Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

DATA SHEET

p-out/Discontinued μPD75P216A

4-BIT SINGLE-CHIP MICROCOMPUTER

The μ PD75P216A is a One-Time PROM version of the μ PD75216A. The μ PD75P216A is suitable for small-scale production or experimental production in system development.

Also see documents for the μ PD75216A.

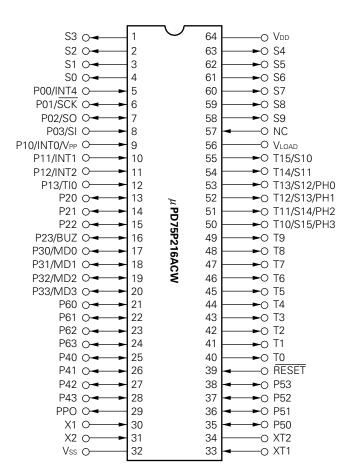
FEATURES

- The μ PD75216A compatible
- 16256 X 8 bits of on-chip one-time PROM
- Port 6 without pull-down resistor
- High voltage output for display S0 to S8, T0 to T9: On-chip load resistor S9, T10 to T15: Open drain
- Power-on reset circuit is not available
- Single power supply (5 V \pm 10 %)

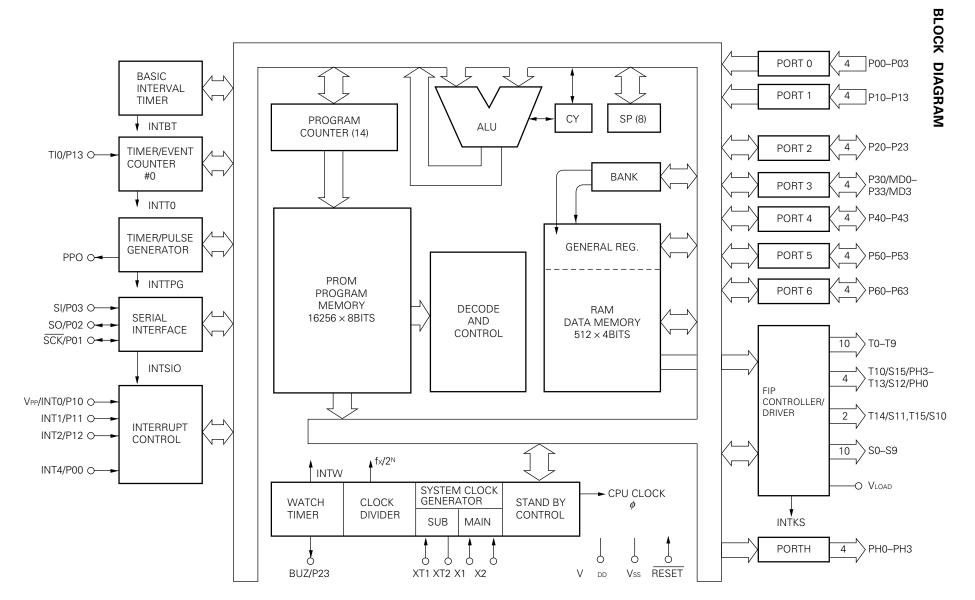
ORDERING INFORMATION

Part Number	Package	Quality Grade		
μ PD75P216ACW	64-pin plastic shrink DIP (750 mil)	Standard		

Caution Pull-up resistor mask options are not available.


Please refer to "Quality grade on NEC Semiconductor Devices" (Document number IEI-1209) published by NEC Corporation to know the specification of quality grade on the devices and its recommended applications.

The information in this document is subject to change without notice.


NEC

Phase-out/Discontinued

PIN CONFIGURATION (Top View)

Phase-out/Discontinued

μ**PD75P216A**

CONTENTS

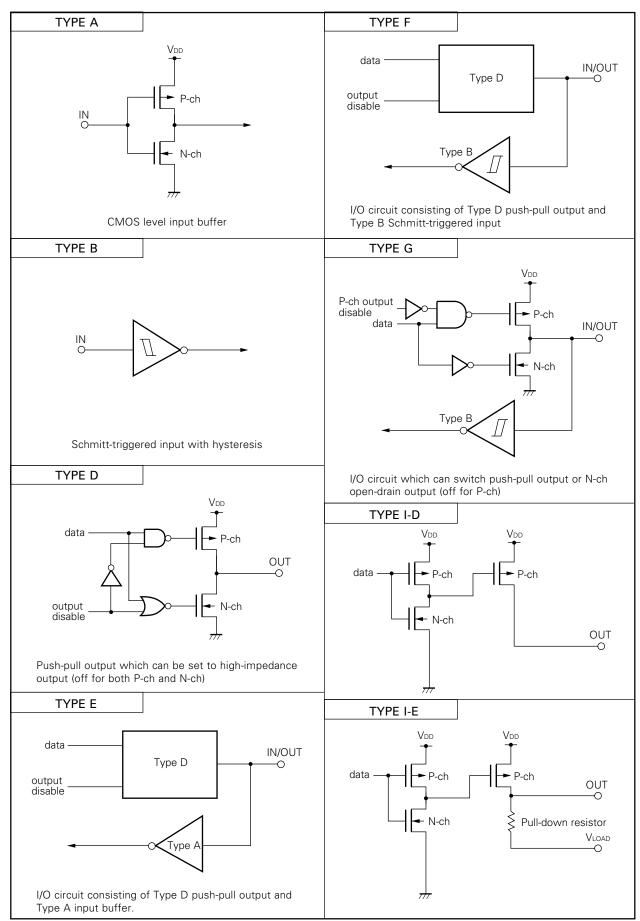
1.	PIN FUNCTIONS	. 5
	1.1 PORT PINS	. 5
	1.2 NON-PORT PINS	. 6
	1.3 TREATMENT OF UNUSED PINS	. 8
2.	DIFFERENCES BETWEEN THE μ PD75P216A AND THE μ PD75216A, μ PD75208	. 9
3.	ONE-TIME PROM (PROGRAM MEMORY) WRITE AND VERIFY	
	3.1 PROM WRITE AND VERIFY OPERATION	
	3.2 PROM WRITE PROCEDURE	11
	3.3 PROM READ PROCEDURE	12
4.	ELECTRICAL SPECIFICATIONS	13
5.	PACKAGE DRAWINGS	22
6.	RECOMMENDED SOLDERING CONDITIONS	23
AP	PENDIX DEVELOPMENT TOOLS	24

