
Operating Manual

for

RS PP39 Universal MOS Programmer
with

39M100 EPROM/EEPROM Module
and

39M200 Microprocessor Module

Manual Revision 2

R.S. Components Ltd.
P.O. Box 99
Corby
Northants
NN17 9RS

Tel: 0536 201234
Tlx: 342512

(Revision 2) Address-01

RS PP39 CONTENTS

Section 1 GENERAL INTRODUCTION
1.1 Introduction
1.2 Modules
1.3 The Keyboard
1.4 Initial Setting-up Procedure
1.5 Selection of Local and Remote Modes

39M100

Section 2 39M100 INTRODUCTION
2.1 The 39M100 Module
2.2 RAM Operating Structure
2.3 List of ‘Set’ Commands

Section 3 SELECTING A DEVICE
3.1 Selecting a Device
3.2 List of Devices and Device Codes
3.3 Electronic Identifier

Section 4 BIT MODE
4.1 Selection of Bit Mode Configuration
4.2 8-Bit Mode
4.3 Gang Mode
4.4 16-Bit Mode
4.5 32-Bit Mode

Section 5 DEVICE FUNCTIONS
5.1 Load
5.2 Empty Test
5.3 Pre-Program Bit Test
5.4 Programming
5.5 Verify
5.6 Access Time Testing
5.7 Checksum and Cyclic Redundancy Check (CRC)
5.8 Device/RAM Address Limits
5.9 Save and Recall Machine Configurations

Section 6 RAM FUNCTIONS
6.1 Interlace *
6.2 List and Edit
6.3 Insert
6.4 Delete
6.5 Block Move
6.6 Filling the RAM
6.7 String Search

(Revision 2) Contents-01

39M200

Section 7 39M200 INTRODUCTION
7.1 39M200 Module
7.2 RAM operating structure
7.3 List of ‘SET’ Commands

Section 8 SELECTING A DEVICE
8.1 Device Type Selection
8.2 List of Devices and Device Codes

Section 9 DEVICE FUNCTIONS
9.1 Load
9.2 Empty Test
9.3 Programming
9.3.1 Verify Pass-Security Bit
9.3.2 In-program Verify
9.4 Checksum
9.5 Device/RAM address limits
9.6 Save and Recall Machine Configurations
9.7 68705 Device

Section 10 RAM FUNCTIONS
10.1 List
10.2 Edit
10.3 Insert
10.4 Delete
10.5 Block move
10.6 Filling the RAM
10.7 String Search

39M100 and 39M200

Section 11 INTERFACE
11.1 Setting the Input/Output Interface Parameters
11.2 Input/Output Operations
11.2.1 Input Parameters
11.2.2 Output Parameters
11.3 Error Reporting on Input/Output

Section 12 FORMAT DESCRIPTIONS
12.1 Interface Formats
12.1.1 Intellec
12.1.2 Extended Intellec
12.1.3 Hex ASCII
12.1.4 Exorcisor
12.1.5 Extended Exorcisor
12.1.6 Tek-Hex
12.1.7 Extended Tek-Hex
12.1.8 PPX or Stag Hex
12.1.9 Binary, DEC Binary and Binary Rubout

Contents-02

Section 13 RS232C HARDWARE DESCRIPTIONS
13.1 RS232C Interface Port Connections
13.2 XON/XOFF (3 wire cable form)
13.3 Hardware Handshake (7 or 8 wire cable form)
13.4 Non-Standard Connections

Section 14 REMOTE CONTROL
14.1 Selecting Remote Control
14.2 Remote Control Commands
14.3 Remote Error Words and Codes

Section 15 SPECIFICATION
15.1 The ASCII code
15.2 Specification

(Revision 2) Contents-03

SECTION 1

1.–GENERAL INTRODUCTION

1.1 INTRODUCTION

The PP39 is a Universal MOS Programmer, which in conjunction with its
family of modules is capable of supporting all MOS erasable PROM and
MICRO devices in NMOS and CMOS technology.

The Programmer is software controlled using a single level module
approach. This ensures flexibility and ease of upgrade for future devices;
whereby the module alone can be returned for software upgrades. (For
urgent programming needs a module exchange plan is available).

The PP39 can be operated in ‘LOCAL’ mode or it can be linked to a
computer via the serial RS232C interface port enabling ‘REMOTE’ operation
of the machine.

RS PP39 MAINFRAME

Two polarised sockets provide
interconnections from the main frame to the
PP39 modules.

Four locating pins
provide automatic module

alignment.

Keyboard: For data entry and 16-Character
operating programmer Green alphanumeric display
functions.

(Revision 2) 1.1-01

39M 100 EPROM & EEPROM MODULE

SPECIFICATIONS

SERIAL RS232C
INTERFACE
PORT CONNECTOR

MAINS POWER
ON/OFF SWITCH

FUSES
POWER
CONNECTION

1.1-02

1.2 MODULES

A variety of modules is available to plug into the main frame. This
guarantees future flexibility to support new devices as they are
developed.

39M100 – EPROM/EEPROM

This module supports NMOS and CMOS, EPROM and EEPROM devices in
both 24 and 28 pin DIPs packages. The module features algorithms for fast
programming and it supports Silicon Signature* technology for automatic
device identification. Sockets are provided for set programming of two
devices simultaneously or they can be used as a mini-ganger. The PP39
can be configured as an 8, 16 or 32 bit machine. Access time tests can be
performed and an auto-recall feature is incorporated where pre-set
parameters can be recalled from a non-volatile memory at any time for ease
of use.

39M200 MICROPROCESSOR MODULE

This module will program single chip microprocessors containing EPROM
from AMD, Intel, NEC and Motorola in both 40 pin and 28 pin DIPs
packages.

(Revision 2) 1.2-01

1.3 THE KEYBOARD

For data entry and operating programmer functions

load

TO LOAD A MASTER DEVICE OR DEVICES

input

TO EXECUTE AN INPUT VIA THE RS232C
INTERFACE PORT

output

TO EXECUTE AN OUTPUT VIA THE RS232C
INTERFACE PORT

edit

TO MODIFY THE RAM DATA

list

TO SET AN ADDRESS AND DISPLAY THE
DATA IN THAT LOCATION

set

TO SET FUNCTIONS OR PARAMETERS INTO
THE PROGRAMMER

c/sum
TO PERFORM A CHECKSUM OF THE RAM
WITHIN THE DEVICE ADDRESS RANGE
SPECIFIED

exit

TO EXIT FROM A MODE OR FUNCTION

7 8 9 E F

4 5 6 C D

1 2 3 A B

0 ↑ ↓ ← →

HEXADECIMAL KEY

TO ENTER DATA
OR TO SELECT
PARAMETERS
AND SPECIAL
FUNCTIONS

CURSOR KEYS – TO MANIPULATE
DATA OR TO MOVE PARAMETERS ON
THE DISPLAY FOR EASE OF USE.

verify

TO EXECUTE DEVICE VERIFICATION WITH
SPECIAL ADDRESS LIMITS

empty

TO EXECUTE AN EMPTY CHECK WITHIN
SPECIFIED ADDRESS LIMITS

program

TO EXECUTE A PROGRAMMING SEQUENCE
WITH PRE-SET PARAMETERS FOR TEST

OPTIONAL FEATURES

RAM EXTENSION BOARD

The PP39 is presently supplied as standard with 512K bits of RAM. As
larger devices become available this will prove to be inadequate and more
RAM will be required.

Therefore the PP39 has the facility to have its RAM expanded to 1M-bits,
2M-bits, 4M-bits and beyond.

(Revision 2) 1.3-01

1.4 INITIAL SETTING UP PROCEDURE

Before attempting to apply power to your PP39 Programmer ensure that
it is set to the correct operating voltage for your power source. The
voltage setting is printed on the rear panel.

1. Plug the supplied Power cord into the rear panel socket

2. Apply power to the machine from the mains power source

3. Power-up the machine using the ON/OFF switch on the rear panel

After “POWER UP” and without a 39-Module inserted the display will
read:

 MODULE ?
The mainframe software revision can now be ascertained prior to the
module being inserted simply by pressing the key marked ‘SET’ followed
by the key marked ‘6’, e.g.

PP39 ISS 04
to remove press ‘EXIT’

In order to make this manual as straightforward as possible the action of
pressing the key marked ‘SET’ followed by another key or keys will be
abbreviated to a single instruction e.g. ‘SET 6’, ‘SET F3’, ‘SET INPUT’ etc.

Note

To ensure correct initialisation, power down before inserting a module.
Always wait five seconds before applying power again.

(Revision 2) 1.4-01

INTRODUCTION OF A 39-MODULE TO THE MAIN FRAME

Having completed the setting up procedure the PP39 is ready to receive
its 39-Module. Controlling software for the machine resides in the
selected module, therefore the operation of the Programmer is dependent
upon the type of 39-Module plugged into the main frame.

On power-up the programmer will be configured automatically to what it
was before the machine was last powered down.

This ensures that once any machine parameter has been set-up, it needn’t
be reset every time the machine is switched on.

For instance, if the machine was previously used in the ‘LOCAL’ mode
with the 39M100 Eprom Module inserted, the initial configuration of the
machine will be set on power-up and the display will show the last
entered manufacturer, device type and selected mode, such as:

AMD 2764 GANG
To determine the software revision of the Module press ‘SET 6’ and the
display will show:

MODULE M100 07
To remove, press ‘EXIT’.

1.4-02

1.5 SELECTION OF ‘LOCAL’ OR ‘REMOTE’ MODES

The Programmer will be in either ‘Local’ or ‘Remote’ on power up.

To Select Local Mode
When the machine is in remote mode on power-up the display will show
manufacturer, device type and remote mode itself. For instance:

 Manufacturer Device type Remote mode

SEQ 5516A REM
To exit from remote one of two sequences can be performed:

(i) If the programmer is connected via the I/O port to a computer or
terminal keyboard then the sequence of pressing Key ‘Z’ followed
by Key ‘RETURN’ will bring control back to ‘local’ on the PP39
keyboard.

(ii) If the PP39 is in stand alone mode on power-up but, still under the
‘remote’ setting, the operator must power down wait five seconds and
then power up again with the ‘EXIT’ key depressed to reach
‘local’ mode.

When either sequence (i) or (ii) is performed the display will show
manufacturer, device type and bit mode for instance a typical ‘local’
mode setting for the 39M100 might be:

 Manufacturer Device type Bit mode

SEQ 5516A M8
In local mode all functions of the PP39 are controlled from its own
keyboard.

(Revision 2) 1.5-01

REMOTE CONTROL

To select remote control
Press set 2 and the display will show:

REMOTE PRESS SET
By pressing set again, the display will show the manufacturer, device type
and remote mode.
For instance:

 Manufacturer Device type Remote mode

SEQ 5516A REM
In the remote mode, the PP39 operates under remote control from a
computer or a terminal. The keyboard of the PP39 is inoperative at this
time and the display will only show information as requested under remote
control.

1.5-02

SECTION 2

39M100

2.3 LIST OF ‘SET’ COMMANDS

set 0

Allows user to scan and select various manufacturers
and device types

set 1

Selects interface parameters
Format, Baud Rate, Word Length, Stop Bits, Parity

set 2

Sets programmer into ‘Remote’ control. (To return
to Local Mode: Power up with exit key depressed)

set 3

Selects mode of machine, i.e. 8-Bit, 16-Bit, 32-Bit
or GANG operating mode.

set 4

Displays RAM size in hexadecimal

set 5

RAM data complemented from lower to upper address limit

set 6

Displays module software revision if module is plugged in,
or main frame software revision, if no module is plugged in.

set 7

Verifies device under access time control

set 8

Calculates and displays CRC (Cyclic Redundancy Check)

set A1

To

A9

Saves machine configuration
(up to nine sets)

(Revision 2) 2.3-01

LIST OF ‘SET’ COMMANDS (continued)

set B1

To

B9

Recalls previously saved machine
configurations (up to 9 sets)

set F0

Fills entire RAM with 00

set FF

Fills entire RAM with FF

set F1
Audible Alarm: To indicate end of program, test, or
as a warning using a combination of bleeps and tones.
SET F1 both enables and disables this function.

set F2

Fills RAM with arbitrary variable from lower to upper
address limit

set F4
Block Move: A block of data with pre-selected
address limits can be copied and then re-located at
another address within the RAM.

set F6

Defines RAM and device address ranges for all functions
which operate on the device

set F7

Access time calibration – Provides repetitive waveform
for access time calibration

set input

Input – Enters input address offset

set output

Output – Enters output address offset, start address
and stop address

2.3-02

LIST OF ‘SET’ COMMANDS (continued)

set E1

Electronic Identifier: Mode (i) Two Key Operation

set E2

Electronic Identifier: Mode (ii) Single Key Operation

set 9

String Search

set FE

Applicable to MOTOROLA 2816 ONLY – Erases Device

(Revision 2) 2.3-03

SECTION 3

3.1 SELECTING A DEVICE

Selecting the device using a 4 digit code

The complete range of devices supported by the 39M100 is stored
in the module. Each individual device has its own four digit code.
(See device code list Section 3.2)

SET 0 – Allows code selection

SEQUENCE: Prior to SET ‘0’ the display will show the last entered
configuration

For example:

AMD 2716 M8
By pressing SET ‘0’ the device code of this configuration will be displayed:

DEVICE CODE 9F42
When the new device code to be entered is already known. (For instance
AF44 is the code for a Fujitsu 2732 EPROM device.) Then the AF44 can be
entered directly onto the display from the keyboard replacing the old code:

DEVICE CODE AF44
The selection sequence can be completed by pressing EXIT whereby the
new manufacturer and device type are displayed along with the bit mode:

FUJ 2732 M8

(Revision 2) 3.1-01

Scanning device types and manufacturers by use of cursor keys

When a device code is not known or if the user wishes to scan the devices
available, selection can be made via the cursor keys:

↓ ↑ ← →

By pressing SET ‘0’ the code of the last used device is displayed:

DEVICE CODE AF44
The manufacturer and device type can be changed by use of the cursor
keys:

The up/down keys scan the range of manufacturers.

↓ ↑

changes manufacturer

The left/right keys scan the device range of a particular manufacturer.

← →

changes device type

3.1-02

3.2 LIST OF DEVICES AND DEVICE CODES

This list of parts is supported by the 39M100 Module. Each device
carries a four digit code. The first two digits define the manufacturer of
the device and the second two digits refer to the device type.

