements 11

3.11 Start-up 12
3.11.1 MC68HC11 I/O Registers 12
3.11.2 Stack Pointer 12
3.11.3 GCB Registers 12
3.11.4 Communications 13

CHAPTER 4 GIOS
4.1 Introduction 1

4.2 GCB Registers 1

4.3 GIOS Streams 2
4.3.1 Stream Functions 3
4.3.2 Stream Drivers 4
4.3.3 GROM Stream Drivers 6
4.3.4 Custom Stream Drivers 8

4.4 EEPROM 9

4.5 Interrupt Utilities 9

4.6 Standard Library 9
4.6.1 Stdio Functions 10

CHAPTER 5 GBUG
5.1 Introduction 1

5.2 Getting Started 1
5.2.1 Getting a Connection 1
5.2.2 Entering Commands 2
5.2.3 Downloading 2
5.2.4 Running a Program 2
5.2.5 Help 2

5.3 Concepts 2
5.3.1 I/O Streams 2
5.3.2 Commands 3
5.3.3 Arguments 3
5.3.4 Display Data 4
5.3.5 Program Execution 4
5.3.6 EEPROM 6
5.3.7 Interrupts 7

5.4 Error Codes 7

5.5 Command Summary 8

5.6 GBUG Commands 9

Table of Contents

Table of Contents

CHAPTER 6 GNET
6.1 Introduction 1

6.2 Point to Point using the SCI 3

6.3 Point to Point using the SPI 4

6.4 GCB11 Network Communications 4
6.4.1 Connecting the GCB11 to the Network 5
6.4.2 Jumper Configurations for the Network Bus 6
6.4.3 Communications and Network Configuration 7
6.4.4 Special Bootstrap Mode 8

6.5 Configuring and Using a PC in the Network 9
6.5.1 Connecting a PC to the Network 9
6.5.2 PC Network Communications Drivers 9

6.6 PC Monitor Program 10
6.6.1 Running the Monitor Program 10
6.6.2 Monitor Program User Guide 10
6.6.3 Common Problems 12

6.7 Writing Applications to Use the Network (GNET) 12
6.7.1 Common Functions 13
6.7.2 Level 0 Functions 14
6.7.3 Level 1 Functions 15

6.8 Jumper and Cable Configuration Testing 16

CHAPTER 7 GAPP
7.1 Introduction 1

7.2 Motor Control 1
7.2.1 Motor Control Basics 1
7.2.2 PWM Port Assignments 2
7.2.3 Motor Control Functions 3

7.3 Digital Input 4
7.3.1 Event Counting 4

CHAPTER 8 Building Applications
8.1 Introduction 1

8.2 Examples 1

8.3 Header Files 2
8.3.1 System Headers 2
8.3.2 GROM Headers 2
8.3.3 Standard C Library Headers 2

8.4 Memory Map 3

8.5 MC68HC11 Resources 3

8.6 Initialization 4
8.6.1 I/O Registers 4
8.6.2 Stack Pointer 4
8.6.3 CONFIG Register 4
8.6.4 GROM Initialization 4

Table of Contents

GCB11 REFERENCE MANUAL

8.6.5 Compiler/Assembler Start-up 5

8.7 Calling GROM Routines 5

8.8 Third Party Libraries 5

8.9 Running from GBUG 6

8.10 Building a Customized EPROM 6
8.10.1 ROMable Code 6
8.10.2 Using GROM Resources 6
8.10.3 Interrupt Vectors 6
8.10.4 GROM S-Records 7

CHAPTER 9 Programmer’s Reference
9.1 Introduction 1

9.2 Reference 1

CHAPTER 10 Support
10.1 Introduction 1

10.2 Email 1

10.3 FAX 1

10.4 Voice 2

10.5 Software Upgrades 2

Introduction 1-1

CHAPTER 1 Introduction

The Coactive Aesthetics GCB11 is a complete hardware and software solution for embedded control using the Motorola
MC68HC11 microcontroller. Built around the powerful F1 version of the HC11, the GCB11 has been designed specifi-
cally to be used in a distributed fashion. With the optional GNET networking software, the GCB11 can be used to imple-
ment an RS485 multi-drop network of up to 32 nodes.

1.1 The C Programming Language

The software and documentation shipped with the GCB11 assumes the user has a working knowledge of the C program-
ming language. Although all the GCB11 software functionality is easily accessible from assembly language, the subrou-
tine descriptions and argument passing conventions are given in C syntax. If you are not familiar with C, the following
books are good places to start:

Kernighan, Brian W. and Ritchie, Dennis M. (1988). The C Programming Language, Second Edition. Engle-
wood Cliffs, New Jersey: Prentice Hall.

Plauger, P.J. (1992). The Standard C Library. Englewood Cliffs, New Jersey: Prentice Hall.

1.2 Companion Disk

Included with the GCB11 is an MS-DOS companion disk which contains updates, corrections, include files for macro def-
initions and function prototypes, software utilities, and examples on how to use the GCB11 hardware and software. Con-
sult the README file in the root directory of this disk for a complete list of files and information on each of the sample
applications and utilities.

1.3 Symbolic Names

Throughout this manual, symbolic names are used in place of memory addresses and values to improve readability. All of
these names are C macros or assembler EQU directives found in the include files distributed on the sample disk.

1.4 Chapter Descriptions

CHAPTER 1, Introduction, is this introduction.

Chapter Descriptions

1-2 GCB11 REFERENCE MANUAL

CHAPTER 2, Hardware, covers the GCB11 hardware. This chapter lists specifications, discusses crystal speed, power,
and communications issues, and describes all the jumpers and connectors and their pin-outs. A schematic and a parts list
are also included at the end of the chapter.

CHAPTER 3, GROM, covers the GCB11 ROM, or GROM. GROM encompasses code and data in RAM, EPROM,
EEPROM, and in the MC68HC11F1 I/O registers. The elements of GROM include GIOS, GBUG, and GNET, each of
which is described in a separate chapter. The primary focus of this chapter is memory usage. The chapter also contains a
comprehensive set of figures and tables covering all CPU and GROM resources.

CHAPTER 4, GIOS, covers the GGCB11 I/O Sub-system (GIOS). This includes the numerous I/O streams provided for
the GCB11 and the system library. The system library provided in ROM is an ANSI C compatible library which provides
functions ranging from printf to string manipulation. An interface description is provided to allow users to call these func-
tions from assembly language programs if desired.

CHAPTER 5, GBUG, covers the ROM monitor/debugger (GBUG) which is provided with the GCB11. This monitor
provides a wide variety of functions, from downloading code to setting breakpoints and modifying memory.

CHAPTER 6, GNET, covers the various communications issues related to the GCB11. It describes the methods for com-
municating with the GCB11. Special emphasis is given to the network communications library (GNET), which allows
multiple GCB11s to be connected together and to communicate with each other.

CHAPTER 7, GAPP, describes the GCB11 Application Routines, or GAPP, which supply miscellaneous support func-
tions for applications. These include such items as PWM motor control and event counting.

CHAPTER 8, Building Applications, serves as a general reference for users developing and running applications
using GROM.

CHAPTER 9, Programmer’s Reference, gives a detailed description of every function available in the GROM except
the GIOS Standard C Library functions.

CHAPTER 10, Support, describes how to obtain support for using the GCB11.

Hardware 2-1

CHAPTER 2 Hardware

2.1 Introduction

This chapter describes the GCB11-F1 hardware. It lists specifications, discusses crystal speed, power, and com-
munications issues, and describes all the jumpers and connectors and their pin-outs. A schematic and a parts list
are also included at the end of the chapter. Figure 2.1 is a simplified block diagram of the GCB11.

FIGURE 2.1 GCB11 Block Diagram

MC68HC11F1
MCU

Address Bus

Data Bus

RAM

E
x
p
a
n
s
i
o
n

B
u
s

ROM

Control Bus

I
/
O

P
o
r
t
s

RS485
TRANSCEIVER

R
S
4
8
5

RS232
TRANSCEIVER

RS485
TRANSCEIVER

R
S
2
3
2

I/O Bus

J
P
5

J
P
6

Specifications

2-2 GCB11 REFERENCE MANUAL

2.2 Specifications

The GCB11-F1 comes assembled on a 3” by 4” through-hole printed circuit board with socketed MC68H-
C11F1FN MCU, 32K x 8 bit static RAM, 32K x 8 bit EPROM, a two channel RS485 transceiver, and a four
channel 5V only RS232 transceiver (only two channels are used). Features include:

• Motorola MC68HC11F1 microcontroller running in expanded non-multiplexed mode with low-volt-
age automatic reset circuitry. Refer to the M68HC11 Reference Manual and the MC68HC11F1 Tech-
nical Data book for specifications of the MC68HC11F1.

• Single supply +5 volt operation.

• Jumper and socket for a 5 volt voltage regulator.

• 28-pin DIP socket for either 16K x 8 bit or a 32K x 8 bit RAM.

• 28-pin DIP socket jumpered for either 16K x 8 bit or 32K x 8 bit ROM, EPROM, or battery-backed
RAM.

• Two serial communication ports connected to the MC68HC11F1’s Serial Communications Interface
with jumpers to support master-slave selection of each port independently on a RS485 multi-drop net-
work.

• 4-contact modular jack or 4-pin header interfaced to a RS485 transceiver.

• 3-pin header interfaced to a RS232 transceiver.

• 10-pin header for the MC68HC11F1’s port E (8 x 8 bit A/D with high and low reference or 8 digital
inputs).

• 20-pin header for the MC68HC11F1’s ports A, D, and G (up to 20 digital I/O, synchronous and asyn-
chronous communications, input and output capture, and chip select pins).

• 36-pin header for the MC68HC11F1’s ports B, C and F, and other selected signals (address bus, data
bus, and control bus).

2.3 Internal Bus Speed

At the time of this writing, the MC68HC11F1FN is available in three speeds:

• MC68HC11F1FN- maximum internal bus speed of 2.1 MHz

• MC68HC11F1FN3 - maximum internal bus speed of 3.0 MHz

• MC68HC11F1FN4 - maximum internal bus speed of 4.0 MHz

Note that the internal bus speed is one quarter of the crystal frequency.

The GCB11-F1 PCB has been tested at bus speeds up to 4.0MHz. The GCB11-F1 is available in two speeds from
the factory:

• GCB11-F1, which contains either a MC68HC11F1FN or MC68HC11F1FN4 MCU and a 7.3728
MHz crystal.

• GCB11-F1-14, which contains a MC68HC11F1FN4 MCU and a 14.7456 MHz crystal.

To determine which version you have, just check the crystal speed which is printed on the crystal itself. The crys-
tal speeds were chosen to allow the most flexibility in serial communications speeds, a very important consider-
ation for networking.

Power

Hardware 2-3

Any crystal speed up to the rated speed of the installed MCU will work with the GCB11-F1. Changing the speed
of the GCB11 requires the following steps:

• possibly upgrading the MCU unit to a faster version.

• possibly upgrading the memory to faster versions. Refer to the MC68HC11F1 technical specifications
for the memory timing.

• replacing the crystal with one of the required value.

Note that changing the crystal speed on the GCB11 can cause it to become incompatible with other GCB11s and
PCs in a network configuration because the communication baud rates are derived from the internal bus speed.

2.4 Power

All components on the GCB11 need only +5 volts and ground to operate. As shipped from the factory, the
GCB11 accepts regulated +5 volt power at connector P1. If +5 volts is not available, there is space on the board
for a 7805 voltage regulator in a TO-220 package (reference designation U10) to allow input power in the range
of +7.5-35 volts. To install the 7805, simply solder in the part and configure jumper J12 as detailed in
Section 2.6.2, Power.

Note that while a 7805 is installed, the GCB11 will no longer run off of a +5 volt supply (the 7805 needs at least
+7.5 volts to operate).

2.5 Asynchronous Serial Communications

The GCB11 supports both RS232 and RS485 direct and RS485 multi-drop network asynchronous serial commu-
nications. All asynchronous serial communications on the GCB11 are done through the MC68HC11’s Serial
Communications Interface, or SCI. The SCI is interfaced to RS485 transceiver 1 on the GCB11. The differential
signals from this transceiver are connected to RS485 transceiver 2 and to connector JP5. RS485 transceiver 2
changes the differential signals back into TTL, which is interfaced to a RS232 transceiver connected to JP6. This
allows any RS232 device connected to JP6 to also transmit and receive RS485 signals on JP5 as illustrated in
Figure 2.2 (also consult Figure 2.12, GCB11-F1C Schematic). Figure 2.2 depicts a typical scenario in which an
external node is connected to JP6 while JP5 is used for network communications.

At the junction of the two RS485 transceivers and JP5 is an array of eight 3x1 0.1” headers (J1-8) which func-
tions as a network master-slave select switch for the GCB11 (internal node) and for the optional external node
connected to JP6 (JP5 is in this case used for network communications). These jumpers determine which of the
differential lines are connected to the pins on JP5. This is necessary because of the full duplex nature of the
RS485 multi-drop network and the fact that the master node must be configured opposite to the slave nodes. Note
that in Figure 2.2 the master-slave select switch (J1-8) has been configured with the external node as the master
and the GCB11 as a slave. Refer to Figure 2.1, GCB11 Block Diagram and Figure 2.12, GCB11-F1C Schematic,
for details. Section 2.6.5, Asynchronous Serial Communications describes how to configure jumpers
J1-8 for master or slave operation.

Asynchronous Serial Communications

2-4 GCB11 REFERENCE MANUAL

FIGURE 2.2 Typical Communication Transceiver Configuration

It is important when studying Figure 2.2 to note that all data transmitted and received on JP6 appears both on JP5
and at the M68HC11. Similarly, data transmitted and received on JP5 will appear at both JP6 and at the
M68HC11. The user can change the appropriate jumpers among J1-8 to modify how this data is routed through
JP5.

It is also important to note the existence of the enable lines on the RS485 drivers. These lines are required in any
RS485 multi-drop network. If the RS232 connection at JP6 is intended to be on the multi-drop network through
JP5, the enable line must be controlled appropriately by the device at JP6. For an IBM PC, the enable line should
be connected to either DTR or RTS, both of which are used by the network drivers on the PC. If the connection
through JP6 is intended only for direct communications (i.e. a dumb terminal), and there is nothing connected to
JP5, then the enable line can be permanently enabled by connecting it to ground at the connector. Figure 2.3
shows the cabling for JP6 corresponding to the various communications options.

Note that the RS485 specifications support a maximum of 32 drivers and 32 receivers on a multi-drop network.
Since each GCB11 contains two RS485 transceivers, to maximize the number of nodes possible one should
remove the jumpers for the external node (J1-4) on all GCB11s which do not have an external connection. This
disables the second RS485.

JP6

JP5

M68HC11

Enable

RS232
Transceiver

RS485
Transceiver 2

RS485
Transceiver 1

TxD

RxD

(master)
(slave)

Enable

TX

RX

J1-8
Master-Slave
Select Switch

SCI

Connectors and Jumpers

Hardware 2-5

FIGURE 2.3 RS232 Cabling for JP6

2.6 Connectors and Jumpers

2.6.1 Overview

Figure 2.4 shows the locations of all the connectors and jumpers on the GCB11. The following sections describe
each connector or jumper in detail. Note that each connector or jumper shown below is oriented such that the
words “COACTIVE AESTHETICS” are in the lower left-hand corner of the board. Also note that the reference
designators (labels) are shown in their actual location and orientation relative to the connector or jumper.

(a) Dumb Terminal Connection (no data on JP5).

(b) Network Connection Through JP5.

DB25
Connector T

X
D

 (
2)

G
N

D
 (

7)

R
X

D
 (

3)
T

X
G

N
D

R
X

JP6

E
N

A
B

L
E

DB9
Connector T

X
D

 (
3)

G
N

D
 (

5)
R

X
D

 (
2)

T
X

G
N

D

R
X

JP6

E
N

A
B

L
E

DB25
Connector T

X
D

 (
2)

G
N

D
 (

7)

R
X

D
 (

3)
T

X
G

N
D

R
X

JP6

E
N

A
B

L
E

DB9
Connector T

X
D

 (
3)

G
N

D
 (

5)
R

X
D

 (
2)

T
X

G
N

D

R
X

JP6

E
N

A
B

L
E

R
T

S(
7)

 o
r

D
T

R
(4

)

R
T

S(
4)

 o
r

D
T

R
(2

0)

JP6 JP6

Connectors and Jumpers

2-6 GCB11 REFERENCE MANUAL

FIGURE 2.4 GCB11 Parts Location

CX
4

CX
5

CX
2

CX
1

C8

U8

U3

J13

U5
J3J2 J7J5 J6J1 J4 J8

J9

R1
0

J1
0

J11 C7

X1

R4

R2

R7R6

R3

R8
R9

R1R5

JP
1

JP
2

CX
6

C5
C6

C3
C4

JP
7

1 U11U2

U6

1

U9

JP
5

P1

U7

U1
0

CX3

JP
6

R1
1

J12

C2
C1

GC
B1
1-
F1
C

CO
AC
TI
VE
 A
ES
TH
ET
IC
S

(4
08
)3
77
-9
80
4

Connectors and Jumpers

Hardware 2-7

2.6.2 Power

As shipped, the GCB11 is configured to accept +5 volts and ground at the power connector, P1. In this configura-
tion, jumper J12 should be shorted. If the optional 7805 voltage regulator is installed, J12 should be open (see
Table 2.1). In either case, P1 is marked with ‘+’ and ‘-’ symbols indicating positive voltage and ground respec-
tively.

2.6.3 Reset

The two-pin header J11 can be used to manually reset the GCB11. To reset the board, short the two pins together
and then return them to the open state (see Table 2.2). Note that this input is debounced by the automatic reset
circuitry.

2.6.4 Memory

The GCB11 has two 28-pin dip sockets for memory. U6 can be used for either a 16K x 8 bit or a 32K x 8 bit
RAM. U8 can also be either 16K x 8 bit or 32K x 8 bit in size, and in addition, jumpers J9 and J10 allow it to be
configured as either RAM or EPROM. See Figure 2.5 for jumper positions.

Note that if U8 contains a RAM, it must be battery-backed to preserve the interrupt vectors.

FIGURE 2.5 J9 & J10: U8 Jumper Configuration

2.6.5 Asynchronous Serial Communications

The GCB11 contains two asynchronous serial communications connectors, JP5 and JP6. JP5 is interfaced to two
RS485 transceivers: one connected to the MC68HC11F1’s SCI, and the other connected to the RS232 transceiver
which is in turn connected to JP6 as discussed in Section 2.5. JP5 comes shipped from the factory as a 4-posi-
tion, 4-contact modular jack. This connector can be removed and replaced by a 4x1 0.1” header if desired. JP6 is
a 4x1 0.1” header. Figure 2.6 shows the pin-outs for these connectors.

Jumper 7805 Not Installed 7805 Installed

J12 short open

TABLE 2.1 J12: 7805 Jumper Configuration

Jumper GCB11 Run GCB11 Reset

J11 open short

TABLE 2.2 J11: Reset Jumper Configuration

J10
J9

RAM Configuration

J9
J10

EPROM Configuration

Connectors and Jumpers

2-8 GCB11 REFERENCE MANUAL

FIGURE 2.6 JP5: RS485 Port Pin-out and JP6: RS232 Port Pin-out

Jumpers J1 through J8 allow the drivers and receivers on the two RS485 transceivers to be interchanged for each
channel independently with respect to the pins of connector JP5. When networked, this is used to select the mas-
ter or slave status of the MC68HC11F1’s SCI (internal node) and the external node connected to JP6. In a multi-
drop network configuration, only one node on the network can be a master; all other nodes must be slaves.

As described in Section 2.5, there are numerous possible configurations for serial communications. Since some
external device may be connected to the network via JP6 in addition to the M68HC11 on the GCB11, it is useful
to define an external node as one which is connected to the network through JP6, and the internal node as the
M68HC11 which is connected directly to JP5. Table 2.3 lists each configuration along with the jumper settings
for the internal and external nodes. See Figure 2.7 for a description of how to configure each node as a master or
a slave using jumpers J1 through J8.

Configuration
Internal Node
(J5 - J8)

External Node
(J1 - J4)

SCI to JP5 direct master or slave don’t care

SCI to JP6 direct master or slave opposite of
internal node

SCI to JP5 networked master or slave don’t care

SCI to JP5 networked

JP6 to JP5 networked

master or slave master or slave

JP6 to JP5 networked don’t care master or slave

TABLE 2.3 Serial Communication Configurations

T
X

G
N

D

R
X

JP6

NET3
NET1
NET2
NET4

NET3
NET4

NET2

NET1JP5

JP5

E
N

A
B

L
E

Connectors and Jumpers

Hardware 2-9

FIGURE 2.7 J1-J8: Communications Jumpers

RS485 Driver Enable Jumper

Jumper J13 is also used by the communications subsystem. It is used to determine which of two possible pins on
the M68HC11 are used to enable the RS485 drivers. Currently either PG2 or PD2 can be used as an enable line.
There is a pull-up resistor on the enable line so that if the jumper is left off, the RS485 driver will be permanently
enabled. This can be done if there is no multi-drop network communications and there is simply a dumb terminal
connected to the GCB11 through JP6. Figure 2.8 shows the possible configurations for this jumper.

External Node

Master Slave

J2
J1

J3

J5
J4

J7
J6

J8

J2
J1

J3

J5
J4

J7
J6

J8

J2
J1

J3

J5
J4

J7
J6

J8

J2
J1

J3

J5
J4

J7
J6

J8

SlaveMaster

Internal Node

Connectors and Jumpers

2-10 GCB11 REFERENCE MANUAL

FIGURE 2.8 J13: RS485 Driver Enable Jumper

2.6.6 I/O Ports

The MC68HC11F1 ports A, D, and G are accessible through JP2. See Figure 2.9 for a pin-out of this connector.
Note that if the SCI is being used, pins PD0 and PD1 are not available. This is also true for pins PG4 and PG5 if
the I/O chip selects are in use.

WARNING: the user needs to insure that PD0 and PD1 do not accidentally become connected to user hardware
on JP2 if the SCI is in use. Doing so may damage PD1. If the SCI is disabled there is no risk involved.

The MC68HC11F1 port E is accessible through JP1 along with the high and low reference voltages for the A/D
system. See Figure 2.10 for a pin-out of this connector.

Special Bootstrap Jumper

Pins TXD/PD1 and RXD/PDO of JP2 form a special bootstrap jumper for GROM. Upon start-up GROM does a
short loop-back test to see if these two pins are shorted. If so, default communications and start-up values are
loaded from ROM into EEPROM. This is useful if the EEPROM becomes corrupted or the application acciden-
tally reprograms it in such a manner that console I/O is lost. If it becomes necessary to use this special bootstrap
jumper, the GCB11 should be removed from all connectors and isolated from the network. To use it, simply short
PD1 and PD0 and then reset the GCB11. Note that this will only work if the firmware on the board supports this
operation (the EPROM shipped with the GCB11 does). See Section 3.6, GCB Registers and Section 4.2,
GCB Registers for more details.

 Care should be taken when connecting user hardware to PD1, since this loop back test is always done at start-up
from GROM. See Section 2.6.6, I/O Ports for additional warnings concerning PD1 and the SCI.

J
1
3

J
1
3

J
1
3

PG2PD2 Always Enabled (No Jumper)

Connectors and Jumpers

Hardware 2-11

FIGURE 2.9 JP2: Multipurpose Digital I/O Port

FIGURE 2.10 JP1: Analog Input Port

2.6.7 Expansion Buses

MC68HC11F1 Ports B, D, and F (address and data lines) as well as many other control signals are accessible
through JP7, the GCB11 expansion bus. See Figure 2.11 for a pin-out of this connector. With the exception of
READ and WRITE, all signals on the expansion bus are described in the MC68HC11F1 Technical Data book.

WRITE - the R/W control signal from the MC68HC11F1.

READ - an inverted R/W signal (W/R) which is created by U9 (see Figure 2.12).