1. PIN FUNCTIONS

1.1 PORT PINS

Pin name	Input/ output	Shared pin		Function	8-bit I/O	When reset	I/O circuit type ^{Note}
P00	Input	INT4	4-bit inpu	4-bit input port (PORT0).		Input	B
P01	I/O	SCK					F
P02	I/O	SO					G
P03	Input	SI					B
P10	Input	INT0/Vpp		With noise elimination function	x	Input	B
P11		INT1		With noise elimination function			
P12		INT2	4-bit inpu	ut port (PORT1).			
P13		TIO					
P20	I/O	_	4-bit I/O p	port (PORT2).	×	Input	E
P21		_					
P22		_					
P23		BUZ					
P30 - P33	I/O	MD0 - MD3	-	nable 4-bit I/O port (PORT3). e specified bit by bit.	×	Input	E
P40 - P43	I/O	_	4-bit I/O port (PORT4). Can directly drive LEDs. Data input/output pins for the PROM write and verify (Four low-order bits).			Input	E
P50 - P53	I/O	_	Can direc Data inpu	4-bit I/O port (PORT5). Can directly drive LEDs. Data input/output pins for the PROM write and verify (Four high-order bits).		Input	E
P60 - P63	I/O	_	Programmable 4-bit I/O port (PORT6). I/O can be specified bit by bit. Suitable for keyboard input.		×	Input	E
PH0	Output	T13/S12	4-bit P-ch open-drain output port		×	High	I-D
PH1		T12/S13		Can withstand high voltage and high current (PORTH)		impedance	
PH2	1	T11/S14					
PH3		T10/S15					

1.2 NON-PORT PINS


Pin name	Input/ output	Shared pin		Function	When reset	I/O circuit type ^{Note 1}
T0 - T9		_	Note 2	Used for digit output Can withstand high voltage and high current	Low level	I-E
T10/S15 - T13/S12	_	PH3-PH0		For digit/segment output Can withstand high voltage and high current Unused pin can be used as PORTH.		
T14/S11, T15/S10	Output		Note 3	For digit/segment output Can withstand high voltage and high current Static output is possible.	High impedance	I - D
S9		_		For segment output Can withstand high voltage Static output is possible		
S0 -S8	_		Note 2	For segment output		I - E
PPO	Output	_	Puls	e output by timer/pulse generator	High impedance	D
TIO	Input	P13	Exte	rnal event pulse input to timer event counter		B
SCK	I/O	P01	Inpu	t and output to serial clock	Input	F
SO	I/O	P02	Seria	al data output or serial data input and output	Input	G
SI	Input	P03	Seria	al data input or normal input	Input	B
INT4	Input	P00	-	e detection vectored interrupt input ected at both rising edge and falling edge)	_	B
INT0	Innut	P10/V _{PP}	Edge	e detection vectored interrupt input with noise		
INT1	_ Input	P11	elim	ination function (edge-detection selectable)	_	B
INT2	Input	P12		able input for edge-detection ected at rising edge)	_	B
BUZ	I/O	P23		d frequency output buzzer or system clock trimming)	Input	E
X1, X2	Input	_	syste sign	Crystal/ceramic resonator connection for main system clock generation. When external clock signal is used, it is applied to X1, and its reverse phase signal is applied to X2.		_
XT1	Input			tal connection for subsystem clock generation.		
XT2	_	_		n external clock signal is used, it is applied to and XT2 is open.	_	_
RESET	Input	_		em reset input (low-level active)	_	B
MD0 - MD3	I/O	P30 - P33	Oper	ration mode selection during the PROM e/verify cycles.	_	E
Vpp		P10/INT0	+12.	5 V is applied as the programming voltage ng the PROM write/verify cycles	_	B
VLOAD		_		down resistor connection of FIP roller/driver	_	I-E
Vdd		_	+6 V	tive power supply is applied as the programming voltage during PROM write/verify cycles	_	_
Vss		_	GND	potential	_	-
NC Note 4		_	No c	onnection	_	_

Note 1. The circle (\bigcirc) indicates the Schmitt triggered input.

- **2.** Pull-down resistor is incorporated.
- 3. Open-drain output
- 4. NC pin should be connected to VPRE when sharing print board with the μ PD75216A.