EPROMS

Manufacturer Device Device Code Device Size (Hex)

AMD 2716 9F 42 800
2732 9F 44 1000
2732A 9F C4 1000
2764 9F 4A 2000
2764A 9F CA 2000
27128 9F 4B 4000
27128A 9F CB 4000
27256 9F 4C 8000
27512 9F 4D 10000

Fujitsu 2716 AF 42 800
2732 AF 44 1000
2732A AF C4 1000
2764 AF 4A 2000
27128 AF 4B 4000
27256 AF 4C 8000
27C256 AF DC 8000
27C128 AF DB 4000
27C256A AF CC 8000
27C512 AF DD 10000

General 27C64 02 DA 2000
Instruments 27HC64 02 DA 2000

27256 02 4C 8000
27C256 02 DC 8000

Hitachi 2716 BF 42 800
2532 BF 43 1000
2732 BF 44 1000
2732A BF C4 1000
2764 BF 4A 2000
27C64 BF DA 2000
27128 BF 4B 4000
27128A BF CB 4000
27256 BF 4C 8000
27C256 BF DC 8000
27512 BF 4D 10000

(Revision 2+) 3.2-01

LIST OF DEVICES AND DEVICE CODES (continued)

Manufacturer Device Device Code Device Size (Hex)

Intel 2716 6F 42 800
2732 6F 44 1000
2732A 6F C4 1000
2764 6F 4A 2000
2764A 6F CA 2000
27128A 6F CB 4000
27128B 6F CB 4000
27C64 6F DA 2000
27128 6F 4B 4000
27C128 6F DB 4000
27256 6F 4C 8000
27256 ** 6F FC 8000
27C256** 6F DC 8000
27512 6F 4D 10000
27512 ** 6F FD 10000
27513 6F CD 10000
27513 ** 6F FE 10000
87C64 6F EA 2000
87C128 6F EB 4000
87C256 6F EC 8000

Mitsubishi 2716 DF 42 800
2732 DF 44 1000
2732A DF C4 1000
2764 DF 4A 2000
27128 DF 4B 4000
27C128 DF DB 4000
27256 DF 4C 8000
27512 DF 4D 10000

Motorola 2716 7F 42 800
2532 7F 43 1000
2732 7F 44 1000
68764 7F 45 2000
68766 7F 47 2000

National 2716 3F 42 800
2732 3F 44 1000
27C32H 3F 46 1000
27C32B 3F D5 1000
2732A 3F C4 1000
2764 3F 4A 2000
27128 3F 4B 4000
27C16 3F D2 800
27C32 3F D4 1000
27C64 3F DA 2000
27CP128 3F DB 4000
27C256 3F DC 8000
27C512 3F DD 10000

3.2-02

LIST OF DEVICES AND DEVICE CODES (continued)

Manufacturer Device Device Code Device Size (Hex)

NEC 2716 CF 42 800
2732 CF 44 1000
2732A CF C4 1000
2764 CF 4A 2000
27C64 CF DA 2000
27128 CF 4B 4000
27256 CF 4C 8000
27C256 CF DC 8000
27C256A CF CC 8000
27C512 CF DD 10000

Oki 2716 08 42 800
2532 08 43 1000
2732 08 44 1000
2732A 08 C4 1000
2764 08 4A 2000
27128 08 4B 4000

SEEQ 5133 FF 4A 2000
2764 FF 4A 2000
5143 FF 4B 4000
27128 FF 4B 4000
27256 FF 4C 8000
27C256 FF DC 8000

SGS 2716 8F 42 800
2532 8F 43 1000
2732A 8F C4 1000
2764 8F 4A 2000
2764A 8F CA 2000
27128A 8F CB 4000
27256 8F 4C 8000

Signetics 27C64A 1F DA 2000
87C64A 1F EA 2000

SMOS 27C64 0F DA 2000
27128 0F 4B 4000
27C256 0F DC 8000

(Revision 2+) 3.2-03

LIST OF DEVICES AND DEVICE CODES (continued)

Manufacturer Device Device Code Device Size (Hex)

Texas 2516 4F 42 800
Instruments 2532 4F 43 1000

2532A 4F 41 1000
2732A 4F C4 1000
2564 4F 47 2000
2764 4F 4A 2000
27128 4F 4B 4000
27128A 4F CB 4000
27C128 4F DB 4000
27256 4F 4C 8000
27C256 4F DC 8000
27C512 4F DD 10000

Toshiba 2732 EF 44 1000
2732A EF C4 1000
2764 EF 4A 2000
2764A EF CA 2000
27128 EF 4B 4000
27128A EF CB 4000
27256 EF 4C 8000
27256A EF CC 8000
57256 EF DC 8000

VTI 27C64 04 DA 2000
27C128 04 DB 4000
27C256 04 DC 8000

Waferscale 27C64 0B DA 2000
57C64 0B DA 2000
27C128 0B DB 4000
57C49 0B 06

E100 2516 0E 42 800
2716 0E 42 800
2532 0E 43 1000
2732 0E 44 1000
2564 0E 47 2000
2764 0E 4A 2000
87C64 0E EA 2000
27128 0E 4B 4000
87C128 0E EB 4000
27256 0E 4C 8000
87C256 0E EC 8000
27512 0E 4D 10000

** Indicates Quick Pulse Programming Parts

3.2-04

LIST OF DEVICES AND DEVICE CODES (continued)

EEPROMS

Manufacturer Device Device Code Device Size (Hex)

AMD 9864 9F 5A 2000
2817A 9F 58 800
2864B 9F 5C 2000

Exel 2816A 01 52 800
2817A 01 58 800
2864A 01 5C 2000
2865A 01 5C 2000

Hitachi 48016 BF 51 800
58064 BF 5A 2000
58C65 BF 7C 2000

Intel 2816A 6F 52 800
2817 * 6F 53 800

Motorola 2816 7F 52 800
2817 7F 53 800

National 9716 3F 51 800
9817 3F 58 800
98C64 3F 7C 2000

NEC 28C64 CF 7C 2000

Rockwell 2816A 06 52 800
87C32 06 D4 1000

Samsung 2816A 09 52 800
2864A 09 5C 2000
2865A 09 5C 2000

SEEQ 5516A FF 52 800
2816A FF 52 800
5213 FF 53 800
52B13 FF 54 800
52B13H FF 56 800
52B33 FF 5A 2000
52B33H FF 5E 2000
2817A FF 58 800
2864 FF 5B 2000
28C256 FF 7F 8000
28C64 FF 7C 2000

SMOS 2864 0F 5B 2000

(Revision 2+) 3.2-05

LIST OF DEVICES AND DEVICE CODES (continued)

Manufacturer Device Device Code Device Size (Hex)

Xicor X2804A 07 50 400
X2816A 07 52 800
2816H 07 56 800
2816B 07 56 800
28C16 07 76 800
2864A 07 5C 2000
2864B 07 5C 2000
28C64 07 7C 2000
2864H 07 5B 2000
28256 07 5F 8000
28C256 07 7F 8000

* Intel 2817 requires AM100 6F53 Adaptor

3.2-06

3.3 ELECTRONIC IDENTIFIER

Important Node:

Devices which do not contain an Electronic Identifier may be irreparably
damaged if they are used in the Silicon Sig mode.

Electronic Identifier is a term used to describe a code mask programmed
into a PROM which identifies the device type and manufacturer. The code
is stored outside the normal memory array and is accessed by applying 12
Volts to address line A9. This allows the PP39 to directly identify any
device containing an Electronic Identifier and thus eliminate the need for
the user to select the device type.

The PP39 presently uses two modes of Silicon Sig operation both of
which only work with 28 pin devices.

Mode (i): Two Key Operation

On pressing SET E1 the display will show “SILICON SIG” alongside the
selected bit-mode:

SILICON SIG M8
If any device function key is pressed e.g. Program, Load etc. the PP39 will
first attempt to read the signature of any devices present. If no code can
be read or the code is not found in the PP39’s list of valid codes the
display will show:

SI SIG NOT FOUND
If two devices are successfully recognised but are incompatible i.e. they
use different programming algorithms the display will show:

 UNLIKE DEVICES
If neither of the above two fault conditions occur then the manufacturer
and the device type will be displayed. In the case of devices in both
sockets the manufacturer and device code of the device in the left socket
will be displayed.

To execute the function the specified ‘device function key’ must be pressed
again e.g. Prog, Load etc.

To exit from the Silicon Sig mode select a device using SET 0 in the usual
manner.

(Revision 2) 3.3-01

Mode (ii): Single Key Operation

Pressing SET E2 will again display “SILICON SIG” alongside the selected
bit-mode.

SILICON SIG M8
Operation is similar to the previously described mode except that the PP39
rather than stopping to display the manufacturer and device type continues
straight on to execute the selected function.

To exit from the Silicon Sig mode select a device using SET 0 in the usual
manner.

3.3-02

SECTION 4

BIT MODES

4.1 SELECTION OF BIT MODE CONFIGURATION

The last used bit mode will already be displayed on power up along with
manufacturer and device type. For instance:

AMD 2764 M16
By pressing SET 3 the bit mode along is shown:

MODE-16 BIT
The range of modes can now be scanned by pressing either the up or
down cursor keys:

MODE-8 BIT

MODE-16 BIT

MODE-32 BIT LO

MODE-32 BIT HI

MODE-GANG
When selection is made press EXIT for operation in chosen mode, e.g.:

AMD 2764 M8
(Revision 2) 4.1-01

4.2 8-BIT MODE

In the 8-Bit mode, the programmer is configured to handle 8-bit data as
single devices or in sets of two.

One Device
Either left or right ZIF can be used. If only one device is to undergo
program or load

(i) The PP39 can detect a single device in a particular socket.
(ii) The information in the device can be loaded into a specifically located

section of the RAM.
(iii) The information to be programmed into the device comes from a

specifically located section of the RAM.
(iv) These specific sections of the RAM are pre-selectable.

8-BIT MODE LOAD ONE DEVICE

EMPTY
SOCKET

A single device can
be loaded into RAM

RAM

8-BIT MODE PROGRAMMING ONE DEVICE

EMPTY
SOCKET

A single device can
be programmed from RAM

RAM

(Revision 2) 4.2-01

8-Bit Mode

When two devices are to undergo program or load naturally both sockets
will be used.

Two devices

(i) The PP39 can detect devices in both sockets.
(ii) The information in the two individual devices can be loaded into two

separate but specifically located sections of the RAM.
(iii) The information to be programmed into the two individual devices

comes from two separate but specifically located sections of the RAM.
(iv) These two specifically located sections of the RAM are pre-selectable.

Pre-selection of RAM address ranges also applies to 16-bit, 32-bit and
gang mode.

8-BIT MODE LOAD TWO DEVICES

Two devices with differing
information can simultaneously
load into two separate preset
sections of RAM.

RAM

8-BIT MODE PROGRAMMING TWO DEVICES

Two devices can be programmed
simultaneously with differing
information from two separate
preset sections of RAM.

RAM

4.2-02

DISPLAY

8-Bit Mode

By pressing Key ‘List’ a visual display of information in TWO HEX
CHARACTERS can be shown at a specific address.

 ADDRESS (ZERO) TWO HEX CHARACTER

00000 12
(Under the ‘List’ function THE ADDRESS RANGE can be scanned by use
of the hex keyboard and cursor keys).

(Revision 2) 4.2-03

4.3 GANG MODE

LOAD: Two devices with identical information can simultaneously load
into the same section of the RAM. Therefore during ‘Load’
either socket can be used.

PROGRAM: Two devices can be programmed simultaneously with
identical information.

GANG-MODE LOAD

Two devices with identical
information can simultaneously
load into the same section
of RAM.

Therefore during load only one
device need be used.

RAM

GANG-MODE PROGRAM

Two devices can be programmed
simultaneously with the same
information.

RAM

(Revision 2) 4.3-01

4.4 16-BIT MODE

LOAD: The two EPROMs combined can load over a common address
range within the RAM.

Alternating bytes of information (BYTE-1 and BYTE-2) are loaded
from the combined EPROMs to give a complete block of data
within the pre-selected RAM address range.

BYTE-1 Will reside in the left hand ZIF socket. It represents the
(MSB) “most significant byte” of a 16-Bit parallel word.

BYTE-2 Will reside in the right hand ZIF socket. It represents the
(LSB) “least significant byte” of a 16-bit parallel word.

16-BIT MODE LOAD

Alternating bytes of
information (BYTE-1
and BYTE-2) are
loaded from the
combined EPROMs to give
a complete block of
data with the pre-selected
RAM address range.

(MSB) BYTE-1 (LSB) BYTE-2

(LSB)

(MSB)

BYTE 2

BYTE 1
RAM

MSB – The most significant BYTE in binary code
LSB – The least significant BYTE in binary code

(Revision 2) 4.4-01

16-BIT MODE

PROGRAM: The two EPROMs can be programmed from a common
address range within the RAM.

The address data will be alternately partitioned during
programming into two separate bytes of information:
BYTE-1 and BYTE-2.

BYTE-1 Will reside in the left hand ZIF socket. If represents
the (MSB) “most significant byte” of a 16-Bit
parallel word.

BYTE-2 Will reside in the right hand ZIF socket. It represents
the (LSB) “least significant byte” of a 16-bit parallel
word.

16-BIT MODE PROGRAM

The address data will be
alternately partitioned
during programming into
two separate bytes of
information: BYTE-1 and
BYTE-2.

(MSB) BYTE-1 (LSB) BYTE-2

(LSB)

(MSB)

BYTE 2

BYTE 1
RAM

MSB – The most significant BYTE in binary code
LSB – The least significant BYTE in binary code

4.4-02

DISPLAY

The two bytes can be displayed as four hex characters by pressing key
‘list’.

 FOUR HEX
 ADDRESS (ZERO) CHARACTER

00000 1234

LEFT ZIF
SOCKET

RIGHT ZIF
SOCKET

 MSB LSB
 BYTE.1 BYTE.2

(Under the ‘List’ function THE ADDRESS RANGE can be scanned by use
of the hex keyboard and cursor keys) see section ‘LIST’.

(Revision 2) 4.4-03

4.5 32-BIT MODE

The machine can be configured to handle 32-Bit information

PROGRAM LOAD

(i) Four EPROMs can be (i) Four EPROMs can load
programmed from a common into a common address
address range within the RAM. range within the RAM.

(ii) Data programmed using the (ii) Data loaded from the four
32-Bit word is divided into four EPROMs using the 32-Bit
separate bytes: BYTE-1, word is divided into four
BYTE-2, BYTE-3 and BYTE-4. separate bytes: BYTE-1,

BYTE-2, BYTE-3 and BYTE-4.

(iii) Each BYTE will program into (iii) Each BYTE is divided from
one of the four individual one of the four EPROMs.
EPROMs.

(iv) Two programming operations (iv) Two loading operations occur.
occur.

(v) The two operations are called: (v) The two operations are called:

MODE-32 BIT LO
AND

MODE-32 BIT HI
(vi) 32-BIT HI represents BYTE 1 and BYTE 2.

(a) BYTE-1 resides in the left hand ZIF socket.
(b) BYTE-2 resides in the right hand ZIF socket.