IC
3/

PA
0

IC
1/

PA
2

O
C

4/
O

C
1/

PA
4

O
C

2/
O

C
1/

PA
6

IC
2/

PA
1

M
O

SI
/P

D
3

T
X

D
/P

D
1

R
X

D
/P

D
0

PG
1

PG
3

C
SI

O
1/

PG
5

O
C

5/
O

C
1/

PA
3

O
C

3/
O

C
1/

PA
5

PA
I/

O
C

1/
PA

7
SS

/P
D

5
SC

K
/P

D
4

M
IS

O
/P

D
2

PG
0

PG
2

C
SI

O
2/

PG
4

JP2

PE0/AN0
PE2/AN2
PE4/AN4
PE6/AN6

VRH

PE1/AN1
PE3/AN3
PE5/AN5
PE7/AN7
VRL

JP1

Connectors and Jumpers

2-12 GCB11 REFERENCE MANUAL

FIGURE 2.11 JP7: Expansion Bus

D3
D4

D5
D6
D7
A2

READ
A5

4XOUT
A15
A8

RESET
WRITE

VCC
CSIO2

A9

A11
A13

D1

A0
A1
A3
A4
E
CSIO1
A6
A7
IRQ
XIRQ
A14
GND
A10
A12

D2
GND

D0

JP7

Tables and Drawings

Hardware 2-13

2.7 Tables and Drawings

Notes:

• speed of U7 can be 2, 3, or 4 MHz

• speed of U6 and U8 depends on speed of U7

• X1 frequency can vary and is limited by speed of U7

Reference Designation Description

C1-2 18 pF @ 100V monolithic

C3-6 0.1 uF @ 50V electrolytic

C7 1.0 uF @ 35V tantalum

C8 33uF @ 35V electrolytic

CX3 0.01 uF @ 63V monolithic

CX1,2,4,5 0.1 uF @ 63V monolithic

CX6 1.0 uF @ 63V monolithic

J9-13, JP6 single row 0.1” header

JP1,2,7,J1-8 double row 0.1” header

JP5 4 position - 4 contact modular jack

P1 0.1” friction lock connector

R1,3-11 4.7K Ohm, 5%, 1/8 W

R2 10M Ohm, 5%, 1/8 W

U1 MC34164P-5 undervoltage sensing circuit

U2 MC34064P-5 undervoltage sensing circuit

U3 SN751178N RS485 differential transceiver

U5 MAX232ACPE 5V RS232 transceiver

U6 32K x 8 bit static RAM

U8 32K x 8 bit EPROM

U7 MC68HC11F1FN

U9 DTC114EA digital transistor

U10 LM7805 Voltage Regulator

UX3, 5 16-pin DIP socket

UX6,8 28-pin DIP socket

UX7 68-pin PLCC socket

X1 AT-cut crystal

TABLE 2.4 GCB11-F1 Parts List

Tables and Drawings

2-14 GCB11 REFERENCE MANUAL

FIGURE 2.12 GCB11-F1 Schematic

D
a
t
e
:

N
o
v
e
m
b
e
r

2
2
,

1
9
9
2
S
h
e
e
t

1

o
f

1

S
i
z
e
D
o
c
u
m
e
n
t

N
u
m
b
e
r

R
E
V

C
1

C

T
i
t
l
e

G
C
B
1
1

S
c
h
e
m
a
t
i
c

S
a
n

F
r
a
n
c
i
s
c
o
,

C
A

9
4
1
1
7

8
2

W
e
b
s
t
e
r

S
t
r
e
e
t

C
o
a
c
t
i
v
e

A
e
s
t
h
e
t
i
c
s

1

2
C
1

1

2
R
5 1

2
R
6

D
B
[
0
.
.
7
]

V
C
C

R

1

I
N

2

U
1

M
C
3
4
1
6
4

R

1

I
N

2

U
2

M
C
3
4
0
6
4

1

2
R
7

1

2

C
7

1

2

J
1
1

V
C
C

V
C
C

12

R
2

1

2
C
2

12

X
1

1

2

R
3

1

2
R
4

V
C
C

V
C
C

1

2
R
1

3

2

U
9

D
T
C
1
1
4
S

1
2

3
4

5
6

7
8

9
1
0

J
P
1

V
C
C

A 0 1 0A 1 9A 2 8A 3 7A 4 6A 5 5A 6 4A 7 3A 8 2 5A 9 2 4A 1 0 2 1A 1 1 2 3A 1 2 2A 1 3 2 6A 1 4 1

D 01 1 D 11 2 D 21 3 D 31 5 D 41 6 D 51 7 D 61 8 D 71 9

W E2 7 O E2 2 C S2 0

U
6

6
2
2
5
6

D B 0

D B 1

D B 2

D B 3

D B 4

D B 5

D B 6

D B 7

A 0 1 0A 1 9A 2 8A 3 7A 4 6A 5 5A 6 4A 7 3A 8 2 5A 9 2 4A 1 0 2 1A 1 1 2 3A 1 2 2A 1 3 2 6

D 01 1 D 11 2 D 21 3 D 31 5 D 41 6 D 51 7 D 61 8 D 71 9

O E2 2 C S2 0

A
1
4
/
V
P
P

1

W
E
/
A
1
4

2
7

U
8 G
E
N
2
5
6

D B 0

D B 1

D B 2

D B 3

D B 4

D B 5

D B 6

D B 7
J
9

1

2

J
1
0

A 8
A 9
A 1 0

A 1 1

A 1 2

A 1 3

A 1 4

1
2

3
4

5
6

7
8

9
1
0

1
1
1
2

1
3
1
4

1
5
1
6

1
7
1
8

1
9
2
0

2
1
2
2

2
3
2
4

2
5
2
6

2
7
2
8

2
9
3
0

3
1
3
2

3
3
3
4

3
5
3
6

J
P
7

A 0
A 1
A 2
A 3
A 4
A 5
A 6
A 7

A
[
0
.
.
1
5
]

A 1
A 3
A 5
A 7
A 9
A 1 1

A 1 3

A 1 5

A 0
A 1
A 2
A 3
A 4
A 5
A 6
A 7
A 8
A 9
A 1 0

A 1 1

A 1 2

A 1 3

A 1 4

A 0
A 2

A 4
A 6

A 8
A 1 0

A 1 2

A 1 4

A
0

A
1

A
2

A
3

A
4

1 2

R
9

D
1
/
P
C
1

1
0

D
2
/
P
C
2

1
1

D
3
/
P
C
3

1
2

D
4
/
P
C
4

1
3

D
5
/
P
C
5

1
4

D
6
/
P
C
6

1
5

D
7
/
P
C
7

1
6

R
E
S
E
T

1
7

X
I
R
Q

1
8

I
R
Q

1
9

C
S
P
R
G
/
P
G
7

2
0

C
S
G
E
N
/
P
G
6

2
1

C
S
I
O
1
/
P
G
5

2
2

C
S
I
O
2
/
P
G
4

2
3

P
G
3

2
4

P
G
2

2
5

P
G
1

2
6

P G 0 2 7R X D / P D 0 2 8T X D / P D 1 2 9M I S O / P D 2 3 0M O S I / P D 3 3 1S C K / P D 4 3 2S S / P D 5 3 3

P A 1 / O C 1 / P A 7 3 5O C 2 / O C 1 / P A 6 3 6O C 3 / O C 1 / P A 5 3 7O C 4 / O C 1 / P A 4 3 8O C 5 / I C 4 / O C 1 / P A 3 3 9I C 1 / P A 2 4 0I C 2 / P A 1 4 1I C 3 / P A 0 4 2A 1 5 / P B 7 4 3

P
E
4
/
A
N
4

6
0

P
E
0
/
A
N
0

5
9

P
F
0
/
A
0

5
8

P
F
1
/
A
1

5
7

P
F
2
/
A
2

5
6

P
F
3
/
A
3

5
5

P
F
4
/
A
4

5
4

P
F
5
/
A
5

5
3

P
F
6
/
A
6

5
2

P
F
7
/
A
7

5
1

P
B
0
/
A
8

5
0

P
B
1
/
A
9

4
9

P
B
2
/
A
1
0

4
8

P
B
3
/
A
1
1

4
7

P
B
4
/
A
1
2

4
6

P
B
4
/
A
1
3

4
5

P
B
6
/
A
1
4

4
4

P C 0 / D 09 4 X O U T8 X T A L7 E X T A L6 R / W5 E4 M O D A / L I R3 M O D B / V S T B Y2

V R H6 8 V R L6 7 P E 7 / A N 76 6 P E 3 / A N 36 5 P E 6 / A N 66 4 P E 2 / A N 26 3 P E 5 / A N 56 2 P E 1 / A N 16 1

U
7

M
C
6
8
H
C
1
1
F
1
F
N

D
B
0

D
B
1

D
B
2

D
B
3

D
B
4

D
B
5

D
B
6

D
B
7

V
C
C

1 2

R
8V
C
C

A
5

A
6

A
7

A
8

A
9

A
1
0

A
1
1

A
1
2

A
1
3

A
1
4

A
1
5

R
E
S
E
T

R
E
A
D

W
R
I
T
E

C
S
I
O
2

C
S
I
O
1

I
R
Q

X
I
R
Q

V
C
C

V
C
C

E 4
X
O
U
T

D
B
0

D
B
1

D
B
2

D
B
4

D
B
6

D
B
3

D
B
5

D
B
7

1
5

3

1

2

1
3

1
4

4

U
3
A

S
N
7
5
1
1
7
8

1 2

R
1
1

J
1
3

1
2

3
4

5
6

7
8

9
1
0

1
1
1
2

1
3
1
4

1
5
1
6

1
7
1
8

1
9
2
0

J
P
2

9

5

7

6

1
1

1
0

1 2

U
3
B

S
N
7
5
1
1
7
8

J
6

J
7

J
8

J
2

J
3

J
4

J
5

J
1

1 2 3 4J
P
6

12
C
5

C
1
+

1

V
+

2

C
1
-

3

C
2
+

4

C
2
-

5

V
-

6

T
2
O

7

R
2
I

8

R
2
O

9

T
2
I

1
0

T
1
I

1
1

R
1
O

1
2

R
1
I

1
3

T
1
O

1
4

U
5

M
A
X
2
3
2

12
C
6

V
C
C

1 2
C
3

1 2
C
4

P
1

P
W
R

V
C
C1 2

R
1
0

1
2

3
4 J
P
5

1
2 345 6 78

9

3
2

2
3

2
4

2
5

2
6

2
7

2
8

2
1

2
9

1
0

3
0

1
1

1
3

1
5
1
6

1
7

1
8

1
9

3
3
3
4

3
5

3
1

2
0

1
2

2
2

1
4

3
6

1
2

3
41

1
1

1
1

1
1

1

123 4

1

1

GROM 3-1

CHAPTER 3 GROM

3.1 Introduction

This chapter discusses the GCB11 ROM, or GROM. GROM encompasses code and data in RAM, EPROM,
EEPROM, and in the MC68HC11F1 I/O Registers. This primary focus of the chapter is on memory usage. It also
contains a comprehensive set of figures and tables covering all CPU and GROM resources. While this chapter
touches on every element of GROM, many topics are left to be discussed in detail in later chapters.

3.2 Memory Map

Figure 3.1 shows the memory map for the GCB11 running GROM. The column on the left shows which memory
locations are selected by the MC68HC11F1 chip selects and config registers. The column on the right represents
the type of memory available at each location. Many of the values shown in the figure are defined as macros in
gcb11.h and gcb11.inc. Since GROM can be configured in a number of different ways, the end of free RAM
and the start of EPROM are indicated by a “????”. See the readme file on the companion disk for the exact val-
ues for each configuration. GROM does not use the MC68HC11F1 I/O chip selects.

Memory Map

3-2 GCB11 REFERENCE MANUAL

FIGURE 3.1 GROM Memory Map

Interrupt Vectors
FFFF

FFD6

FFD5

FE00
GROM Call Table

GROM Code

GROM Constant Data

Free

EEPROM GCB Registers

Free

EPROM

EEPROM

RAM GCB Registers

I/O Registers

Interrupt Jump Table

GROM Data

Free

RAM

I/O Registers

CSPROG

EEPROM

CSGEN

ON-CHIP RAM

I/O Registers

FDFF

FD90

7CFF

????

????

0060

005F

00000000

005F

0060

03FF

0400

7DFF

7E00

7FFF

8000

FFFF

7DB0

7DAF

7DA0

7D9F

7D40

7D3F

7D00

FD8F

7FFF

7E51

7E50

7E00

7DFF

????

????

8000

GROM RAM Variables

GBUG RAM Variables

M68HC11 I/O Registers

GROM 3-3

3.3 M68HC11 I/O Registers

The term I/O Register is used here to signify any MC68HC11F1 status, control, or I/O register. GROM makes
extensive use of the I/O Registers, both at reset for configuring the hardware and during run-time when using on-
chip resources. The user should be aware of which Registers are being used and should be careful not to disturb
them. See CHAPTER 8, Building Applications, for more details on developing applications on the GCB11.

After reset, GROM changes some of the MC68HC11F1 I/O Registers to configure the memory map as described
in Section 3.2. This is done by GBUG if it is installed, or by user start-up code. See Section 3.11, Start-up
and CHAPTER 8, Building Applications for more details on start-up code. These Registers should not be
changed at any time and are listed in Table 3.1.

3.4 RAM Data

All RAM used by GROM is in a block at the top of RAM.

3.5 Interrupts

In addition to the M68HC11 interrupt vectors located at the top of memory (locations FFC0 - FFFF), GROM
provides a RAM interrupt jump table located at 0100. This jump table must be present for any of the GROM
code modules to function. The jump table contains 20 extended addressing mode JMP instructions, one for each
interrupt vector, with the exception of the reset (FFFE) and the reserved vectors. The reset vector is hard-coded to
point to start-up code when a ROM is made (see CHAPTER 8, Building Applications, for more details on
the reset vector). Each interrupt vector points to one of the jump instructions: FFD6 points to 0100, FFD8 points
to 0103, etc. In this way, the locations of interrupt service routines can be changed by changing the extended
addresses in the jump table. See CHAPTER 8, Building Applications, for more details on developing appli-
cations on the GCB11.

Upon start-up, each vector in the interrupt jump table is initialized to point to a dummy interrupt service routine
which has a single RTI. When GROM initializes the code modules, each module replaces the vectors it uses to
point to an interrupt service routine. See the following chapters on each of the code modules for more details.

I/O Register Value

CONFIG 7F

INIT 00

BPROT 00

CSGSIZ 01

CSGADR 00

CSCTL 05

TABLE 3.1 I/O Register Values Required by GROM

GCB Registers

3-4 GCB11 REFERENCE MANUAL

3.6 GCB Registers

GCB Registers are variables used by GROM which are preserved in EEPROM through power-cycles. These vari-
ables are normally read from EEPROM into RAM during start-up and can be updated at any time to preserve
changes. There are actually three copies of the GCB Registers in the system during run-time: one in RAM, one in
EEPROM, and one in EPROM. The locations of the EEPROM and RAM copies are listed in Section 3.2,
Memory Map. The EPROM GCB Registers are stored in GROM constant data (see Section 3.8).

GIOS provides functions for managing each of the GCB Register copies. Reading and writing the actual values
in the Registers is left to the individual code modules or user applications; GROM only sets aside space for them
in memory. All access by user applications should be to the Registers in RAM. Section 3.11, Start-up, dis-
cusses how the EEPROM copy is updated.

Table 3.2 lists each GCB Register and the code module which defines it. The offset is relative to the start of the
GCB Registers in RAM, EEPROM, and EPROM. Refer to the chapter on each code module for more details.
The first three Registers are also discussed in Section 3.11, Start-up.

3.7 GAPP, GBUG, GIOS, and GNET

The GCB11 comes shipped with an EPROM which contains all four GROM code modules:

• GCB11 Applications, or GAPP

• GCB11 Monitor/Debugger, or GBUG

• GCB11 I/O System, or GIOS

• GCB11 Network Software, or GNET (as of version 1.3, GNET is optional)

Each of these modules is described in detail in the following chapters. When building application EPROMs, the
user can choose which of the GROM code modules are needed, and include only those in the new EPROM. See

GCB Register Offset Size Module

SCIBAUD 00 1 GIOS, GNET

SCIENABLE 02 1 GIOS, GNET

SCISTART 03 1 GIOS, GNET

SPIBAUD 04 1 GIOS

SPIMODE 05 1 GIOS

SPITIMER 06 1 GIOS

GBUGSTRM 09 1 GBUG

GBUGRR 0A 2 GBUG

GNETCOUNT 0C 1 GNET

GNETMODE 0D 1 GNET

GNETNODE 0E 1 GNET

GNETPOLL 0F 1 GNET

GNETTABLE 10 64 GNET

TABLE 3.2 GCB Registers

Constant Data

GROM 3-5

CHAPTER 8, Building Applications, for more details. Note that GIOS is needed to configure the system and
to use any of the other code modules.

3.8 Constant Data

GROM contains constant data in EPROM which the user can use directly. Since application programs are not
linked directly with GROM, this data is stored at a fixed location in memory. Currently, there are three types of
data stored in the GROM constant data:

• Default values for the GCB Registers.

• Pointer to the built-in Stream driver configuration tables.

• Constants which depend on the crystal speed of the GCB11.

3.8.1 GCB Registers

The default values for each of the GCB Registers is stored here. See Section 3.11.3, GCB Registers, for
more details. The base address for the Registers is FD90. Use the offsets from TABLE 3.2, GCB Registers for
the exact location of each register.

3.8.2 Stream Driver Configuration Tables

GROM provides three Stream drivers which the user can access using GIOS (see Section 4.3.3). The driver
configuration tables for these are located in GROM Constant Data. Table 3.3 lists the addresses of these configu-
ration tables.

3.8.3 Crystal Speed Dependent Constants

GROM depends on several constants which change with the GCB11 crystal speed. The user may access these
constants as well. Table 3.4 lists the addresses and sizes of each of these constants.

The SCI baud rates are used by GIOS and GNET and are described in more detail in Section 3.11.4.1.

The EEPROM_DELAY constant is used in programming the MC68HC11 EEPROM and is described in
Section 4.4.

Stream Driver
Address of Pointer to
Configuration Table

SD_SCI FDE0

SD_SPI FDE2

SD_GNET FDE4

TABLE 3.3 GROM Stream Driver Configuration Table Addresses

Call Table

3-6 GCB11 REFERENCE MANUAL

3.9 Call Table

The main interface to GAPP, GIOS, and GNET is through function calls. Since the exact location of GROM
functions can change depending on which code modules are present in the EPROM, all GROM functions are
accessed through a call table which is fixed in memory just under the interrupt vectors (see Section 3.2, Mem-
ory Map, above). The call table contains a JMP instruction to the beginning of each function. User code should
call GROM functions by executing a JSR instruction to the entry in the call table for the function they wish to
use. The tables at the end of this section list the addresses in the call table for each GROM function. These
addresses will never change, even in future releases of GROM.

All GROM functions follow the same calling conventions. Although the function descriptions in CHAPTER 9,
Programmer’s Reference, are listed in C, the method by which arguments are passed to them is defined in
assembly language. To call the functions from C, a wrapper function must be written for each function and linked
to the application. These wrapper functions should take the arguments from the C call, reformat them for GROM,
and perform a JSR instruction to the proper call table address.

Based on the ANSI C syntax used to describe the functions in the man pages, arguments should be passed using
the following rules:

• there is no padding or alignment required, so only the minimum number of bytes needed to represent
the type should be used.

• arguments are pushed on the stack in reverse order, with the exception of the first argument.

• if the first argument is a single byte type, the argument is placed in register B and register A is set to
zero.

• if the first argument is a two byte type, it is placed in the D register.

Functions return values in the following manner:

• if the return value is a single byte type, it is returned in B.

• if the return value is a two byte type, is returned in D.

Constant Address Size

SCI_BAUD_38400 FDF0 1

SCI_BAUD_19200 FDF1 1

SCI_BAUD_14400 FDF2 1

SCI_BAUD_9600 FDF3 1

SCI_BAUD_4800 FDF4 1

SCI_BAUD_2400 FDF5 1

SCI_BAUD_1200 FDF6 1

SCI_BAUD_600 FDF7 1

SCI_BAUD_300 FDF8 1

EEPROM_DELAY FDF9 2

TABLE 3.4 Crystal Speed Dependent Constants

Call Table

GROM 3-7

Table 3.5 lists the sizes for each ANCI C type specifier used by the GROM functions. Note that in all multi-byte
types, the most significant bytes are in the lowest memory addresses.

Table 3.6 through Table 3.12 list all the GROM call table functions and their addresses. They are grouped alpha-
betically by include file. See the readme file on the companion disk for a complete list of include files.

Type Size in Bytes

char one

unsigned char one

short two

unsigned short two

int two

unsigned int two

pointer two

TABLE 3.5 Byte Size of GROM C Types

Function Address

isalnum FE03

isalpha FE06

iscntrl FE09

isdigit FE0C

isgraph FE0F

islower FE12

isprint FE15

ispunct FE18

isspace FE1B

isupper FE1E

isxdigit FE21

toupper FE24

tolower FE27

TABLE 3.6 ctype.h Functions Call Table

Call Table

3-8 GCB11 REFERENCE MANUAL

Function Address

ga_get_counter FE2A

ga_init_motor FE2D

ga_motor_speed FE30

ga_motor_dir FE33

ga_motor_reverse FE36

ga_motor_faster FE39

ga_motor_record FEC2

ga_motor_slower FE3C

ga_motor_state FEC5

ga_setup_motors FE3F

ga_start_counter FE42

ga_stop_counter FE45

ga_set_counter FE48

TABLE 3.7 gapp.h Functions Call Table

Call Table

GROM 3-9

Function Address

gi_gcb_checksum FE4B

gi_gcb_etoee FE4E

gi_gcb_eetor FE51

gi_gcb_loopback FE54

gi_drvr_close FE57

gi_drvr_init FE5A

gi_drvr_ioctl FE5D

gi_drvr_open FE60

gi_eeprom_erase FE63

gi_eeprom_erase_bulk FE66

gi_eeprom_erase_row FE69

gi_eeprom_write FE6C

gi_intr_disable FE6F

gi_intr_dummy FE72

gi_intr_enable FE75

gi_intr_rti FE78

gi_intr_swi FE7B

gi_sci_free FF83

gi_sci_reinit FF86

gi_strm_attach FE7E

gi_strm_detach FE81

gi_strm_flush FE84

gi_strm_getchar FE87

gi_strm_gets FE8A

gi_strm_init FE8D

gi_strm_input FE90

gi_strm_output FE93

gi_strm_printf FE96

gi_strm_pull FE99

gi_strm_push FE9C

gi_strm_putchar FE9F

gi_strm_puts FEA2

gi_strm_size FEA5

gi_strm_stdio FEA8

TABLE 3.8 gios.h Functions Call Table

Call Table

3-10 GCB11 REFERENCE MANUAL

Function Address

gn_add_poll FEAB

gn_auto_poll FEAE

gn_close_port_l0 FEB1

gn_close_port_l1 FEB4

gn_config_node FEB7

gn_exit_comms FEBA

gn_get_config FEBD

gn_get_message_l1 FEC0

gn_get_poll FEC3

gn_get_stats FEC6

gn_init_comms FEC9

gn_message_rdy_l1 FECC

gn_open_port_l0 FECF

gn_open_port_l1 FED2

gn_reset_net FED5

gn_restore_config FED8

gn_save_config FEDB

gn_send_message_l0 FEDE

gn_send_message_l1 FEE1

gn_set_poll FEE4

gn_start_poll FEE7

gn_suspend_poll FEEA

TABLE 3.9 gnet.h Functions Call Table

Function Address

getchar FF50

gets FF53

printf FF56

putchar FF59

puts FF5C

sprintf FF5F

vprintf FF62

vsprintf FF65

TABLE 3.10 stdio.h Functions Call Table

Stack Requirements

GROM 3-11

3.10 Stack Requirements

Each GROM code module requires stack space to operate. This stack space is taken from the application stack
when a GROM function call is made. In addition, any interrupts which occur use the application stack for storing
the interrupt stack frame and for running the interrupt service routine. Table 3.13 lists the stack requirements of
each GROM code module with the exception of GBUG which allocates its own stack during start-up (this mem-
ory is taken from GROM RAM data, see Section 3.2). Remember to add in the requirements of the application
code when computing the stack size.

Function Address

abs FF68

atoi FF6B

div FF71

TABLE 3.11 stdlib.h Functions Call Table

Function Address

memchr FF89

memcmp FF8C

memmove FF8F

memcpy FF92

memset FF95

strcat FF98

strchr FF9B

strcmp FF9E

strcpy FFA1

strcspn FFA4

strlen FFA7

strncat FFAA

strncmp FFAD

strncpy FFB0

strpbrk FFB3

strrchr FFB6

strspn FFB9

strstr FFBC

strtok FFBF

TABLE 3.12 string.h Functions Call Table

Start-up

3-12 GCB11 REFERENCE MANUAL

3.11 Start-up

GROM requires that certain initialization procedures occur during start-up.

• Initialize MC68HC11 I/O Registers

• Set up stack pointer

• Set up GCB Registers

• Initialize communications

Each of these steps is described in the following sections. Example initialization code, described in
Section 8.6, Initialization, is supplied on the companion disk.