Phase-out/Discontinued

Fig. 1-1 Pin Input/Output Circuit

1.3 TREATMENT OF UNUSED PINS

Table 1-2 Recommended Connection for Unused Pins

Pin	Recommended connection		
P00/INT4	Connect to Vss		
P01/SCK			
P02/SO	Connect to Vss or VDD		
P03/SI			
P10/INT0/VPP			
P11/INT1, P12/INT2	Connect to Vss		
P13/T10			
P20 - P22			
P23/BUZ			
P30/MD0 - P33/MD3	Input: Connect to Vss or VDD		
P40 - P43	Output: Open		
P50 - P53			
P60 - P63			
РРО			
S0 - S9			
T15/S10, T14/S11	Open		
Т0 - Т9			
T10/S15/PH3-T13/S12/PH0			
XT1	Connect to Vss or VDD		
XT2	Open		

2. DIFFERENCES BETWEEN THE $\mu\text{PD75P216A}$ AND THE $\mu\text{PD75216A},\ \mu\text{PD75208}$

Param	eter	μPD75P216A	μ PD75216A	μPD75208	
ROM		One-time PROM	Mask	ROM	
		16256 × 8 bits (0000H – 3F7FH)		8064 × 8 bits (0000H – 1F7FH)	
RAN	1	512×4 bits		497×4 bits	
FIP [®] Control	ler Driver	9 – 16 segments		9 – 12 segments	
	Port 6	N/A		-	
Pull-Down Registor	S0 – S8, T0 – T9	On-chip	Mask option		
	S9, T10 – T15	N/A (Open-drain)			
Power-On	Reset	N/A	Mask option		
Power-O	n Flag	N/A			
		P10/INT0/VPP	P10/INT0		
Pin Conn	ection	P30/MD0 – P33/MD3	P30 – P33		
		NC	Vpre		
Operating Ambient Temperature		–10 to +70 °C	–40 to +85 °C		
Operating Supply Voltage		5 V \pm 10 %	2.7 to 6.0 V		
Packa	ge	64-pin plastic shrink DIP (750 mil)	64-pin plastic shrink DIP (750 r 64-pin plastic QFP (14 × 20 mm		

Table 2-1 Differences between the μ PD75P216A and the μ PD75216A, μ PD75208

3. ONE-TIME PROM (PROGRAM MEMORY) WRITE AND VERIFY

The μ PD75P216A contains 16256 × 8 bits of one-time PROM available of writing. The following table shows the pin functions during the write and verify cycles. Note that it is not necessary to enter an address, because the address is updated by pulsing the X1 clock pins.

Pin name	Function
Vpp	Voltage application pin for write and verify (Normally VDD potential)
X1, X2	Address-update clock input during write/verify. The inverted signal of the X1 should be input to the X2.
MD0 - MD3	Operation mode selection pins for write and verify
P40 - P43 (lower 4 bits) P50 - P53 (higher 4 bits)	8-bit data input/output pins for write and verify
Vdd	Supply voltage application pin Normally 5 V \pm 10 %; 6 V is applied during write/verify

Table 3-1 Used Pin at PROM Write and Verify

Caution 1. The pins which are not used during write or verify should be treated as follows

- Port, XT1, RESET ... Connect to Vss through pull-down resistors
- S0 to S9, T0 to T15, PPO, VLOAD ... Connect to VDD through pull-up resistors
- XT2 ... Open
- 2. The μ PD75P216A do not have a UV erase window, thus the PROM contents cannot be erased with ultra violet ray.

3.1 PROM WRITE AND VERIFY OPERATION

When +6 V and +12.5 V are applied to the V_{DD} and V_{PP} pins, respectively, the PROM is placed in the write/ verify mode. The operation is selected by the MD0 to MD3 pins, as shown in the table.

	Ope	Operation mode specification				Our costicute and a	
Vpp	Vdd	MD0	MD1	MD2	MD3	Operation mode	
+12.5	+6 V	н	L	н	L	Clear program memory address to	
		L	Н	Н	Н	Write mode	
		L	L	н	н	Verify mode	
		Н	×	н	Н	Program inhibit mode	

Table 3-2 PROM Write and Verify Operation

×: Don't care.

3.2 PROM WRITE PROCEDURE

PROM can be written at high speed using the following procedure: (see the following figure)

- (1) Pull unused pins to Vss through resistors. Set the X1 pin low.
- (2) Supply 5 volts to the VDD and VPP pins.
- (3) Wait for 10 μ s.
- (4) Select the zero clear program memory address mode.
- (5) Supply 6 volts to the VDD and 12.5 volts to the VPP pins.
- (6) Select the program inhibit mode.
- (7) Write data in the 1 ms write mode.
- (8) Select the program inhibit mode.
- (9) Select the verify mode. If the data is correct, proceed to step (10). If not repeat steps (7), (8) and (9).
- (10) Perform one additional write (duration of $1ms \times number$ of writes at (7) to (9)).
- (11) Select the program inhibit mode.
- (12) Apply four pulses to the X1 pin to increment the program memory address by one.
- (13) Repeat steps (7) to (12) until the end address is reached.
- (14) Select the zero clear program memory address mode.
- (15) Return the VDD and VPP pins back to + 5 volts.
- (16) Turn off the power.