(vii) 32-Bit LO represents BYTE-3 and BYTE-4.
(a) BYTE-3 resides in the left hand ZIF socket.
(b) BYTE-4 resides in the right hand ZIF socket.

(Revision 2) 4.5-01

32-BIT MODE

Division of RAM during Load and Program

32-BIT MODE HI
First Operation: Load and Program

First operation: BYTE-1
and 2 can be loaded or
programmed simultaneously
as a set. BYTE-1
represents the MSB of a
32-Bit parallel word.

(MSB) BYTE 1 BYTE 2

BYTE 1
BYTE 2
BYTE 3
BYTE 4

(MSB)

RAM

32-BIT MODE LO
Second Operation: Load and Program

Second operation: BYTE-3
and 4 can be loaded or
programmed simultaneously
as a set. BYTE-4
represents the LSB of a
32-Bit parallel word.

BYTE 3 BYTE 4 (LSB)

BYTE 1
BYTE 2
BYTE 3
BYTE 4(LSB)

RAM

MSB – The most significant BYTE in binary code.
LSB – The least significant BYTE in binary code.

4.5-02

DISPLAY

The four Bytes can be displayed as an eight hex character by pressing
Key ‘List’.

 ADDRESS: (ZERO)

00000 12345678

LEFT RIGHT
ZIF ZIF
SOCKET SOCKET

BYTE 1 BYTE 2

BYTE 3 BYTE 4

 BYTE 1 BYTE 2 BYTE 3 BYTE 4
 (MSB) (LSB)

EIGHT HEX CHARACTER

(Under the ‘List’ function THE ADDRESS RANGE can be scanned by use
of the hex keyboard and cursor keys).

(Revision 2) 4.5-03

SECTION 5

DEVICE FUNCTIONS

5.1 LOAD

Loading the RAM from a ‘master’ PROM

Insert the master device or devices into the ZIF sockets. Press the Load
key. On completion of load the display will show:

6C90 CSUM 18ED
BOTH ZIF SOCKETS IN USE

The checksum will be displayed on the left as well as on the right hand
side of the display, assuming both sockets are in use. However, if only one
device is inserted in either of the ZIF sockets then the checksum will appear
on either the left or the right of the display corresponding to the socket
used:

6C90 CSUM
LEFT ZIF
SOCKET IN USE

 CSUM 18ED
 RIGHT ZIF
 SOCKET IN USE

The programmer has the ability to detect empty sockets and therefore only
the ZIF socket in use will be shown on the display.

(Revision 2) 5.1-01

PROGRAMMING SEQUENCE

5.2 EMPTY TEST

If required an ‘empty test’ can be applied to the device or devices in the
ZIF sockets prior to programming. This can be done by pressing the
‘empty’ key. The device or devices will be examined for the unblown state
(FF); if both are entirely empty the display will show:

BOTH ZIF SOCKETS IN USE

PASS EMPTY PASS
 LEFT ZIF RIGHT ZIF
 SOCKET SOCKET

If a device were to fail the ‘empty test’ the display would show:
(i) The first location where a discrepancy occurs; (ii) The unblown state of
the selected device; (iii) The EPROM data at that particular location.

For instance:

BOTH ZIF SOCKETS IN USE

0000 RR-FF RP-2E
 LOCATION UNBLOWN RIGHT DEVICE
 (ZERO) STATE (FF) CONTAINING DATA (2E)

In this example the device in the right hand ZIF socket has failed. The
device contains data ‘2E’ and not the unblown state ‘FF’. This discrepancy
occurs at the first location – 0000 (ZERO).

Continually pressing ‘empty’ will allow the whole device to be tested
for the empty state, and each successive failure will be displayed.

(Revision 2) 5.2-01

If the empty test passes or is unnecessary the programming can begin.

Pressing the program key will automatically execute the ‘program’
sequence to the manufacturer’s specifications with pre-program (Bit Test)
and in-program (Verify) device tests.

5.3 PRE-PROGRAM BIT TEST

The PP39 automatically checks that the pattern already within the device is
able to be programmed with the intended data from the RAM.

If a device were to fail a bit test the display would show:
(i) The first location where a discrepancy occurs; (ii) The RAM data at that
location; (iii) The PROM data at that particular location.

For instance:

BOTH ZIF SOCKETS IN USE

0000 LR-02 LP-04
 LOCATION LEFT RAM (02) LEFT PROM (04)
 (ZERO)

In this example the device in the left hand ZIF socket has failed. It contains
the data ‘04’ compared to the RAM data ‘02’. The discrepancy occurs at
location 0000 ZERO.

(Revision 2) 5.3-01

5.4 PROGRAMMING

Once the device has passed the bit test, programming of that device will
start.

To provide an indication of how far programming has progressed at any
given time the address being programmed is simultaneously displayed,
for example:

 COUNTER

PROGRAMMING 0C78
 FOUR DIGIT ADDRESS

In the case of the larger devices which use a fast algorithm only the two
most significant digits of the address are displayed.

 COUNTER

PROGRAMMING 2A
 TWO MOST SIGNIFICANT
 DIGITS OF THE ADDRESS

If the data to be programmed into a particular location is the same as the
unblown state of that device, the programming sequence will automatically
skip to the next location. This function speeds up programming
considerably where large sections of the device are to remain empty.

At the end of programming an automatic verify check is done on the
whole device. If ‘device data’ and ‘RAM data’ are identical the display will
show:

PASS VERIFY PASS
 LEFT ZIF SOCKET RIGHT ZIF SOCKET

If at any time during programming the EXIT key is pressed programming
will stop and a verify within the selected address limits of the device will be
done.

(Revision 2) 5.4-01

Should the PROGRAMMING fail, by pressing ‘program’ again the
PROGRAMMING function will continue from the next location after the
failure.

NOTE: PROGRAMMING THE MOTOROLA 2816.

To program data into a specific location in a MOTOROLA 2816 requires
the location to be in the EMPTY state.

For instance:

If new data is to be programmed into the device at a previously
unprogrammed location, then PROGRAMMING can be carried out in the
normal manner.

If, however, it is required to program new data into a location that has
already been programmed then the device will have to be set to the
EMPTY state prior to programming.

To do this:

Press SET FE

After the data within the 2816 has been erased, the programmer will
carry out an ‘EMPTY’ test. If the device is empty the message ‘PASS
EMPTY’ will be shown on the display and programming can be carried
out.

5.4-02

5.5 IN-PROGRAM VERIFY

This is a feature whereby each location, as it is programmed, is checked
to see that it is identical to the corresponding data byte in the RAM.

If a device were to fail, the display would show:

(i) the first location where a discrepancy occurs
(ii) the RAM data at that location
(iii) the PROM data at that location

For instance:
BOTH ZIF SOCKETS IN USE

0000 RR-B7 RP-B6
 LOCATION RIGHT RAM (B7) RIGHT PROM (B6)
 (ZERO)

In this example the device in the right hand ZIF socket has failed. It
contains the data B6 compared to the RAM data B7. The discrepancy
occurs at location 0000 (ZERO).

MANUAL VERIFY

By pressing the ‘verify’ key a manual verify can be applied at any time.
Continually pressing ‘Verify’ will allow the whole device to be tested and
each successive failure will be displayed.

(Revision 2) 5.5-01

5.6 ACCESS TIME TESTING

The Access time test verifies device data against RAM data, where the
device data is read by the PP39 a preset delay after the device address lines
have changed. If the delay is adjusted until the device just passes then the
delay is a direct measure of the access time of the device.

To use this facility on the PP39 an oscilloscope is required to display the
outputs from the module terminals TP1 and TP2. The scope should be set
up using the access time calibrate function SET F7. Adjust the scope (with
a timebase of 100 ns) to give the display as shown below.

0v TP1

TP2

2v

Ta

The access time testing feature may be used in two ways:

1. Direct measurement of the access time of a device

2. The screening of devices to ensure they meet a predetermined access
time.

Direct Measurement

Having checked that the device will pass VERIFY and, that the delay pot
on the module is turned fully counter-clockwise to point ‘min’, press ‘SET
7’, the device will fail. Continue pressing SET 7 turning the delay pot
clockwise until the device passes.

If SET F7 is now pressed with the scope set up as described above, the
access time may be easily read as Ta.

Screening of Devices

Ensure the RAM contains the correct device data. Using the SET F7
function, calibrate Ta using the delay pot on the module to the desired
maximum access time. Devices may now be tested using SET 7.

(Revision 2) 5.6-01

5.7 CHECKSUM and CRC

To do a checksum press the c’sum key.

When the programmer is configured to the Gang Mode the display will
show a single checksum for both devices for example:

 CSUM 5EB6
In any other mode two checksums will be displayed whether one or two
devices are in use for example:

9F4E CSUM 1F58

CYCLIC REDUNDANCY CHECK (CRC)

Cyclic Redundancy Check applies a continuous process of shifting and
addition to the PROM data. This yields a coded representation of the data
which is sensitive to the ordering of the data bytes unlike checksum which
only considers their value.

By pressing the SET 8 when two devices are in use the display will show:

01BA CRC 50C0
As with checksum the CRC function can distinguish between different
modes and sockets that are not in use therefore the display will follow a
similar format.

(Revision 2) 5.7-01

5.8 DEVICE/RAM ADDRESS LIMITS (SET F6)

All functions of the PP39 which operate on a device or devices have 6
associated parameters which may be altered by the user. Additionally CRC
and checksum which operate on the RAM have their address limits defined
by these same 6 parameters.

Address limits for both devices and RAM form these parameters.

Examples of the address limits for the two devices and the RAM can be
shown in diagram form:

LFT DEV HI 0350

LFT DEV LO 0150

LEFT ZIF
SOCKET

RGT DEV HI 0400

RGT DEV LO 0200

RIGHT ZIF
SOCKET

0000
LFT RAM LO

0100
RGT RAM LO

0300 0500

RAM

There are two address limits which can be selected for a single device,
these are called Address Low (0150) and Address High (0350). When two
devices are in use this figure becomes four as an Address Low (0200) and
an Address High (0400) can be specified on the second device.

The RAM has two Address Lows. The left RAM Low (0100) corresponds to
the left device and the right RAM Low (0300) corresponds to the right device.

(The RAM has no high addresses as data loaded or programmed will
automatically default to the size of the data block specified within the
device or devices at the start address pre-selected within the RAM.

(Revision 2) 5.8-01

SETTING UP THE RAM AND THE DEVICE ADDRESS LIMITS

To set address limits press set F6
The display will first show:

 LEFT RAM LOW ZERO

LFTRAM LO 00000
By using the up or down cursor keys, the 3 address limits available for
the RAM and device in the left hand ZIF sockets will be displayed. By
pressing the right hand cursor key and then the up and down cursor keys
the 3 address limits available for the RAM and the device in the right hand
socket will be displayed. The left and right hand cursor keys will allow
interchange between both devices.

The initial displays show all 6 parameters in the * default state:

LFTRAM LO 00000

LFTDEV LO 0000

LFTDEV HI 3FFF

RGTRAM LO 00000

RGTDEV LO 0000

RGTDEV HI 3FFF

(a) (d)

(b) (e)

(c) (f)

* The default state in the 8 Bit mode differs from all other modes.
The ‘Right RAM Low’ defaults to the device size plus 1. For example:

RGTRAM LO 04000

5.8-02

(a) This display shows the left RAM low which has defaulted to ZERO.
An offset can be selected by use of the hex-keyboard for example
00100:

LFTRAM LO 00100

(b) By pressing the down cursor key the left device low will be displayed
defaulted to ZERO also. A lower address limit can be selected by use
of the hex-keyboard for example 0150.

LFTDEV LO 0150

(c) By pressing the down cursor key again the left device high will be
displayed this time defaulted to the size of the device (for example a
27128 device has a capacity of 3FFF). A new upper address limit can
be selected by use of the keyboard for example 0350.

LFTDEV HI 0350

(d), (e) and (f) The user can select address limits for the right device and
RAM in the same manner for example:

RGTRAM LO 00300

RGTDEV LO 0200

RGTDEV HI 0400

(Revision 2) 5.8-03

32-BIT MODE: ADDITIONAL PARAMETERS

In both 32-Bit Modes, two more parameters become available, these select
which byte of the word is programmed into which socket.

The parameters are called LEFT BYTE and RIGHT BYTE. They are
selected in the same manner as the other parameters.

The default values of these parameters for 32-Bit Mode Hi are:

LEFT BYTE 1 RIGHT BYTE 2

The default values of these parameters for 32-Bit Mode Lo are:

LEFT BYTE 3 RIGHT BYTE 4

Any of the four default values can be changed; by using the hex-keys 1, 2, 3
or 4.

5.8-04

5.9 SAVE AND RECALL MACHINE CONFIGURATIONS

‘SAVE’ Machine Configurations

Up to 9 different pre-set configurations can be saved in the machine for
recall later. Therefore different users can protect their pre-set conditions
and recall them later. To save a set of parameters press ‘Set A1’. The
commands for the 9 sets of configurations are ‘Set A1’ through to ‘Set A9’
inclusive.

‘RECALL’ Machine Configurations

Press ‘Set B1’ to recall previous pre-set configurations saved with A1.
Similarly for other recall configurations B2 to B9.

List of Save and Recall Parameters

(1) SET F6 RAM/Device Address Limits:

LEFT RAM LOW
LEFT DEVICE LOW
LEFT DEVICE HIGH
RIGHT RAM LOW
RIGHT DEVICE LOW
RIGHT DEVICE HIGH

(2) SET 1 Interface Parameters:

FORMAT
BAUD RATE
WORD LENGTH
NUMBER OF STOP BITS
PARITY

(3) SET 0 Device Type Selection* See list of devices and device codes
for the 39M100 Mod.

(4) SET 3 Bit Mode:

GANG
8-BIT
16-BIT
32-BIT LOW
32-BIT HIGH

(5) SET INPUT, SET OUTPUT I/O Offset and Address Limits:

INPUT OFFSET
OUTPUT OFFSET
OUTPUT START ADDRESS
OUTPUT STOP ADDRESS

(Revision 2) 5.9-01

SECTION 6

RAM FUNCTIONS

6.1 INTERLACE*

Interlace* is the operating concept embodied within the PP39’s software
which allows easy handling of 8, 16 and 32-bit data.

Previously, when loading 16 or 32-bit data into a programmer RAM the
‘split’ function had to be employed to re-arrange the data into a suitable
form for programming PROMs.

In the 16-bit mode the ‘split’ function takes a specified block of RAM
data and manipulates it to form two new blocks half the size of the
original. One will contain all the odd-addressed bytes from the original
block and the other will contain all the even-addressed bytes.

For 32-bit data this ‘split’ operation would have to be done twice,
forming four new blocks of data. Each block would be one quarter of the
size of the original block.