3.11.1 MC68HC11 I/O Registers

Table 3.1 in Section 3.3 describes the I/O Register values required for GROM to operate. See the example in
Section 8.6, Initialization for the recommended order of initialization. Note that some of these Registers must
be changed in the first 64 E cycles of the MC68HC11. See the M68HC11 Reference Manual for more details.

3.11.2 Stack Pointer

The MC68HC11 stack pointer, or SP register, must be initialized before any JSR calls are made. Section 3.10
gives the required stack size for each code module.

3.11.3 GCB Registers

As described in Section 3.6, GROM contains three copies of the GCB Registers. Each copy is described below:

RAM - this copy is the one actually used for reads and writes during run-time. The values must be copied
from EEPROM to RAM before being used by calling the gi_gcb_eetor function. If GBUG is
installed, this is handled automatically. The function can be called at any time to reset the RAM GCB
Registers to their EEPROM defaults.

EEPROM - this copy is used as the default at reset. Because it is located in EEPROM, the values are pre-
served through power-cycles. These values can be written from the EPROM copy using the GIOS
function gi_gcb_etoee. The EEPROM Registers are updated from RAM individually by each code
module.

EPROM - these are the factory defaults and cannot be changed.

Because the GCB Registers are responsible for configuring most of the I/O on the GCB11, if they become cor-
rupted it can become impossible to communicate with the board by any means. To recover from such a situation,

Module Required Stack Size

GIOS 32

GIOS 256

GNET 32

TABLE 3.13 Stack Requirements of GROM Code Modules.

Start-up

GROM 3-13

two functions have been included in GIOS for detecting the need for the GCB Registers to be restored to their
factory defaults using gi_gcb_etoee. These functions should be called in the initialization code of any custom
ROM.

• Each time the EEPROM copy of the GCB Registers is written, a checksum is computed and stored in
EEPROM immediately following the last Register using the GIOS function gi_gcb_checksum.
gi_gcb_checksum may be used to recompute the checksum and compare it to the value stored dur-
ing the last write. If the checksums do not match, the function returns FAILURE.

• gi_gcb_loopback performs a loop-back test on pins PD0 and PD1 of JP2 (see Section 2.6.6 for
the location of these pins). If all connectors are removed from the GCB11 and these two pins are
shorted together during the gi_gcb_loopback call, the function returns FAILURE.

If gi_gcb_checksum or gi_gcb_loopback returns FAILURE, gi_gcb_etoee should be called. GBUG does
this in its initialization code.

3.11.4 Communications

The GCB11 has several communication drivers which may be configured to initialize on start-up. The configura-
tions for these drivers are stored in three GCB Registers:

• SCIBAUD

• SCIENABLE

• SCISTART

• SPIMODE, SPITIMER, and SPIBAUD

See Section 3.6 for more details on GCB Registers. Note that the start-up code should check these values and
perform the necessary initialization. See the example initialization code on the companion disk, described in
Section 8.6, Initialization, for more details

There are also two GROM ram variables which affect communications:

• SCIDRIVER

• STDIO

Each of these Registers is described in the following sections.

3.11.4.1 SCIBAUD

The SCIBAUD GCB Register contains the baud rate for the MC68HC11 SCI. This baud rate is used for both the
GNET network driver and the SCI and GNET Stream drivers. The values stored in this Register can be converted
to the actual values programmed into the BUAD I/O register by using the SCI_BAUD() macro in gios.h. Since
the baud rate is dependent upon the crystal speed of the GCB11, SCI_BAUD() uses data stored in GROM con-
stant data to compute the register value. See Section 3.8.3 for the exact location of each baud rate constant.

The possible values for SCIBAUD are:

• BAUD_38400 (0)

• BAUD_19200 (1)

• BAUD_14400 (2)

• BAUD_9600 (3)

• BAUD_4800 (4)

Start-up

3-14 GCB11 REFERENCE MANUAL

• BAUD_2400 (5)

• BAUD_1200 (6)

• BAUD_600 (7)

• BAUD_300 (8)

3.11.4.2 SCIENABLE

This parameter determines which of the MC68HC11 pins PG2 or PD2 are used to enable the RS485 drivers. This
Register may take on the following values:

• NO_ENABLE (0)

• PG2_ENABLE (2)

• PD2_ENABLE (8)

As defined in gcb11.h and gcb11.inc, PG2_ENABLE and PD2_ENABLE are the actual addresses of the G and D
Ports on the MC68HC11.

3.11.4.3 SCISTART

This Register is used to specify which device driver, if any, is configured on the SCI at start-up. The possible val-
ues for this Register are:

• SCI_START_NONE (0) - no SCI initialization

• SCI_START_TERM (1) - initialize the SCI Stream driver

• SCI_START_GNET (2) - initialize GNET

• SCI_START_GNET_STRM (3) - initialize GNET and the GNET Stream driver.

3.11.4.4 SPIMODE, SPITIMER, and SPIBAUD

These registers control the SPI Stream driver. These are described in detail in Section 4.3.3.2, SPI Driver.

3.11.4.5 SCIDRIVER

This GROM RAM variable determines which driver currently has control of the SCI. It should not be set by the
user, but should be read to insure that it is NO_DRIVER (0) before programming the SCI from the application pro-
gram.

3.11.4.6 STDIO

The STDIO GROM RAM variable holds the address of the default GIOS Stream set by gi_strm_stdio. See
section Section 4.3.1.3, Level 1 I/O for more details.

GIOS 4-1

CHAPTER 4 GIOS

4.1 Introduction

GIOS is a code module in GROM used for accessing and controlling the various components of the GCB11 sys-
tem. It contains functions for using GCB Registers, Streams, and EEPROM. GIOS also includes a subset of the
Standard C Library functions.

GIOS functions can be divided into the following categories:

• GCB Register functions - routines for updating and validating GCB Registers.

• GIOS Stream functions - routines for sending and receiving characters through any number of devices
on the GCB11.

• EEPROM functions - routines to write and erase EEPROM.

• Interrupt Utilities - routines for enabling, disabling, and returning from interrupts.

• Standard Library functions - a subset of the ANSI Standard C Library functions.

All GIOS functions are called through the GROM call table described in Section 3.9.

4.2 GCB Registers

GCB Registers are variables used by GROM which are preserved in EEPROM through power-cycles. A com-
plete description of GCB Registers in given in Section 3.6. GIOS supplies four functions for operating on GCB
Registers:

gi_gcb_checksum - computes and writes the checksum of the EEPROM GCB Registers. Optionally
compares this to the previous value stored in EEPROM and returns FAILURE if it is different.

gi_gcb_eetor -copies the EEPROM GCB Registers to RAM.

gi_gcb_etoee - copies the factory default EPROM GCB Registers to EEPROM. The Registers are
checksummed and this value is written to EEPROM immediately following the last Register.

gi_gcb_loopback - performs a loop-back test between pins PD0 and PD1 on JP2 (see Section 2.6.6, I/
O Ports, for details on this connector). If the pins are shorted together, it returns FAILURE.

GIOS Streams

4-2 GCB11 REFERENCE MANUAL

4.3 GIOS Streams

GIOS Streams allow programs to transfer ASCII data to and from the GCB11 in a consistent manner indepen-
dent of the hardware used for the physical communication. Similar to the concept of data streams in C, GIOS
Streams can be opened on communication device drivers and then written to and read from using functions like
getchar(), putchar(), and printf(). The device drivers used by GIOS Streams are called Stream drivers.
Figure 4.1 shows how Streams and Stream drivers are layered between an application and the GCB11 hardware.
GROM supplies Stream drivers for the SCI, SPI, and GNET which are described below in Section 4.3.3,
GROM Stream Drivers. In addition, GIOS supplies functions which allow users to create their own Stream
drivers.

FIGURE 4.1 GIOS Streams

GIOS Streams and Stream drivers can be initialized and opened independently. GIOS supplies functions which
attach and detach Streams and Stream drivers dynamically. When a Stream is opened, it is not attached to any
Stream driver; all output sent to the Stream is stored in internal buffers and no input is possible. When a Stream
driver is opened, it is not attached to any Stream; all input received by the driver is thrown away, and no output is
possible. GIOS acts like a switching station between Streams and drivers, connecting any Stream to any driver at
the application program’s request. This allows programs like GBUG to provide I/O with a number of hardware
devices without changing its high-level interface.

The interface between a Stream and its driver is accomplished by sharing two data buffers: an input buffer and an
output buffer. These buffers belong to the Stream, and all application I/O on the Stream is actually performed
with these buffers. Reads on the Stream take data from the Stream’s input buffer. Writes on the Stream put char-
acters in the Stream’s output buffer. When a driver is attached to the Stream, the driver can call functions which

Application

Stream

Input
Buffer

Output
Buffer

Driver

Hardware

- Data - Control

GIOS Streams

GIOS 4-3

do reads and writes on these buffers in an inverse fashion relative to the application. A driver writes to a Stream’s
input buffer and reads from a Stream’s output buffer.

GIOS allows applications on the GCB11 to designate a Stream as the default Stream for all standard I/O. Similar
to the way UNIX uses stdin and stdout, this default Stream is used when functions such as printf() and
getchar() are used.

GIOS Streams also support both software and hardware flow control. Software flow control is built into the
Stream functions. Hardware flow control is handled by the Stream drivers.

4.3.1 Stream Functions

This section describes the functions supplied by GIOS for using Streams. These functions can be divided into
four categories, each of which is described in a section below:

• Initialization - initialize, open, close, attach, and detach.

• Level 0 I/O - read, write, flush, and return the size.

• Level 1 I/O - read and write formatted characters and strings.

• Driver Calls - functions for use by Stream drivers.

In addition to the following sections and the man pages in CHAPTER 9, Programmer’s Reference, users
should consult the companion disk, which contains a complete example application that makes use of multiple
Streams and Stream drivers.

4.3.1.1 Initialization

All the Stream functions require a pointer to a Stream structure, defined in gios.h. The storage for the Stream
must be allocated by the user before calling any of these functions.

gi_strm_init - initializes a Stream and assigns the input and output buffers. These buffers must be allo-
cated by the user. Also sets flow control parameters and the type of flow control to use for the Stream.
Note that these parameters cannot be changed without first closing the Stream.

gi_strm_attach - attaches a Stream to a driver. Detaches any existing driver first. Any data in the
Stream output buffer is sent to the driver.

gi_strm_detach - detaches a Stream from a driver. The Stream’s input and output buffers are preserved.
Reads and writes on the Stream can still be performed.

4.3.1.2 Level 0 I/O

Level 0 Stream functions operate directly on the Stream structure and the input and output buffers. These func-
tions provide the most efficient access to Streams. The level 1 functions described in the following section are
built on top of these functions.

gi_strm_input - reads a byte from the input buffer

gi_strm_output - writes a byte to the output buffer

gi_strm_flush - wait for output buffer to empty

gi_strm_size- returns the size of the input or output buffer

GIOS Streams

4-4 GCB11 REFERENCE MANUAL

4.3.1.3 Level 1 I/O

Level 1 Stream functions are built on top of the level 0 functions. They provide an interface similar to that of the
C Standard Library character I/O functions. See Section 4.6.1, Stdio Functions, for more details.

With the exception of a Stream pointer argument, the following functions behave exactly as the Standard Library
function which is named in their suffix. See any reference which describes the ANSI C Standard for more details.

gi_strm_putchar- writes a single character to the output buffer

gi_strm_puts - writes a string to the output buffer

gi_strm_printf - writes a formatted string to the output buffer

gi_strm_getchar - reads a single character from the input buffer

gi_strm_gets - reads a string terminated by a carriage return from the input buffer

The character I/O Standard C Library functions described in Section 4.6.1 use the default GROM Stream for
their I/O. This Stream is set using the gi_strm_stdio function. gi_strm_stdio stores the address of the
Stream it is passed and places it in the STDIO GCB Register. Any function which takes an explicit Stream pointer
argument can use STDIO to access this default Stream. See Section 3.6 for a complete description of GCB Reg-
isters.

gi_strm_stdio - sets the default Stream for the character I/O Standard C Library Functions.

4.3.1.4 Driver Calls

GIOS provides two functions for Stream drivers to access a Stream’s input and output buffers.

gi_strm_pull - reads the next byte from the output buffer

gi_strm_push - writes a byte to the input buffer

4.3.2 Stream Drivers

GIOS Stream drivers form the interface between Streams and the communications hardware on the GCB11. Typ-
ically a driver is implemented as an interrupt service routine. When a Stream is attached to a driver, the Stream
obtains a pointer to the driver and vice versa. This allows the driver to use Stream functions on its attached
Stream, and allows the Stream to invoke driver functions.

Drivers communicate with Streams by calling special functions in GIOS designed for this purpose. gi_strm_-
push and gi_strm_pull write and read bytes from the Stream’s input and output buffers respectively. These
are the only Stream functions which should be called from within an interrupt service routine. In addition, when
calling these functions, care must be taken to ensure that application code cannot make calls to the Stream func-
tions. This is usually accomplished by disabling interrupts (done automatically if the driver is an interrupt service
routine).

Streams communicate with drivers by invoking call-back functions which must be specified during driver initial-
ization. These call-backs, in addition to initialization and configuration function pointers and custom parameters

GIOS Streams

GIOS 4-5

used by each driver, are stored in memory in a Driver Configuration Table. The format of this table is defined in
gios.h as the DriverTable structure:

typedef struct {

/*

** initialization and configuration functions

*/

int *init;

int *open;

int *close;

int *ioctl;

/*

** run-time call-backs

*/

void *start_send;

void *intr_disable;

void *intr_enable

void *hfc_stop

void *hfc_start;

/*

** custom parameters should follow in memory

*/

}

DriverTable;

The following two section describe each of these functions pointed to in this table.

4.3.2.1 Run-Time Call-Backs

The run-time call-back functions are called by internal GIOS Stream code and never accessed directly by the
user. If a driver does not support one or more of these functions, they should be set to NULL in the Driver Config-
uration Table. These functions should preserve all registers (including D). Each of the run-time call-backs is
described below:

start_send - this function is used to tell the driver that data is available in the Stream output buffer
which needs to be sent out. Although this function is only called when a byte is added to an empty
output buffer by an application or when software flow control characters need to sent out, drivers
should be able to respond to this call at all times. This function is useful when drivers are imple-
mented as interrupt service routines using interrupts that can be disabled when there is nothing to do,
such as the SCI.

intr_disable - this function is used by the Stream functions to ensure that they cannot be interrupted by
the driver which is attached to the Stream (by calling gi_strm_push or gi_strm_pull). This is
needed to ensure that the Stream buffer information is not corrupted during manipulation. For exam-
ple, if the driver is implemented as an interrupt service routine, intr_disable would disable the
interrupts associated with the driver. Note that intr_disable will always be followed by a
intr_enable.

intr_enable - this function is called by the Stream functions when it is safe for the driver to make calls
to the Stream (see intr_disable above). Note that intr_enable will always be preceded by a
intr_disable.

GIOS Streams

4-6 GCB11 REFERENCE MANUAL

hfc_stop - this function is called when hardware flow control is enabled and the input buffer reaches the
max_in level specified for the Stream by gi_strm_init. If the driver supports hardware flow con-
trol, this function should do whatever is necessary to stop the incoming data flow.

hfc_start - this function is called when hardware flow control is enabled, flow has been stopped by
hfc_stop (see above), and the input buffer reaches the min_in level specified for the Stream by
gi_strm_init. If the driver supports hardware flow control, this function should do whatever is
necessary to restart the incoming data flow.

4.3.2.2 Initialization and Configuration Functions

The initialization and configuration functions for a Stream driver are called indirectly using GIOS functions
which access the driver functions through the pointers specified in the Driver Configuration Table. Before using a
Stream driver, a Driver structure should be created. The Driver structure from gios.h is listed here for refer-
ence.When defining and initializing a Driver in application code, the user must be sure to set next and stream
to NULL and copy the pointer to the DriverTable into table.

typedef struct{

void *next; /* pointer to next driver */

void *stream; /* pointer to connected stream */

DriverTable *table; /* ptr to Driver Config Table */

/*

** custom parameters should follow in memory here

*/

}

Driver;

The functions listed below call the initialization and configuration function which are contained in the DriverT-
able structure pointed to in the Driver structure:

gi_drvr_init - perform any initialization specific to the driver. Does not need to activate the driver.

gi_drvr_open - activate the input and output channels. This call should allocate all the necessary system
resources to allow a Stream to use the driver.

gi_drvr_close - deactivate the input and output channels. This call should free all the necessary system
resources allocated in gi_drvr_open.

gi_drvr_ioctl - pass a variable argument list to the driver. This call can be used to do custom configu-
ration or to change default driver parameters.

4.3.3 GROM Stream Drivers

GROM contains code and configuration tables for three Stream Drivers:

• the SCI

• the SPI

• GNET

The configuration tables for each driver are located in GROM constant data. See Section 3.8, Constant Data,
for details.

GIOS Streams

GIOS 4-7

Each GROM driver is described in detail in the following sections, including which call-back functions are sup-
ported and any limitations of the driver. Each of the functions described in Section 4.3.3, GROM Stream
Drivers is supported by all three drivers. The arguments for the gi_drvr_ioctl functions for each driver are
detailed below.

Note that the SCI and GNET drivers both share the MC68HC11 asynchronous serial communications interface,
or SCI. To avoid conflicts between these two drivers, two variables are used control access to the SCI. The first,
the GCB Register SCISTART, controls what communications driver, if any, is assigned to the SCI at start-up. The
second, GROM RAM variable SCIDRIVER, indicates what GROM code currently has control of the SCI. Appli-
cation programs should be sure that SCIDRIVER is set to NO_DRIVER (0), indicating that the SCI is not being
used by GROM, before programming the SCI directly. See Section 3.11.4 for a more detailed description of
these variables.

Table 4.1 shows all the MC68HC11 resources used by the GROM drivers.

4.3.3.1 SCI Driver

The SCI Stream driver is implemented as an SCI interrupt service routine. Hardware flow control is not sup-
ported. The only parameter which can be configured by gi_drvr_ioctl is the SCI baud rate. When
gi_drvr_init is called on the SCI driver, the baud rate is initialized to the GCB Register SCIBAUD. See the
Companion disk for the details of the gi_drvr_ioctl calls.

Driver Ports Registers Used
Interrupt
Vector

SCI PORTD-PD0-1

PORTD-PD2 or

PORTG-PG2

BAUD

SCCR1

SCCR2

SCDR

SCSR

INTVSCI

SPI PORTD-PD2-5 SPCR

SPDR

SPSR

INTVSPI

GNET PORTD-PD0-1

PORTD-PD2 or

PORTG-PG2

BAUD

SCCR1

SCCR2

SCDR

SCSR

TFLG2 - RTIF

TMSK2 - RTII

TMSK2 - PR1

TMSK2 - PR0

INTVSCI

INTVREALTIME

 TABLE 4.1 GROM Stream Driver MC68HC11 Resource Usage

GIOS Streams

4-8 GCB11 REFERENCE MANUAL

4.3.3.2 SPI Driver

The SPI Stream driver uses the MC68HC11 Serial Peripheral Interface, or SPI. See Chapter 8 in the M68HC11
Reference Manual for details on the SPI. The SPI driver allows two GCB11s to be connected together using their
SPI ports (note only one slave is allowed). See Section 6.3 for a description of this interconnection. By routing
all character I/O through the SPI and using the SPI_MON example program on the companion disk, the SCI can
be freed up for some other purpose.

The SPI driver can be initialized in two modes, master or slave. The default configuration is as a slave. gi_drv-
r_ioctl can be used to change the configuration to master, as well as to set the baud rate and to assign a timing
source for the master. The master can use the real-time interrupt or any of the output compare interrupts as a
clock source. In any case, the driver is implemented as an interrupt service routine. Note that in slave mode, the
timer and baud rate configurations are not used.

See the Companion disk for the details of the gi_drvr_ioctl calls.

Note that the SPI driver will not send a data byte of 0, prohibiting the transmission of binary data.

4.3.3.3 GNET Driver

The GNET Stream driver allows Stream I/O to be routed through the GNET network software to another node on
the network. When the GNET Stream driver is open, GNET multiplexes the Stream I/O with the normal network
traffic of the node. The GNET Stream driver sends and receives the Stream data by packing the data bytes in a
GNET message. When sending, all bytes in the Stream output buffer are sent in a single message. Any bytes
received are placed in the input buffer. Stream data can only be exchanged between Stream partner nodes. Stream
partners are described in Section 6.4.

In GROM 1.4, The gi_drvr_ioctl function for the GNET driver provides no functionality. All configuration of
the network should be done using GNET function calls.

4.3.3.4 Sharing the SCI with GBUG

GBUG uses the GROM Stream drivers to communicate with the outside world. This can be a problem when an
application wishes to use the SCI for some other purpose (e.g. a different Stream driver than the one GBUG is
using). The problem occurs because closing a Stream driver requires knowledge of its address, and GBUG data is
hidden from applications. There are two special functions in GROM to help overcome this problem.These func-
tions allow an application to close ANY SCI driver that is being used by GBUG, and also allows the driver to be
reinitialized when the application is finished so GBUG will continue to operate.

gi_sci_free -frees the SCI driver which is being used by GBUG. This function returns a pointer to the
Stream that GBUG was using and the state of the SCIDRIVER GROM RAM variable indicating
which driver was being used and how it was configured.

gi_sci_reinit -returns the SCI to the state it was in before gi_sci_free was called and reattaches
the Stream which GBUG was using. Uses the data returned by gi_sci_free.

4.3.4 Custom Stream Drivers

To write a custom Stream driver, the code for each of the nine functions in the DriverTable should be compiled
and a DriverTable initialized to point to each one.

EEPROM

GIOS 4-9

4.4 EEPROM

GROM contains functions for writing and erasing EEPROM. Each of these functions is taken directly from Sec-
tion 4.3.5.1 of the M68HC11 Reference Manual. Users should read all of Chapter 4 in the M68HC11 Reference
Manual before using EEPROM. The delay used for programming the EEPROM is stored in GROM constant
data. See section Section 3.8.3, Crystal Speed Dependent Constants, for more details.

gi_eeprom_erase - erases a single byte of EEPROM.

gi_eeprom_erase_bulk - erases all of EEPROM.

gi_eeprom_erase_row - erases a single row of EEPROM. A row is sixteen bytes starting on an even
sixteen -byte boundary (7E00, 7E10, 7E20, etc...).

gi_eeprom_write - writes a single byte of EEPROM.

Table 4.1 shows all the MC68HC11 resources used by the EEPROM routines.

4.5 Interrupt Utilities

GIOS provides the following routines for using interrupts:

gi_intr_disable - disables interrupts using the SEI instruction.

gi_intr_dummy - dummy interrupt service routine which executes a RTI instruction.

gi_intr_enable - enables interrupts using the CLI instruction.

gi_intr_rti - issues an RTI instruction. This can be used when writing interrupt service routines in C.
Note that this routine works only if the SP register points to the interrupt stack frame (i.e.the SP is the
same value as it was when entering the ISR). Without special care, this will not always be true. Some
compilers always mess with the stack upon entering a C function (e.g. GCC 2.3.3). Also, declaring
automatic variables in the ISR will usually change the SP.

gi_intr_swi - issues an SWI instruction. This can be used to return to GBUG from a C routine.

4.6 Standard Library

GIOS includes a subset of the functions in the Standard C Library. Most of the commonly used functions are
included. There is no long or floating point support. The Standard C Library include files on the GCB11 compan-
ion disk contain ANSI C prototypes for each of the functions. For a complete list of supported functions, see the
tables in Section 3.9, Call Table. Man pages for these functions are not included in CHAPTER 9, Program-
mer’s Reference. For a complete description of these functions, see any reference on the ANSI C Standard, for
example The C Programming Language by Kernighan and Ritchie or The Standard C Library by Plauger.

Function Ports Registers
Interrupt
Vectors

All PPROG

TABLE 4.2 GIOS EEPROM MC68HC11 Resource Usage

Standard Library

4-10 GCB11 REFERENCE MANUAL

4.6.1 Stdio Functions

The following character I/O functions use the GCB Register STDIO as a pointer to a GIOS Stream. STDIO is set
with the gi_strm_stdio() function call.

• getchar

• gets

• printf

• putchar

• puts

• vprintf

GBUG 5-1

CHAPTER 5 GBUG

5.1 Introduction

This chapter describes the GROM Monitor and Debugger, or GBUG. GBUG provides the user with a simple
interface for downloading data, inspecting memory, and running and debugging programs.

Note that because of space limitations in the ROM, some of the functionality described in the section will not
always be available in every GROM configuration. This may include the GROM EPROM shipped with the
GCB11. See the README file on the companion disk for details of what functionality is missing in each configu-
ration.