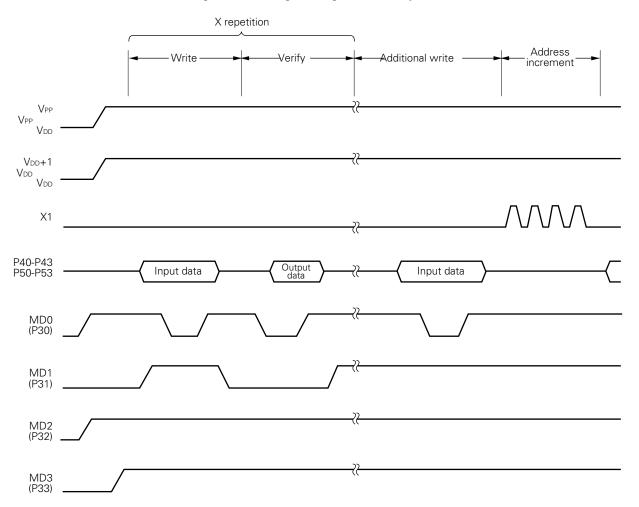
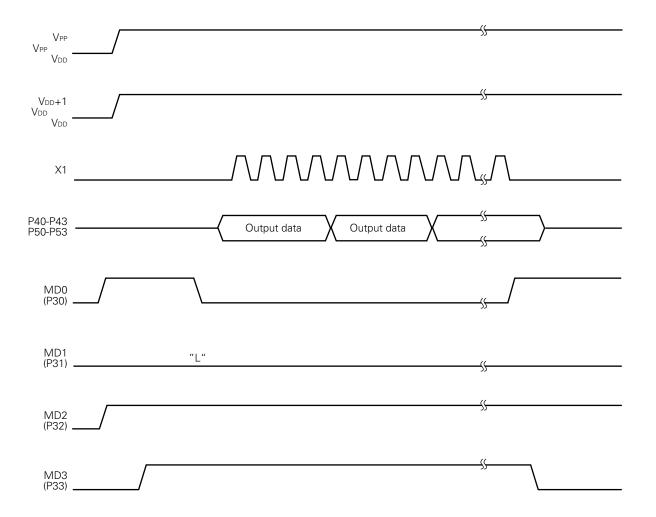


Fig. 3-1 Timing of Program Memory Write



3.3 PROM READ PROCEDURE

The PROM contents can be read in the verify mode by using the following procedure: (see the following figure)

- (1) Pull unused pins to Vss through resistors. Set the X1 pin low.
- (2) Supply 5 volts to the VDD and VPP pins.
- (3) Wait for 10 μ s.
- (4) Select the zero clear program memory address mode.
- (5) Supply 6 volts to the V_DD and 12.5 volts to the V_PP pins.
- (6) Select the program inhibit mode.
- (7) Select the verify mode. Apply four pulses to the X1 pin. Every four clock pulses will output the data stored in one address.
- (8) Select the program inhibit mode.
- (9) Select the zero clear program memory address mode.
- (10) Return the V_DD and V_PP pins back to + 5 volts.
- (11) Turn off the power.

Fig. 3-2 Timing of Program Memory Read

4. ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings (Ta = 25 °C)

Parameter	Symbol	Conditions	Ratings	Unit
	Vdd		-0.3 to +7.0	V
Supply voltage	VLOAD		VDD -40 to VDD + 0.3	V
	VPP		–0.3 to +13.5	V
Input voltage	Vi		-0.3 to V _{DD} +0.3	V
Output voltage	Vo	Other than display pins	-0.3 to V _{DD} +0.3	V
Output voltage	Vod	Display pins	VDD -40 to VDD + 0.3	V
		Single pin; other than display pins	–15	mA
		Single pin; S0 – S9	–15	mA
High-level output current	Іон	Single pin; T0 – T15	-30	mA
		Total of all pins other than diplay	-20	mA
		Total of all display pins	-120	mA
		Single pin	17	mA
Low level output current	Ιοι	Total of all pins	60	mA
Operating temperature	Topt		-10 to +70	°C
Storage temperature	Tstg		-65 to +150	°C

Operating Supply Voltage ($T_a = -10$ to + 70 °C)

Parameter	Conditions	MIN.	MAX.	Unit
CPU Note		4.5	5.5	V
Display controller		4.5	5.5	V
Timer/pulse generator		4.5	5.5	V
Other hardwares Note		4.5	5.5	V

Note Except system clock oscillation circuit, display controller, timer/pulse generator.

Main System Clock Configurations (Ta = -10 to +70 °C, VDD = 5 V \pm 10 %)

Resonator	Recommended constants	Parameter	Conditions	MIN.	TYP.	MAX.	Unit
Ceramic resonator	X1 X2	Note 1 Oscillation frequency (fxx)	V _{DD} = Oscillator operating voltage range	2.0		5.0 Note 3	MHz
		Note 2 Oscillation stabilization time	After V _{DD} reaches the minimum oscillator operating voltage range			4	ms
Crystal resonator	$\begin{array}{c} x_1 \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	Note 1 Oscillation frequency (fxx)		2.0	4.19	5.0 Note 3	MHz
		Note 2 Oscillation stabilization time				10	ms
Eviterin el	X1 X2	Note 1 X1 input frequency (fx)		2.0		5.0 Note 3	MHz
External clock	μPD74HCU04	X1 input high- and low-level width (txH, txL)		100		250	ns

Subsystem Clock Configurations (Ta = –10 to +70 °C, Vdd = 5 V \pm 10 %)

Resonator	Recommended constants	Parameter	Conditions	MIN.	TYP.	MAX.	Unit
Crystal	XT1 XT2	Note 1 Oscillation frequency (fx⊤)		32	32.768	35	kHz
resonator		Note 2 Oscillation stabilization time			1	2	s
External	XT1 XT2 Open	XT1 input frequency (fxt)		32		100	kHz
clock		X1 input high- and low-level width (txTH, txTL)		10		32	μs

- **Note 1.** The oscillation frequency and input frequency only indicate the characteristics of the oscillation circuit. Refer to the AC characteristics for the instruction execution time.
 - **2.** The oscillation stabilization time is the time until the oscillation enters a stable state after the application of V_{DD} or the release of STOP mode.
- ★ 3. When the oscillation frequency is 4.19 < fx ≤ 5.0 MHz, PCC = 0011 should not be selected as the instruction execution time. If PCC = 0011 is selected, 1 machine cycle is less than the specified minimum value, which is 0.95 μs.