To reform the original block of data the inverse function of ‘split’, shuffle
is used. On the PP39 neither of these functions is required to configure
the RAM. The software in the PP39 removes the need for these functions
by making the apparent RAM word-size selectable as either 8, 16 or 32
bits.

(Revision 2) 6.1-01

6.2 LIST AND EDIT

The data field displayed will vary depending upon which machine
configuration is in use.
(a) 8-Bit mode and Gang mode will display 1 byte of data (2 characters).
(b) 16-Bit mode will display 2 bytes of data (4 characters).
(c) 32-Bit mode low and high will display 4 bytes of data (8 characters).
For convenience the examples used in the edit routines section will be in
the 8 bit mode.

List, Edit, Insert and Delete are integrated functions.

LIST

This is a feature enabling the data content of the RAM to be scanned on
the display. Without the danger of changing the RAM data.

This can be selected by pressing the list key: the first address will be
displayed with the data within the first address.

FOR EXAMPLE:

 LOCATION (ZERO) DATA

00000 FF
The address can be scanned in two ways:

1. By use of the cursor keys: ↓ ↑ ← →

(a) By using the right/left cursor keys the address can be incremented
or decremented a single location at a time.

(b) By using the up/down cursor keys the address can be incremented
or decremented 16

10
 locations at a time.

2. Any address within RAM limits can be directly entered by use of the
hex-keyboard.

For example:

 SELECTED ADDRESS DATA

01FF0 29

(Revision 2) 6.2-01

EDIT

This is a feature whereby the actual content of the RAM can be directly
modified by using the keyboard.

The edit mode can be selected in two ways.

(a) By pressing the edit key when the machine is in the normal operating
mode.

(b) By pressing the edit key when the machine is in the list mode. (The list
mode can be reselected in the same manner).

When switching from the list to the edit mode or vice versa the address
and data being displayed will be unaffected.

For example:

 LOCATION DATA

01FF0 29 LIST

edit

 LOCATION E DENOTES EDIT DATA

01FF0 E 29 EDIT

The data ‘29’ at location ‘01FF0’ can now be changed by use of the hex
keyboard into for instance A3:

 LOCATION NEW DATA

01FF0 E A3
As with ‘list’ the data can be scanned by use of the cursor keys; when
selection of address is made the information can again be changed by use
of the hex-keyboard.

Alternatively and usually more quickly an address can be directly entered
by switching back to the ‘List mode’ and using the hex-keyboard to select
the location. Switching back to the Edit mode will not corrupt this
information.

6.2-02

6.3 INSERT

Insert is part of the edit mode and can be selected by pressing the edit key
once, when the machine is in the edit mode.

Information can be inserted into a particular location within the RAM. The
existing data content in and above the selected address is repositioned one
location higher. Apart from this shift in location the existing data remains
the same.

For example:

 LOCATION I DENOTES INSERT DATA

01FF0 I 29
By pressing the SET key all data inclusive of location 01FF0 and above is
repositioned one location higher:

 NEXT LOCATION UP

01FF1 I 29
Having pressed the set key, ‘00’ will be inserted into the selected address.

01FF0 I 00
By use of the hex-keyboard the chosen data can now be inserted for
instance A6:

01FF0 I A6
Other than the user of the set key, operation in the Insert mode remains the
same as when in the ordinary edit mode.
For graphic example see next page.

(Revision 2) 6.3-01

A GRAPHIC EXAMPLE OF HOW THE INSERT FUNCTION WORKS IS
SHOWN BELOW:

INITIAL STATUS:

6 C 8 8 4 0 2 9 E 3 7 9 F 3RAM DATA

LOCATIONS

CURRENTLY DISPLAYED
LOCATION

01FED 01FEE 01FEF 01FF0 01FF1 01FF2 01FF3

By pressing the SET key all data inclusive of location 01FF0 and above is
repositioned one location higher. At the displayed location, ‘00’ will be
automatically inserted:

6 C 8 8 4 0 0 0 2 9 E 3 7 9RAM DATA

LOCATIONS

CURRENTLY DISPLAYED
LOCATION

DATA REPOSITIONED
ONE LOCATION HIGHER

01FED 01FEE 01FEF 01FF0 01FF1 01FF2 01FF3

By use of the hex-keyboard the chosen data A6 can be entered at location
01FF0:

6 C 8 8 4 0 A 6 2 9 E 3 7 9RAM DATA

LOCATIONS

CURRENTLY DISPLAYED
LOCATION

‘A6’ ENTERED

01FED 01FEE 01FEF 01FF0 01FF1 01FF2 01FF3

6.3-02

6.4 DELETE

Delete is also part of the edit mode and can be selected by pressing the
edit key twice when the machine is in the edit mode. Delete is the opposite
function to insert whereby data is removed ‘from’ a particular location.

The data above the selected deletion address is repositioned one location
lower.

For example: 5B is the data to be deleted.

 LOCATION D DENOTES DELETE DATA

00200 D 5B
By pressing the SET key all data above but ‘not’ inclusive of location 00200
is automatically brought down one location. The information previously at
address 00201 replaces ‘Data 5B’ at location 00200.

For example:

00200 D AA
Other than the use of the set key, operation in the delete mode remains
the same as when in the ordinary edit mode.

For graphic example see next page.

(Revision 2) 6.4-01

A GRAPHIC EXAMPLE OF HOW THE DELETE FUNCTION WORKS IS
SHOWN BELOW:

INITIAL STATUS:

1 7 0 A 3 7 5 B A A 6 3 7 2RAM DATA

LOCATIONS

‘5B’ DELETED
CURRENTLY DISPLAYED
LOCATION

001FD 001FE 001FF 00200 00201 00202 00203

By pressing the SET key all data above the displayed location 00200 is
brought down one location. (All data below the displayed location is left
unaffected).

1 7 0 A 3 7 A A 6 3 7 2 3 FRAM DATA

LOCATIONS

CURRENTLY DISPLAYED
LOCATION

001FD 001FE 001FF 00200 00201 00202 00203

6.4-02

6.5 BLOCK MODE (SET F4)

SETTING ADDRESS LIMITS

This is a feature enabling a block of data with pre-selected address limits to
be relocated at another address within the RAM, without destroying the
original data.

Selection of this function is made by pressing SET F4.

The display will show:

 ADDRESS LOW ZERO

ADDR LO 00000
This defines the lower limit of the block in RAM to be re-located.
(Defaults to 0000)

The new lower RAM limit can be entered using the hex-keyboard.

For example 00100:
 NEW LOWER RAM LIMIT

ADDR LO 00100

If the down cursor is pressed the display will show:

 ADDRESS HIGH SIZE OF SELECTED DEVICE

ADDR HI 03FFF
This defines the upper limit of the block in RAM to be relocated.
(Defaults to selected device size).

A new value for the upper RAM limit can be entered using the
hex-keyboard.

For example 00300:
 NEW UPPER RAM LIMIT

ADDR HI 00300

(Revision 2) 6.5-01

LOWER LIMIT OF RE-LOCATED DATA

By pressing the down cursor key again the display will show:

 TO ADDRESS

TO ADDR 00000
This defines the lower RAM limit of where the block of data is to be
re-located (Defaults to 0000).

The re-located lower RAM limit can be entered using the hex-keyboard.

For example 00500:

 LOWER LIMIT OF THE
 NEW BLOCK OF DATA

TO ADDR 00500
Pressing the exit key will initiate the block-move function. A series of
dashes will be displayed indicating the function is in progress:

The PP39 will automatically return to the normal operating mode.

6.5-02

6.6 FILLING THE RAM

By pressing SET FF the RAM will be entirely filled with F’s.

By pressing SET F0 the RAM will be entirely filled with 0’s (Zeros).

By pressing SET 5 the RAM data will be complemented. (1’s complement).

FILLING THE RAM WITH AN ARBITRARY VARIABLE* (SET F2)

This function enables the user to fill the RAM with an arbitrary variable of
their own choosing.

The variable will be identically repeated at every word within address limits
specified by the user.

*The variable can be of differing word length depending on which
machine configuration is in use, i.e.:

2 Characters (1 Byte)
Can be used in the 8-bit mode and Gang mode.
4 Characters (2 Bytes)
Can be used in the 16-bit mode.
8 Characters (4 Bytes)
Can be used in the 32-bit mode low and high.

For convenience the example used will stay in the 8-bit mode.

Pressing SET F2 will display the lower address limit, which defaults to
ZERO:

 ADDRESS LOW LOCATION ZERO

ADDR LO 00000

(Revision 2) 6.6-01

The new lower address limit can be selected by using the hex-keyboard for
instance 00600:

 LOCATION

ADDR LO 00600
The upper address limit can be shown by pressing the up cursor key, this
also defaults to ZERO:

 ADDRESS HIGH LOCATION ZERO

ADDR HI 00000
The new upper limit can be selected using the hex-keyboard for instance
01000:

 LOCATION

ADDR HI 01000
The arbitrary variable can be entered by pressing the up-cursor again to
display.

 DATA 00
The data selection can be made by using the hex-keyboard for instance A1:

 ARBITRARY VARIABLE

 DATA A1
Pressing ‘SET’ alone will implement this selection.

Every byte of RAM within and inclusive of the specified address limits of
00600 low to 01000 high is filled with ‘A1’.

6.6-02

*A larger number of up to 8 digits can be used to fill the RAM in 16 or 32
bit mode. This facility can be used in conjunction with modes of smaller
word size.

For instance with the 8-bit mode:

Selection of arbitrary variable made in 32-Bit Mode

For example:

4 BYTES (8 Characters)

 DATA 12345678
The display using LIST at location 00000 and 00001 will be:

00000 12345678
and

00001 12345678

(Revision 2) 6.6-03

6.7 STRING SEARCH

This function allows the RAM data to be searched for a particular string
of data.

Press SET 9 to display:

 ADDR LO 00000
The lower address limit of the area of RAM to be searched is now
displayed defaulted to zero. It can be altered using values input from the
keyboard.

To display the upper limit:

Press ↑ or ↓

 ADDR HI 03FFF
The upper address limit is shown defaulted to the size of the pre-selected
device, and like the lower limit it can be altered using values input from
the keyboard.

Once the address limits have been set:

Press SET to display:

 20 <

ASCII Value Cursor

The default state of the string is now shown. To the extreme left of the
display is the ASCII code equivalent of the character displayed on the
immediate left of the cursor. In this case the space character is displayed.

(Revision 2) 6.7-01

To increment or decrement the ASCII value and hence alter the character
displayed:

Press ↑ or ↓

Alternatively and quicker, the ASCII value if known can be entered
directly from the keyboard.

Note: Due to the limitations of the display some of the characters cannot
be represented accurately. Their value will however remain valid.

To move the cursor one space to the right and allow selection of the next
character:

Press →

 20 S <

Cursor

Selected first character

ASCII value of character to immediate left of the cursor (in this case
‘space’)

The second character can now be selected in the manner previously
described. In this way a string of upto 11 characters (or data bytes) can
be entered.

When the desired string has been selected, to implement the String
Search:

Press SET

If a corresponding string is located within the specified area of RAM, then
the message ‘FOUND AT’ and the address of the first occurrence will be
displayed. Every subsequent occurrence can be located by continually
pressing SET until the entire specified area of RAM has been searched.

6.7-02

For instance:

 47 STAG<

Cursor

The selected string

The ASCII value of the character to the immediate left of the cursor. (In
this case ‘G’)

The above string was searched for and the display showed the following
message:

 FOUND AT 00116
This means that the first occurrence of the string was found at location
00116.

If the string had not been found within the specified area of RAM the
display would have shown:

 NOT FOUND
If a string has been entered and only part of it is used, then moving
the cursor to the left will restrict the string to the desired length. The
original string will be retained however in its entirety, and moving the
cursor to the right will display it again.

Any entered string will be retained until the PP39 is powered down.

To abort the String Search at any time.

Press EXIT

(Revision 2) 6.7-03

SECTION 7

39M200

7.3 LIST OF ‘SET’ COMMANDS

set 0

Allows user to scan and select various manufacturers
and device types

set 1

Selects interface parameters
Format, Baud Rate, Word Length, Stop Bits, Parity

set 2

Sets programmer into ‘Remote’ control. (To return
to Local Mode: Power up with exit key depressed)

set 4

Displays RAM size in hexadecimal

set 5

RAM data complemented from lower to upper address limit

set 6

Displays module software revision if module is plugged in,
or main frame software revision, if no module is plugged in.

set 8

Calculates and displays CRC (Cyclic Redundancy Check)

set A1

To

A9

Saves machine configuration
(up to nine sets)

(Revision 2) 7.3-01

LIST OF ‘SET’ COMMANDS (continued)

set B1

To

B9

Recalls previously saved machine
configurations (up to 9 sets)

set F0

Fills entire RAM with 00

set FF

Fills entire RAM with FF

set F1
Audible Alarm: To indicate end of program, test, or
as a warning using a combination of bleeps and tones.
SET F1 both enables and disables this function.

set F2

Fills RAM with arbitrary variable from lower to upper
address limit

set F3

Set Security fuse: the fuse can be set to ‘BLOWN’
on ‘INTACT’ by use of the up/down arrow keys.

set F4
Re-Locate RAM data. A block of data with pre-selected
address limits can be copied and then re-located at
another address within the RAM.

set F6

Defines RAM and device address ranges for all functions
which operate on the device

set input

Input – Enters input address offset

set output

Output – Enters output address offset, start address
and stop address

7.3-02

SECTION 8

SELECTING A DEVICE

8.1 DEVICE TYPE SELECTION

Selecting the device using a 4 digit code

The complete range of devices supported by the 39M200 is stored
in the module. Each individual device has its own four digit code. (See
device code list Section 8.2).

SET 0 – Allows code selection

SEQUENCE: Prior to SET ‘0’ the display will show the last entered
configuration

For example:

AMD 9761H
By pressing SET ‘0’ the device code of this configuration will be displayed:

DEVICE CODE 9F8F
When the new device code to be entered is already known, (for instance
7F91 is the code for a Motorola 68701), then the 7F91 can be entered
directly onto the display from the keyboard replacing the old code:

DEVICE CODE 7F91
The selection sequence can be completed by pressing EXIT whereby the
new manufacturer and device type are displayed along with the bit mode:

MOT 68701

(Revision 2) 8.1-01

Scanning device types and manufacturers by use of cursor keys

When a device code is not known or if the user wishes to scan the devices
available, selection can be made via the cursor keys:

↓ ↑ ← →

By pressing SET ‘0’ the code of the last used device is displayed:

DEVICE CODE 7F91
The manufacturer and device type can be changed by use of the cursor
keys:

The up/down keys scan the range of manufacturers.

↓ ↑

changes manufacturer

The left/right keys scan the device range of a particular manufacturer.