5.2 Getting Started

5.2.1 Getting a Connection

GBUG performs input and output through a dedicated GIOS Stream (see Section 5.3.1, I/O Streams, for
more details). When shipped from the factory, GBUG’s Stream is configured for a direct connection through the
SCI to ports JP5 or JP6 (RS485 or RS232 respectively) with the following communications protocol:

• 9600 baud

• 8 data bits

• no parity

• 1 stop bit

If a terminal with the above protocol is connected to either of these ports and the GCB11 is reset, you should see
the following:

GROM 1.4, Copyright(c) 1993 Coactive Aesthetics, All Rights Reserved

A:00 D:0000 IX:0000 SP:0000 CCR:00 (00000000)

B:00 IY:0000 PC:0000 (SXHINZVC)

0000: FF 00 FF STX 00FF

]

This is a display of the GROM version number, the CPU registers, the next line of assembly language to execute,
and a GBUG command prompt. If this display does not appear, try inserting a null modem into the serial connec-
tion and resetting the GCB11 again. If characters still do not appear, reset the GCB registers as described in
Section 3.11.3 and try this procedure again.

Concepts

5-2 GCB11 REFERENCE MANUAL

5.2.2 Entering Commands

After outputting a prompt, GBUG is ready to accept a command. Commands take the form of a one or two char-
acter mnemonic followed by any arguments. When entering commands, case is not important and commands and
arguments can be separated by any number of spaces or tabs. Here’s an example:

] dm 100 10

0100: 00 00 D0 00 F0 FF 00 06 27 20 00 00 00 00 F3 B2 |........%|

]

This command, Display Memory or DM, tells GBUG to display16 bytes of memory starting at address 100.
After outputting the result, GBUG prints another prompt.

5.2.3 Downloading

While programs and data can be entered one byte at a time with the MM command, GBUG also accepts data for-
matted as Motorola S-records for a faster program development cycle. To download S-records to the GCB11, use
the TD command. Its simplest form is:

] td

Notice that no prompt is displayed after this command is entered. GBUG is now ready to accept S-record data.
Characters received are not echoed while downloading S-records. When the download is complete, the prompt
will return and more commands can be entered. See Section 5.6, GBUG Commands, for more details on TD
and related commands.

5.2.4 Running a Program

Once a program is in memory, it can be run using the R command. Assuming that a program to print “hello
world” starts in memory at location 1000 hex, we have the following:

] R 1000

hello world

]

5.2.5 Help

One of the most useful commands in GBUG is ?, which is short for help. This command will print a screen full
of information summarizing all the available commands and what arguments each one accepts.

5.3 Concepts

5.3.1 I/O Streams

GBUG receives commands and displays output using a dedicated GIOS Stream. GIOS Streams are discussed in
detail in Section 4.3. The Stream driver used by GBUG is controlled by the GCB Register GBUGSTRM. GCB

Concepts

GBUG 5-3

Registers are discussed in detail in Section 3.6. GBUGSTRM can have one of three values, indicating which of
the three built-in Stream drivers GBUG will use for it’s I/O:

• STRM_SCI (0) - SCI Stream driver

• STRM_SPI (1) - SPI Stream driver

• STRM_GNET (2) - GNET driver

The SPI and GNET drivers allow GBUG to be run remotely from a second GCB11 or from a PC respectively.

User code run from GBUG can use GBUG’s Stream by using (and not changing) the STDIO Stream. Note that if
this code is run without GBUG (e.g. when making a custom EPROM), it will have to allocate and initialize a
Stream and driver itself and assign it to STDIO.

All three drivers listed above are initialized by GBUG at reset, and should not be re-initialized by user code if the
user program is going to use the Stream configured by GBUG. Again, if this code is run without GBUG, initial-
ization code will be needed.

5.3.2 Commands

A GBUG command consists of a list of tokens followed by a carriage return. Tokens are strings of visible charac-
ters separated by any number of spaces or tabs. The maximum number of characters in a command line is 80.

The general form of a GBUG command is:

command [arguments...]

Command is always present and consists of a single token containing one or two characters. Command deter-
mines the functionality of the GBUG command.

Arguments specify data which the command operates on. Arguments can be flags, numerical values, mnemon-
ics, or expressions. Each of these types is detailed below.

5.3.3 Arguments

GBUG arguments can be separated into three types, each of which is detailed in a section below:

• flags

• integers

• assembly code

5.3.3.1 Flags

Flags are used by commands to choose between modes and to indicate the presence of special arguments on the
command line. Flags are always single characters.

5.3.3.2 Integers

Integers are entered in hexadecimal format.

Concepts

5-4 GCB11 REFERENCE MANUAL

5.3.3.3 Assembly Code

Assembly input can only be entered using the Modify Assembly (MA) command. The syntax for GBUG assem-
bly code follows that given in the Motorola Freeware PC-Compatible 8-Bit Cross Assemblers User’s Manual
with the following exceptions:

• directives are not supported

• symbols are not supported

• comments are not supported

• binary data is not supported

• octal data is not supported

• expressions are not supported.

• all numbers are hexadecimal by default and other radices and input types use the prefix notations
described in the proceeding sections.

• extended addressing can be forced by preceding the operand with a ‘>’; direct addressing can be
forced by preceding the operand with a ‘<‘.

• the size of immediate addressing mode operands depends on the size of the register involved in the
operation.

5.3.4 Display Data

GBUG can display five types of data:

• integers

• characters

• addresses

• registers

• assembly code

The type of data displayed by each command is fixed and is specified in the Section 5.6, GBUG Commands,
for each command.

5.3.5 Program Execution

The primary function of GBUG is to aid in the debugging of programs. Without an In-Circuit Emulator, this can
only be accomplished by providing a complete set of display, modify, and program execution commands. This
section describes how to use the six instructions that are available to control program execution:

BS - Breakpoint Set

BC - Breakpoint Clear

R - Run

RU - Run Until

SS - Single Step

SO - Step Over

Detailed descriptions and examples of each of these commands are given in Section 5.6, GBUG Commands.

Concepts

GBUG 5-5

In this section, the code being executed is referred to as the user program or user code, and this program’s regis-
ters are called user CPU registers.

Note that because all breakpoints supported by these commands are software breakpoints, they can only be set in
RAM.

5.3.5.1 Starting Execution

Execution of user code is started from GBUG using one of the run or step commands: R, RU, SS, or SO. In all
cases, the user CPU registers are loaded on the stack and execution is passed to the user program by executing a
Return From Interrupt (RTI) instruction.

Run Commands

The GBUG run commands, R and RU, transfer control of the CPU to the user code. Execution returns to GBUG
only if one of the following conditions is met:

• a breakpoint is reached

• a break signal is detected

• user code SWI instruction

• the GCB11 is reset

• an interrupt occurs which is not handled by user code

Both commands have a flag to disable sticky breakpoints. Breakpoints are described in detail below.

Step Commands

The Single Step command, SS, executes a single instruction and then returns to GBUG.

The Step Over command, SO, continues execution until the next line is reached. This command is included to
allow stepping over subroutine and branch calls. Execution can return to GBUG prematurely if any of the condi-
tions listed above for Run Commands are met.

5.3.5.2 Stopping Execution

Unless the GCB11 is reset, execution returns to GBUG by means of an interrupt. GBUG takes the user CPU reg-
isters off the stack and makes them available for display and modification.

Breakpoints

Breakpoints are special instructions inserted into executable code in RAM to aid in debugging. When the Pro-
gram Counter is equal to the address of a breakpoint, execution of the code is interrupted and control is retuned to
GBUG.

GBUG allows both sticky and non-sticky breakpoints:

• Sticky breakpoints are inserted and deleted using the Breakpoint Set (BS) and Breakpoint Clear (BC)
commands respectively. Both commands accept the address of the breakpoint to set or clear as an
argument. GBUG supports ten sticky breakpoints. If a program is run using R, RU, or SO without the
no breakpoints (N) flag, all sticky breakpoints are installed. Current sticky breakpoints can also be
viewed with the BS command.

Concepts

5-6 GCB11 REFERENCE MANUAL

• Non-sticky breakpoints are only installed for the duration of a single GBUG command. There are two
non-stick breakpoints available in GBUG and they are set indirectly with the RU, SO, and SS com-
mands. These commands use non-sticky breakpoints to return control to GBUG after they complete.

Note that breakpoints are represented physically by the Software Interrupt instruction (SWI) inserted into RAM.
GBUG saves the data in the bytes which are replaced by SWIs. If the GCB11 is reset while breakpoints are
installed, these SWI instructions will remain in memory and the original data will be lost.

Also note that breakpoints should not be placed in interrupt service routines. See Section 5.3.7, Interrupts for
more details.

Break Signal

A break signal received by the GBUG Stream while user code is running will cause execution to return to
GBUG. Note that if user code disconnects the GBUG Stream from its driver, the break facility will not function
(see Section 5.3.1, I/O Streams, for more details). Both GPC and the SPI Stream driver translate break com-
mands from the PC or from a second GCB11 running the SPI_MON program respectively.

SWI Instruction

If user code executes an SWI instruction (or calls the gi_intr_swi GIOS function), execution will return to
GBUG.

Reset

Resetting the GCB11 causes all state information about the user program being run to be lost, and restarts
GBUG. Although GBUG attempts to salvage breakpoint information, the MC68HC11F1 does not guarantee that
any internal data is preserved. Since resets can occur asynchronously, data in RAM may also be corrupted.

Interrupts

At reset, all interrupts not being used by GBUG, GNET, or GROS are vectored to GBUG. An error is printed if
one of these interrupts is used.

5.3.5.3 Run on Reset

The Run on Reset functionality allows GBUG to start executing a program at a memory location specified by the
GBUGRR GCB register immediately after reset. All GBUG initialization is preformed, but no GBUG sign-on or
prompt is issued. Run on Reset is disabled by setting the GBUGRR register to 0 (note that this can be accomplished
by reseting the GCB registers as described in Section 3.11.3).

5.3.6 EEPROM

While displaying EEPROM memory locations is accomplished as with any other memory location, modifying
EEPROM must be done using special commands designed for that purpose. Before using EEPROM, the user
should read Section 4.3 of the M68HC11 Reference Manual.

The following commands should be used to modify EEPROM:

• Copy to EEPROM (CE) to copy blocks of memory from RAM or EPROM to EEPROM

• EEPROM Erase commands (EE, EB, and ER) to erase bytes, rows, or all of EEPROM

• Modify EEPROM (ME) to modify individual bytes of EEPROM

Error Codes

GBUG 5-7

Because EEPROM has a limited number of write-erase cycles before going bad, it is suggested that any bulk data
which is to be placed in EEPROM (such as program code or data) be set up and tested in RAM or EPROM and
then moved to EEPROM using the CE command.

Care should be taken when modifying EEPROM so that the GCB Registers, which are stored at the bottom of
EEPROM, are not corrupted. See Section 3.6 for the locations of the GCB Registers.

5.3.7 Interrupts

Interrupts are not disabled when GBUG is executing. This means that any interrupt service routines that are
installed will continue to service their interrupts, and any side effects of these routines will continue to occur.
This also means that breakpoints should never be placed in an interrupt service routine. Unfortunately, without an
In-Circuit Emulator, this can make it extremely difficult to debug programs that use interrupts.

NOTE: interrupts must be enabled for GBUG character I/O to function.

5.4 Error Codes

1 - “bad command” GBUG did not recognize the command given.

2 - “bad args” GBUG could not parse the arguments to the command.

3 - “too many values” Too many values were given as arguments to a command.

4 - “bad expression” GBUG could not parse an expression.

5 - “not an srecord” A badly formed s-record was received. This could mean that a character was
dropped or that the transfer was attempted into a read-only memory area (e.g.
EPROM, EEPROM).

6- “bad record type” A bad s-record type was received.

7 - “checksum error” The checksum on a s-record did not match.

8 - “bad register” GBUG could not parse a register mnemonic.

9 - “bad format” GBUG could not pars a display format.

10 - “can’t open stream” The stream driver requested is not available or an error occurred while attempting
to open it.

Command Summary

5-8 GCB11 REFERENCE MANUAL

5.5 Command Summary

? - Help

BC [addr...] - Breakpoint Clear

BD driver [U] - Set GBUG stream

BS [addr...] - Breakpoint Set

CE src dest len - Copy to EEPROM

CM src dest len - Copy Memory

DA addr len - Display Assembly

DG [gcbreg] - Display GCB Register

DI [ioreg] - Display I/O Register

DM addr len - Display Memory

DR - Display CPU Registers

EB - Erase EEPROM Register

ER addr - Erase EEPROM Row

GC [U] - GCB Register Checksum

GE - GCB Register Copy to EEPROM

GR - GCB Register Copy to RAM

MA addr - Modify Assembly

ME addr val... [R rep] - Modify EEPROM

MG gcbreg val [U] - Modify GCB Register

MI ioreg val - Modify I/O Register

MM addr val... [R rep] - Modify Memory

MR reg val - Modify CPU Register

NE - Network Exit

NI - Network Initialization

R [N] [addr] - Run

RU [N] [addr] stop - Run Until

SO [N] [addr] - Step Over

SS [addr] - Single Step

ST - SCI Test

TD [offset] - Transfer Down

GBUG Commands

GBUG 5-9

5.6 GBUG Commands

GBUG Commands

5-10 GCB11 REFERENCE MANUAL

? Help ?

Synopsis: ?

Description: Print a summary of GBUG commands.

See Also:

Examples:

GBUG Commands

GBUG 5-11

BC Breakpoint Clear BC

Synopsis: BC [addr...]

addr - expression for address of breakpoint to clear

Description: Remove breakpoints at addr from RAM.

If addr is missing, all breakpoints are removed.

See Also: BS - Breakpoint Set, R - Run, RU - Run Until, SS - Single Step, SO - Step Over

Examples:

GBUG Commands

5-12 GCB11 REFERENCE MANUAL

BD GBUG Driver BD

Synopsis: BD driver [U]

driver - Stream driver to use as GBUG Stream

U - update the EEPROM copy of the GBUGSTRM GCB Register.

Description: Attach the indicated Stream driver to the GBUG Stream. If the U flag is present, the
GBUGSTRM GCB Register is updated in EEPROM. The possible values of driver are:

C - SCI driver

N - GNET driver

P - SPI driver

See Section 5.3.1, I/O Streams, for more details.

See Also: DG - Display GCB Register, MG - Modify GCB Register

Examples:

GBUG Commands

GBUG 5-13

BS Breakpoint Set BS

Synopsis: BS [addr...]

addr - expression for address of breakpoint to set

Description: Insert a breakpoint into RAM at addr.

If addr is missing, all breakpoints are displayed.

NOTE: breakpoints should never be placed in an interrupt service routine.

See Also: BC - Breakpoint Clear, R - Run, RU - Run Until, SS - Single Step, SO - Step Over

Examples:

GBUG Commands

5-14 GCB11 REFERENCE MANUAL

CE Copy to EEPROM CE

Synopsis: CE src dest len

src - source address for move

dest - destination address for move

len - number of words to move

Description: Moves len words of memory from src to dest. Src must be in RAM or EPROM. Dest
must be in EEPROM.

See the M68HC11 Reference Manual for details on EEPROM operation.

See Also: CM - Copy Memory

Examples:

GBUG Commands

GBUG 5-15

CM Copy Memory CM

Synopsis: CM src dest len

src - source address for move

dest - destination address for move

len - number of words to move

Description: Moves len words of memory from src to dest. Src must be in RAM, EPROM, or
EEPROM. Dest must be in RAM. Overlap is handled.

See Also: CE - Copy to EEPROM

Examples:

GBUG Commands

5-16 GCB11 REFERENCE MANUAL

DA Display Assembly DA

Synopsis: DA addr len

addr - expression for the address of first byte to disassemble

len - expression for the number of lines of assembly to display

Description: Disassembles the memory bytes indicated. If a line of assembly starts with an illegal
opcode, the mnemonic is listed as ?????.

See Also: MA - Modify Assembly

Examples:

GBUG Commands

GBUG 5-17

DG Display GCB Registers DG

Synopsis: DG [gcbreg]

gcbreg - mnemonic of GCB Register to display

Description: Displays the contents of the GCB Register indicated in hexadecimal format. The GCB
Registers and their mnemonics are described in Section 3.6.

If gcbreg is missing, all GCB Registers are displayed.

See Also: MG - Modify GCB Register

Examples:

GBUG Commands

5-18 GCB11 REFERENCE MANUAL

DI Display I/O Registers DI

Synopsis: DI [ioreg]

ioreg - mnemonic of I/O Register to display

Description: Displays the contents of the I/O Register indicated in hexadecimal format. The mne-
monics are those used by Motorola in the MC68HC11F1 Technical Data book.

If ioreg is missing, all I/O Registers are displayed.

See Also: MI - Modify I/O Register

Examples:

GBUG Commands

GBUG 5-19

DM Display Memory DM

Synopsis: DM addr len

addr - expression for address of first byte to display

len - expression for number of words to display

Description: Displays the contents of the RAM, EPROM, or EEPROM locations indicated.

See Also: MM - Modify Memory

Examples:

GBUG Commands

5-20 GCB11 REFERENCE MANUAL

DR Display CPU Registers DR

Synopsis: DR

Description: Displays the CPU registers and the next instruction to be executed.

See Also: MR - Modify Register

Examples:

GBUG Commands

GBUG 5-21

EB EEPROM Block Erase EB

Synopsis: EB

Description: Erase all of EEPROM.

See Also: ER - EEPROM Row Erase

Examples:

GBUG Commands

5-22 GCB11 REFERENCE MANUAL

ER EEPROM Row Erase ER

Synopsis: ER addr

addr - address of row to erase

Description: Erase the 16 byte row of EEPROM containing addr.

See Also: EB - EEPROM Block Erase

Examples:

GBUG Commands

GBUG 5-23

GC GCB Register Checksum GC

Synopsis: GC [U]

U - update the EEPROM GCB Register checksum.

Description: Checksums the EEPROM GCB Registers. If the U flag is present, it writes a new, cor-
rect checksum. Prints “checksum ok” or “bad checksum”.

See Also:

Examples:

GBUG Commands

5-24 GCB11 REFERENCE MANUAL

GE GCB Register Copy to EEPROM GE

Synopsis: GE

Description: Copy GCB Registers from EPROM to EEPROM and updates the checksum.

See Also: GR - GCB Register Copy to RAM

Examples:

GBUG Commands

GBUG 5-25

GR GCB Register Copy to RAM GR

Synopsis: GR

Description: Copy GCB Registers from EEPROM to RAM.

See Also: GE - GCB Register Copy to EEPROM

Examples:

GBUG Commands

5-26 GCB11 REFERENCE MANUAL

MA Modify Assembly MA

Synopsis: MA addr

addr - expression for starting address of assembly

Description: Assemble code into RAM. See Section 5.3.3.3 for assembly language syntax. The
user is prompted for each line with the address in memory where the assembled code
will be placed and the current instruction and operands. After entering the assembly
line, pressing <return> causes the line to be assembled and the user is prompted for the
next line. Pressing <return> at the prompt retains the previous values and prompts the
user with the next line. Typing a period ‘.’ followed by <return> at the address prompt
stops the operation.

See Also: DA - Display Assembly

Examples:

GBUG Commands

GBUG 5-27

ME Modify EEPROM ME

Syntax: ME addr val... [R rep]

addr - expression for address of first word to modify

val - expression for new value of memory word

R - indicates that val... should be repeated rep times

rep - expression for repeat count

Description: Set the contents of EEPROM starting at addr to the value(s) of the expression val.... If
the R flag is used, val... is placed in memory rep times starting at addr.

If val is missing, an interactive mode is invoked. The user is prompted by the memory
address addr and current value of the word in that location. Entering a expression and
pressing <return> modifies that location and prompts the user with the next word in
memory. Pressing <return> at the prompt retains the previous value and prompts the
user with the next word. Typing a period ‘.’ followed by <return> stops the operation.

See Also: CE - Copy to EEPROM

Examples:

GBUG Commands

5-28 GCB11 REFERENCE MANUAL

MG Modify GCB Register MG

Synopsis: MG gcbreg val [U]

gcbreg - mnemonic of GCB Register to modify

val - expression for new value of GCB Register

U - update the EEPROM copies of the GCB register.

Description: Modify the contents of the GCB Register indicated. The GCB Registers and their mne-
monics are described in Section 3.6. If the U option is specified the corresponding
EEPROM copy of the GCB Register is updated along with the EEPROM checksum.

See Also: DG - Display GCB Register

Examples:

GBUG Commands

GBUG 5-29

MI Modify I/O Register MI

Synopsis: MI ioreg val

ioreg - mnemonic of I/O Register to modify

val - expression for new value of I/O Register

Description: Modify the contents of the I/O Register indicated. The mnemonics are those used by
Motorola in the MC68HC11F1 Programming Reference Guide.

See Also: DI - Display I/O Register

Examples:

GBUG Commands

5-30 GCB11 REFERENCE MANUAL

MM Modify Memory MM

Synopsis: MM addr val... [R rep]

addr - expression for address of first word to modify

val - expression for new value of memory word

R - indicates that val... should be repeated rep times

rep - expression for repeat count

Description: Set the contents of RAM starting at addr to the value(s) of the expression val.... If the R
flag is used, val... is placed in memory rep times starting at addr.

If val is missing, an interactive mode is invoked. The user is prompted by the memory
address addr and current value of the word in that location. Entering a expression and
pressing <return> modifies that location and prompts the user with the next word in
memory. Pressing <return> at the prompt retains the previous value and prompts the
user with the next word. Typing a period ‘.’ followed by <return> stops the operation.

See Also: DM - Display Memory

Examples:

GBUG Commands

GBUG 5-31

MR Modify CPU Register MR

Synopsis: MR reg val

reg - mnemonic of CPU register or CCR flag to modify

val - expression for new value of CPU register

Description: Modify the contents of a CPU register or condition code register flag. The register mne-
monics available are:

a - Accumulator A

b - Accumulator B

d - Double Accumulator D

sp - Stack Pointer

ix - Index Register X

iy - Index Register Y

pc - Program Counter

ccr - Condition Code Register

See Also: DR - Display CPU Registers

Examples:

GBUG Commands

5-32 GCB11 REFERENCE MANUAL

NE GNET Exit NE

Synopsis: NE

Description: Exit GNET by calling gn_exit_comms.

See Also: NI - GNET Initialization

Examples:

GBUG Commands

GBUG 5-33

NI GNET Initialization NI

Synopsis: NI

Description: Initialize GNET by calling gn_init_comms.

See Also: NE - GNET Exit

Examples:

GBUG Commands

5-34 GCB11 REFERENCE MANUAL

R Run R

Synopsis: R [N] [addr]

N - don’t install breakpoints

addr - address to start execution

Description: Start execution at addr. Breakpoints are installed unless the N flag is present. If a break-
point is reached, execution returns to the monitor.

If addr is missing, the current value of the pc register is used.

See Also: BC - Breakpoint Clear, BS - Breakpoint Set, RU - Run Until, SS - Single Step, SO- Step
Over

Examples:

GBUG Commands

GBUG 5-35

RU Run Until RU

Synopsis: RU [N] [start] stop

N - don’t install breakpoints

start - address to start execution

stop - address to stop execution

Description: Start execution at start and run until stop. Breakpoints are installed unless the N flag is
present. If a breakpoint or stop is reached, execution returns to the monitor.

If start is missing, the current value of the pc register is used.

See Also: BC - Breakpoint Clear, BS - Breakpoint Set, R - Run, SS - Single Step, SO- Step Over

Examples:

GBUG Commands

5-36 GCB11 REFERENCE MANUAL

SO Step Over SO

Synopsis: SO [N] [addr]

N - don’t install breakpoints

addr - address of instruction to execute

Description: Start execution at addr and run until the pc register points to the next instruction in
memory. Breakpoints are installed unless the N flag is present. This has the effect of
stepping over subroutine calls and branch instructions. When the next instruction in
memory is reached, execution returns to the monitor.

If addr is missing, the current value of the pc register is used.

See Also: BC - Breakpoint Clear, BS - Breakpoint Set, R - Run, RU - Run Until, SO- Step Over

Examples:

GBUG Commands

GBUG 5-37

SS Single Step SS

Synopsis: SS [addr]

addr - address of instruction to execute

Description: Execute the next instruction and return execution to the monitor.

If addr is missing, the current value of the pc register is used.

See Also: BC - Breakpoint Clear, BS - Breakpoint Set, R - Run, RU - Run Until, SO- Step Over

Examples:

GBUG Commands

5-38 GCB11 REFERENCE MANUAL

ST SCI Test ST

Synopsis: ST

Description: Test network cable connections. See Section 6.8, Jumper and Cable Configura-
tion Testing, for more details.