Capacitance (T_a = 25 $^{\circ}$ C, V_{DD} = 0 V)

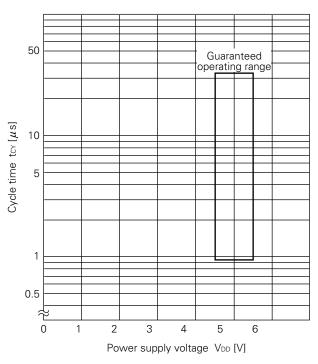
Parameter		Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Input capacitance		Cin				15	pF
Output capacitance Output capacitance Display output Input/Output capacitance		Соит	f = 1 MHz			15	pF
		COUT	Unmeasured pins returned to 0 V			35	pF
		Сю				15	pF

DC Characteristics (Ta = -10 to +70 °C, VDD = 5 V \pm 10 %)

Parameter	Symbol	Cond	itions	MIN.	TYP.	MAX.	Unit
	VIH1	All except ports 0, 1, 6, X1, X2, XT1, RESET				Vdd	V
High-level input voltage	VIH2	Port 0, 1 RESET	0.75 Vdd		VDD	V	
ingn-ievei input voitage	Vінз	X1, X2, XT1		VDD-0.4		VDD	V
	VIH4	Port 6		0.65 VDD		VDD	V
	VIL1	All except ports 0, 1, 6	6, X1, X2, XT1, RESET	0		0.3 VDD	V
Low-level input voltage	VIL2	Port 0, 1, 6 RESET		0		0.2 VDD	V
	VIL3	X1, X2, XT1		0		0.4	V
	Vон		Iон = −1 mA	Vdd-1.0			V
High-level output voltage	• ОН	All outputs	Іон = −100 μА	VDD-0.5			V
	Max	Port 4, 5	lo∟ = 15 mA		0.4	2.0	V
Low-level output voltage	Vol	All outputs	lo∟ = 1.6 mA			0.4	V
High-level input leakage current	Ішні	All except X1, X2, XT1				3	μA
	ILIH2	X1, X2, XT1	VI = VDD			20	μΑ
Low-level input leakage	ILIL1	All except X1, X2, XT1				-3	μΑ
current	ILIL2	X1, X2, XT1	$V_{I} = 0 V$			-20	μA
High-level output leakage current	Ігон	All outputs	Vo = Vdd			3	μA
Low-level output leakage	ILOL1	All except display output	Vo = 0 V			-3	μA
current	ILOL2	Display outputs	Vo = Vload = Vdd - 35 V			-10	μA
Disalar subset summer		S0 - S9	$V_{OD} = V_{DD} - 2 V$	-3	-5.5		mA
Display output current	Гор	T0 - T15	VOD = VDD - 2V	-15	-22		mA
On-chip pull-down resistor	R∟	Display outputs	Vod – Vload = 35 V	25	70	135	kΩ
	IDD1	4.19 MHz	Note 2		3.0	9.0	mA
	IDD2	Crystal oscillator C1 = C2 = 15 pF	HALT mode		600	1 800	μA
Power supply current Note 1	Ірдз	32.768 kHz Note 3			100	300	μA
	IDD4	Crystal oscillator	HALT mode		40	100	μA
	IDD5	XT1 = 0 V	STOP mode		0.5	20	μA

Note 1. Does not include the current for the on-chip pull-down resistor (output circuit to S0 to S8, T0 to T9).

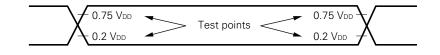
2. When the processor clock control register (PCC) is set to 0011 and operated in high-speed mode.

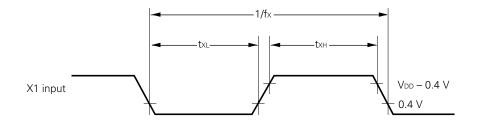

3. When the system clock control register (SCC) is set to 1001 to stop the main system clock, and when the sub-system clock is used.

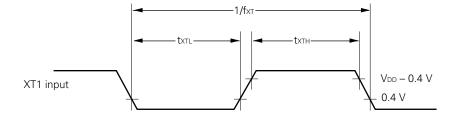
AC Characteristics (Ta = –10 to +70 °C, Vdd = +5 V $\pm 10\%$)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
CPU clock time ^{Note 1} (minimum instruction	tov	Main system clock		0.95		32	μs
execution time = 1 machine cycle)	LCY	Subsystem clock		114	122	125	μs
TI0 input frequency	f⊓			0		0.6	MHz
TI0 input high- and low-level width	tтін, tтіL			0.83			μs
SCK cycle time	t way		Input	0.8			μs
	t KCY		Output	0.95			μs
			Input	0.4			μs
SCK high- and low-level width	tкн, tк∟		Output	tксү/ 2-50			ns
SI setup time (to $\overline{\text{SCK}} \uparrow$)	tsıк			100			ns
SI hold time (to $\overline{\text{SCK}} \uparrow$)	tĸsi			400			ns
$\overline{\text{SCK}} \downarrow \rightarrow \text{SO}$ output delay time	t ĸso					300	ns
			INT0	Note 2			μs
Interrupt inputs high- and low-level width	tinth, tintl		INT1	2tcy			μs
J			INT2, 4	10			μs
RESET low-level width	trsl			10			μs

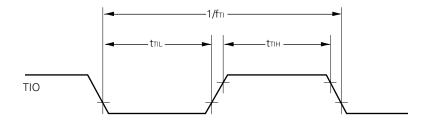
Note 1. The CPU clock (Ø) cycle time is decided by the oscillation frequency of the resonator, system clock control register (SCC), and processor clock control register (PCC). The figure to the right indicates cycle time (tcv) characteristics for supply voltage VDD when using the main system clock.