← →

changes device type

8.1-02

8.2 LIST OF DEVICES AND DEVICE CODES FOR THE 39M200 MODULE

This list of parts is supported by the 39M200 module and is stored in the
module’s software. Every programmable part carries a four digit code.
The first two digits define the manufacturer of the device while the
second two digits describe the device type.

4 Digit Device
Manufacturer Device Device Code Size (Hex)

AMD 8751H 9F 8D 1000
9761H 9F 8F 2000

INTEL 8741A 6F 81 400
8742 6F 82 800
8748 6F 86 400
8748H 6F 88 400
8749H 6F 8B 800
8744 6F 84 1000
8751 6F 8C 1000
8751H 6F 8D 1000
8755 6F 8E 800

MOTOROLA 68701 7F 91 800
6870104 7F 93 1000
68705P3 7F 95 800
68705P5 7F 96 800
68705U3 7F 98 1000
68705U5 7F 99 1000
68705R3 7F 9A 1000
68705R5 7F 9B 1000

NEC 8741A CC 81 400
8748 CC 86 400
8748H CC 88 400
8749H CC 8B 800
8755A CC 8E 800

(Revision 2) 8.2-01

SECTION 9

DEVICE FUNCTIONS

9.1 LOAD

Loading the RAM from the Device

Insert the device into the ZIF socket.

Press LOAD

On completion of LOAD the display will show:

 CSUM C096
Note: It is impossible to load the RAM from a Motorola 68705 device or
from a device which has had its security fuse blown. (See section 5.7).

(Revision 2) 9.1-01

9.2 PROGRAMMING SEQUENCE

Empty Test

If required an ‘empty test’ can be applied to the device in the ZIF socket
prior to programming. To do this:

Press ‘empty’

The device will be examined for the unprogrammed state (FF). If it is
empty the display will show:

 EMPTY PASS
If the device fails the ‘empty test’ the display will show:

i. The first location where a discrepancy occurs, ii. The unblown state of
the selected device, iii. The EPROM data at that particular location:

0000 R-FF P-2E
 LOCATION UNBLOWN DEVICE
 (ZERO) STATE (FF) CONTAINING DATA (2E)

In this example the device has failed the test because it contains the data
‘2E’ and not the unblown state ‘FF’. This discrepancy occurs at the first
location – 0000 (Zero).

(Revision 2) 9.2-01

If the empty test passes or is unnecessary the programming can begin.

Pressing the program key will automatically execute the ‘program’
sequence to the manufacturer’s specifications with pre-program (Bit Test)
and in-program (Verify) device tests.

PRE-PROGRAM BIT TEST

The PP39 automatically checks that the pattern already within the device is
able to be programmed with the intended data from the RAM.

If a device were to fail a bit test the display would show:
(i) The first location where a discrepancy occurs; (ii) The RAM data at that
location; (iii) The EPROM data at that particular location.

For instance:

0000 R-02 P-04
 LOCATION RAM (02) PROM (04)
 (ZERO)

In this example the device has failed the test because it contains the data
‘04’ compared to the RAM data ‘02’. The discrepancy occurs at location
0000 ZERO.

9.2-02

9.3 PROGRAMMING

Once the device has passed the bit test, programming of that device will
start.

To provide an indication of how far programming has progressed at any
given time the address being programmed is simultaneously displayed,
for example:

 COUNTER

PROGRAMMING 0C78
 FOUR DIGIT ADDRESS

In the case of the larger devices which use a fast algorithm only the two
most significant digits of the address are displayed.

 COUNTER

PROGRAMMING 2A
 TWO MOST SIGNIFICANT
 DIGITS OF THE ADDRESS

If the data to be programmed into a particular location is the same as the
unblown state of that device, the programming sequence will automatically
skip to the next location. This function speeds up programming
considerably where large sections of the device are to remain empty.

At the end of programming an automatic verify check is done on the
whole device. If ‘device data’ and ‘RAM data’ are identical the display will
show:

VERIFY PASS
If at any time during programming the EXIT key is pressed programming
will stop and a verify within the selected address limits of the device will be
done.

(Revision 2) 9.3-01

9.3.1 Verify

Verify Pass-Security Bit

If the device has passed the verify test and the security bit was set to
‘BLOWN’, the display will show:

SECU BIT PASS
Verify Fail

Should the device fail the verify test, the security bit will not be blown.

IN-PROGRAM VERIFY

A feature whereby each location programmed is immediately checked to see
that is identical to the corresponding data byte in RAM.

If a device were to fail a verify, the display would show:
(i) The first location where a discrepancy occurs; (ii) The RAM data at
that location; (iii) The ‘EPROM’ data at that particular location.

For instance:

0000 R-B7 P-B6
 LOCATION RAM (B7) PROM (B6)
 (ZERO)

In this example the device contains the data B6 compared to the RAM
data B7. The discrepancy occurs at location 0000 (ZERO).

MANUAL VERIFY

By pressing the ‘verify’ key a manual verify can be applied at any time.

Automatic and manual verify operations are identical.

(Revision 2) 9.3.1-01

9.4 CHECKSUM

To do a checksum

Press ‘C/Sum’

The display will show:

 CSUM 18ED
CYCLIC REDUNDANCY CHECK (CRC)

The Cyclic Redundancy Check applies a continuous process of shifting
and addition to the RAM data. This yields a coded representation of the
data which is sensitive to the ordering of the data bytes unlike the
checksum, which only considers their values.

Press ‘SET 8’

The display will show:

 CRC 6C90

(Revision 2) 9.4-01

9.5 DEVICE/RAM ADDRESS LIMITS (SET F6)

All functions of the PP39 which operate on a device have 3 associated
parameters which may be altered by the user. Additionally CRC and
checksum which operate on the RAM have their address limits defined by
these same 3 parameters.

Address limits for both devices and RAM form these parameters.

Examples of the address limits for the device and the RAM can be shown
in diagrammatic form:

DEV HI 0350

DEV LO 0150

DEVICE

0000 0100 0300

RAM

There are two address limits which can be selected for a single device,
these are called Address Low (0150) and Address High (0350).

The RAM has an Address Low but no Address High. Data loaded or
programmed will automatically default to the size of the data block
specified within the device at the start address pre-selected within the
RAM.

(Revision 2) 9.5-01

SETTING UP THE RAM AND THE DEVICE ADDRESS LIMITS

To set address limits:

Press: Set F6

The display will show:

 RAM LO 00000
The RAM Low defaults to zero, but an offset can be selected by use of
the hex-keyboard, for example 00100:

 RAM LO 00100
By using the up/down arrow keys, the 2 address limits available for the
device can be displayed.

DEVICE LO 0000(a)

The address limit defaults to zero, but can be altered by use of the hex-
keyboard.

DEVICE HI 0FFF(b)

The address limit defaults to the size of the device, but can be altered by
use of the hex-keyboard.

9.5-02

9.6 SAVE AND RECALL MACHINE CONFIGURATIONS

‘SAVE’ Machine Configurations

Up to 9 different pre-set configurations can be saved in the machine for
recall later. Therefore different users can protect their pre-set conditions
and recall them later. To save a set of parameters:

Press ‘Set A1’

The commands for the 9 sets of configurations are ‘Set A1’ through to
‘Set A9’ inclusive.

‘RECALL’ Machine Configurations

Press ‘Set B1’

To recall previous pre-set configurations saved with A1.
Similarly for other recall configurations B2 to B9.

List of Save and Recall Parameters

(1) SET F6 RAM/Device Address Limits:

RAM LOW
DEVICE LOW
DEVICE HIGH

(2) SET 1 Interface Parameters:

FORMAT
BAUD RATE
WORD LENGTH
NUMBER OF STOP BITS
PARITY

(3) SET 0 Device Type Selection

*See list of devices and device codes
 for the 39M200 Module.

(5) SET INPUT, SET OUTPUT I/O Offset and Address Limits:

INPUT OFFSET
OUTPUT OFFSET
OUTPUT START ADDRESS
OUTPUT STOP ADDRESS

(Revision 2) 9.6-01

9.7 68705 Devices

The 68705s are self-programming, WRITE ONLY devices. This means
that they cannot be loaded, bit checked, empty checked or verified. They
can only program themselves with data stored in the module’s static
RAMs followed by a self verify. As a result, the device functions for this
family differ from those described earlier in the section.

Load, Empty, Verify

On pressing any one of these function keys, the message
‘Not Applicable’ will be displayed, and the warning failure ‘Bleep’ will
sound.

Pre-Program Bit Test, In-Program Verify

These functions are inoperative for 68705 devices.

Programming

No running count is displayed while programming is in progress.

Device/RAM Address Limits (SET F6)

It is possible to alter all three parameters, but only RAM Low actually
takes effect.

(Revision 2) 9.7-01

SECTION 10

RAM FUNCTIONS

10.1 KEYBOARD EDIT ROUTINES

LIST

This is a feature enabling the data content of the RAM to be scanned on
the display without the danger of changing the RAM data.

This can be selected by pressing the list key: the first address will be
displayed with the data within the first address.

FOR EXAMPLE:

 LOCATION (ZERO) DATA

00000 FF
The address can be scanned in two ways:

1. By use of the cursor keys: ↓ ↑ ← →

(a) By using the right/left cursor keys the address can be incremented
or decremented a single location at a time.

(b) By using the up/down cursor keys the address can be incremented
or decremented 16

10
 locations at a time.

2. Any address within RAM limits can be directly entered by use of the
hex-keyboard.

For example:

 SELECTED ADDRESS DATA

01FF0 29

(Revision 2) 10.1-01

10.2 EDIT

This is a feature whereby the actual content of the RAM can be directly
modified by using the keyboard.

The edit mode can be selected in two ways.

(a) By pressing the edit key when the machine is in the normal operating
mode.

(b) By pressing the edit key when the machine is in the list mode. (The list
mode can be reselected in the same manner).

When switching from the list to the edit mode or vice versa the address
and data being displayed will be unaffected.

For example:

 LOCATION DATA

01FF0 29 LIST

edit

 LOCATION E DENOTES EDIT DATA

01FF0 E 29 EDIT

The data ‘29’ at location ‘01FF0’ can now be changed by use of the hex
keyboard into for instance A3:

 LOCATION NEW DATA

01FF0 E A3
As with ‘list’ the data can be scanned by use of the cursor keys; when
selection of address is made the information can again be changed by use
of the hex-keyboard.

Alternatively and usually more quickly an address can be directly entered
by switching back to the ‘List mode’ and using the hex-keyboard to select
the location. Switching back to the Edit mode will not corrupt this
information.

(Revision 2) 10.2-01

10.3 INSERT

Insert is part of the edit mode and can be selected by pressing the edit key
once, when the machine is in the edit mode.

Information can be inserted into a particular location within the RAM. The
existing data content in and above the selected address is repositioned one
location higher. Apart from this shift in location the existing data remains
the same.

For example:

 LOCATION I DENOTES INSERT DATA

01FF0 I 29
By pressing the SET key all data inclusive of location 01FF0 and above is
repositioned one location higher:

 NEXT LOCATION UP

01FF1 I 29
Having pressed the set key, ‘00’ will be inserted into the selected address.

01FF0 I 00
By use of the hex-keyboard the chosen data can now be inserted for
instance A6:

01FF0 I A6
Other than the user of the set key, operation in the Insert mode remains the
same as when in the ordinary edit mode.
For graphic example see next page.

(Revision 2) 10.3-01

A GRAPHIC EXAMPLE OF HOW THE INSERT FUNCTION WORKS IS
SHOWN BELOW:

INITIAL STATUS:

6 C 8 8 4 0 2 9 E 3 7 9 F 3RAM DATA

LOCATIONS

CURRENTLY DISPLAYED
LOCATION

01FED 01FEE 01FEF 01FF0 01FF1 01FF2 01FF3

By pressing the SET key all data inclusive of location 01FF0 and above is
repositioned one location higher. At the displayed location, ‘00’ will be
automatically inserted:

6 C 8 8 4 0 0 0 2 9 E 3 7 9RAM DATA

LOCATIONS

CURRENTLY DISPLAYED
LOCATION

DATA REPOSITIONED
ONE LOCATION HIGHER

01FED 01FEE 01FEF 01FF0 01FF1 01FF2 01FF3

By use of the hex-keyboard the chosen data A6 can be entered at location
01FF0:

6 C 8 8 4 0 A 6 2 9 E 3 7 9RAM DATA

LOCATIONS

CURRENTLY DISPLAYED
LOCATION

‘A6’ ENTERED

01FED 01FEE 01FEF 01FF0 01FF1 01FF2 01FF3

10.3-02

10.4 DELETE

Delete is also part of the edit mode and can be selected by pressing the
edit key twice when the machine is in the edit mode. Delete is the opposite
function to insert whereby data is removed ‘from’ a particular location.

The data above the selected deletion address is repositioned one location
lower.

For example: 5B is the data to be deleted.

 LOCATION D DENOTES DELETE DATA

00200 D 5B
By pressing the SET key all data above but ‘not’ inclusive of location 00200
is automatically brought down one location. The information previously at
address 00201 replaces ‘Data 5B’ at location 00200.

For example:

00200 D AA
Other than the use of the set key, operation in the delete mode remains
the same as when in the ordinary edit mode.

For graphic example see next page.

(Revision 2) 10.4-01

A GRAPHIC EXAMPLE OF HOW THE DELETE FUNCTION WORKS IS
SHOWN BELOW:

INITIAL STATUS:

1 7 0 A 3 7 5 B A A 6 3 7 2RAM DATA

LOCATIONS

‘5B’ DELETED
CURRENTLY DISPLAYED
LOCATION

001FD 001FE 001FF 00200 00201 00202 00203

By pressing the SET key all data above the displayed location 00200 is
brought down one location. (All data below the displayed location is left
unaffected).

1 7 0 A 3 7 A A 6 3 7 2 3 FRAM DATA

LOCATIONS

CURRENTLY DISPLAYED
LOCATION

001FD 001FE 001FF 00200 00201 00202 00203

10.4-02

10.5 BLOCK MODE (SET F4)

SETTING ADDRESS LIMITS

This is a feature enabling a block of data with pre-selected address limits to
be relocated at another address within the RAM, without destroying the
original data.

Selection of this function is made by pressing SET F4.

The display will show:

 ADDRESS LOW ZERO

ADDR LO 00000
This defines the lower limit of the block in RAM to be re-located.
(Defaults to 0000)

The new lower RAM limit can be entered using the hex-keyboard.

For example 00100:
 NEW LOWER RAM LIMIT

ADDR LO 00100

If the down cursor is pressed the display will show:

 ADDRESS HIGH SIZE OF SELECTED DEVICE

ADDR HI 03FFF
This defines the upper limit of the block in RAM to be relocated.
(Defaults to selected device size).

