
by Derek Wallace
Staff Engineer
Silicon and Software Systems
derek.wallace@s3group.com

You are probably quite familiar with using
the JTAG interface for configuring Xilinx®

FPGAs. You may also be familiar with the
JTAG interface for various other functions,
such as using the Xilinx ChipScope™ Pro
tool for debugging your designs. However,
have you ever considered using this same
interface as a general-purpose communica-
tion port to your design?

You can use the JTAG interface of
Virtex™-4, Virtex-II, Virtex-II Pro, and
Spartan™-3 devices as a low-footprint
general-purpose communication port, pro-
viding powerful and flexible test and debug
capability to your design.

Using the JTAG interface has the fol-
lowing advantages:

• No additional connectors are required
on the PCB, as the JTAG is used for
both download and communication

• It does not require voltage-level transla-
tion (as RS232 would)

• The JTAG controller is already built
into the FPGA, minimizing user design

JTAG Interface Overview
JTAG is a half-duplex serial communica-
tion interface. Any device that supports
the JTAG interface will implement a
JTAG controller. Data is shifted in
through TDI and shifted out via TDO.
The TAP controller is clocked by TCK
and uses TMS as a control signal to con-
trol the overall process.

Using the JTAG
Interface as a
General-Purpose
Communication Port

1 Xcell Online Second Quarter 2005

The existing JTAG
programming interface
in Xilinx FPGAs provides
a flexible debug and
diagnostic interface.

Communication with the JTAG con-
troller is a two-step process. First, an
instruction is shifted into the instruction
register (IR). This instruction is decoded
and selects one of the data registers (DR)
for shifting data into (on TDI) and at the
same time selecting the same DR as the
source of data for TDO. The selected DR
is then accessed. Accessing the DR always
requires shifting N bits of data into the reg-
ister on TDI and receiving N bits of data
from the register on TDO (where N is the
size of the register).

Each DR can be read only, write only, or
read/write. If a DR is read only, the N bits
that are shifted in during an access are dis-
carded and the N bits shifted out are
returned on the TDO line. In the case of a
write-only data register, the N bits shifted
in are captured in the register and the N
bits shifted out are meaningless.

user logic inside the FPGA. Virtex-4
devices support up to four such instruc-
tions: USER(4:1). Spartan-3, Virtex-II,
and Virtex-II Pro FPGAs support two
instructions.

Figure 1 is a block diagram illustrating
how the JTAG controller connects to the
FPGA fabric in a Xilinx FPGA. You
should first instantiate the BSCAN com-
ponent from the Xilinx UniSim libraries
(specific components are available for
Virtex-4, Virtex-II, and Spartan-3
devices). This component enables your
design to communicate with the JTAG
controller. You must then implement one
of the USER DRs.

Implementing a USER DR
A USER DR is just a shift register with
optional load. The BSCAN component
provides all of the control signals needed to
clock, enable, and load the shift register. A
write-only USER DR requires a shift regis-
ter, while a read/write USER DR requires a
loadable shift register.

The size of the USER DR is up to you.
It can be as long or as short as you require
for your target application. Additionally,
each USER DR may be a different size.
Implementing a read/write 32-bit USER
DR requires only 16 slices, a tiny fraction
of the available resources in even the small-
est Spartan-3 device. (A write-only 32-bit
USER DR can be implemented in as little
as six slices using SRLs.)

JTAG Communication Port
The complexity of modern FPGA
designs, coupled with the commercial
pressure for fast turnarounds, requires
innovative methodologies for testing and
debug. With these challenges in mind,
S3 has developed a simple architecture
that uses the existing JTAG interface to
enable communication with your design.
You can easily adapt this architecture,
General-purpose Native jtAg Tester
(GNAT), for any FPGA design, provid-
ing a very low footprint yet powerful
communication port.

Flexible Architecture
In both laboratory and factory test envi-

For more detailed information on using
the JTAG controller in Xilinx FPGAs, see
Xilinx application note XAPP139,
“Configuration and Readback of Virtex
FPGAs Using (JTAG) Boundary Scan,” or
“Reconfiguring Block RAMs,” a Xilinx
TechXclusive.

Extending JTAG with Custom Instructions
The Xilinx JTAG controller supports a
number of custom JTAG instructions and
corresponding data registers. One such
example is the CFG_IN instruction and its
DR. This CFG_IN DR is used during the
configuration of the FPGA over the JTAG
interface.

USER Custom Instructions
Another example is the USER custom
instructions. These instructions allow the
JTAG controller to communicate with

Second Quarter 2005 Xcell Online 2

JTAG

Instruction Register

Shift Reg

Shift Reg

Control

Data Registers

TAP Controller

Instruction
Register

Decode

Mux

BYPASS

IDCODE

TDO

TCK

TMS

BSCAN_VIRTEX2

TDI

User1

User2

TDO1

TDO2

N

N-1

2

1

0

WrData1

RdData1

M

M-1

1

0

WrData2

RdData2

TDI

Update, Shift,
Reset, Sel1, Sel2,
DRCK1, DRCK2

JTAG Controller FPGA Fabric

User1

Data Register

User2

Data Register

Figure 1 – JTAG interface to FPGA fabric

ronments, we have found many varied uses
for GNAT:

• Replacement for external components
used during the development phase
but removed during production (such
as LEDs and switches)

• As a half-duplex communication chan-
nel to an embedded processor such as
PicoBlaze™ or MicroBlaze™ soft-core
processors

• Enabling test/diagnostic modes

• Reading status/debug registers from
design

• Updating PicoBlaze instruction ROM
while the FPGA is “live”

• Updating embedded ROM/RAM data
coefficients while the FPGA is “live”

• Controlling the hardware remotely
from a PC by emulating external
switches (like the push-button reset)

• Controlling a multiplexer to select trig-
ger/data signals that route to the
ChipScope Pro tool

• Controlling a multiplexer to select sig-
nals that route to external pins for
monitoring

• Programming/uploading external
memories that interface to the FPGA,
such as SDRAM

GNAT Architecture
Figure 2 is a block diagram of the GNAT
architecture. In this example one of the
USER DRs is being used by the Xilinx
ChipScope Pro tool, while another is being
used by the GNAT component.