2. This is 2tcy or 128/fxx according to the interrupt mode register setting (IM0).

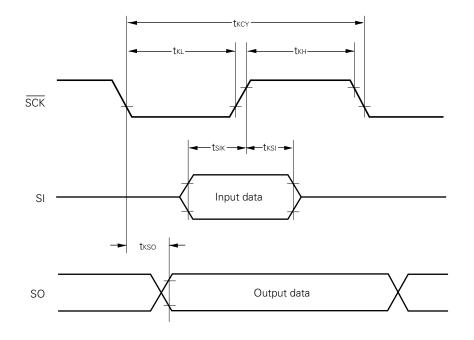

tcy vs VDD (Main system clock)

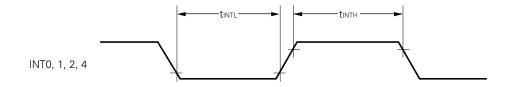


AC timing Test Point (Except X1, XT1)

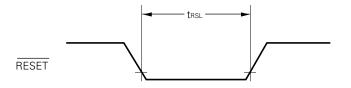


Clock Timing


TIO Timing


NEC

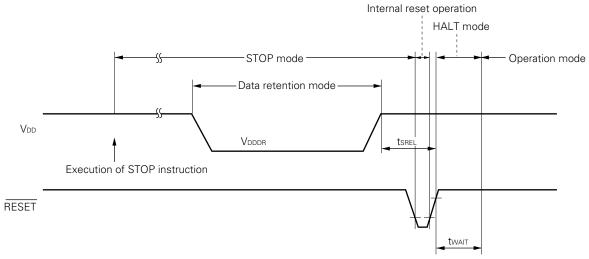
Phase-out/Discontinued


Serial Transfer Timing

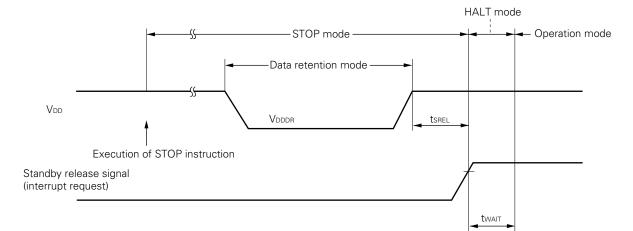
Interrupt Input Timing

RESET Input Timing




Data Memory STOP Mode Low Voltage Data Retention Characteristics (Ta = -10 to +70 °C)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention voltage	Vdddr		2.0		5.5	V
Data retention current	Idddr	VDDDR = 2.0 V		0.1	10	μΑ
Released signal SET time	tsrel		0			μs
Note 1	+	Released by RESET input		217/fx		ms
Oscillation stabilization time	twait	Released by interrupt request		Note 2		ms


- **Note 1.** The oscillation stabilization wait time is a period during which the CPU is kept inactive in order to avoid unstable operation at the start of oscillation.
 - 2. Depends on the setting of the basic interval time mode register (BTM) (see the following table).

BTM3	BTM2	BTM1	BTM0	Wait time (): fxx = 4.19 MHz
-	0	0	0	2 ^{20/} fxx (approx. 250 ms)
_	0	1	1	2 ¹⁷ /fxx (approx. 31.3 ms)
_	1	0	1	2 ¹⁵ /fxx (approx. 7.82 ms)
_	1	1	1	2 ¹³ /fxx (approx. 1.95 ms)

Data Retention Timing (Standby release signal: STOP mode is released by interrupt signal)

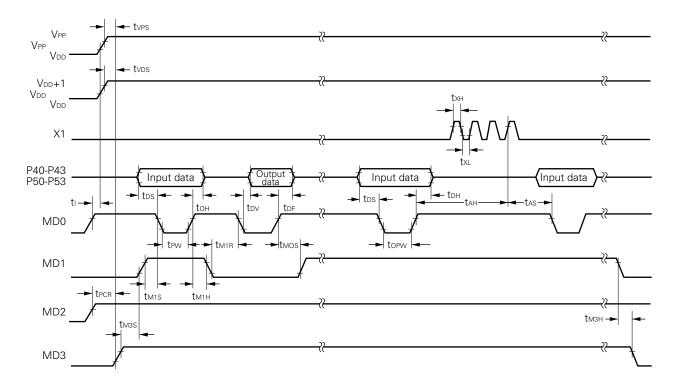
DC Programming Characteristics (Ta = 25 \pm 5 °C, VDD = 6.0 \pm 0.25 V, VPP = 12.5 \pm 0.3 V, Vss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
	VIH1	All except X1, X2	0.7 Vdd		Vdd	V
High-level input voltage	VIH2	X1, X2	VDD-0.5		Vdd	V
Low-level input voltage	VIL1	All except X1, X2	0		0.3 VDD	V
	VIL2	X1, X2	0		0.4	V
Input leakage current	IL1	VIN = VIL or VIH			10	μA
High-level output voltage	Vон	Iон = −1 mA	VDD-1.0			V
Low-level output voltage	Vol	Ιοι = 1.6 mA			0.4	V
VDD power supply current	lod				30	mA
VPP power supply current	Ірр	$MD0 = V_{IL}, MD1 = V_{IH}$			30	mA

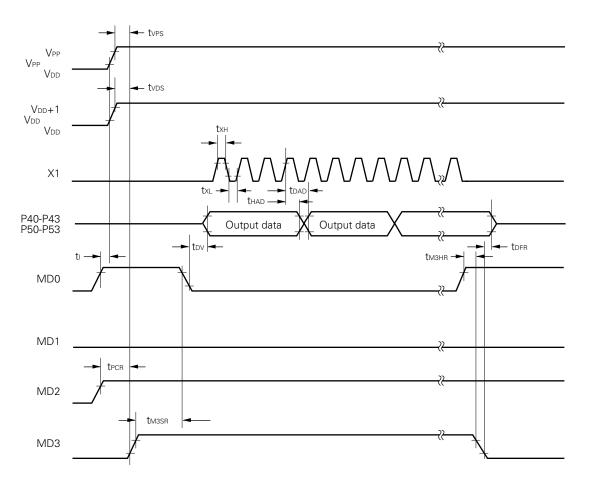
Note 1. VPP should not exceed +22 V (including overshoot).