A new value for the upper RAM limit can be entered using the
hex-keyboard.

For example 00300:
 NEW UPPER RAM LIMIT

ADDR HI 00300

(Revision 2) 10.5-01

LOWER LIMIT OF RE-LOCATED DATA

By pressing the down cursor key again the display will show:

 TO ADDRESS

TO ADDR 00000
This defines the lower RAM limit of where the block of data is to be
re-located (Defaults to 0000).

The re-located lower RAM limit can be entered using the hex-keyboard.

For example 00500:

 LOWER LIMIT OF THE
 NEW BLOCK OF DATA

TO ADDR 00500
Pressing the exit key will initiate the block-move function. A series of
dashes will be displayed indicating the function is in progress:

The PP39 will automatically return to the normal operating mode.

10.5-02

10.6 FILLING THE RAM

By pressing SET FF the RAM will be entirely filled with F’s.

By pressing SET F0 the RAM will be entirely filled with 0’s (Zeros).

By pressing SET 5 the RAM data will be complemented. (1’s complement).

FILLING THE RAM WITH AN ARBITRARY VARIABLE* (SET F2)

This function enables the user to fill the RAM with an arbitrary variable of
their own choosing.

Pressing SET F2 will display the lower address limit, which defaults to
ZERO:

 ADDRESS LOW LOCATION ZERO

ADDR LO 00000

(Revision 2) 10.6-01

The new lower address limit can be selected by using the hex-keyboard for
instance 00600:

 LOCATION

ADDR LO 00600
The upper address limit can be shown by pressing the up cursor key, this
also defaults to ZERO:

 ADDRESS HIGH LOCATION ZERO

ADDR HI 00000
The new upper limit can be selected using the hex-keyboard for instance
01000:

 LOCATION

ADDR HI 01000
The arbitrary variable can be entered by pressing the up-cursor again to
display.

 DATA 00
The data selection can be made by using the hex-keyboard for instance A1:

 ARBITRARY VARIABLE

 DATA A1
Pressing ‘SET’ alone will implement this selection.

Every byte of RAM within and inclusive of the specified address limits of
00600 low to 01000 high is filled with ‘A1’.

10.6-02

10.7 STRING SEARCH

This function allows the RAM data to be searched for a particular string.

Press SET 9. The display will show:

 ADDR LO 00000
The lower address limit for the search can be altered using the hex-
keyboard.

To alter the upper address limits:

Press ↑ or ↓
The display will show:

 ADDR HI 03FFF
The values will default to the size of the device, but may be altered using
the hex-keyboard.

Once the address limits have been set, press SET

The display will show:

 20 <

ASCII Value Cursor

On the left hand side of the display appears the ASCII equivalent of the
character next to the cursor. (In the example above this is a space).

Press ↑ or ↓
To increment or decrement the ASCII value. The character next to the
cursor will change automatically. It is possible to enter the ASCII value
directly if known.

Press ← or →
to move the cursor left and right.

Note: Some of the characters cannot be exactly reproduced on the
display and hence may be unrecognisable. Their value will however,
remain valid.

Press SET

The specified string is searched for and if found, the display will show
‘FOUND AT’ and the location. If the string search fails, the display will
simply show ‘NOT FOUND’.

(Revision 2) 10.7-01

To increment or decrement the ASCII value and hence alter the character
displayed:

Press ↑ or ↓

Alternatively and quicker, the ASCII value if known can be entered
directly from the keyboard.

Note: Due to the limitations of the display some of the characters cannot
be represented accurately. Their value will however remain valid.

To move the cursor one space to the right and allow selection of the next
character:

Press →

 20 S <

Cursor

Selected first character

ASCII value of character to immediate left of the cursor (in this case
‘space’)

The second character can now be selected in the manner previously
described. In this way a string of upto 11 characters (or data bytes) can
be entered.

When the desired string has been selected, to implement the String
Search:

Press SET

If a corresponding string is located within the specified area of RAM, then
the message ‘FOUND AT’ and the address of the first occurrence will be
displayed. Every subsequent occurrence can be located by continually
pressing SET until the entire specified area of RAM has been searched.

10.7-02

For instance:

 47 STAG<

Cursor

The selected string

The ASCII value of the character to the immediate left of the cursor. (In
this case ‘G’)

The above string was searched for and the display showed the following
message:

 FOUND AT 00116
This means that the first occurrence of the string was found at location
00116.

If the string had not been found within the specified area of RAM the
display would have shown:

 NOT FOUND
If a string has been entered and only part of it is used, then moving
the cursor to the left will restrict the string to the desired length. The
original string will be retained however in its entirety, and moving the
cursor to the right will display it again.

Any entered string will be retained until the PP39 is powered down.

To abort the String Search at any time.

Press EXIT

(Revision 2) 10.7-03

SECTION 11

INTERFACE

11.1 SETTING THE I/O INTERFACE PARAMETERS

On power-up the I/O defaults to the last used I/O parameter.

This default function is programmed into the Non-Volatile RAM and can be
displayed by pressing SET 1.

For instance:

INT 9600 8 2 EP
There are five categories of I/O interface parameter available for selection
on the PP39 Programmer. These are: Format, Baud Rate, Word Length,
Number of Stop Bits and Parity.

They correspond to the display in this manner:

 No. OF
 WORD STOP

 FORMAT BAUD RATE LENGTH BITS PARITY

INT 9600 8 2 EP

(Revision 2) 11.1-01

SECTION 12

FORMAT DESCRIPTIONS

12.1 INTERFACE FORMATS (INTRODUCTION)

There are eleven formats available on the PP39, these are:

 INT = INTELLEC
 XINT = EXTENDED INTELLEC
 HASC = HEX ASCII
 XOR = EXORCISOR
 XXOR = EXTENDED EXORCISOR
 TEK = TEK HEX
 XTEK = EXTENDED TEK
 PPX = STAG HEX *
 BIN = BINARY
 DBIN = DEC BINARY
 BINR = BINARY RUBOUT

STANDARD FORMATS
There are three standard manufacturer formats these are: INTELLEC,
EXORCISOR and TEK HEX which are used on most development systems.

EXTENDED FORMATS
There are three protracted versions of the standard formats these are:
EXTENDED INTELLEC, EXTENDED EXORCISOR and EXTENDED TEK.
The extended formats can be used when a larger address field is required.

HEX ASCII
The Hex ASCII format is the original base version of the standard formats.
It lacks the facility of an address field and a checksum.

PPX (Stag Hex) *
The PPX format differs from the HEX ASCII in that it has an address field
and terminates with a checksum of total bytes.

BINARY
The Binary format is the most fundamental of all formats and can be used
where fast data transfers are required. It has no facility for address, byte
count or checksum.

BINARY RUBOUT
BINARY RUBOUT is similar to BINARY apart from the inclusion of the
rubout character (FF) at the start of the data.

DEC BINARY
This is an improvement of binary in that it has a single address and a
single checksum for the entire block of data.

(Revision 2) 12.1-01

STRUCTURE AND CONVERSION OF DATA BETWEEN SERIAL SIGNAL
AND THE PP39 RAM

B 7 0 F 1 5 7 E C 5 6 3 E 4

7 E

3 7 4 5

0 0 1 1 0 1 1 1 0 1 0 0 0 1 0 1

1017 1018 1019 101A 101B 101C 101DRAM locations

BYTE in RAM of PP39

ASCII CONVERSION

ASCII Representation

Representation
Binary

12.1-02

12.1.1 INTELLEC

The Intellec format when displayed consists of:

a. A start code, i.e. (a colon):

b. The sum of the number of bytes in an individual record, e.g. 10

c. The address of the first byte of data in an individual record, e.g. 0000.

d. The record types, i.e. 00 – Data Record
01 – End Record.

e. Data in bytes, e.g. 44 6F 73 20 45 71

f. Checksum of an individual record, e.g. 87

For example: START ADDRESS: 0000

STOP ADDRESS: 004F

OFFSET: 0000

:10000000446F7320457175697320446F7320457187
:1000100075697320446F7320457175697320446F4F
:100020007320457175697320446F7320457175693C
:100030007320446F7320457175697320446F73207A
:10004000457175697320446F73204571756973201C
:00000001FF

START CODE
ADDRESS OF FIRST
BYTE IN EACH RECORD

NO. OF DATA BYTES
IN EACH RECORD RECORD TYPE

CHECKSUM OF
EACH RECORD

(Revision 2) 12.1.1-01

CALCULATION OF THE INTELLEC* CHECKSUM

:10000000446F7320457175697320446F7320457187
:01001000757A
:00000001FF

Example: THE SECOND ‘DATA RECORD’ OF THE ABOVE FORMAT.

(i) This is: :01 00 10 00 75 7A

(ii) The start code and the
checksum are removed: :7A

(iii) Five Bytes remain: 01 00 10 00 75

(iv) These are added together: 01 00 10 00 75 86=++++

(v) The total ‘71’ is converted into 8 6
Binary: 1000 0110

(vi) The Binary figure is reversed. 7 9
This is known as a complement: 0111 1001

(vii) A one is added to this 7 A
complement. This addition 0111 1010
forms a “two’s complement”:

(viii) 7A is the checksum as above: :01 00 10 00 75 7A

* This calculation also applies to the extended version.

When addition of information occurs in longer records the checksum may
consist of more than one byte. When this occurs the least significant byte
is always selected to undergo the above calculation.

12.1.1-02

12.1.2 EXTENDED INTELLEC

The extended Intellec format when displayed consists of:

a. A start code, i.e. (a colon):

b. The sum of the number of bytes in an individual record, e.g. 10

c. The address of the first byte of data in an individual record, e.g. 0000.

d. The record types, i.e. 00 – Data Record
01 – End Record.
02 – ‘Segment Base Address’

record (SBA)*

* The SBA is the record that displays, the intellec extension. This is
achieved by the provision of an extra digit which corresponds to the 4th
character of the SBA insertion. This 4th character is effectively the
extension which lengthens the standard (FFFF) limitation, into the
Extended Intellec (FFFFF).

e. Data (in bytes) e.g. 44 6F 73 20

f. A checksum of an individual record, e.g. 87

For example: START ADDRESS: 0000

STOP ADDRESS: 003F

OFFSET: 0000 0000

:020000020000FC
:10000000446F7320457175697320446F7320457187
:1000100075697320446F7320457175697320446F4F
:100020007320457175697320446F7320457175693C
:100030007320446F7320457175697320446F73207A
:00000001FF

START CODE
ADDRESS OF FIRST
BYTE IN EACH RECORD

NO. OF DATA BYTES
IN EACH RECORD RECORD TYPE

CHECKSUM OF
EACH RECORD

4th character
of SBA insertion

Extra 4 Digits
available for
extension in
SBA Record0000

(Revision 2) 12.1.2-01

SBA REPETITION

In some operations where an offset is in use the SBA can be displayed
twice.

When the address field passes the maximum quantity for a four digit
figure, i.e. (FFFF), a second SBA record is specified.

For example: START ADDRESS: FFA0

STOP ADDRESS: FFFF

OFFSET: 0000 0018

:020018020000E4
:10FFB800FF00FF00FF00FF00FF00FF00FF00FF0041
:10FFC800FF00FF00FF00FF00FF00FF00FF00FF0031
:10FFD800FF00FF00FF00FF00FF00FF00FF00FF0021
:10FFE800FF00FF00FF00FF00FF00FF00FF00FF0011
:08FFF800FF00FF00FF00FF0005
:020000021000EC
:08000000FF00FF00FF00FF00E8
:10000800FF00FF00FF00FF00FF00FF00FF00FFFFF1
:00FFB80148

NEW SBA RECORD

SBA RECORD

MAXIMUM ADDRESS
FOR FOUR DIGITS (FFFF)

B

A

The SBA is added to the address field in the following fashion:

BEXTENSION
DIGIT

1 0 0 0 SBA INSERTION
+ 0 0 0 0 ADDRESS FIELD

= 1 0 0 0 0

AEXTENSION
DIGIT

0 0 0 0 SBA INSERTION
+ FFB8 ADDRESS FIELD

= 0 FFB8

If required by the user
the remaining 3 digits of
the SBA insertion can be
non zero.

12.1.2-02

12.1.3 HEX ASCII

The Hex ASCII format when displayed consists of:

DATA ALONE

However, invisible instructions are necessary for operation. These are:

(i) Two hidden start characters known as Control A and Control B.
(01: ASCII code, SOH: ASCII character and 02: ASCII code, STX:
ASCII character).

(ii) A hidden stop character known as Control C.
(03: ASCII code, ETX: ASCII character).

(iii) A hidden ‘space’ character between data bytes.
(20: ASCII code, SP: ASCII character).

For example: START ADDRESS: 0000

STOP ADDRESS: 008F

OFFSET: NONE REQUIRED AS
HEX ASCII ALWAYS LOADS AT ZERO

 12 34 56 78 12 34 56 78 12 34 56 78 12 34 56 78
 12 34 56 78 12 34 56 78 12 34 56 78 12 34 56 78
 12 34 56 78 12 34 56 78 12 34 56 78 12 34 56 78
 12 34 56 78 12 34 56 78 12 34 56 78 12 34 56 78
 12 34 56 78 12 34 56 78 12 34 56 78 12 34 56 78
 12 34 56 78 12 34 56 78 12 34 56 78 12 34 56 78
 12 34 56 78 12 34 56 78 12 34 56 78 12 34 56 78
 12 34 56 78 12 34 56 78 12 34 56 78 12 34 56 78
 12 34 56 78 12 34 56 78 12 34 56 78 12 34 56 78

HIDDEN START CHARACTERS
(Control A and Control B)

HIDDEN SPACE CHARACTERS

HIDDEN STOP CHARACTER
(Control C)

16 bytes per line
on output

(Revision 2) 12.1.3-01

12.1.4 EXORCISOR

The Exorcisor format consists of:

a. A start code, i.e. S

b. The record types, i.e. 1 – Data Record
9 – End Record

c. The sum of the number of bytes in an individual record, e.g. 1D

d. The address of the first byte of data in an individual record, e.g. 0000

e. Data in bytes, e.g. 12 34 56 78

f. Checksum of an individual record, e.g. A4

For example: START ADDRESS: 0000

STOP ADDRESS: 008F

OFFSET: 0000

S11D0000123456781234567812345678123456781234567812345678123424
S11D001A567812345678123456781234567812345678123456781234567882
S11D00341234567812345678123456781234567812345678123456781234F0
S11D004E56781234567812345678123456781234567812345678123456784E
S11D00681234567812345678123456781234567812345678123456781234BC
S1110082567812345678123456781234567862
S9030000FC

START CODE
NO. OF BYTES THIS IS AN ADDITION OF: THE CHECKSUM
IN EACH RECORD BYTE + THE ADDRESS BYTES + ALL DATA BYTES

RECORD TYPE
ADDRESS OF FIRST
BYTE IN EACH RECORD

CHECKSUM OF
EACH RECORD

}

(Revision 2) 12.1.4-01

CALCULATION OF THE EXORCISOR* CHECKSUM

S11D0000123456781234567812345678123456781234567812345678123424
S104001A568B
S9030000FC

Example: THE SECOND ‘DATA RECORD’ OF THE ABOVE FORMAT.