See Also:

Examples:

GBUG Commands

GBUG 5-39

TD Transfer Down S-Records TD

Synopsis: TD [offset]

offset - expression for the amount to offset the S-record data

Description: After this command is issued, all subsequent data is treated as Motorola S-records until
the end of an S9 record. The addresses specified in the S-records are modified by offset.
Execution returns to the monitor when a S9 record is entered or an error occurs.

S-records are character strings terminated with a newline (carriage return, line feed, or
carriage return-line feed pair). Each S-record contains 5 fields: type, length, memory
address, data, and checksum. No characters are allowed between fields. Each field is
described below:

GBUG supports three record types: S0, S1, and S9. Each type is described below:

If offset is missing, an offset of 0 is used.

See Also:

Examples:

Field Size Contents

Type 2 S-record type

Length 2 Number of bytes represented by record excluding type and length.
Note that the actual number of characters is twice the number of
bytes represented.

Address 4 Address at which the data is placed in memory

Data 0-2n Data which is represented by a 2-digit 0 padded hexadecimal num-
ber. For example, a byte of value 1 would be represented by two
character: 01, a byte of value 255 would be FF.

Checksum 2 2-digit 0 padded hexadecimal number representing the least signifi-
cant byte of the one’s compliment of the sum of the values of the
length, address, and data fields.

Type Description

S0 Optional header record. Address and data field is ignored.

S1 Data records.

S9 Termination record. The address field is loaded into the user program’s pc reg-
ister. The data field is ignored.

GBUG Commands

5-40 GCB11 REFERENCE MANUAL

GNET 6-1

CHAPTER 6 GNET

6.1 Introduction

There are three different methods which can be used to communicate with the GCB11, as shown in Figure 6.1.
Each of these are supported by the hardware and software supplied with the GCB11. Note that the GNET net-
working software is an option that must be purchased separately.

FIGURE 6.1 Methods of Communication with the GCB11

PC/dumb terminal GCB11

RS-232 (JP6)

RS-232 (JP6)

PC with network
drivers and application
or network monitor utility

GCB11GCB11GCB11

RS-485 (JP5)

SPI (JP2)

RS-232 (JP6)

GCB11 GCB11 GCB11 GCB11

RS-485 (JP5)PC/dumb terminal

(c) Network of GCB11’s using Additional GCB11 as Terminal

(b) Network of GCB11’s with PC on Network

(a) Terminal with GCB11

Introduction

6-2 GCB11 REFERENCE MANUAL

In the method shown in Figure 6.1(a) the SCI of the GCB11 is used to communicate with a dumb terminal
through an ordinary RS-232 connection. This same configuration can also be used for point to point communica-
tion between GCB11s.

The method shown in Figure 6.1(b) depicts the GCB11 being used in a communications network. By using the
appropriate communications software on the PC, it is possible to use the PC as a network console. In addition, it
is possible to write applications for the PC such that they can communicate to any other node on the network.
When used in this manner the PC is just another node on the network.

Finally, as shown in Figure 6.1(c), it is possible to use an additional GCB11 as a terminal for a GCB11 by using
the SPI capabilities of the M68HC11. By doing this you can then use any dumb terminal and physically connect
directly to a GCB11 when the SCI on that GCB11 is being used for the network connection.

These three communication methods correspond to the concept of Streams discussed in CHAPTER 4, GIOS.
Briefly, GIOS supports the following three console I/O Streams:

• SCI used for normal asynchronous communications (Figure 6.1(a)).

• SCI used for network communications (Figure 6.1(b)).

• SPI connected to another GCB11 (Figure 6.1(c)).

Once a Stream is initialized and connected to the application, all console I/O such as printf and gets will go
through that Stream in a manner which is transparent to the application. This feature gives the user a tremendous
amount of flexibility to do things such as connect a network console to a GCB11 for the application I/O while
connecting another terminal to the SPI for GCB11 ROM monitor I/O. It is possible to have a debug monitor sep-
arate from the applications console. This also allows the user to develop portable code using the normal console
I/O functions and to simply change the Stream at run time.

For Streams (a) and (c) all that is needed is a dumb terminal connected to the appropriate connector, while
Stream (b) requires that the console use network protocol to communicate with the nodes.

Table 6.1 shows all the resources used by communications.

Point to Point using the SCI

GNET 6-3

The remainder of this chapter describes each of these communications channels with special emphasis given to
network communications. Please refer to CHAPTER 4, GIOS on how to use each of these channels for console
I/O through the use of Streams.

6.2 Point to Point using the SCI

The SCI of the M68HC11 is a general purpose asynchronous UART. A wide variety of communications parame-
ters and baud rates are supported. For more specific information on the SCI please consult the M68HC11 Refer-
ence Manual.

As shown in Figure 6.1(a), this mode of communication is normally used to connect a dumb terminal to the
GCB11. Although the SCI is typically used as a console for screen and keyboard I/O, it is possible to have appli-
cations on a PC or another GCB11 communicate through this channel.

Connector JP5 is used for RS-485 communication while JP6 is used for RS-232. Both are driven by the SCI and
it is possible to use either one. RS-485 is normally used for network communications while RS-232 is normally
used for point to point communications.

As shown in CHAPTER 2, Hardware the reason that either connector can be used is that the RS-232 and RS-
485 drivers on the GCB11 are tied together so that all receive and transmit signals go through both drivers.
Because of this, care needs to be taken to ensure that the RS-485 drivers are enabled. Pin 1 of JP6 is used to con-

Mode Ports 68HC11 Registers Interrupt Vectors

SCI Dumb Terminal PORTD-PD0

PORTD-PD1

PORTD-PD2 or

PORTG-PG2

SCDR (all)

SCCR1 (all)

SCCR2 (all)

SCSR (all)

BAUD (all)

intvsci

SCI Network PORTD-PD0

PORTD-PD1

PORTD-PD2 or

PORTG-PG2

SCDR (all)

SCCR1 (all)

SCCR2 (all)

SCSR (all)

BAUD (all)

TFLG2 - RTIF

TMSK2 - RTII

TMSK2 - PR1

TMSK2 - PR0

intvsci

intvrealtime

SPI Terminal PORTD - PD2

PORTD - PD3

PORTD - PD4

PORTD - PD5

SPCR (all)

DDRD (2-5)

SPCR (all)

intvspi

TABLE 6.1 M68HC11 Resources Used by Communications

Point to Point using the SPI

6-4 GCB11 REFERENCE MANUAL

trol the active high enable line of the RS-485 driver. There is a pull up resistor on the RS-485 enable line so that
if desired the pin can be left open, and the RS-485 driver will be enabled and not require any additional control.
Another alternative is to connect the DTR or CTS line of the dumb terminal to pin 1 of JP6.

The receive and transmit lines of the SCI are routed through the RS-232 and RS-485 drivers of the GCB11 via
jumpers J1 - J8. These jumpers are mainly used for configuring the line polarity of GCB11s on the RS-485 net-
work. Consult CHAPTER 2, Hardware for more information on these jumpers.

6.3 Point to Point using the SPI

The SPI of the M68HC11 is a special high speed synchronous serial connection. When used to connect two
GCB11s together over a short distance, no additional line driver hardware is necessary. For more specific infor-
mation on the SPI please consult the M68HC11 Reference Manual.

The SPI is a flexible communications sub-system and can be used for a variety of applications. When configured
as shown in Figure 6.1(c), an additional GCB11 and a dumb terminal become the console to another GCB11. By
doing this it is possible to communicate to a particular GCB11 through the SPI without impacting or loading
down the SCI or the RS-485 network. The companion disk contains an example program which provides this
functionality. Although the preferred method for attaching a console to a node in the network is through the net-
work, using an additional GCB11 and the SPI can prove quite useful when network bandwidth is critical or when
the network may be compromised or unreliable.

In order to connect two GCB11s together, it is necessary to create a special cable as shown in Figure 6.2. The
pins shown are accessible via JP2, a full pin-out of which is given in Figure 2.9.

FIGURE 6.2 SPI Master/Slave Cable

In this configuration the master GCB11 acts as the I/O console for the slave GCB11 which is running the applica-
tion. All console output is routed from the slave GCB11 through the SPI to the master GCB11, and then out the
SCI of the master GCB11 to the dumb terminal. Likewise, console input goes from the dumb terminal to the
master GCB11 through the SCI, and then to the slave GCB11 through the SPI.

6.4 GCB11 Network Communications

The GCB11 is designed to be used in a multi-drop RS-485 network as shown in Figure 6.1(b) and Figure 6.1(c).
The network uses a master/slave configuration and the 9-bit communications mode of the SCI to reduce the over-

master GCB11 slave GCB11

+5V GNDSS SS

MISO MISO

MOSI MOSI

SCK SCK

GCB11 Network Communications

GNET 6-5

head incurred on each of the slave nodes. Each node on the network is assigned an unique address between 1 and
63. There is one and only one master node in the network, and in accordance with specifications for RS-485 there
can be up to 31 slaves (32 total physical devices).

All communications on the network are controlled by the master node. Each slave on the network is polled by the
master to determine if they have any messages they want to send to any other node on the network. If so, the mes-
sages are routed by the master from the source node to the destination node. There is a polling table in the master
which determines the order in which the slave nodes are polled.

As discussed in CHAPTER 2, Hardware, the GCB11 uses additional RS-232 to RS-485 conversion hardware
which allows any RS-232 device to be connected to the network via JP6 on the GCB11. It must be noted that
when the SCI is used for network communications it is no longer possible to connect a dumb terminal to JP6 and
communicate with the GCB11. Therefore, supplied with the GCB11 is additional communications software for
the PC which allows it to become either a master or slave node on the network via JP6. Any PC which has its
own RS-485 serial communications board can be connected directly to the network cable without the need for a
GCB11. When using the RS-232 to RS-485 conversion hardware on the GCB11, there can be as many PCs on
the network as there are GCB11s.

In addition to communications drivers, there is software which allows any PC on the network to become a con-
sole for any other node on the network. This console facilitates screen and keyboard I/O for the GCB11 to which
it is logically connected if the Stream for that GCB11 is configured to use the network. The PC network console
tool also possesses additional functionality, such as program download and debug via the GCB11 ROM monitor.
This tool is discussed in more detail in Section 6.6, PC Monitor Program.

Normally, a node on the network has an address in the range of 1 - 63. The exceptions to this are node addresses
65 - 127, which are reserved for network console monitors. Each address in the range of 65 - 127 is paired with a
corresponding address in the range of 1 - 63 which has the same lower six bits in the address byte. For example,
node 1 is paired with 65 while node 10 is paired with 74 (each pair is 64 apart).

A network console monitor is used to perform all console I/O for the GCB11 that it is paired with. This is used in
conjunction with the network Stream drivers, and thus the two paired nodes in the network are called Stream
partners. Any console I/O directed through the GNET Stream driver will be sent via GNET to the node address
which corresponds to its Stream partner. Likewise GNET directs any messages received from its Stream partner
to the GNET Stream driver. It is important to note that the ability to direct Stream I/O through the network only
exists in the level 1 network drivers, which are discussed in more detail in Section 6.7, Writing Applications
to Use the Network (GNET). The level 0 network routines cannot be used in conjunction with network
Stream I/O.

Because Stream partners are fixed, any network monitor can connect to any other node in the network by simply
changing its own node address to be the corresponding Steam partner address for the node in question. This is a
very powerful feature, and is used by the PC tool to allow it to become a console for any GCB11 on the network.

6.4.1 Connecting the GCB11 to the Network

Connection of the GCB11 to the network is done through JP5. This is a standard 4 pin RJ-11 connector and is
intended to be used with twisted pair cables as shown in Figure 6.3. Connector JP5 is the same as that found on
all standard telephone handsets.

RS-485 uses differential drivers and receivers. Normally, multi-drop networks which use RS-485 use a single
pair of wires in a half duplex party line configuration. The GCB11 uses two pairs of wires in a full duplex config-
uration. This was done to simplify connecting a dumb terminal to the GCB11 when the network is not being

GCB11 Network Communications

6-6 GCB11 REFERENCE MANUAL

used. Note that it is important that each end of the network bus be terminated by 50 ohm resistors as shown in the
diagram.

FIGURE 6.3 RS 485 Network Communications Cable

The following is a set of guidelines to be used when making cables for the GCB11 485 network:

• Use twisted pair whenever possible.

• Make sure that the length of cable from the GCB11 board to the 485 bus is kept to a minimum, i.e. a
few inches. Making this cable too long causes reflections in the line.

• Make sure that the terminating resistors are 1%. They must be matched as closely as possible in value.

• Standard telephone connectors vary widely in quality. If using telephone equipment make sure it is
high quality.

• The RJ-11 socket on JP5 may be removed and replaced by a standard 4 pin in-line header if this will
ease cabling for the GCB11.

When making a network it is a good idea to test the cabling using the procedures described in section 6.8,
Jumper and Cable Configuration Testing.

6.4.2 Jumper Configurations for the Network Bus

Each node on the network transmits on a particular pair of wires, and receives on the other pair. Since the net-
work uses a master/slave configuration, the master must transmit on the pair of wires that the slave nodes receive
data on, and likewise receive data on the pair of wires that the slave nodes transmit on.

The jumpers used to configure the network for the GCB11 are J5 - J8. These jumpers control which of the differ-
ential send and receive lines are connected to the send and receive lines of the GCB11. There are only two basic
settings, one for the master and one for the slave, as shown in Figure 6.4.

50 Ohms 1% 50 Ohms 1%

50 Ohms 1%50 Ohms 1%

JP5

1 4 2 3

GCB11 Network Communications

GNET 6-7

FIGURE 6.4 Jumper Setting for Master/Slave Configuration of GCB11

Since the network is multi-drop, the RS-485 drivers must be disabled when they are not actually transmitting
anything on the line. Currently the user has the option of using either PG2 or PD2 to perform this function. One
of these two are selected via jumper J13 as shown in Figure 6.5. If the jumper is open, the RS-485 driver will be
enabled via a pull-up resistor. This is advisable when the network is not in use. If the network is used then the
jumper MUST be in place on one of the two. It is important to note that when the network is in use, the user loses
the use of the I/O port selected as the control line.

FIGURE 6.5 Selection of RS485 Enable.

These jumpers only affect the cabling and enable line for the drivers. In order to configure the network software
properly to behave as a master or a slave and use the appropriate control line, it is necessary to set various param-
eters in the GCB Registers. This is discussed in more detail in the next section.

6.4.3 Communications and Network Configuration

Various parameters related to the network are stored in the GCB Registers. GCB Registers are described in
Section 3.6. When the network is initialized, these parameters are used to configure the network.

• GNETMODE - Master or slave on the network.

• GNETNODE - Node address designation for network operation.

J2
J1

J3

J5
J4

J7
J6

J8

J2
J1

J3

J5
J4

J7
J6

J8

SlaveMaster

J13

J13

J13

PG2

PD2

NONE (driver enabled)

GCB11 Network Communications

6-8 GCB11 REFERENCE MANUAL

• GNETPOLL - Mode of polling for the master node.

• GNETTABLE - Polling table.

• GNETCOUNT - Number of nodes in the polling table.

• SCIBAUD - SCI communications baud rate.

• SCIDRIVER - Communications driver for the SCI.

• SCIENABLE - Control line used to enable the RS-485 drivers.

• SCISTART - Network on or off on start-up.

The first five Registers are described in detail in the following sections. The remaining four are detailed in
Section 3.11.4, Communications.

6.4.3.1 GNETMODE

This Register designates whether the node is a master or a slave in the network. Each network contains a single
master and one or more slaves. Each GCB11 can act as either a master or a slave depending upon how it is con-
figured. It is important that only one of the nodes in the network (including the PCs) act as the master. Failure to
follow this restriction will result in a total network failure. The setting of the node to either a master or a slave
must be consistent with the setting of jumpers J5 - J8.

If GNETMODE is 0 then the node is a slave; otherwise it is a master.

6.4.3.2 GNETNODE

This Register designates the node address of the GCB11. No two nodes on the network may have the same
address. The address for any particular node may take on any value in the range 1 - 63.

6.4.3.3 GNETPOLL

This Register specifies the automatic polling mode of the master node. If the value is 0, then the master does no
automatic polling to determine if there are additional nodes plugged into the network. If this value is non-zero, it
specifies the number of times the master goes through the polling table before doing a poll for a node which is
not already in the polling table. This allows for the automatic addition of nodes into the network.

6.4.3.4 GNETABLE

This Register is actually an array of up to 64 bytes which contains the address of each slave node in the master’s
polling table. Each node in this table is polled in succession by the master node.

6.4.3.5 GNETCOUNT

This Register gives the number of nodes in the polling table.

6.4.4 Special Bootstrap Mode

If for whatever reason the EEPROM locations where the communications parameters are stored are destroyed, or
the GCB11 is configured in such a way that it is difficult to subsequently change the parameters, the GCB11 can
be put into a default configuration by placing a jumper between pins 1 and 2 of JP2 and resetting the board. This
will cause the GCB11 to come up with the following communications parameters:

• 9600 baud

Configuring and Using a PC in the Network

GNET 6-9

• Network disabled

These parameters will be stored in EEPROM and essentially put the GCB11 in a known default state. See
Section 3.6, GCB Registers for more details on this special bootstrap mode.

6.5 Configuring and Using a PC in the Network

6.5.1 Connecting a PC to the Network

Connecting a PC to the network is done using the RS-232 connection on JP6. In this respect, the hardware inter-
face for the network is the same as for normal serial communications, and requires no additional hardware on the
PC.

Like the RS-485 driver used by the GCB11, the RS-485 driver which is linked to the RS-232 driver must be con-
figured so that the receive and transmit lines are connected to the appropriate pair of wires. This is depicted in
Figure 6.6. As can be seen, the PC can be configured as either a master or a slave on the network.

FIGURE 6.6 Jumper Setting for Master/Slave Configuration of PC.

The RS-485 driver used by the PC also requires an enable control line. As previously discussed in Section 2.5,
Asynchronous Serial Communications, this is accomplished using pin 1 of JP6. The network driver soft-
ware for the PC toggles both RTS and DTR to enable the RS-485 driver, and either one of these can be selected
by the user for enable control. On a DB25 connector, RTS is pin 4, while DTR is pin 20.

6.5.2 PC Network Communications Drivers

In order to use a PC in the network, it is necessary to use the network communications library with your applica-
tion running on the PC. These functions enable the PC to send and receive messages over the network in a variety
of ways. The functions in this library are described in Section 6.7, Writing Applications to Use the Net-
work (GNET), and are the same functions provided in the network library on the GCB11. This enables the user
to write portable application code which can run on either the PC or the GCB11.

The drivers on the PC support interrupt driven communications through any of the ports COM1 - COM2. Cur-
rently only one of the COM ports at a time may be used for network communications.

Master Slave

J2
J1

J3

J5
J4

J7
J6

J8

J2
J1

J3

J5
J4

J7
J6

J8

PC Monitor Program

6-10 GCB11 REFERENCE MANUAL

6.6 PC Monitor Program

Supplied with the GCB11 is an application which allows the PC to be either a dumb terminal or a network con-
sole. The primary purpose of this application is to provide console I/O for the GCB11 through any of the Streams
previously discussed.

The major features supported by this program include the following:

• Ability to use the program as either a dumb terminal, a network console, or both simultaneously.

• Ability to split screens to allow up to four console windows, which may be connected to different
GCB11s.

• Ability to individually label console windows so that they can be tailored to the individual scenario.

• User configured baud rate.

• Ability to use any of COM1 - COM2.

• Ability to dynamically change the node to which a network console is connected.

• Ability to upload and download S-record programs to the GCB11.

• Ability to log all screen I/O to a file.

• Ability to load and save parameters.

• Ability to control when new devices are polled for connection when using GNET.

6.6.1 Running the Monitor Program

The monitor program is called gpc and has the following syntax:

gpc

If the configuration file gpc.dat exists when gpc is executed, it is used to set up all the parameters used by gpc.
This allows the user to create a set of default parameters which are used upon start-up. How this file gets created
is discussed later in this section.

6.6.2 Monitor Program User Guide

The monitor program can support two separate views, each of which is connected to a different GCB11. Each
view is represented by a window on the screen and both can be displayed simultaneously. Data arriving to the PC
is displayed in the appropriate view automatically, but keyboard output only corresponds to the currently selected
view. The currently selected view is discernible as the one containing the blinking cursor.

All options within gpc are available to the user through either a hot key or a menu selection. Options are divided
into two main categories: those that apply to the program as a whole, and those that apply to a particular view.
Each of the options available are listed below with a brief description.

Main menu F1 - Hitting F1 brings up the main menu. This menu contains the following options:

• Help F1

• Resize view F2

• Open views F3

• Close views F4

• Change view F5

PC Monitor Program

GNET 6-11

• Save parameters ALT-S

• Node Search ON ALT-O

• Node Search OFF ALT-F

• Display version ALT-V

• Quit SH-F10

• Log screen ON F6

• Log screen OFF SH-F6

• Program download F7

• Node Address F8

• View parameters F9

• View label ALT-L

Resize view F2 - This option allows the user to resize and re-position the currently selected window by
using the arrow keys.

Open views F3 - This option doubles the number of views currently displayed on the screen. Up to four
can be displayed simultaneously.

Close views F4 - Reduces the number of views currently displayed on the screen.

Change view F5 - Allow the user to sequence through and select the currently displayed views.

Save parameters ALT-S - Saves the current parameter settings into the file gpc.dat. This file is used
upon start-up by gpc.

Node Search ON ALT-O - This option is used when gpc is a network monitor. It enables the automatic
searching for new nodes as they are plugged into the network. This option only works if gpc is the
master on the network. Searching for new nodes incurs an overhead which slows down the overall
throughput of the network. Node searching is on be default.

Node Search OFF ALT-F - This option disables the searching of new nodes that may be plugged into the
network. This is the companion for the above command. This option should be used after all nodes
have been plugged into the network in order to increase network bandwidth.

Display version - Displays the current version of the GPC software.

Quit SHIFT-F10 - Exits the program.

Log screen data ON F6 - This option turns the logging of screen data to a file on. It applies to the cur-
rently selected view. When turning on the user is prompted for a file name to which to write the data.

Log screen data OFF SH-F6 - This option turns the logging of screen data to a file off. It applies to the
currently selected view.

Program download F7 - Allows the downloading of S-records to the GCB11 connected to the currently
selected view. User is prompted for the name of the file to download.

Node Address - This sets the network node address GBUG will be connected to when it is acting as a net-
work monitor. Note that the address entered here should be the address of the node to be monitored. If
there are multiple windows on the screen each one can be set to monitor a different node on the net-
work.

Writing Applications to Use the Network (GNET)

6-12 GCB11 REFERENCE MANUAL

View label ALT-L - Each view has a label which signifies the name of the view as well as its configura-
tion. This option allows the user to input a custom name. In this way the user can give more meaning-
ful names to the console windows. For example, the user may display two views at once and want to
give a functional name to each of the views depending upon the GCB11 it is connected to, e.g. water
pump, proximity sensor.

View parameters F9 - This option is used to bring up a configuration menu which applies to the currently
selected view. The menu allows the configuration of the following parameters:

• Network or dumb terminal console.

• Baud rate.

• COM port to use.

By configuring each view separately, it is possible to have a dumb terminal out each of COM1-COM2 simulta-
neously. The same COM port cannot be used for different views. Another possibility is to connect a view to one
of the COM ports as a dumb terminal and connect a different view to another COM port as a network console.

Note that when using gpc as a network monitor the pc must be the master node on the network.

6.6.3 Common Problems

When using gpc as a dumb terminal the following set of problems can occur:

• Receive output from the GCB11 but it does not accept input. This is most commonly caused by a
cabling or COM port problem. Because of the nature of the GCB11 communications hardware it is
important that the port being used on the PC support hardware handshaking. In addition it must be
wired properly so that the appropriate handshake lines toggle the enable line of JP6. If necessary the
enable line can be tied to ground.

When using gpc as a network monitor the following set of problems can occur:

• No output from the GCB11. The following items should be checked:

1. Make sure cabling is correct.

2. Make sure the streams on the GCB11 have been re-directed to the network.

3. Make sure that gpc is connected to the GCB11 via the F8 key.

• The displaying of characters by gpc suddenly slows down. This occurs when gpc starts polling for a
node which is no longer on the network. This can happen if a node was at one time on the network
and then gets taken off or if there is excessive noise in the network and gpc inadvertently adds a node
to the polling table which never really existed. The remedy is to exit gpc and restart it. The adding of
nodes to the polling table can be controlled with the ALT-F and ALT-O keys as previously described.

6.7 Writing Applications to Use the Network (GNET)

The GROM module GNET provides routines for users who wish to use the network in their applications to send
and receive messages. As discussed previously, the GNET drivers can also be used for network Stream I/O. As
will be discussed, extra care needs to be taken if the application wishes to send and receive messages AND use
the network for console Stream I/O.