2. VDD should be applied before VPP and turned off after VPP.

AC Programming Characteristics (Ta = 25 \pm 5 $^{\circ}C$, Vdd = 6.0 \pm 0.25 V, VpP = 12.5 \pm 0.3 V, Vss = 0 V)

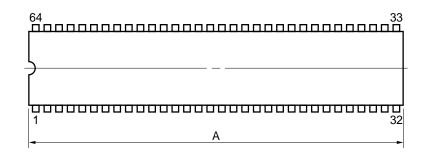

Parameter	Symbol	Note 1	Conditions	MIN.	TYP.	MAX.	Unit
Address setup time ^{Note 2} (toMD0↓)	tas	tas		2			μs
MD1 setup time (to $MD0\downarrow$)	tмıs	toes		2			μs
Data setup time (to MD0↓)	tos	tos		2			μs
Address hold time Note 2 (from MD0 [↑])	tан	tан		2			μs
Data hold time (from MD0 [↑])	tdн	tон		2			μs
MD0 $\uparrow \rightarrow$ data output float delay time	t df	t df		0		130	ns
V _{PP} setup time (to MD3 [↑])	tvps	tvps		2			μs
V _{DD} setup time (to MD3 [↑])	tvds	tvcs		2			μs
Initialized program pulse width	tew	tew		0.95	1.0	1.05	ms
Additional program pulse width	topw	topw		0.95		21.0	ms
MD0 setup time (to MD1 ¹)	tмos	tces		2			μs
MD0 $\downarrow \rightarrow$ data output delay time	tov	tov	$MD0 = MD1 = V_{IL}$			1	μs
MD1 hold time (from MD0↑)	tмін	tоен	$t_{\rm max}$, $t_{\rm max} > 50$ up	2			μs
MD1 recovery time (to MD0↓)	tмік	tor	tмін + tміr ≥ 50 μs	2			μs
Program counter reset time	t PCR	-		10			μs
X1 input high- and low-level width	txн, txL	-		0.125			μs
X1 input frequency	fx					4.19	MHz
Initial mode set time	tı	-		2			μs
MD3 setup time (to MD1 [↑])	tмзs	-		2			μs
MD3 hold time (from MD1↓)	tмзн	-		2			μs
MD3 setup time (to MD0↓)	tмзsr	_	During program read cycle	2			μs
Address $^{\text{Note 2}} \rightarrow$ Data output delay time	t DAD	t ACC	During program read cycle	2			μs
Address $^{\text{Note 2}} \rightarrow$ Data output hold time	t had	tон	During program resd cycle	0		130	ns
MD3 hold time (from MD0 [↑])	tмзнв	-	During program read cycle	2			μs
MD3 \downarrow $ ightarrow$ data output float delay time	t dfr		During program read cycle	2			μs

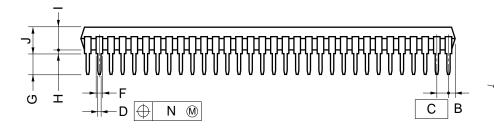
Note 1. Symbol of corresponding μ PD27C256.


2. Internal address is incremented by 1 at the rising edge of the fourth X1 input. This address signal is not output to external pins.

Phase-out/Discontinued

Program Memory Write Timing




Program Memory Read Timing

5. PACKAGE DRAWINGS

64 PIN PLASTIC SHRINK DIP (750 mil)

NOTE

- 1) Each lead centerline is located within 0.17 mm (0.007 inch) of its true position (T.P.) at maximum material condition.
- 2) Item "K" to center of leads when formed parallel.

ITEM	MILLIMETERS	INCHES
А	58.68 MAX.	2.311 MAX.
В	1.78 MAX.	0.070 MAX.
С	1.778 (T.P.)	0.070 (T.P.)
D	0.50±0.10	$0.020^{+0.004}_{-0.005}$
F	0.9 MIN.	0.035 MIN.
G	3.2±0.3	0.126±0.012
Н	0.51 MIN.	0.020 MIN.
I	4.31 MAX.	0.170 MAX.
J	5.08 MAX.	0.200 MAX.
К	19.05 (T.P.)	0.750 (T.P.)
L	17.0	0.669
М	$0.25^{+0.10}_{-0.05}$	$0.010^{+0.004}_{-0.003}$
N	0.17	0.007
R	0~15°	0~15°
	_	

P64C-70-750A,C-1

NEC

Phase-out/Discontinued

6. RECOMMENDED SOLDERING CONDITIONS

★

The following conditions must be met when soldering this product.

For more details, refer to our document "SEMICONDUCTOR DEVICE MOUNTING TECHNOLOGY MANUAL" (IEI-1207).

Please consult with our sales offices in case other soldering process is used, or in case other soldering is done under different conditions.

Table 6-1 Type of Through Hole Device

μ PD75P216ACW: 64-pin plastic shrink DIP (750 mil)

Soldering process	Soldering conditions
Wave soldering (only lead part)	Solder temperature: 260 °C or lower, Flow time: 10 seconds or less
Partial heating method	Pin temperature: 260 °C or lower, Time: 10 seconds or less

Caution This wave soldering should be applied only to lead part, and don't jet molten solder on the surface of package.