(i) This is: S1 04 00 1A 56 8B

(ii) The start code, the record type
and the checksum are removed: S1 8B

(iii) Four Bytes remain: 04 00 1A 56

(iv) These are added together: 04 + 00 + 1A + 56 = 74

(v) The total ‘74’ is converted into 7 4
Binary: 0111 0100

(vi) The Binary figure is reversed. 8 B
This is known as a complement: 1000 1011

(vii) 8B corresponds to the
checksum as above: S1 04 00 1A 56 8B

When no additional figures are added to this calculation it is called a 1’s
(One’s) complement.

* This calculation also applies to the extended version.

When addition of information occurs in longer records the checksum may
consist of more than one byte. When this occurs the least significant byte
is always selected to undergo the above calculation.

12.1.4-02

12.1.5 EXTENDED EXORCISOR

The Extended Exorcisor is identical to the standard version when displayed
up to the point that the data’s address goes beyond FFFF and thus
requires a 5th digit, e.g. 10000. To compensate for this addition an extra
byte is added to the address giving 010000.

When this occurs the record type changes:

The data record changes from 1 to 2
and the end record changes from 9 to 8

Similarly when the data address goes beyond FFFFFF a 7th digit is required
and likewise a byte is added giving the address 8 characters: 01000000.

When this occurs:

The data record changes from 2 to 3
and the end record changes from 8 to 7.

The extended exorcisor when displayed consists of:

a. A start code, i.e. S

b. The record types, i.e. 1 – Data Record (Four character address)
9 – End Record (Four character address)

2 – Data Record (Six character address)
8 – End Record (Six character address)

3 – Data Record (Eight character address)
7 – End Record (Eight character address)

c. The sum of the number of bytes in an individual record, e.g. 1D

d. The address of the first byte of data in an individual record, e.g.

0000, 010000, 01000000

Data in bytes, e.g. 12 34 56 78

Checksum of an individual record: 24

(Revision 2) 12.1.5-01

1 – Data Record (Four Character Address)
9 – End Record (Four Character Address) } 2 BYTES

For example: START ADDRESS: 0000

STOP ADDRESS: 008F

OFFSET: 0000 0000

S11D0000123456781234567812345678123456781234567812345678123424
S11D001A567812345678123456781234567812345678123456781234567882
S11D00341234567812345678123456781234567812345678123456781234F0
S11D004E56781234567812345678123456781234567812345678123456784E
S11D00681234567812345678123456781234567812345678123456781234BC
S1110082567812345678123456781234567862
S9030000FC

START CODE
NO. OF BYTES
IN EACH RECORD

RECORD TYPE
ADDRESS OF FIRST
BYTE IN EACH RECORD

CHECKSUM OF
EACH RECORD

1 – Data Record (Four Character Address)
9 – End Record (Four Character Address) } 2 BYTES

The Extended Exorcisor format stays identical in layout to that of the
standard when the address field stays below FFFF.

12.1.5-02

TRANSITION FROM 2 BYTE ADDRESS (4 CHARACTERS)
THROUGH TO 3 BYTE ADDRESS (6 CHARACTERS)

START ADDRESS: FF80

STOP ADDRESS: FFFF

OFFSET: 00000050

S11DFFD0123456781234567812345678123456781234567812345678123455
S11DFFEA5678123456781234567812345678123456781234567812345678B3
S21E01000412345678123456781234567812345678123456781234567812341E
S21E01001E56781234567812345678123456781234567812345678123456787C
S21C01003812345678123456781234567812345678123456781234567832
S903FFD02D

START CODE
NO. OF BYTES
IN EACH RECORD

RECORD TYPE
ADDRESS OF FIRST
BYTE IN EACH RECORD

LAST ADDRESS IS A
REPETITION OF THE
FIRST ADDRESS

CHECKSUM OF
EACH RECORD

2 – Data Record (Six Character Address)
8 – End Record (Six Character Address) } 3 BYTES

For example: START ADDRESS: 0000

STOP ADDRESS: 008F

OFFSET: 00010000

S21E010000123456781234567812345678123456781234567812345678123422
S21E01001A567812345678123456781234567812345678123456781234567880
S21E0100341234567812345678123456781234567812345678123456781234EE
S21E01004E56781234567812345678123456781234567812345678123456784C
S21E0100681234567812345678123456781234567812345678123456781234BA
S212010082567812345678123456781234567860
S804010000FA

START CODE
NO. OF BYTES
IN EACH RECORD

RECORD TYPE
ADDRESS OF FIRST
BYTE IN EACH RECORD

CHECKSUM OF
EACH RECORD

2 – Data Record (Six Character Address)
8 – End Record (Six Character Address) } 3 BYTES

(Revision 2) 12.1.5-03

3 – Data Record (Eight Character Address)
7 – End Record (Eight Character Address) } 4 BYTES

For example: START ADDRESS: 0000

STOP ADDRESS: 008F

OFFSET: 01000000

S31F01000000123456781234567812345678123456781234567812345678123421
S31F0100001A56781234567812345678123456781234567812345678123456787F
S31F010000341234567812345678123456781234567812345678123456781234ED
S31F0100004E56781234567812345678123456781234567812345678123456784B
S31F010000681234567812345678123456781234567812345678123456781234B9
S3130100008256781234567812345678123456785F
S70501000000F9

START CODE
NO. OF BYTES
IN EACH RECORD

RECORD TYPE
ADDRESS OF FIRST
BYTE IN EACH RECORD

CHECKSUM OF
EACH RECORD

3 – Data Record (Eight Character Address)
7 – End Record (Eight Character Address) } 4 BYTES

12.1.5-04

12.1.6 TEK HEX

The Tek Hex format when displayed consists of:

a. A start code, i.e. /

b. The address of the first byte of data in an individual record, e.g. 0000

c. The sum of the number of bytes in an individual record, e.g. 1A

d. Checksum 1 which is a nibble addition of the address (4 characters) and
the byte count (2 characters), e.g. 0B

e. Data in bytes, e.g. 12 34 56 78

f. Checksum 2 which is a nibble addition of all data.

g. An end record which automatically stops the operation when 00 is
specified in the byte count (c).

For example: START ADDRESS: 0000

STOP ADDRESS: 008F

OFFSET: 0000

/00001A0B1234567812345678123456781234567812345678123456781234E2
/001A1A165678123456781234567812345678123456781234567812345678F2
/00341A121234567812345678123456781234567812345678123456781234E2
/004E1A1D5678123456781234567812345678123456781234567812345678F2
/00681A191234567812345678123456781234567812345678123456781234E2
/00820E18567812345678123456781234567886
/00000000

START CODE
NO. OF DATA BYTES
IN EACH RECORD

ADDRESS OF FIRST
BYTE IN EACH RECORD

CHECKSUM OF THE ADDRESS
AND THE BYTE COUNT IN
NIBBLES

CHECKSUM OF DATA IN
EACH RECORD IN NIBBLES

1
2

(Revision 2) 12.1.6-01

CALCULATION OF TEK HEX CHECKSUMS

Unlike the other PP39 formats, the Tek Hex has two checksums which are
both the result of nibble additions, as opposed to byte additions.

Checksum 1 is a nibble addition of the ‘address’ and the ‘byte count’
which make 6 characters in total.

Checksum 2 is a nibble addition of the data alone.

/00001A0B1234567812345678123456781234567812345678123456781234E2
 6781234567812345678123456781234567812345678F2
/0034030A12345615
/00000000

CHECKSUM 1 CHECKSUM 2

Example: THE THIRD ‘DATA RECORD’ OF THE ABOVE FORMAT.

CHECKSUM 1

(i) This is: /10034030A

(ii) The start code and the checksum
are removed: /0A

(iii) Six nibbles remain: 003403

(iv) They are added together: 0 + 0 + 3 + 4 + 0 + 3 = A

(v) 0A is the checksum which is
displayed in byte form as above: /1003403 0A

CHECKSUM 2

(i) This is: 12345615

(ii) The checksum is removeed: 15

(iii) Six nibbles remain: 123456

(iv) These are added together: 1 + 2 + 3 + 4 + 5 + 6 = 15

(v) 15 is the checksum as above 123456 15

When addition of nibble information occurs in longer records the checksum
may consist of more than one byte. When this occurs the least significant
byte is always selected to undergo the above calculation.

12.1.6-02

12.1.7 EXTENDED TEK HEX

The Extended Tek Hex when displayed consists of:

a. A start code: % (percentage)

b. A count of the nibbles in an individual record, e.g. 3B

c. The record types, i.e. 6 – Data Record
8 – End Record

d. A checksum of the whole of an individual record excluding the %, e.g. F7

e. * The number of nibbles comprising – “the address of the first byte in
each record”, e.g. 1, 2, 3 etc.

f. The address of the first byte of data in an individual record, e.g. 0, 1A,
104

For example: START ADDRESS: 0000

STOP ADDRESS: 0140

OFFSET: 0000 0000

%3B6F7101234567812345678123456781234567812345678123456781234
%3C61421A5678123456781234567812345678123456781234567812345678
%3C6002341234567812345678123456781234567812345678123456781234
%3C61B24E5678123456781234567812345678123456781234567812345678
%3C6072681234567812345678123456781234567812345678123456781234
%3C6132825678123456781234567812345678123456781234567812345678
%3C60E29C1234567812345678123456781234567812345678123456781234
%3C61A2B65678123456781234567812345678123456781234567812345678
%3C6062D01234567812345678123456781234567812345678123456781234
%3C6212EA5678123456781234567812345678123456781234567812345678
%3C60031041234567812345678123456781234567812345678123456781234
%3C61B311E5678123456781234567812345678123456781234567812345678
%3C66C3138123456781234567812
%0781010

START CODE RECORD TYPE
NUMBER OF
NIBBLES IN ADDRESS

NUMBER OF NIBBLES
IN EACH RECORD

CHECKSUM OF
EACH RECORD

1 CHARACTER
2 CHARACTERS
3 CHARACTERS

THE ADDRESS OF THE FIRST
BYTE IN EACH RECORD

(Revision 2) 12.1.7-01

* Sections (e) and (f) are integrated:
As the operation progresses the address field lengthens. More characters
are added to show this expansion. The nibble count of section (e) reflects
this, e.g.:

2/1A 6/100000 A/1B4625DC95

2 Characters 6 Characters A Characters (10 in Decimal)

The nibble count has the facility to rise to ’F’ making a 15 (DECIMAL)
character address field possible.

EXTENDED TEK HEX WITH AN OFFSET, DISPLAYING TRANSITION
FROM 4 CHARACTER ADDRESS FIELD TO 5 CHARACTER
ADDRESS FIELD.

For example: START ADDRESS: 0000

STOP ADDRESS: 00AF

OFFSET: 0000 FFC0

%3E6274FFC01234567812345678123456781234567812345678123456781234
%3E6424FFDA5678123456781234567812345678123456781234567812345678
%3E62E4FFF41234567812345678123456781234567812345678123456781234
%3F61E51000E5678123456781234567812345678123456781234567812345678
%3F60A5100281234567812345678123456781234567812345678123456781234
%3F61651004C5678123456781234567812345678123456781234567812345678
%336D751005C1234567812345678123456781234567812345678
%0A8404FFC0

START CODE RECORD TYPE
NUMBER OF
NIBBLES IN ADDRESS

NUMBER OF NIBBLES
IN EACH RECORD

CHECKSUM OF
EACH RECORD

4 CHARACTERS
5 CHARACTERS

THE ADDRESS OF THE FIRST
BYTE IN EACH RECORD

12.1.7-02

CALCULATION OF THE EXTENDED TEK HEX CHECKSUM

Unlike the standard version the Extended Tek Hex has only one checksum.

%3B6F7101234567812345678123456781234567812345678123456781234
%3C61421A5678123456781234567812345678123456781234567812345678
%0A61C23412
%0781010

Example: THE THIRD LINE OF THE ABOVE FORMAT.

(i) This is: % 0A61C23412

(ii) The start code and the
checksum are removed: % 1C

(iii) Eight nibbles remain: 0A623412

(iv) These are added togther: 0 + A + 6 + 2 + 3 + 4 + 1 + 2 = 1C

(v) 1C is the checksum as above: % 0A6 1C 23412

When addition of nibble information occurs in longer records the checksum
may consist of more than one byte. When this occurs the least significant
byte is always selected to undergo the above calculation.

(Revision 2) 12.1.7-03

12.1.8 PPX or (STAG HEX) *

The PPX format when displayed consists of:

a. A start code, i.e. * (an asterisk, 2A – ASCII Code)

b. The address of the first byte of data in an individual record, e.g. 1000

c. Data in bytes, e.g. 12 34 56 78

d. A stop code, i.e. $ (a dollar sign, 24 – ASCII Code)

e. A checksum of all data over the entire address range. (The displayed
checksum is the two least significant bytes.)

f. A checksum start code: S

g. An invisible space character between data bytes (20 – ASCII Code)

For example: START ADDRESS: 0000

STOP ADDRESS: 008F

OFFSET: 0000

*
0000 12 34 56 78 12 34 56 78 12 34 56 78 12 34 56 78
0010 12 34 56 78 12 34 56 78 12 34 56 78 12 34 56 78
0020 12 34 56 78 12 34 56 78 12 34 56 78 12 34 56 78
0030 12 34 56 78 12 34 56 78 12 34 56 78 12 34 56 78
0040 12 34 56 78 12 34 56 78 12 34 56 78 12 34 56 78
0050 12 34 56 78 12 34 56 78 12 34 56 78 12 34 56 78
0060 12 34 56 78 12 34 56 78 12 34 56 78 12 34 56 78
0070 12 34 56 78 12 34 56 78 12 34 56 78 12 34 56 78
0080 12 34 56 78 12 34 56 78 12 34 56 78 12 34 56 78 $S26D0

START CODE HIDDEN SPACE CHARACTERS CHECKSUM CODE

ADDRESS OF THE FIRST
BYTE IN EACH RECORD

STOP CODE CHECKSUM OF “ALL” DATA
TWO LEAST SIGNIFICANT BYTES

(Revision 2) 12.1.8-01

AND WITH AN OFFSET OF 8000

*
8000 12 34 56 78 12 34 56 78 12 34 56 78 12 34 56 78
8010 12 34 56 78 12 34 56 78 12 34 56 78 12 34 56 78
8020 12 34 56 78 12 34 56 78 12 34 56 78 12 34 56 78
8030 12 34 56 78 12 34 56 78 12 34 56 78 12 34 56 78
8040 12 34 56 78 12 34 56 78 12 34 56 78 12 34 56 78
8050 12 34 56 78 12 34 56 78 12 34 56 78 12 34 56 78
8060 12 34 56 78 12 34 56 78 12 34 56 78 12 34 56 78
8070 12 34 56 78 12 34 56 78 12 34 56 78 12 34 56 78
8080 12 34 56 78 12 34 56 78 12 34 56 78 12 34 56 78 $S26D0

START CODE HIDDEN SPACE CHARACTERS CHECKSUM CODE

ADDRESS OF THE FIRST
BYTE IN EACH RECORD

STOP CODE CHECKSUM OF “ALL” DATA
TWO LEAST SIGNIFICANT BYTES

CALCULATION OF THE PPX CHECKSUM

“Data alone”, in bytes over the entire address range (as opposed to
individual records) is added together to give the checksum. The address is
not included in this calculation.