There are two levels of routines provided for interfacing to the network: level 0 and level 1. Each level interfaces
to the network in a different manner and cannot be mixed within an application. In addition to the two levels,

Writing Applications to Use the Network (GNET)

GNET 6-13

there is a large set of common routines which may be used in conjunction with either level. Briefly, each level can
be described in the following way:

• Level 0 - Direct calls to GNET. These are the most efficient means to use the network. Interfaces to
the application via call-backs.

• Level 1 - Provide a more transparent and simpler to use interface to the network, but also have more
overhead associated with them. Manage receive/send queues and the network Stream I/O.

In order for an application to use the network, the following simple steps must be followed:

• Configure the network parameters if default values in EEPROM are not appropriate.

• Initialize and start the network drivers.

• Connect the application to the network using either a level 0 or level 1 open call.

• Send and receive messages.

• Disconnect the application from the network by using either the level 0 or level 1 close call, depend-
ing upon how it was opened.

• Disable the network drivers.

The remainder of this section outlines the functions which are available within each level to perform the steps
described above. Please refer to CHAPTER 9, Programmer’s Reference for more detailed information con-
cerning each function call.

6.7.1 Common Functions

The following set of routines are common to both level 0 and level 1 and can be used within either context. These
routines are used to configure various parameters, initialize the network drivers, and obtain information about
them.

gn_config_node - Configures the various parameters for the network. These parameters remain in effect
until the next call to gn_init_comms or gn_config_node. Parameters which can be configured
include master/slave, baud rate, node address, and enable line for the RS-485 drivers.

gn_get_config - Fills out the structure config with all the current configuration values being used.

gn_save_config - This routine saves all the network configuration parameters in EEPROM. These
parameters include:

• master/slave flag

• baud rate

• enable line used for drivers

• node address

• polling table

• auto configure flag

gn_restore_config - This routine is used to restore the communications parameters from values stored
in the EEPROM. The parameters restored include the same as those given for gn_save_config.

gn_init_comms - Used at start-up to initialize the network drivers. Must be called before any of the level
0 or level 1 routines can be used. This routine sets up the default configuration of the node which was
stored in EEPROM unless a call to gn_config_node has been made.

Writing Applications to Use the Network (GNET)

6-14 GCB11 REFERENCE MANUAL

gn_exit_comms - Used to disable and clean up the network drivers. Should be called before exiting any
application that is using the network.

gn_get_stats - Returns the network statistics such as number of retries and time-outs currently experi-
enced.

gn_reset_net - Resets and initializes the node to its start-up state.

gn_suspend_poll - If the node is a master then polling of the slave nodes is suspended until the network
is reset or the start_poll function is called.

gn_start_poll - If the node is a master then the slave polling sequence is started. Each node in the poll-
ing table is queried in succession.

gn_set_poll - If the node is a master then this routine sets up a polling table which is supplied by the
application.

gn_get_poll - If the node is a master then this routine returns a pointer to the polling table used to poll
the slaves.

gn_add_poll - This routine adds a node address to the end of the polling table.

gn_auto_poll - This function enables automatic searching for nodes which are not explicitly put into
the polling table by the application. This allows nodes to be added to the polling table automatically
when they are plugged into the network. The major drawback of using this feature is that it will
impact network performance, because in cases where the master polls for nodes that do not exist,
there will be an inordinate delay while the master times out waiting for a response. There are addi-
tional parameters which can be supplied to lessen the impact of this effect.

6.7.2 Level 0 Functions

Level 0 functions represent the closest connection to the network with the least overhead. They should be used
only when level 1 functions are not appropriate. Typical reasons why level 1 functions may not be appropriate
include:

• There exist actions which must be performed IMMEDIATELY upon receipt of a message.

• Handling of messages received should happen completely in the background as opposed to polling a
receive message queue.

• Application needs tighter control over memory management.

Level 0 routines exist for sending messages, but the method for receiving messages involves the application
installing a call-back routine when the connection to the level 0 drivers is first established. The call-backs are
supplied by the application and will be called by the network drivers due to the following events:

• message received

• message sent

• incoming message

Care must be taken to ensure that these call-back routines are written in a brief and efficient manner, since they
will be called in the middle of an interrupt service routine. Assembly language may be necessary for more
involved routines.

Level 0 functions cannot be used if the network Stream I/O is already in use. Likewise, if level 0 functions are
already in use by the application then network Stream I/O cannot be used.

Writing Applications to Use the Network (GNET)

GNET 6-15

The following level 0 functions are supported.

gn_open_port_l0 - This function is used to connect the application to the level 0 network drivers for
message handling. It installs a series of call-back routines which are supplied by the application. This
routine must be called after gn_init_comms, but before any messages are to be processed. The call-
back routines are executed whenever a message is about to be received, or when a message is finished
transmitting or receiving. This provides maximum flexibility in the application memory management.

gn_close_port_l0 - This function is called to disconnect an application from the network services
while leaving the network running.

gn_send_message_l0 - This routine is used to send a message to another node in the network. The
application simply specifies the message to send, the destination node address, and whether to block
while waiting for it to be sent.

6.7.3 Level 1 Functions

Level 1 functions build upon the level 0 functions to provide a more transparent interface to the network. The dif-
ference between the level 0 and level 1 interface is the way the port is opened and the way messages are sent and
received.

The level 1 functions eliminate the need for the application to supply call-back routines to do the message queue
management. Essentially all incoming and outgoing messages are put into message queues, and the memory they
require is managed by the level 1 library routines. Messages are received by the application using a pair of rou-
tines which can check if any messages are in the message queue, and can get messages from the message queue.
This simplifies reception of messages, but also means that the message queue must be polled by the application.

One of the most fundamental differences between level 0 and level 1 functions is the way that the memory used
to receive and transmit messages is managed. In level 0 functions the application has complete control over the
allocation of memory to be used for messaging. By contrast, level 1 functions malloc memory for messages and
copy them around. This puts certain restrictions on the size of messages that can be sent and received, and may
fragment the applications heap.

In order to compensate for the loss of control over memory management, the level 1 functions require the appli-
cation to provide the routines which will be used to both malloc and free message memory. In the most trivial
case, the application can simply specify the standard library functions malloc and free. In applications where
memory management is an issue the application can provide its own malloc and free routines in order to maintain
tighter control over memory usage.

As mentioned earlier, the network Stream drivers are integrated within the level 1 network drivers. This allows
the application to connect to the Stream I/O drivers as well as the network Stream drivers. When level 1 drivers
are used and the network Stream I/O is enabled, all messages received from the node’s Stream partner are
directed to the Stream I/O buffers.

The following level 1 routines are supported.

gn_open_port_l1 - Used to initialize and open a level 1 port for communications. This should be called
before any other level 1 routines, but after any node configuration which may be required. The param-
eters supplied by the application include a malloc and free routine to be used for memory manage-
ment, as well as a receive queue size.

gn_close_port_l1 - Should be called before exiting an application which uses the network. The net-
work drivers and port will be closed and disabled.

Jumper and Cable Configuration Testing

6-16 GCB11 REFERENCE MANUAL

gn_send_message_l1 - Used to send messages to other nodes in the network.

gn_get_message_l1 - Used to get the next available message from the receive message queue.

gn_message_rdy_l1 - Used to determine the number of messages in the receive message queue.

6.8 Jumper and Cable Configuration Testing

There is a simple set of tools provided with the GCB11 for the PC which will quickly test the following elements
of your network configuration:

• Cabling from the PC to the GCB11 (JP6).

• Cabling between the GCB11s in the network (JP5).

• Master/Slave jumper settings (J1 - J8).

• Enable line jumper setting (J13).

• Enable line configuration in SCIENABLE.

To run this test, it is necessary to use a GCB11 as an SPI terminal off of each of the GCB11s that you want to
test. From a practical standpoint, it is only necessary to make a single SPI terminal and swap it among the
GCB11s on the network. In order to set up a network and test the configuration, perform the following steps:

• Through the SCI terminal interface, configure the GCB11s on the network to use the SPI console
Stream by running the GBUG BD command.

• Assemble the SPI cable and connect to an SPI terminal on the GCB11s that you want to test. If the
GBUG prompt appears when the GCB11 is reset then the SPI terminal is properly configured and
connected.

• Configure the jumpers on each of the networked GCB11s for master or slave (J1 - J8).

• Configure J13 to use the desired enable line.

• Set up the GCB Register SCIENABLE to correspond to the setting of J13. This can be done through
the GBUG monitor.

• Make all network cables and connect the GCB11s via JP5.

• Make an RS-232 cable and connect the PC (if any exists) via JP6.

• On the GCB11, run the ST GBUG command.

• On the PC, run com_tst. Be sure to specify the COM port (0-3) which is being used on the PC.

• Simply type characters. Any characters which are typed on any of the slave consoles should appear on
the master console. Likewise, all characters typed on the master console should appear on ALL of the
slave consoles.

The following is a list of common problems and possible solutions.

• When typing on the PC, nothing appears on any console. Be sure to check the cable between the PC
and the GCB11. Pay special attention to the enable signal.

• When typing on a GCB11, nothing appears on any console. Be sure that the jumper setting of J13
matches the value in the GCB register SCIENABLE. Also check the cabling coming out of JP5.

• When typing on a slave node, output appears on multiple consoles. More than one of the GCB11s is
configured as a master. Also check the cable coming out of JP5. It is possible that there are wires
crossed.

Jumper and Cable Configuration Testing

GNET 6-17

• When typing on any of the consoles, garbage appears on the other consoles. This is indicative of a
cabling problem. Possible problems include reversed wires on the cable, or line termination problems.
Consult section 6.4.1, Connecting the GCB11 to the Network for more information on making
cables.

Jumper and Cable Configuration Testing

6-18 GCB11 REFERENCE MANUAL

GAPP 7-1

CHAPTER 7 GAPP

7.1 Introduction

This chapter describes the GCB11 Application Routines, or GAPP, which supply miscellaneous support func-
tions for applications. GAPP is supplied in source code form on the Companion Disk and should be compiled
and linked with user programs. GAPP includes such items as PWM motor control and event counting. Each
application is listed in the sections which follow.

7.2 Motor Control

The motor control library is designed to perform a wide variety of control functions on DC and stepper motors.
These functions are written to be completely interrupt driven, and to run as efficiently as possible. This enables
the application to run freely in the foreground, while all essential motor control functions are running transpar-
ently in the background. All that is needed from the application is the issuing of commands to make the motor
perform the desired task.

 The motor control library uses the output and input compare functions of PORT A on the M68HC11. Because of
this, it is possible to simultaneously perform pulse width modulation (PWM) on up to four motors. In addition,
three of these motors can receive feedback and perform position control via encoders attached to the input cap-
ture pins.

7.2.1 Motor Control Basics

This discussion will concentrate on DC motor control since it is the simplest and most widely applicable. Most of
this discussion can be applied to stepper motors as well but the application is more involved and dependent upon
the type of stepper motor used.

Motor control consists of the following components:

• Motor to be controlled.

• Motor driver to convert from logic level signals to power signals appropriate to drive the motor.

• Control logic to control the motor’s speed, direction, and position.

• Feedback used to control some variable of the motor, such as speed or position.

Feedback is not required and when omitted the control is referred to as open loop.

The most common method for performing speed control is the use of pulse width modulation (PWM). This is
simply a stream of pulses sent to the motor at a fixed frequency, as shown in Figure 8.1. The amount of voltage or

Motor Control

7-2 GCB11 REFERENCE MANUAL

power available to the motor as a result of these pulses is the average area under the pulse over an entire pulse
period. Therefore, the wider the pulse width, the greater the voltage delivered to the motor, which results in
higher speeds and torque. There are a number of engineering reasons for using PWM, but perhaps the most com-
pelling is the relative ease with which highly accurate pulse widths can be generated and controlled.

FIGURE 8.1 Pulse Width Modulation

The output of the motor driver is usually connected to the DC motor (permanent magnet) using two wires. These
wires connect to the motor’s rotor windings and thus form a closed circuit. The direction of current through the
wires determines the motor’s direction.

The input to the motor driver can take many forms. In addition to the PWM signals, there are usually additional
control signals for things such as direction, enabling the motor, dynamic braking, etc. The motor control library
supports up to four PWM lines and any number of control signals, assuming that all control lines for a single
motor are on a single port.

7.2.2 PWM Port Assignments

In order to perform PWM, the motor control library relies on the timer functions which are tied to port A. There-
fore, the programmer must avoid using the associated timer functions when also using the motor control library.
Up to four PWM signals can be supported simultaneously, and each of these are hard wired to a particular logical
motor number. Each of the particular timer functions and port pins used for each logical motor are shown in
Table 8.1. Note that a logical motor only refers to a single set of PWM/control lines. It is possible to have two
PWM signals tied to a single physical motor. This is often necessary when the two halves of a single H-bridge
driver are isolated and require separate control lines. It is often easiest to simply connect a separate PWM signal
to each side of the H-bridge, and control each side of the H-bridge separately through software.

Motor Control

GAPP 7-3

The PWM is driven off of the OC1 interrupt. On each OC1 interrupt the corresponding pins for each PWM signal
are either set, reset, or toggled, depending upon the state of the PWM for that motor. For the most part, this is
handled automatically by the timer control register TCTL1. Motors 0 - 3 use outputs OC2 - OC5 (PA6 - PA3) of
port A. Therefore, when using a particular motor it is important for the application to avoid using the correspond-
ing control and flag bits for that output in all relevant registers. These registers include TCTL1, TCTL2, TFLG1,
and TMSK1.

7.2.3 Motor Control Functions

The motor control library is built around the concept of a logical motor. To this logical motor is assigned a single
PWM signal and numerous user defined control signals. As discussed in the previous section, the PWM signal
and the logical motors are hard wired together; everything else is completely flexible. The following library rou-
tines are supported:

ga_setup_motors - Used to initialize and set up the motor drivers with the base frequency.

ga_init_motor - Used to initialize a particular logical motor. Parameters such as PWM polarity and
additional direction control lines are supplied.

ga_motor_speed - Used to set the motor speed to a specific value.

gs_motor_dir - Used to set the motor direction via the additional direction control lines specified by the
user.

gs_motor_reverse - Reverses the direction of the motor.

Logical
 Motor

PWM out-
put Registers Used

Interrupt
Vector

0 PA6 (OC2)

TCTL1-OM2
TCTL1-OL2
TFLG1-OC1F
OC1M6
OC1D6
TOC1 intvtmroc1

1 PA5 (OC3)

TCTL1-OM3
TCTL1-OL3
TFLG1-OC1F
OC1M6
OC1D6
TOC1 intvtmroc1

2 PA4 (OC4)

TCTL1-OM4
TCTL1-OL4
TFLG1-OC1F
OC1M6
OC1D6
TOC1 intvtmroc1

3 PA3 (OC5)

TCTL1-OM5
TCTL1-OL5
TFLG1-OC1F
OC1M6
OC1D6
TOC1 intvtmroc1

TABLE 8.1 Timer and Port Assignments for PWM Output

Digital Input

7-4 GCB11 REFERENCE MANUAL

gs_motor_faster - Increases the speed of the motor by a specified amount.

gs_motor_slower - Decreases the speed of the motor by a specified amount.

ga_motor_state - Return the current state of a motor.

7.3 Digital Input

Digital input is defined as input to a single digital I/O pin on the GCB11. There are up to 20 digital I/O lines
available for this purpose. The following functions can be performed using the digital input routines provided
with the applications library:

• Count events such as pulses

• Read and debounce digital inputs

Each of these are described in more detail in the sections that follow.

7.3.1 Event Counting

There are four logical counters available for event counting, and each of these are hard wired to specific ports on
the GCB11. The routines are flexible enough to be used to perform counting functions ranging from a simple
event counter to an up-down counter with reset for quadrature encoders. The ports and registers used to perform
event counting are shown in Table 8.2.

The following routines are available for counting events:

L o g i c a l
Counter

Port used for
Events Registers Used

Interrupt Vec-
tor

0 PA2

DDRA-DDA3
TCTL2-EDG1A
TCTL2-EDG1B
TMSK1-IC1I
TFLG1-IC1F intvtmric1

1 PA1

DDRA-DDA1
TCTL2-EDG2A
TCTL2-EDG2B
TMSK1-IC2I
TFLG1-IC2F intvtmric2

2 PA0

DDRA-DDA0
TCTL2-EDG3A
TCTL2-EDG3B
TMSK1-IC3I
TFLG1-IC3F intvtmric3

3 PA3

DDRA-DDA3
TCTL2-EDG4A
TCTL2-EDG4B
TMSK1-I4O5I
TFLG1-I4O5F
PACTL-I4/O5 intvtmroc5

TABLE 8.2

Digital Input

GAPP 7-5

ga_start_counter - Used to initialize and start the event counter.

ga_stop_counter - Used to stop and disable the event counter.

ga_set_counter - Used to set the counter values.

ga_get_counter - Used to retrieve the current counter values.

A logical counter is initialized with the following parameters:

• Positive or negative edge trigger of the events to be counted.

• Optional auxiliary I/O port which determines whether the counter will go up or down when an event
is detected.

• Positive or negative reset pulse for zeroing out the count.

All counting and event monitoring occurs in an interrupt driven fashion without need for any intervention from
the application. If an auxiliary port is specified it will be used to determine whether the counter will count up or
down when an event is detected. When the event is detected the counter driver will read the auxiliary port. If it is
high the driver will increment the count. If it is low the count is decremented. This is typically used for quadra-
ture encoders which have two channels of pulse trains that are out of phase in a manner dependent upon the
direction of revolution of the encoder. When used in this manner, one of the channels is connected to the event
monitor and the other becomes an input to an auxiliary port which is defined by the user.

The reset pulse is useful when there is a reference pulse which can be used to set the counter to zero. Encoders
often have an index pulse which can be used for this purpose.

Digital Input

7-6 GCB11 REFERENCE MANUAL

Building Applications 8-1

CHAPTER 8 Building Applications

8.1 Introduction

This chapter serves as a general reference for users developing and running applications using GROM. In order
to develop code for the GCB11 it is necessary to take into consideration the following issues, each of which is
discussed in a section below:

• Examples

• Header Files

• Memory Map

• M68HC11 Resources

• Initialization

• Using GROM Routines

• Using Third-Party Libraries

• Running applications from GBUG

• Building Custom EPROMs

While this chapter does not refer to or depend upon any specific compiler or assembler being used for develop-
ment, examples on the companion disk are provided for several free and commercial C compilers/development
environments.

8.2 Examples

The primary guide for developing applications for the GCB11 is the examples directory on the companion disk.
These examples contain source code, makefiles, and linkfiles for building complete applications to run both from
GBUG and in custom stand-alone EPROMs. If you are using one of the compilers for which examples are given,
the easiest path to completing an application may well be to modify one of the example programs. Even if there
are no specific examples for the compiler you are using, it will probably be easier to port the example files than to
start from scratch.

The simplest example program, and a good place to start, is hello. hello prints the text “hello world” to the
STDIO stream. Each of the other examples demonstrates or tests one or more of the functionalities of GROM.
Usually an application is initially developed in RAM and run from GBUG, even if it will eventually be put into
EPROM and run stand-alone. The hello example makes two versions of the program, one that can be run from
GBUG and another that can be used to make a stand-alone EPROM. One other technique that can be used is to
store the code in EEPROM or EPROM and use the GBUGRR GCB Register to transfer execution to it on reset.
See the spi_mon example for more details on this.

Header Files

8-2 GCB11 REFERENCE MANUAL

8.3 Header Files

The GCB11 comes with a set of C and assembly header files on the companion disk which should be used when
writing applications. Each library function in GROM is declared in one of these headers. Each header declares a
set of related functions, plus any necessary types and macros needed to facilitate their use. All C header files have
the .h extension, while the corresponding assembly header files have the .inc extension. See the README file in
the root directory for the locations of these files on the disk.

8.3.1 System Headers

These header files are used to define all the system constants and definitions, such as the location of M68HC11
registers. They must be included by all C and assembly routines.

• coactive.h, coactive.inc

• gcb11.h, gcb11.inc

8.3.2 GROM Headers

There is a header file for each major subsystem within GROM. Refer to the appropriate chapter for a discussion
of a specific GROM module. The corresponding header file should be included by any source file which uses
functionality from that subsystem.

• gapp.h, gapp.inc - Application library definitions.

• gios.h, gios.inc - GCB11 specific definitions used by the GIOS subsystem.

• gnet.h, gnet.inc - Definitions used by the network drivers.

8.3.3 Standard C Library Headers

As discussed in CHAPTER 4, GIOS, the GIOS module contains a subset of the ANSI Standard C Library func-
tions. ANSI C compatible header files for these routines are located on the companion disk. The following Stan-
dard C Library header files are shipped with the GCB11:

• ctype.h

• limits.h

• stddef.h

• stdio.h

• stdlib.h

• string.h

For a complete description of these files, see any reference on the ANSI C Standard (e.g. The C Programming
Language by Kernighan and Ritchie and The Standard C Library by Plauger)

Note that some files are missing from the full Standard C implementation, and some of the files included are not
complete implementations. A common practice is to use the standard library supplied with the C compiler which
is being used for development for any additional library functions which are needed. Since the names of these
files may follow the same ANSI Standard, the headers from the two source, GROM and the C compiler, will need
to be merged. Examples of this merging are supplied on the companion disk for several compilers.

Memory Map

Building Applications 8-3

8.4 Memory Map

GROM reserves blocks of RAM, EEPROM, and EPROM for its own use. Refer to the memory map in
Section 3.2 to ensure that your application does not clash with memory used by GROM.

When using RAM, applications must be careful of memory reserved by GROM data and any locations which are
being used by the M68HC11F1. These include the I/O registers at the bottom of page zero, the blocks of code
used by the I/O chip selects if these are being use, and the EEPROM located at 7E00 hex. Also note that the GCC
3.2.2 compiler uses locations 74 hex through 8C hex for pseudo registers.

EEPROM is free except for the block at the bottom reserved for the GCB Registers.

When making an EPROM version of an application that uses GROM, the application code must be placed in
memory along with the GROM code. The companion disk contains S-record files for GROM in several configu-
rations (see Section 8.10 for more details). GROM code always starts at the bottom of EPROM (8000 hex) and
uses a single block of memory. The size of each GROM code S-record file is listed in the readme file on the
companion disk. In addition to code, GROM uses the top of EPROM for the call table, interrupt vectors, and any
constant data it requires. These two blocks of reserved EPROM leave a block of free EPROM between the end of
GROM code and the beginning of GROM Constant Data. This free space is where EPROM applications must
reside.

C compilers often allow the use of multiple segments within the application. These segments are usually divided
into code and data segments. The linker is then responsible for the placement of these segments within the mem-
ory map. The management of segments is left entirely up to the user, and is restricted only by the compiler and
the GROM memory map. Examples exist on the companion disk for several compiles and linkers. Porting these
to a new development environment should be straight forward in most cases.

The examples programs which run from GBUG (with the exception of spi_mon, which is placed in EEPROM)
all start at 100 hex and grow upward. The code is located at the bottom and followed by immediately by data and
stack space. EPROM example code starts immediately after the last byte of GROM code, and EPROM example
data starts at 100 hex.

8.5 MC68HC11 Resources

The GROM routines use many of the registers, interrupt vectors, and ports available on the GCB11. It is impor-
tant that the application not interfere with these resources if they intend to also use the corresponding GROM
routines. For example, if the application reprograms the SCI interrupt, this would interfere with the normal
Stream interrupt and cause console I/O to fail. The application is obviously free to modify any register on the
GCB11 as long as it is ready to accept the consequences of losing the corresponding GROM functionality. The
M68HC11F1 resources used by each GROM code module are listed in a table in chapter covering that module.
The I/O registers listed in Section 3.3 cannot be modified, or GROM will not function.

Initialization

8-4 GCB11 REFERENCE MANUAL

8.6 Initialization

Several hardware and software systems on the GCB11 need to be initialized before user applications using
GROM can run. Initialization can be divided into five steps:

• Set up MC68HC11F1 I/O registers

• Set up MC68HC11F1 stack pointer CPU register

• Check MC68HC11F1 CONFIG register for corruption

• GROM initialization

• Compiler/assembler start-up

Each of these steps is detailed in a section below. Note that if the application is being run from GBUG, only the
second and last steps need to be performed (the rest are handled by GBUG at reset).

The companion disk contains two example assembly language files for application initialization: startrom and
startram. startrom contains all five steps and also includes the interrupt vectors (see Section 8.10, Build-
ing a Customized EPROM) and should be used when making stand-alone EPROMs. startram contains
steps two and five only and should be used when making applications which run from GBUG.