The GNAT component is a config-
urable block that implements a variable-
length DR. One side of the GNAT
component communicates with the
BSCAN_VIRTEX2 block while the other
provides a very simple read/write bus inter-
face to multiple GNAT peripherals. The
GNAT component provides a unique Chip
Select signal for each peripheral as well as
read/write control signals and write data. A
readable GNAT peripheral is responsible
for providing read data.

3 Xcell Online Second Quarter 2005

FPGA User Design

JTAG BSCAN_
VIRTEX2

GNAT
�USER1 or

USER2

GNAT Peripheral1
� Push Button Rst
� DIP Switches
� LEDs

GNAT Peripheral2
�Pin Mux
�Test Mode
�ChipScope Mux

GNAT Peripheral3
� PicoBlaze

Instruction ROM

ChipScope ILA
�USER1 or

USER2

Rst

GNAT Bus

GNAT Peripheral4
� PicoBlaze Half

Duplex
Communication

TAP Pins
PicoBlazeAddr

DIP

LEDs

Instr

In

Out

Debug Pins

ChipScope Trigger/Data

GNAT

Opcode

WriteData

16-Bit User

Register

TDI
Decode

Peripheral

TDO

ReadData

ReadData0

ReadData1

ReadData15

Opcode

CS(15:0)

ReadData

Control Clk
Control

Decode
Read/Write

Figure 2 – GNAT architecture

Figure 3 – GNAT component

GNAT Component
Figure 3 is a detailed view of the GNAT
component. In this case a 16-bit USER
DR has been defined. The upper 8 bits of
the register are used to control access to the
GNAT peripherals; 4 bits identify the
peripheral and 4 bits are allocated as an
opcode (read/write). The lower 8 bits are
for data communication.

The combination of the BSCAN_VIR-
TEX2 and the GNAT blocks now provide
a very simple but powerful communication
mechanism to your design. And because it
is all configurable, you can define the size
of the USER DR and the definition of all
bits that best meet your needs.

GNAT Peripheral
Figure 4 illustrates some example GNAT
peripherals. The GNAT bus provides a very
simple mechanism to read/write from or to
a GNAT peripheral.

Software Support
Xilinx provides all of the tools required
for you to write simple scripts to access
the USER registers through the JTAG
interface. ISE™ tools provide a custom
TCL shell (xtclsh), while the Xilinx
ChipScope Pro tools provide a TCL script
(Figure 5) (tcljtag.tcl) that creates a num-
ber of high-level TCL commands to con-
trol the JTAG interface.

With these tools, it is easy to develop
scripts or GUI applications to provide a
powerful debug environment. Figure 5 is an
example TCL script that writes the value
0x34 to a GNAT peripheral in device 2 of
the JTAG chain. Figure 6 is an example
GUI that we at S3 developed to access mul-
tiple GNAT peripherals in multiple devices.

Conclusion
This article has presented how the JTAG
interface in Xilinx FPGAs can be used as a
general-purpose communication port to
your design. A simple lightweight, yet
flexible architecture, GNAT, illustrates
how you can quickly and easily add JTAG
debug capability to your design with
minimal FPGA resource overhead.
For more information on GNAT, visit
www.s3group.com/design_expertise/fpga/.

Second Quarter 2005 Xcell Online 4

Write-Only GNAT
Peripheral

CS

Write

WriteData

Clk

To User Design

PicoBlaze

Instruction ROM

CS
Write

WriteData

Clk

ReadData

GNAT Peripheral with Multiple
Read-Only Registers

CS

Read

WriteData

Clk

ReadAddress

From User
Design

ReadData From User
Design

GNAT Peripheral with
1 Read-Only Register

PicoBlaze Instruction
ROM Loader

Mux

#==
JTAG Chain

Device0 Device1 Device2
TDI –> 18V02 –> XCV50E –> XC2V4000 -> TDO
#
NOTE: binary data is shifted in lsb first
#==

source $env(XILINX)/chipscope/tcljtag.tcl
set handle [jtag_open]
jtag_lock $handle
jtag_autodetect $handle

Shift the USER2 Instruction (b00011) into the Instruction Register of XC2V4000
jtag_shiftir $handle -buffer "110000" -endstate RTI -device 2

WRITE: Shift the 16 bit GNAT command into the USER2 Data Register of XC2V4000
Peripheral: 0x2
Opcode : 0x0 (write)
Data : 0x34
jtag_shiftdr $handle -buffer "0010110000000100" -endstate RTI -device 2

jtag_unlock $handle

Figure 4 – GNAT peripherals

Figure 5 – Sample TCL to write to a GNAT peripheral

Figure 6 – GNAT GUI