*
0000 12 34 56 78 $S0114

Example: THE SEGMENT OF DATA ABOVE

(i) This is: *0000 12 34 56 78 $S0114

(ii) The start code, the address, the
stop code, the checksum code
and the checksum are removed: *0000 $S0114

(iii) Four bytes remain: 12 34 56 78

(iv) These are added together: 12 + 34 + 56 + 78 = 114

(v) 114 is the checksum which is
displayed in two byte form
as above: *0000 12 34 56 78 $S0114

As the PPX checksum is an addition of all data the total will invariably
constitute more than two bytes. When this occurs the least significant
two bytes are always selected to undergo the above calculation.

12.1.8-02

12.1.9 BINARY, DEC BINARY and BINARY RUBOUT

Binary, DEC Binary and Binary Rubout are the most fundamental of all
formats. ASCII code conversion never occurs. Information is therefore
limited to the interpretation of pulses via the RS232C interface port into
either ONES or ZEROS. Hence ‘Binary’. A visual display is not possible,
however a simple graphical representation can be made.

BINARY

Binary is data only. It is devoid of a start code, address, stop code and
checksum.

6 4 F A 2 0 1 6 3 2

0110010011111010001000000001011000110010

Hypothetical Representation
of Data Bytes

DATA: CONVERSION IS
LIMITED TO BINARY

SERIAL (TTL)
OUTPUT

THE BINARY FORMAT OPERATION
CAN ONLY BE STOPPED BY
PRESSING EXIT

Binary is used mainly for speed of transmission and RS232C
communication problems, i.e. test.

(Revision 2) 12.1.9-01

DEC BINARY

DEC Binary is an improvement of Binary. It has a start code, a null prior to
transmission, a byte count, a single address and a single checksum of all
data. It also has the facility for an offset to be set.

For example:

0 1 0 0 D 9 2 E 7 5 0 0 C 7

000000010000000011011001001011100111010100000000 11000111

HYPOTHETICAL REPRESENTATION
OF DEC BINARY INSTRUCTIONS

DATA: CONVERSION IS
LIMITED TO BINARY

START NULL
BYTE COUNT

MAX FFFF
ADDRESS OF
FIRST BYTE CHECKSUM

SERIAL (TTL)
OUTPUT

THE TRANSMISSION
STOPS ON CHECKSUM

The DEC Binary checksum is an addition of all data (data only). The least
significant byte is selected to represent the checksum.

DEC Binary is used for speed of transmission.

BINARY RUBOUT

Binary Rubout is similar to Binary in that it is devoid of Address, Stop
Code and Checksum. The data is preceded however, by the Rubout
character (FF).

For example:

If a string of Binary data is represented thus:

6 4 F A 2 0 1 6 3 2 HYPOTHETICAL REPRESENTATION
OF DATA BYTES

Start

then the same data in Binary Rubout format would be represented thus:

F F 6 4 F A 2 0 1 6 3 2 HYPOTHETICAL REPRESENTATION
OF DATA BYTES

‘FF’ the rubout character

12.1.9-02

SECTION 13

SECTION 14

REMOTE CONTROL

14.1 SELECTING REMOTE CONTROL

To select remote control Press Set 2
The display will show:

REMOTE PRESS SET
By pressing set again, the display will show manufacturer, device type and
remote mode.

For instance:

 Manufacturer Device type Remote mode

SEQ 5516A REM
In the remote mode the PP39 operates under remote control from a
computer or a terminal. The keyboard of the PP39 is inoperative at this
time and the display will only show information as requested under remote
control.

(Revision 2) 14.1-01

14.2 REMOTE CONTROL COMMANDS

h = one hex digit

RETURN Executes a command for instance G RETURN,
A6AF< RETURN, [RETURN, 11A RETURN etc.

ESC Aborts a command.

G Software revision number. This command issues a 4-digit hex
number representing the software configuration in the
programmer.

Z Exits from remote control.

SET UP FOR LOAD AND PROGRAM

Device Type Selection

hhhh@ * A four digit code sets up programming for a particular
device. (The first two digits represent the manufacturer code
and the second two represent the pin out codes).

[* The programmer sends a four digit hex code of the device in
use. (The first two digits represent the manufacturer code
and the second two represent the pin out code).

T Test for illegal bit in the device.

B Blank check, sees that no bits are programmed in the device.

R Respond indicates device status for instance: 0FFF/8/0>:
The first 4 digits reflect the working RAM limit relevant to the
device. The 5th digit is the byte size measured in bits. The
6th digit reflects the unprogrammed state of the device
selected. The 6th digit can be either 1 or 0.
1 = Unprogrammed state 00.
0 = Unprogrammed state FF.

Selection of bit mode configuration

 1M] GANG MODE

 2M] 8-BIT MODE

 3M] 16-BIT MODE

 4M] 32-BIT MODE LOW

 5M] 32-BIT MODE HIGH

* See: LIST OF DEVICES AND DEVICE CODES FOR THE 39M100 MODULE

(Revision 2) 14.2-01

Set Up for Load and Program (Cont.)

Device/RAM address limits

RAM low address <
hhhh< This defines the lower address limit in RAM

Device high address ;
hhhh; This sets the number of bytes of data to be transferred,

therefore effectively defining the upper address limit.

Device low address :
hhhh: This defines the lower address limit within the device or

devices.

NOTE: The above commands may specify either the left or right ZIF
socket using the suffix L or R. For instance hhhhL; or hhhhR<. If no suffix
is included the left socket will be assumed therefore, hhhh;

L LOADS device data into RAM.

P PROGRAMS RAM data into device.

V VERIFY device against RAM.

S CHECKSUM causes programmer to calculate checksum of
RAM data.

RS RIGHT CHECKSUM causes programmer to calculate
checksum of RAM data for right socket.

LS LEFT CHECKSUM causes programmer to calculate
checksum of RAM data for left socket.

00 ^ Fills RAM with 00s

FF ^ Fills RAM with FFs

By initiating either the load or program operation, data transference will
commence between the RAM and devices inclusive of any selected
parameters specified above.

14.2-02

SET UP FOR INPUT AND OUTPUT

Selection of Translation Formats A

 10A Binary

 11A DEC Binary

 12A Binary Rubout

 50A Hex-ASCII (space)

 51A Hex-ASCII (percent) All covered by

 52A Hex-ASCII (apostrophe) standard hex-ASCII

 53A Hex-ASCII (comma)

 59A PPX (Stag Hex *)

 82A Exorcisor

 83A Intellec

 86A Tek-Hex

 92A OR 87A Extended Exorcisor

 93A OR 88A Extended Intellec

 96A Extended Tek-Hex







Input/Output Address Limits

Lower Address Limit

hhhh< This gives a four digit figure defining the lower address limit.

Upper Address Limit

hhhh; This sets the number of bytes of data to be transferred,
therefore effectively defining the upper address limit.

Input Output Offset

hhhh hhhhW This defines the offset required for data transference in both
input and output, 4 or 8 digits can be specified.

NOTE: The above commands may specify either the left or right ZIF
socket using the suffix L or R. For instance hhhhL; or hhhhR<. If no suffix
is included the left socket will be assumed therefore, hhhh;.

I This inputs data from computer to RAM

O This outputs data from RAM to computer

By initiating either the input or output operation data transference will
commence, inclusive of any specified parameters above.

(Revision 2) 14.2-03

ERROR RESPONSES

F Error-status inquiry returns a 32-bit word that codes errors
accumulated. Error-status word returns to zero after
interrogation. (See PP39 remote error words)

X Error-code inquiry. Programmer outputs error codes stored in
scratch-RAM and then clears them from memory. (See PP39
remote error codes)

H No operation. This is a null command and always returns a
prompt character (>).

PROGRAMMER RESPONSES

> Prompt character. Informs the computer that the
programmer has successfully executed a command.

F Fail character. Informs the computer that the programmer
has failed to execute the last-entered command.

? Question mark. Informs the computer that the programmer
does not understand a command.

14.2-04

14.3 REMOTE ERROR WORD -F-

BIT
NUMBER RECEIVER ERRORS

31 If any error has occurred, this bit is set
30 Not used
29 Not used
28 Not used

27
26 Serial-overrun error (42)
25 Serial-framing error (41, 43)
24 Command-buffer overflow, i.e. > 18 characters (48)

PROGRAMMING ERRORS
23 Any device-related error
22 Device appears faulty to the machine electronics (26)
21 L2 + L3 > Device
20 Not used

19 Device not blank (20)
18 Illegal bit (21)
17 Non verify (23)
16 Incomplete programming or invalid device (22)

I/O ERRORS
15 If any I/O error has occurred, this bit is set
14 Not used
13 Not used
12 Not used

11 Checksum error (82)
10 Not used
9 Address error, i.e. > word limit
8 Data not hexadecimal where expected (84)

RAM ERRORS
7 RAM – hardware error
6 Not used
5 L2 + L3 > RAM
4 Not used

3 Not used
2 No RAM or insufficient RAM resident
1 RAM write error, or program-memory failure
0 Not used

(Revision 2) 14.3-01

INTERPRETATION OF THE ERROR STATUS WORD

EXAMPLE: 80C80084

8 – The word contains error information

0 – No receive errors

C – (= 8 + 4); 8 = Device error
4 = Start line not set high

8 – Device is not blank

0 – No input errors

0 – No input errors

8 – RAM error

4 – Insufficient RAM resident

REMOTE ERROR CODES – ’X’ remote code PP39

Code Name Description

20 Blank check Error Device not blank

21 Illegal bit Error

22 Programming Error The device selected could
not be programmed

23 Verify Error

26 Device Faulty Either faulty part or
reversed part

41 Framing Error

42 Overrun Error

43 Framing and Overrun Error

48 Buffer Overflow

50 No Data Input Because of address errors
or an invalid format
selected

81 Parity Error

82 Checksum

84 Invalid Data

14.3-02

SECTION 15

15.1 THE ASCII CODE

ASCII ASCII ASCII
Code Character Code Character Code Character

00 NUL 2B + 56 V
01 SOH 2C , 57 W
02 STX 2D - 58 X
03 ETX 2E . 59 Y
04 EOT 2F / 5A Z
05 ENQ 30 0 5B [
06 ACK 31 1 5C \
07 BEL 32 2 5D]
08 BS 33 3 5E ^ (↑)
09 HT 34 4 5F _ (←)
0A LF 35 5 60 ‘
0B VT 36 6 61 a
0C FF 37 7 62 b
0D CR 38 8 63 c
0E SO 39 9 64 d
0F SI 3A : 65 e
10 DLE 3B ; 66 f
11 DC1 (X-ON) 3C < 67 g
12 DC2 (TAPE) 3D = 68 h
13 DC3 (X-OFF) 3E > 69 i
14 DC4 3F ? 6A j
15 NAK 40 @ 6B k
16 SYN 41 A 6C l
17 ETB 42 B 6D m
18 CAN 43 C 6E n
19 EM 44 D 6F o
1A SUB 45 E 70 p
1B ESC 46 F 71 q
1C FS 47 G 72 r
1D GS 48 H 73 s
1E RS 49 I 74 t
1F US 4A J 75 u
20 SP 4B K 76 v
21 ! 4C L 77 w
22 " 4D M 78 x
23 £ 4E N 79 y
24 $ 4F O 7A z
25 % 50 P 7B {
26 & 51 Q 7C |
27 ’ 52 R 7D } (ALT MODE)
28 (53 S 7E ~
29) 54 T 7F DEL (RUB OUT)
2A * 55 U

(Revision 2) 15.1-01

15.2 SPECIFICATION

Programming Support: 39M100 Module supports 24 and 28 pin
EPROMs and EEPROMs.

39M200 Module supports 40 pin
Microprocessors.

User RAM: 64K x 8 (512 bits)
Expansion RAM to standard 1M bits and 2M bits

Keyboard: 16 Hexadecimal keys, 4 cursor keys and 11
function keys

Display: 16 character alpha numeric green vacuum
fluorescent display

Auto Recall: Up to 9 complete machine configurations may be
stored in non volatile memory and recalled at any
time. Parameters include device type, I/O format,
RS232C baud rate, address range etc.

Zif Socket Test: Tests zif socket for poor connections or faulty
device.

Device Test: Empty, Verify and Illegal Bit

Access Time Test: Variable access time test 100-600ns

Programming Speed: High speed programming algorithms are used
where applicable.

Auto Select: The 39M100 module supports Silicon Signature*
and Inteligent Identifier* coded devices.

(Revision 2) 15.2-01

I/O Interface: RS232C with full handshake XON/XOFF, device
control on input, keyboard entry of parameters
and transmission rates up to 19,200 baud. Full
remote control.

I/O Formats: Supports all commonly used I/O formats
including extended formats, e.g. Intel-hex, Tek-
hex, Extended Tek-hex, Motorola S-record,
Hex-ASCII, Stag-hex, Binary, DEC Binary and
Binary Rubout.

Audible Alarm: Software selectable to indicate end of program
test or as a warning.

Set Programming: Will program two devices simultaneously with
different data for 16 bit applications. The
machine is also configured to program 32 bit
sets.

Edit Functions: String Search, Insert, Delete, Block move,
Complement, Interlace, Fill RAM with test pattern
etc.

Self-Test: Automatically runs self-test program on
power-up.

Operating Voltages: 100-130V 200-260V 60/50Hz

Power Consumption: 70 Watts

Physical
Specification:

Width: 315mm; Height: 90mm; Depth: 225mm;
Weight: 2.5Kg

Interlace* and Stag Hex* are tradenames of Stag.
Silicon Signature* is a tradename of the SEEQ Corporation.
Inteligent Identifier* is a tradename of the Intel Corporation.

Stag reserve the right to alter design and specifications without prior
notice in pursuit of a policy for continuous improvement.

15.2-02