8.6.1 I/O Registers

GROM requires certain MC68HC11F1 I/O registers to be configured before they can function. See Section 3.3,
M68HC11 I/O Registers for details on which registers these are and what values they need to be set to. Note
that some of these registers must be changed in the first 64 E cycles after the processor is reset. See the
M68HC11 Reference Manual for more details.

8.6.2 Stack Pointer

Before an application can make function calls or use stack operations, the MC68HC11F1 Stack Pointer (SP)
CPU register must be initialized. A block of memory for the stack should be reserved and the SP register should
be set to point to the end of this block (the stack grows down in memory). The GROM stack requirements and
initialization are discussed in Section 3.10 and Section 3.11 respectively.

8.6.3 CONFIG Register

The MC68HC11F1 CONFIG I/O register is a special case because it cannot be changed without special
EEPROM programming and resetting of the CPU. The example start-up code on the companion disk demon-
strates one method of dealing with this problem.

8.6.4 GROM Initialization

GROM initialization consists of the following steps:

• Initialize Interrupt Vector Table

• Check for corrupted GCB Registers, copying the Registers from EPROM to EEPROM if they are cor-
rupted

• Copy GCB Registers from EEPROM into RAM

• Initialize Stream driver

Calling GROM Routines

Building Applications 8-5

• Initialize Stream and assign it to STDIO

All of these operations are described in CHAPTER 3, GROM and CHAPTER 4, GIOS.

8.6.5 Compiler/Assembler Start-up

Most GCB11 applications will need additional initialization which is required by the compiler or assembler that
is being used for development. This is often done in a start-up routine supplied with the compiler or assembler.
The following functions are normally performed within a C language start-up routine:

• Set up heap for the application.

• Copy static variables into RAM.

GROM places no restrictions upon what is performed within this module.

Note that GCC 3.2.2 does not initialize global data when the code is in EPROM.

8.7 Calling GROM Routines

The resources provided in GROM exist in EPROM and therefore do not need to be linked directly with the appli-
cation. This enables the application to be written in either C or assembly language, although the routines are
designed to allow easy interfacing to C. Refer to Section 3.9, Call Table, for the calling conventions and
memory locations of all the GROM routines. Section 3.9 also describes the use of wrapper functions in assem-
bly, which convert the arguments from a C compiler to the GROM argument format.

Note that a more efficient method of calling GROM functions than using wrappers when no argument translation
is needed is to use C macros or assembly EQU statements to directly call the GROM call table. This technique
eliminates a redundant JMP instruction.

The companion disk contains libraries of wrapper functions for several compilers. These libraries are divided by
code module and can be linked into the application as needed.

8.8 Third Party Libraries

Most applications will use library functions from third party libraries, such as the libraries shipped with a com-
piler, in addition to the functions in GROM. This presents no problems unless there is a name conflict with the
GROM function. This can occur in two situations:

• Both functions provide the same functionality. In this case, listing the libraries of GROM wrapper
functions before third party libraries will insure that the GROM functions will be used in place of the
third party library functions when naming conflicts occur. Reversing the order of the libraries on the
link line will reverse this situation: the third party library functions will be used in place of the GROM
functions. To selectively use functions from third party libraries in place of GROM functions, the
wrapper functions for the specific GROM functions not needed can be removed from the appropriate
library of GROM wrapper functions.

• The functions provide different functionality and just happen to be named the same. In this case, the
easiest solution is to rename the GROM function in the library of GROM wrapper functions and use
this new name to reference the GROM function in the application.

Running from GBUG

8-6 GCB11 REFERENCE MANUAL

8.9 Running from GBUG

When the distribution GROM EPROM is socketed and the GCB11 is reset, control is passed directly to GBUG.
Normally, the GBUG sign-on and prompt will appear unless the GBUGRR GCB Register has been used to auto-
matically run a program at a specified memory address. If the application resides in RAM, it must be downloaded
before it can be executed. This is accomplished by using the GBUG TD command. GBUG accepts S-records for
download purposes. An S-record file can be the result of either an assembly or a link. Once the code is down-
loaded, control is passed to it by simply issuing the GBUG R command. See CHAPTER 5, GBUG for more
details.

Each example program has a readme file associated with it. The readme explains what the example does and
how to compile, assemble, download, and run the code. This process can be generalized as follows:

• Clean the old objects and S-record files from the directory. This is handled by the “clean” target of the
makefile.

• Make the application. This is handled by the default target of the makefile.

• Download the program to the GCB11 using GPC. From the GCB11, type “TD” and press return.
Transfer the program from the PC using a terminal emulation program (from GPC, press <F7>, enter
the file name, and press return).

• Run the program. All examples on the companion disk start at 100 hex. From GBUG, type “R 100”
and press return.

8.10 Building a Customized EPROM

There are two types of EPROM applications: those that run from GBUG and those that run stand-alone. A stand-
alone program will begin executing each time the GCB11 is reset.

8.10.1 ROMable Code

For an application to run in EPROM, it must be ROMable, which means it must:

• Never write into code space

• Access constant data in EPROM and volatile data in RAM

• Copy initialized data from EPROM into RAM upon start-up

Most compilers have a flag which will generate code that is ROMable. It is up to the user to ensure that any
assembly language code is ROMable.

8.10.2 Using GROM Resources

From the point of view of the GCB11 and the GROM, developing code to run in an EPROM is no different than
developing code to run in RAM. The only difference is the location of the application in the memory map.
GROM routines are still called in exactly the same manner.

8.10.3 Interrupt Vectors

If GBUG is not included in the EPROM, an interrupt vector table will need to be placed at the top of EPROM.
For GROM to operate, all interrupt vectors except reset should point to the GROM Interrupt Jump Table. The

Building a Customized EPROM

Building Applications 8-7

reset vector should point to the code in EPROM which is the entry point for the application. The file startrom
on the GCB11 companion disk contains a sample vector table.

8.10.4 GROM S-Records

The companion disk provides S-record files of GROM to allow custom EPROMs to be built. When building a
custom EPROM, two GROM S-record files will need to be downloaded to the programmer in addition to the
application S-record file(s):

• GROM code S-record file. In order to give the user maximum flexibility in garnering EPROM space
to hold the application, there are a number of GROM versions in S-record files delivered with the
GCB11. These files allow the user to use only the GROM code modules needed for an application, in
order to leave the maximum amount of free space in the EPROM. Each S-record file is named accord-
ing to which GROM code modules it includes.

• Constant data S-record file. In order to make GROM code S-record files crystal speed independent,
GROM Constant Data is supplied in separate S-record files, one for each common crystal speed. If an
application needs to run on a GCB11 with a crystal speed for which there is no supplied S-record file,
one can easily be built by using the const example as a guide. See Section 3.8 for more details on
GROM Constant Data.

The GROM S-record files are located in gen/gen/bin on the companion disk. See the readme file for details
on what each file contains.

Note that an offset of 8000 hex should be used when downloading the S-records to an EPROM programmer,
since the EPROM is located at 8000 hex in the memory map.

Building a Customized EPROM

8-8 GCB11 REFERENCE MANUAL

Programmer’s Reference 9-1

CHAPTER 9Programmer’s Reference

9.1 Introduction

This chapter gives a detailed description of every function available in the GROM except the GIOS Standard C
Library Functions. The Standard C Library include files on the GCB11 companion disk contain ANSI C proto-
types for each of the functions. For a complete description of these functions, see any reference on the ANSI C
Standard, including The C Programming Language by Kernighan and Ritchie and The Standard C Library by
Plauger.

All function descriptions are given in C syntax. See Section 3.9 for a description of GROM function calling
conventions from assembly language.

Functions in each section are listed alphabetically. Note that some descriptions contain more than one function.

9.2 Reference

Each GROM function which is not part of the standard C library is preceded by a two-letter prefix which identi-
fies which GROM module the routine belongs to. The following prefixes are used:

• ga -GAPP module.

• gi - GIOS module.

• gn - GNET module.

Reference

9-2 GCB11 REFERENCE MANUAL

ga_get_counter ga_get_counter

Name: ga_get_counter - get the current event counter value.

ga_set_counter - set the current event counter value.

Synopsis: #include <gios.h>

#include <gcb11.h>

#include <coactive.h>

#include <gapp.h>

ga_get_counter(int counter, COUNT_REC *count_data)

ga_set_counter(int counter, unsigned int count_value, unsigned char zero_hit)

counter Logical counter. Must be in the range of 0 - 3.

count_data Pointer to structure containing the current count value and the cur-
rent zero_hit value. See gapp.h.

count_value New value to put into the counter.

zero_hit New value to put into the zero hit flag.

Description: These routines are used to get and set the current counter values. The flag zero_hit is set when-
ever the zero index pulse is detected. This is useful on start-up and initialization of a device.

Return Value: SUCCESS or FAILURE

Examples:

Reference

Programmer’s Reference 9-3

ga_init_motor ga_init_motor

Name: ga_init_motor - initialize a particular logical motor.

ga_setup_motor - initialize the PWM frequency.

Synopsis: #include <gios.h>

#include <gcb11.h>

#include <coactive.h>

#include <gapp.h>

ga_init_motor(unsigned char motor_num,

 unsigned char *dir_port,

 unsigned char dir_mask,

unsigned char dir_right,

unsigned char dir_left,

unsigned char polarity);

ga_setup_motors(unsigned int max_speed)

motor_num logical motor number.

*dir_port port to use for direction control.

dir_mask bit of direction port to use.

dir_right bit pattern for right rotation.

dir_left bit pattern for left rotation

polarity polarity of PWM.

max_speed maximum number of cycles per pulse.

Description: These functions are used to setup and initialize the PWM signals that are used to perform
motor control. Function ga_setup_motors must be the first motor control routine called. The
parameter max_speed is used to generate the PWM frequency. It represents the number of
timer ticks (E cycles) per PWM cycle. Once set the same PWM frequency is applied to all log-
ical motors.

The function ga_init_motor is used to configure a single logical motor (PWM signal). As well
as specifying which motor to initialize an optional direction port can also be specified. This is
used when there are additional direction control signals associated with the PWM signal. Any
number of bits from a single port can be used for direction control. The mask dir_mask speci-
fies which bits are to be used while dir_right and dir_left specify what the particular bit pat-

Reference

9-4 GCB11 REFERENCE MANUAL

terns should be for the desired directions. If no direction lines are required then dir_port should
be set to zero.

The polarity of the PWM signals can be set using polarity. If polarity is zero then the PWM
signal is active low meaning that a speed specification of max_speed will be a constant output
of zero on the PWM output line. Likewise if polarity is non-zero then a speed specification of
max_speed will be a constant output of high on the PWM output line.

Return Value: SUCCESS or FAILURE.

See Also: ga_motor_dir(), ga_motor_speed(), ga_motor_state().

Reference

Programmer’s Reference 9-5

ga_motor_dir ga_motor_dir

Name: ga_motor_dir - set the direction of the motor.

ga_motor_reverse - reverse the current direction of the motor.

Synopsis: #include <gios.h>

#include <gcb11.h>

#include <coactive.h>

#include <gapp.h>

int motor_dir(int motor_num, int dir)

int motor_reverse(int motor_num)

motor_num logical motor number.

dir direction of the motor.

Description: The function motor_dir sets the direction of the motor to either MOTOR_LEFT or
MOTOR_RIGHT. These correspond to the direction bits specified by ga_init_motor.

Function ga_motor_reverse reverses the direction of the motor. CAUTION: Extreme care
should be taken when using this function since reversal of a motor going full speed will often
cause serious damage to the motor driver circuitry.

Return Value: none

See Also: ga_init_motor(), ga_motor_speed(), ga_motor_state().

Reference

9-6 GCB11 REFERENCE MANUAL

ga_motor_speed ga_motor_speed

Name: ga_motor_speed - set speed of the motor.

ga_motor_faster - make motor go faster.

ga_motor_slower - make motor go slower.

Synopsis: #include <gios.h>

#include <gcb11.h>

#include <coactive.h>

#include <gapp.h>

int ga_motor_speed(int motor_num, int speed)

int ga_motor_faster(int motor_num, int speed_inc)

int ga_motor_slower(int motor_num, int speed_inc)

motor_num logical motor number.

speed speed of the motor.

speed_inc amount to increase/decrease speed.

Description: These functions change the speed of the motors. The function gn_motor_speed sets the abso-
lute speed of the motor. The value of speed must be between 0 and the value max_speed that
was specified when the function ga_setup_motor was called. The resulting pulse width after
gn_motor_speed is called is equal to speed / max_speed.

The functions ga_motor_faster and ga_motor_slower increase and decrease the speed of the
motors respectively. The speed of the motor is changed by the amount specified in speed_inc.

Return Value: SUCCESS or FAILURE.

See Also: ga_init_motor(), ga_motor_dir(), ga_motor_state().

Reference

Programmer’s Reference 9-7

ga_motor_state ga_motor_state

Name: ga_motor_state - get current state of a motor.

ga_motor_record - return pointer to internal motor control record.

Synopsis: #include <gios.h>

#include <gcb11.h>

#include <coactive.h>

#include <gapp.h>

int ga_motor_state(int motor_num, int *speed, int *direction)

int ga_motor_record(int motor_num, MOTOR_REC **motor_recs)

motor_num logical motor number.

speed current speed of the motor.

direction current direction of the motor.

motor_rec pointer to internal motor control record.

Description: ga_motor_state returns the current speed and direction of the motor specified. The units are
the same as those used when the motor speed is set using ga_motor_speed.

ga_motor_record returns a pointer to the internal motor control record. This can be used if
there are type of control or information necessary that is not provided by the other motor con-
trol interface routines. Great care should be taken in modifying this record.

Return Value: SUCCESS or FAILURE.

See Also: ga_init_motor(), ga_motor_dir(), ga_motor_speed().

Reference

9-8 GCB11 REFERENCE MANUAL

ga_start_counter ga_start_counter

Name: ga_start_counter - start event counter.

ga_stop_counter - stop the event counter.

Synopsis: #include <gios.h>

#include <gcb11.h>

#include <coactive.h>

#include <gapp.h>

int ga_start_counter(int counter, char *dir_port, unsigned char dir_mask,

int edge, int zero, int zero_edge, unsigned int max)

int ga_stop_counter(int counter)

counter Counter id. Must have values 0 - 3.

dir_port Port containing auxiliary direction bits.

dir_mask Bits of dir_port to be used for the count direction.

edge Determines which edge triggers the event. If zero then falling edge,
else rising edge.

zero Logical zero number for zeroing index pulses. Must be different
from counter, but also have values from 0 - 3.

max Maximum counter value.

Description: These routines are used to start and stop an event counter. An event is defined to be either a ris-
ing or falling pulse edge. There are up to four event counters supported and each one is hard-
wired to the corresponding input capture pin on the 68HC11. Counter 0 corresponds to input
capture 1 while counter 3 corresponds to input capture 4.

The auxiliary port is used to set the direction of the count on each event. If the auxiliary input
is high the count is incremented while if it is low it is decremented.

The zero parameter is used to reset the count when another event occurs. This event also tied to
one of the input capture pins and thus must be different than count or any other event counter
which may be active.

There is a flag associated with each counter called zero_flag that is set every time the zero
pulse is detected. The application may reset this flag with ga_set_counter and then poll wait-
ing for it to be set. This can be useful during initialization.

max is used to limit the counting. When the count reaches max it is reset back to zero.

Return Value: SUCCESS or FAILURE

Reference

Programmer’s Reference 9-9

gi_drvr_close gi_drvr_close

Name: gi_drvr_close - close a Stream driver

Synopsis: #include <gios.h>

int gi_drvr_close(Driver *driver)

driver pointer to driver structure

Description: gi_drvr_close calls the close function in the DriverTable structure contained in driver. The
close function is implemented by the Stream driver code and should deactivate the input and
output channels and free all the necessary system resources.

driver must be initialized with gi_drvr_init before being open or closed.

Return Value: Passes the return code of close to the caller.

See Also: gi_drvr_init(), gi_drvr_ioctl(), gi_drvr_open()

Examples:

Reference

9-10 GCB11 REFERENCE MANUAL

gi_drvr_init gi_drvr_init

Name: gi_drvr_init - initialize a Stream driver

Synopsis: #include <gios.h>

int gi_drvr_init(Driver *driver)

driver pointer to driver to initialize

Description: gi_drvr_init calls the init function in the DriverTable structure contained in the driver with a
single argument containing driver. The init function is implemented by the Stream driver code
and should perform any initialization needed for gi_drvr_open, gi_drvr_close, and gi_drv-
r_ioctl to function.

Return Value: Passes the return code of init to the caller.

See Also: gi_drvr_close(), gi_drvr_ioctl(), gi_drvr_open()

Examples:

Reference

Programmer’s Reference 9-11

gi_drvr_ioctl gi_drvr_ioctl

Name: gi_drvr_ioctl - configure a Stream driver

Synopsis: #include <gios.h>

int gi_drvr_ioctl(Driver *driver,...)

driver pointer to driver to configure

... arguments to configuration function

Description: gi_drvr_ioctl calls the ioctl function in the DriverTable structure contained in the driver. The
ioctl function is implemented by the Stream driver code and all additional arguments are
passed on to this function. ioctl can be used to do custom configuration or to change default
driver parameters.

driver must be initialized with gi_drvr_init before being configured.

Return Value: Passes the return code of ioctl to the caller.

See Also: gi_drvr_close(), gi_drvr_init(), gi_drvr_open()

Examples:

Reference

9-12 GCB11 REFERENCE MANUAL

gi_drvr_open gi_drvr_open

Name: gi_drvr_open - open a Stream driver

Synopsis: #include <gios.h>

int gi_drvr_open(Driver *driver)

driver pointer to driver to open

Description: gi_drvr_open calls the open function in the DriverTable structure contained in driver. The
open function is implemented by the Stream driver code and should activate the input and out-
put channels and allocate all the necessary system resources to allow a Stream to use the driver

driver must be initialized with gi_drvr_init before being open or closed.

Return Value: Passes the return code of open to the caller.

See Also: gi_drvr_close(), gi_drvr_init(), gi_drvr_ioctl()

Examples:

Reference

Programmer’s Reference 9-13

gi_gcb_checksum gi_gcb_checksum

Name: gi_gcb_checksum - validate the EEPROM GCB Registers.

Synopsis: #include <coactive.h>

#include <gios.h>

int gi_gcb_checksum(int mode)

mode - check or update mode

Description: gi_gcb_checksum computes the checksum of the GCB Registers in EEPROM. If mode is
GCB_CHECK, the new checksum is compared to the value stored in the byte following the
last GCB Register and FAILURE is returned if they are not equal. If mode is GCB_UPDATE,
the checksum is written in the byte following the last GCB Register.

Return Value: SUCCESS or FAILURE if checksums are not equal.

See Also: gi_gcb_eetor(), gi_gcb_etoee(), gi_gcb_loopback()

Examples:

Reference

9-14 GCB11 REFERENCE MANUAL

gi_gcb_eetor gi_gcb_eetor

Name: gi_gcb_eetor - copy GCB Registers from EEPROM to RAM.

Synopsis: #include <gios.h>

void gi_gcb_eetor(void)

Description: gi_gcb_eetor copies all the GCB Registers from EEPROM to RAM.

Return Value: none

See Also: gi_gcb_checksum(), gi_gcb_etoee(), gi_gcb_loopback()

Examples:

Reference

Programmer’s Reference 9-15

gi_gcb_etoee gi_gcb_etoee

Name: gi_gcb_etoee - copy GCB Registers from EPROM to EEPROM.

Synopsis: #include <gios.h>

void gi_gcb_etoee(void)

Description: gi_gcb_etoee copies all the default GCB Registers from EPROM to EEPROM. A checksum of
the all the Registers is written immediately following the last Register. Only values that are dif-
ferent are actually written.

Return Value: none

See Also: gi_gcb_checksum(), gi_gcb_eetor(), gi_gcb_loopback()

Examples:

Reference

9-16 GCB11 REFERENCE MANUAL

gi_gcb_loopback gi_gcb_loopback

Name: gi_gcb_validate - preform loop-back test on port D.

Synopsis: #include <coactive.h>

#include <gios.h>

int gi_gcb_loopback(void)

Description: gi_gcb_loopback performs a loopback test between pins PD0 and PD1 on JP2. If the pins are
shorted together, it returns FAILURE.

Return Value: SUCCESS or FAILURE if pins PD0 and PD1 are shorted.

See Also: gi_gcb_checksum(), gi_gcb_eetor(), gi_gcb_etoee()

Examples:

Reference

Programmer’s Reference 9-17

gi_eeprom_erase gi_eeprom_erase

Name: gi_eeprom_erase - erase a byte in EEPROM.

Synopsis: #include <coactive.h>

#include <gios.h>

int gi_eeprom_erase(void *address)

address address of byte to erase

Description: gi_eeprom_erase erases the EEPROM byte at address. A check is made to ensure that address
is in EEPROM.

Return Value: SUCCESS or FAILURE if address is not in EEPROM

See Also: gi_eeprom_write(), gi_eeprom_erase_bulk(), gi_eeprom_erase_row()

Examples:

Reference

9-18 GCB11 REFERENCE MANUAL

gi_eeprom_erase_bulk gi_eeprom_erase_bulk

Name: gi_eeprom_erase_bulk - erase all of EEPROM.

Synopsis: #include <gios.h>

int gi_eeprom_erase_bulk(void)

Description: gi_eeprom_erase_bulk erases the all EEPROM locations.

Return Value: none

See Also: gi_eeprom_erase(), gi_eeprom_erase_row(), gi_eeprom_write()

Examples:

Reference

Programmer’s Reference 9-19

gi_eeprom_erase_row gi_eeprom_erase_row

Name: gi_eeprom_erase_row - erase a16 byte row of EEPROM.

Synopsis: #include <coactive.h>

#include <gios.h>

int gi_eeprom_erase_row(void *address)

address address of byte in row to erase

Description: gi_eeprom_erase_row erases a row EEPROM bytes at address. A check is made to ensure
that address is in EEPROM. A row is 16 bytes starting on an even 16 -byte boundary (7E00,
7E10, 7E20, etc...)

Return Value: SUCCESS or FAILURE if address is not in EEPROM

See Also: gi_eeprom_write(), gi_eeprom_erase(), gi_eeprom_erase_bulk()

Examples:

Reference

9-20 GCB11 REFERENCE MANUAL

gi_eeprom_write gi_eeprom_write

Name: gi_eeprom_write - write a byte in EEPROM.

Synopsis: #include <coactive.h>

#include <gios.h>

int gi_eeprom_write(void *address, int value)

address address of byte to write

value value of byte to write

Description: gi_eeprom_write writes the EEPROM byte at address to value. A check is made to ensure that
address is in EEPROM. The byte should be erased first.

Return Value: SUCCESS or FAILURE if address is not in EEPROM

See Also: gi_eeprom_erase(), gi_eeprom_erase_bulk(), gi_eeprom_erase_row()

Examples:

Reference

Programmer’s Reference 9-21

gi_intr_disable gi_intr_disable

Name: gi_intr_disable - disable MC68HC11 interrupts

Synopsis: #include <gios.h>

void gi_intr_disable(void)

Description: gi_intr_disable executes a SEI instruction.

Return Value: none

See Also: gi_intr_dummy(), gi_intr_enable(), gi_intr_rti(), gi_intr_swi()

Examples:

Reference

9-22 GCB11 REFERENCE MANUAL

gi_intr_dummy gi_intr_dummy

Name: gi_intr_dummy -dummy interrupt service routine

Synopsis: #include <gios.h>

void gi_intr_dummy(void)

Description: gi_intr_dummy consists of a single RTI instruction. This routine can be used to fill in unused
interrupt vectors.

Note that is this routine does nothing to clear the interrupt. If it does not clear on its own, the
interrupt will continue to occur and execution will never return to user code.

Return Value: none

See Also: gi_intr_disable(), gi_intr_enable(), gi_intr_rti(), gi_intr_swi()

Examples:

Reference

Programmer’s Reference 9-23

gi_intr_enable gi_intr_enable

Name: gi_intr_enable - enable MC68HC11 interrupts

Synopsis: #include <gios.h>

void gi_intr_enable(void)

Description: gi_intr_enable executes a CLI instruction.

Return Value: none

See Also: gi_intr_disable(), gi_intr_dummy(), gi_intr_rti(), gi_intr_swi()

Examples:

Reference

9-24 GCB11 REFERENCE MANUAL

gi_intr_rti gi_intr_rti

Name: gi_intr_rti - execute a RTI instruction

Synopsis: #include <gios.h>

void gi_intr_rti(void)

Description: gi_intr_rti pops its return value off the stack and executes a single RTI instruction. This rou-
tine can be used to return from a C interrupt service routine. Note that this routine works only
if the SP register points to the interrupt stack frame (i.e.the SP is the same value as it was when
entering the ISR). Without special care, this will not always be true. Some compilers always
mess with the stack upon entering a C function (e.g. GCC 2.3.3). Also, declaring automatic
variables in the ISR will usually change the SP.

Return Value: none

See Also: gi_intr_dummy(), gi_intr_disable(), gi_intr_enable(), gi_intr_swi()

Examples:

Reference

Programmer’s Reference 9-25

gi_intr_swi gi_intr_swi

Name: gi_intr_swi - execute a SWI instruction

Synopsis: #include <gios.h>

void gi_intr_swi(void)

Description: gi_intr_swi pops its return value off the stack and executes a single SWI instruction. This rou-
tine can be used to return GBUG from a C routine.

Return Value: none

See Also: gi_intr_dummy(), gi_intr_disable(), gi_intr_enable(), gi_intr_rti()

Examples:

Reference

9-26 GCB11 REFERENCE MANUAL

gi_sci_free gi_sci_free

Name: gi_sci_free - free the SCI.

Synopsis: #include <coactive.h>

#include <gios.h>

void gi_sci_free(int *sci_driver, Stream **stream)

sci_driver value of SCIDRIVER GROM RAM variable before call

stream GBUG Stream pointer before call

Description: gi_sci_free frees the SCI by closing the SCI or GNET Stream driver and detaching any Stream
which is connected to it. This is useful when running a program from GBUG which needs to
use the SCI without using the Stream driver which GBUG is using (e.g. starting up the network
after using GBUG though the SCI Stream driver). sci_driver and stream are used to return the
values of the SCIDRIVER GROM RAM variable and the GBUG Stream which were in use
before calling gi_sci_free. gi_sci_reinit can use these to restore the state of the SCI to what it
was before gi_sci_free was called.

Return Value: none.

See Also: gi_sci_reinit()

Examples:

Reference

Programmer’s Reference 9-27

gi_sci_reinit gi_sci_reinit

Name: gi_sci_reinit - reinitialize the SCI Stream driver

Synopsis: #include <coactive.h>

#include <gios.h>

void gi_sci_reinit(int sci_driver, Stream *stream)

sci_driver SCIDRIVER GROM RAM variable retuned by gi_sci_free

stream Stream returned by gi_sci_free

Description: gi_sci_reinit reinitializes the SCI Stream driver if it was previously freed with gi_sci_free.
sci_drvier and stream should contain the values returned by gi_sci_free.

Return Value: none.

See Also: gi_sci_freet()

Examples:

Reference

9-28 GCB11 REFERENCE MANUAL

gi_strm_attach gi_strm_attach

Name: gi_strm_attach - assign a Stream driver to a Stream

Synopsis: #include <coactive.h>

#include <gios.h>

int gi_strm_attach(Stream *stream, Driver *driver)

stream Stream to attach

driver Driver to attach

Description: gi_strm_attach assigns Stream driver driver to stream. Detaches any existing driver first. Any
data in the Stream output buffer is sent to driver.

stream must be initialized using gi_strm_init before it can be attached and detached.

Return Value: SUCCESS or FAILURE if the stream is not initialized.

See Also: gi_strm_detach(), gi_strm_init()

Examples:

Reference

Programmer’s Reference 9-29

gi_strm_detach gi_strm_detach

Name: gi_strm_detach - detaches a Stream driver from a Stream

Synopsis: #include <coactive.h>

#include <gios.h>

int gi_strm_detach(Stream *stream)

stream Stream to detach

Description: gi_strm_detach detaches Stream stream from its driver. The Stream’s input and output buffers
are preserved and reads and writes on the Stream can still be performed.

stream must be initialized using gi_strm_init before it can be attached and detached.

Return Value: SUCCESS or FAILURE if the stream is not initialized.

See Also: gi_strm_attach(), gi_strm_init()

Examples:

Reference

9-30 GCB11 REFERENCE MANUAL

gi_strm_flush gi_strm_flush

Name: gi_strm_flush - wait for a Stream output buffer to empty

Synopsis: #include <gios.h>

void gi_strm_flush(Stream *stream)

stream Stream to flush

Description: gi_strm_flush waits for the output circular buffer of stream to empty.

Return Value: none

See Also: gi_strm_attach(), gi_strm_init()

Examples:

Reference

Programmer’s Reference 9-31

gi_strm_init gi_strm_init

Name: gi_strm_init - initializes a Stream

Synopsis: #include <coactive.h>

#include <gios.h>

void gi_strm_init(Stream *stream, char *in_buf, int in_size,

int in_min, int in_max, char *out_buf,

int out_size, int flow)

stream Stream to initialize

in_buf allocated input buffer

in_size size of input buffer

in_min software flow control XON trigger

in_max software flow control XOFF trigger

out_buf allocated output buffer

out_size size of output buffer

flow flow control enable flag

Description: gi_strm_init initializes a Stream. The input and output buffers must be allocated before mak-
ing this call. in_min and in_max specify the number of characters in the input buffer which will
trigger software flow control XON and XOFF. flow indicates if software flow control in
enabled. Possible values for flow are:

YES - enable flow control

NO - disable flow control

gi_strm_init must be called before stream can be attached and detached.

Return Value: none

See Also: gi_strm_attach(), gi_strm_detach()

Examples:

Reference

9-32 GCB11 REFERENCE MANUAL

gi_strm_input gi_strm_input

Name: gi_strm_input - read a character from a Stream

Synopsis: #include <gios.h>

int gi_strm_input(Stream *stream)

stream Stream for input

Description: gi_strm_input returns the first character in stream’s input buffer. If there are no characters in
the input buffer, gi_strm_input will loop until one is available.

Return Value: character read

See Also: gi_strm_output()

Examples:

Reference

Programmer’s Reference 9-33

gi_strm_output gi_strm_output

Name: gi_strm_output -write a character to a Stream

Synopsis: #include <gios.h>

void gi_strm_output(Stream *stream, unsigned char c)

stream Stream for output

c character to write

Description: gi_strm_output writes c to the end of stream’s output buffer. If there is no space available,
gi_strm_output will loop until space is available.

Return Value: none

See Also: gi_strm_input()

Examples:

Reference

9-34 GCB11 REFERENCE MANUAL

gi_strm_pull gi_strm_pull

Name: gi_strm_pull - pull a character from a Stream’s output buffer

Synopsis: #include <gios.h>

unsigned int gi_strm_pull(Driver *driver)

driver pointer to Stream driver

Description: gi_strm_pull returns the first character in the Stream’s output buffer which is attached to
driver. The unsigned int value returned contains the character to send in the least significant
byte and the number of characters in the buffer before the function is called in the most signif-
icant byte.

This function is designed for use in a Stream driver. Since global data structures are manipu-
lated, it is not reentrant and care should be taken if this function is used while interrupts are
enabled.

Return Value: MSB - number of characters in buffer before the call, 0 if driver in not attached

LSB - first character in output buffer

See Also: gi_strm_push()

Examples:

Reference

Programmer’s Reference 9-35

gi_strm_push gi_strm_push

Name: gi_strm_push - push a character onto a Stream’s input buffer

Synopsis: #include <coactive.h>

#include <gios.h>

unsigned int gi_strm_push(Driver *driver, unsigned char c)

driver pointer to Stream driver

c character to push

Description: gi_strm_push places c at the end of the Stream’s input buffer which is attached to driver. If the
buffer is full, FAILURE is returned.

This function is designed for use in a Stream driver. Since global data structures are manipu-
lated, it is not reentrant and care should be taken if this function is used while interrupts are
enabled.

Return Value: SUCCESS or FAILURE if buffer is full

See Also: gi_strm_pull

Examples:

Reference

9-36 GCB11 REFERENCE MANUAL

gi_strm_size gi_strm_size

Name: gi_strm_size - return the number of characters in Stream’s input or output buffer

Synopsis: #include <gios.h>

unsigned int gi_strm_size(Stream *driver, char mode)

driver driver to size

mode size mode

Description: gi_strm_size returns the number of characters in the input or output circular buffer of stream.
Mode indicates whether the input or output buffer is being checked. The possible values for
mode are:

STRM_INPUT - input buffer

STRM_OUTPUT - output buffer

Return Value: size of buffer

See Also:

Examples:

Reference

Programmer’s Reference 9-37

gi_strm_stdio gi_strm_stdio

Name: gi_strm_stdio - assign a stream to the STDIO GROM variable

Synopsis: #include <gios.h>

void gi_strm_stdio(Stream *stream)

stream stream to assign

Description: gi_strm_stdio assigns stream to the GROM variable STDIO. STDIO is used by all Standard C
Library I/O calls as the default GIOS Stream. This call must be made before using any of these
functions.

Return Value: none

See Also:

Examples:

Reference

9-38 GCB11 REFERENCE MANUAL

gn_close_port_l0 gn_close_port_l0

Name: gn_close_port_l0 - close level 0 network connection to application.

Synopsis: #include <gios.h>

#include <gcb11.h>

#include <coactive.h>

#include <gnet.h>

void gn_close_port_l0()

Description: This function disconnects an application from the network services and releases it for other
applications to connect to. This program must be called before gn_exit_comms. After this rou-
tine is called the network continues running in the background but will not send or receive
messages. This is necessary since if the node is the master on the network it must continue to
service messages between the slaves on the network.

Return Value: SUCCESS

Examples:

Reference

Programmer’s Reference 9-39

gn_close_port_l1 gn_close_port_l1

Name: gn_close_port_l1 - close level 1 network connection to an application.

Synopsis: #include <gios.h>

#include <gcb11.h>

#include <coactive.h>

#include <gnet.h>

int gn_close_port_l1()

Description: Should be called before exiting an application which uses level 1 network resources. As with
gn_close_port_l0 the connection to the application will be closed, but the network will con-
tinue to run in the background.

Return Value: SUCCESS.

Examples:

Reference

9-40 GCB11 REFERENCE MANUAL

gn_config_node gn_config_node

Name: gn_config_node - configure network node.

gn_get_config - get the current node configuration.

Synopsis: #include <gios.h>

#include <gcb11.h>

#include <coactive.h>

#include <gnet.h>

int gn_config_node (int master, int address, int baud, int enable)

int gn_get_config (CONFIG_REC *config)

master set to 0 if this node is a slave or non-zero if it is a master.

address address of the node.

baud baud rate to use for the communications.

enable on the GCB11 this is used to signify which of two possible enable
line are used to enable the line drivers. It is set to 0 if PG2 is used
for the enable line, else set to non-zero if PD2 is used as the enable
line. On the PC it is used to signify which COM port is used for the
network communications. Either COM1 or COM2 may be speci-
fied.

config pointer to structure with configuration parameters as defined
below:

typedef struct config_rec

{

 char open; /* flag set to non-zero if port open */

 char address; /* node address */

 char baud; /* baud rate */

 char master; /* flag to determine if master node */

 char enable; /* the enable line used on the GCB11 */

 int (*recv_start)(); /* function to call at start of message */

 int (*recv_end)(); /* function to call at end of message */

 int (*xmit_end)(); /* function to call at end of transmitting */

} CONFIG_REC;

Reference

Programmer’s Reference 9-41

Description: Configures and get the various parameters for the network. When setting the parameters they
remain in effect until the next call to gn_config_node or the GCB11 is reset. the function
gn_config node should be called before gn_init_comms if the default values stored in the
EEPROM are not to be used. The call to gn_config_node changes only those values stored in
the GCB corresponding GCB registers. It does not immediately take effect if the network is
already running.

gn_get_config returns the current parameters being used by the network. Note that this may be
different from the values stored in the GCB registers from a previous call to gn_config_node.
This is because a call to gn_config_node does not take effect until the network is reset.

These functions can be called when using either level 1 or level 0 network communications.

Return Value: SUCCESS

Examples:

Reference

9-42 GCB11 REFERENCE MANUAL

gn_get_message_l1 gn_get_message_l1

Name: gn_get_message_l1 - Return a level 1 message from the message queue.

Synopsis: #include <gios.h>

#include <gcb11.h>

#include <coactive.h>

#include <gnet.h>

int get_message_l1(MESS_REC *mess)

mess pointer to structure containing all the information concerning a
message. See gnet.h for a definition of this structure.

Description: This function returns the next message from the level 1 message queue. This function should
only be called if level 1 network functionality has been enabled.

Return Value: SUCCESS if message returned, else FAILURE of no messages available.

Examples:

Reference

Programmer’s Reference 9-43

gn_get_stats gn_get_stats

Name: gn_get_stats - get network statistics.

Synopsis: #include <gios.h>

#include <gcb11.h>

#include <coactive.h>

#include <gnet.h>

int gn_get_stats(STATS_REC *stats),

stats pointer to structure for the network statistics with the following
parameters:

typedef struct stats_rec

{

 unsigned short timeouts; /* number of character timeouts */

 unsigned short retries; /* number of transmission errors */

} STATS_REC;

Description: Returns the network error statistics as defined above.

Return Value: SUCCESS

Examples:

Reference

9-44 GCB11 REFERENCE MANUAL

gn_init_comms gn_init_comms

Name: gn_init_comms - Network initialization.

gn_exit_comms - Disable network.

Synopsis: #include <gios.h>

#include <gcb11.h>

#include <coactive.h>

#include <gnet.h>

int gn_init_comms()

int gn_exit_comms()

Description: gn_init_comms is used at start-up to initialize the communications drivers. This routine will
set up the network to whatever was stored in EEPROM unless a call to gn_config_node is
made before this routine. Must be called before any of the level 0 or level 1 network calls.

gn_exit_comms is the counterpart to gn_init_comms in that it is called in order to disable the
communications drivers after they have been enabled.

Return Value: Returns SUCCESS or FAILURE.

Examples:

Reference

Programmer’s Reference 9-45

gn_message_rdy_l1 gn_message_rdy_l1

Name: gn_message_rdy_l1 - check for message ready in level 1 queue.

Synopsis: #include <gios.h>

#include <gcb11.h>

#include <coactive.h>

#include <gnet.h>

int message_rdy_l1(unsigned int *length)

length Number of bytes in the next message to be obtained from the mes-
sage queue.

Description: Returns the number of messages in the level 1 receive queue. This function is mainly used to
poll the receive message queue.

Return Value: Number of messages in the level 1 receive queue.

Examples:

Reference

9-46 GCB11 REFERENCE MANUAL

gn_open_port_l0 gn_open_port_l0

Name: gn_open_port_l0 - Initialize level 0 network communications.

Synopsis: #include <gios.h>

#include <gcb11.h>

#include <coactive.h>

#include <gnet.h>

int gn_open_port_l0 (int (*recv_start)(MESS_REC *message),

int (*recv_end)(int flag, MESS_REC *message),

int (*xmit_end)(int flag, char *buffer))

recv_start Call back routine supplied by the application. This routine is called
when an incoming message requires that the application provide
space to store the message. The message size is stored in message-
>length and the buffer supplied by the application should be stored
in message->buffer. The call back must return SUCCESS or FAIL-
URE depending upon wether the buffer was successfully allocated.

recv_end Call back routine supplied by the application. This routine is called
when an incoming message has arrived and is ready to be processed
by the application. The flag variable is used to signify if the mes-
sage was received successfully. The message and all details about it
are stored in the structure message.

xmit_end Call back routine supplied by the application. This routine is called
at the completion of a message being sent when the application
sends a message, but does not block to wait for it. In this way the
application will know wether the message in question was sent suc-
cessfully and that it may use the buffer allocated for the message.
The flag variable is used to signify wether the message was sent
successfully and the buffer is the where the transmitted message
was stored.

Description: This function is used to ready the network drivers for level 0 message handling. It installs a
series of call back routines which are supplied by the user. This routine must be called after
gn_init_comms, but before any messages are to be processed.

Return Value: SUCCESS or FAILURE.

Examples:

Reference

Programmer’s Reference 9-47

gn_open_port_l1 gn_open_port_l1

Name: gn_open_port_l1 - open connection to level 1 network services.

Synopsis: #include <gios.h>

#include <gcb11.h>

#include <coactive.h>

#include <gnet.h>

int gn_open_port_l1(void *(*user_malloc)(size_t size), void *(user_free)(), int queue_size)

user_malloc application supplied memory allocation routine used by the level 1
drivers when necessary to malloc memory for received messages.
In the most trivial case the user can simply supply the standard C
malloc routine, but if desired the user can write his own in order to
have more control over the memory management.

user_free application supplied routine to free memory allocated by user_mal-
loc.

queue_size size of the receive queue. An array of queue_size by MES-
SAGE_REC is malloced for use as the receive queue. This param-
eter specifies how many messages may be queued up at any one
point.

Description: This function establishes a level 1 network connection to the application. This routine can not
be called in conjunction with any level 0 network routines, but must be called before any other
level 1 access routines.

Return Value: SUCCESS or FAILURE.

Examples:

Reference

9-48 GCB11 REFERENCE MANUAL

gn_reset_net gn_reset_net

Name: gn_reset_net - reset network.

Synopsis: #include <gios.h>

#include <gcb11.h>

#include <coactive.h>

#include <gnet.h>

void name(Param *param),

param pointer to driver to close

Description: Resets and initializes the network. All transmit and receive message queues are cleared. This
function can be useful if gn_config_node has been called since the network was initialized and
you want the network drivers to assume the new configuration parameters.

Return Value: SUCCESS

Examples:

Reference

Programmer’s Reference 9-49

gn_restore_config gn_restore_config

Name: gn_restore_config - restores default configuration for the network.

gn_save_config - saves default network communications configuration.

Synopsis: #include <gios.h>

#include <gcb11.h>

#include <coactive.h>

#include <gnet.h>

int gn_restore_config(),

int gn_save_config()

Description: These functions restore and save the following GCB registers to and from EEPROM:

- SCIENABLE

- SCIBAUD

- GNETNODE

- GNETMODE

- GNETTABLE

- GNETCOUNT

- GNETPOLL

These functions can be called when using either level 1 or level 0 net work communications.

Return Value: SUCCESS

Examples:

Reference

9-50 GCB11 REFERENCE MANUAL

gn_send_message_l0 gn_send_message_l0

Name: gn_send_message_l0 - send a level 0 message.

Synopsis: #include <gios.h>

#include <gcb11.h>

#include <coactive.h>

#include <gnet.h>

int gn_send_message_l0 (int node, char *buffer, unsigned int length, int block)

node node address of the recipient of message.

buffer pointer to buffer containing data to be sent.

length number of bytes in buffer to send.

block flag to signify wether to wait for message to be sent.

Description: This routine is used to send information to a node in the network. The flag block should be set
to non-zero if the routine is to wait for the message to be sent and return with the appropriate
completion status. If block is zero then send_message_l0 returns immediately and the call back
routine that was installed by gn_open_port_l0 will be called when the message is finished
being sent.

This routine is for level 0 message passing only and can not be called in conjunction with level
1 network routines.

Return Value: SUCCESS or FAILURE.

Examples:

Reference

Programmer’s Reference 9-51

gn_send_message_l1 gn_send_message_l1

Name: gn_send_message_l1 - send level 1 network message.

Synopsis: #include <gios.h>

#include <gcb11.h>

#include <coactive.h>

#include <gnet.h>

int gn_send_message_l1(int node, char *buffer, unsigned int length, int block)

node node address of the recipient of the message.

buffer pointer to buffer containing the data to send.

length number of bytes in the buffer to send.

block flag to signify wether to wait for message to be sent.

Description: This function send a level 1 message to the node specified by node. If block is non-zero this
routine will wait until the message is transmitted and return either SUCCESS or FAILURE
depending upon whether the message was sent successfully. If block is zero then this routine
returns SUCCESS immediately after queueing the message to be sent.

This function can not be called in conjunction with any level 0 network routines.

Return Value: SUCCESS or FAILURE.

Examples:

Reference

9-52 GCB11 REFERENCE MANUAL

gn_set_poll gn_set_poll

Name: gn_set_poll - set up the slave node polling table.

gn_get_poll - get the current polling table.

gn_add_poll - add node to the polling table.

gn_auto_poll - enable automatic node addition to polling table.

Synopsis: #include <gios.h>

#include <gcb11.h>

#include <coactive.h>

#include <gnet.h>

int gn_set_poll (unsigned char *table, int table_size)

int gn_get_poll (unsigned char **table, int *table_size)

int gn_add_poll(unsigned char node_address)

int gn_auto_poll(int loop_cnt)

table pointer to polling table.

table_size number of nodes in the polling table.

node_address address of the node to add to the polling table.

loop_cnt Number of times master should go through the polling table before
testing for a node not currently in the polling table.

Description: These routines are used to manage the slave polling table. They are only valid for the master
node.

gn_set_poll copies the table pointed to by table into the polling table.

gn_get_poll returns a pointer to the polling table used to poll the slaves. table_size contains the
number of nodes in the table. Note that application should not alter the contents of this table
directly. In order to change the contents the table should first be copied to some other areas,
modified and then used as an argument to gn_set_poll.

gn_add_poll adds the node address specified in node_address to the end of the polling table if
it does not already exist. Returns FAILURE if the node was not added to the table.

gn_auto_poll enables the automatic searching for nodes which are not explicitly put into the
polling table by the application. This allows nodes to be added to the polling table automati-
cally when they are plugged into the network. The major drawback of using this feature is that
it will impact network performance because in cases where the master polls for nodes that do
not exist there will be an inordinate delay while the master times out waiting for a response. A
method for reducing this impact is given by the parameter loop_cnt which specifies the number

Reference

Programmer’s Reference 9-53

of times the master will go through the polling table before trying to poll for a node not already
in the table. This parameter may take on any value between 0 - 255. A value of 0 disables auto-
matic polling.

Return Value: Returns SUCCESS if master else returns FAILURE.

Examples:

Reference

9-54 GCB11 REFERENCE MANUAL

gn_suspend_poll gn_suspend_poll

Name: gn_suspend_poll - suspend polling of slave nodes.

gn_start_poll - start polling of slave nodes.

Synopsis: #include <gios.h>

#include <gcb11.h>

#include <coactive.h>

#include <gnet.h>

int gn_suspend_poll()

int gn_start_poll()

Description: Suspends and starts the polling of slave nodes by the master node. This function has no effect if
the node is not the master. This will essentially suspend all network activity. This is a good way
to start and stop the network without having to reset node in the network.

These functions can be when using either level 1 or level 0 network communications.

Return Value: SUCCESS if master node else FAILURE.

Examples:

Support 10-1

CHAPTER 10 Support

10.1 Introduction

At Coactive Aesthetics we realize that it takes much more than a good piece of hardware to develop an embedded
application. Because of the nature of embedded systems, there are far more off-the-shelf hardware components
than there are software packages. We therefore have attempted to provide as many tools as possible to aid in the
overall development of your embedded system, especially in the area of software. Everything we develop, from
the GCB11 hardware to the motor control applications, is developed initially for in-house use. We have devel-
oped a wide variety of embedded applications, ranging from simple instrument control to complicated robotic
devices. We therefore try to create re-usable components for fast prototyping and development. This also means
that we have the expertise and experience to help you integrate the GCB11 into your next application. Since we
are our own biggest customer, we are constantly making enhancements and upgrades to the software as our appli-
cation base grows.

Using or adapting third party software for embedded applications is not always trivial. Sometimes the documen-
tation is not as clear to the user as it was to the writer, while other times there may even be a bug. Whatever the
problem, we would like to try to make ourselves as available to your needs as possible. Below you will find
details on how to obtain support. We are always open to suggestions for ways to make our support to you better.

Please complete and return the registration card included with this documentation as soon as possible so that we
can service you better.

10.2 Email

The most preferred method of support is through electronic mail on the Internet. Simply mail your questions to
gcb11@coactive.com. You can expect a fast reply through this medium. If you are having problems with some
piece of code, please include a sample of the code.

10.3 FAX

After electronic mail, the best medium is through the FAX. Our FAX number is (415) 626-6320. Please include a
way for us to respond to your question, either through voice or FAX. Again, please include as much supporting
documentation as possible, e.g. pictures, sample code, etc.

Voice

10-2 GCB11 REFERENCE MANUAL

10.4 Voice

For those occasions when you must have an answer immediately, or you feel more comfortable talking to a
human voice, you can call us at (415) 626-5152.

10.5 Software Upgrades

It is our intention to make minor software enhancements and bug fixes available to our customers on a regular
basis. These will be free if they can be delivered electronically via email or ftp. For those customers that require
shipping, there will be a nominal shipping and handling charge.To receive GROM updates, check the appropriate
boxes on the registration card and mail it to Coactive Aesthetics. Please detail in the supplied space how you
would like to receive the upgrade. When the upgrade is available, we will either send it to you electronically or
mail you a letter with details about the nature of the upgrade and how much it will cost to have it shipped to you.