★ APPENDIX DEVELOPMENT TOOLS

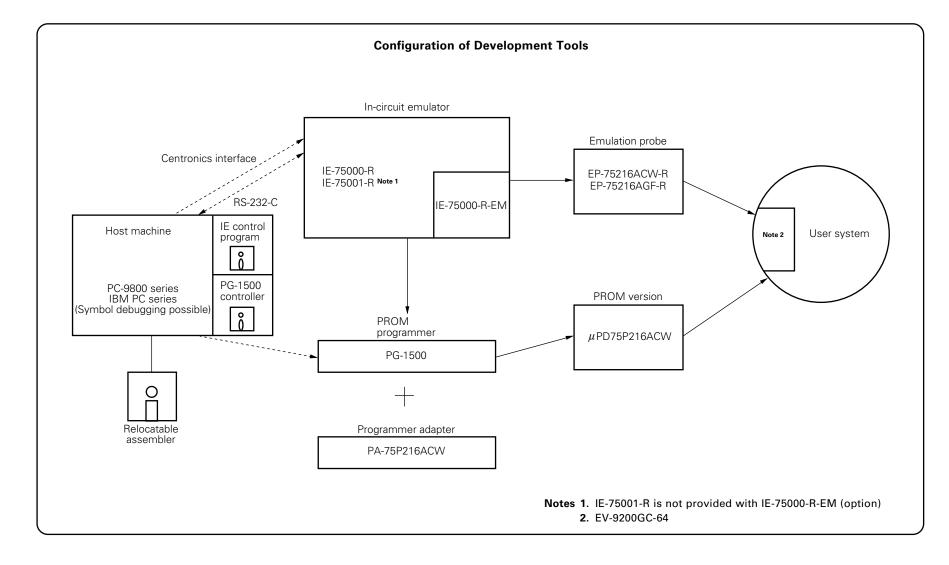
The following development tools are provided for the development of a system which employs the μ PD75P216A.

Language processor

RA75X relocatable assembler	Host machine			Part number
		OS	Distribution media	
	PC-9800 series	MS-DOS™ ∕Ver. 3.10 ∖	3.5-inch 2HD	μS5A13RA75X
		Ver. 3.30C	5-inch 2HD	μ S5A10RA75X
	IBM PC series	PC DOS™ (Ver. 3.1)	5-inch 2HC	μS7B10RA75X

PROM programming tools

Hardware	PG-1500	The PG-1500 PROM programmer is used together with an accessory board and optional programmer adapter. It allows the user to program single chip microcomputer containing PROM from a standalone termin or a host machine. The PG-1500 can be used to program typical 256K-b to 4M-bit PROMs.							
	PA-75P216ACW	PROM programmer adapter dedicated to μ PD75P216ACW. Connect the programmer adapter to PG-1500 for use.							
	AF-9703 AF-9704	PROM programn	PROM programmer produced by Ando Electric Corp.						
	AF-9789	U U	Programmer adapter dedicated to the μ PD75P216ACW Connect to AF-9703, AF-9704 for use						
	UNISITE 2900 3900	PROM programmer produced by Data I/O Japan Corp.							
	PPI-0601		pter dedicated to ITE, 2900, 3900 fo	the μPD75P216ACW r use					
Software	PG-1500 controller	This program en the serial and pa		chine to control the P	G-1500 through				
		Host machine			Part number				
			OS	Distribution media					
		PC-9800 series	MS-DOS / Ver. 3.10 \	3.5-inch 2HD	μS5A13PG1500				
	(to Ver. 3.30C		5-inch 2HD	μS5A10PG1500					
		IBM PC series	PC DOS (Ver. 3.1)	5-inch 2HC	μS7B10PG1500				


Debugging tools

Hardware	IE-75000-R ^{Note}	software at deve This emulator is	R is an in-circuit emulator to debug the hardware and veloping application system for 75X series. is used together with the emulation probe. For efficient e emulator is connected to the host machine and PROM		
	IE-75000-R-EM	The IE-75000-R-EM is an emulation board for the IE-75000-R and IE-75001-R. The IE-75000-R contains the emulation board. The emulation board is used together with the IE-75000-R or IE-75001-R to evaluate the μ PD75P048.			
	IE-75001-R	software at deve This emulator is (option) and emu	I-R is an in-circuit emulator to debug the hardware and developing application system for 75X series. or is used together with the IE-75000-R-EM emulation board emulation probe. For efficient debugging, the emulator is o the host machine and PROM programmer.		
	EP-75216ACW-R	Emulation probe for the μ PD75P216ACW. Connect this probe to the IE-75000-R or IE-75001-R and the IE-75000-R-EM for use.			
Software	IE control program	This program enables the host machine to control the IE-75000-R or IE-75001-R on the host machine through the RS-232-C interface.			
		Host machine			Part number
			OS	Distribution media	
		PC-9800 series	MS-DOS Ver. 3.10 to Ver. 3.30C	3.5-inch 2HD	μS5A13IE75X
				5-inch 2HD	μS5A10IE75X
		IBM PC series	PC DOS (Ver. 3.1)	5-inch 2HC	μS7B10IE75X

Notes Provided only for maintenance purposes.

Remark NEC is not responsible for the IE control program operation unless it runs on any host machine with the operation system listed above.

Phase-out/Discontinued

NOTES FOR CMOS DEVICES

① PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note:

Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

② HANDLING OF UNUSED INPUT PINS FOR CMOS

Note:

No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to V_{DD} or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

③ STATUS BEFORE INITIAIZATION OF MOS DEVICES

Note:

Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

"µPD75216A USER'S MANUAL" (IEM-988F) is also prepared for this product (option).

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.

NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.

The devices listed in this document are not suitable for use in aerospace equipment, submarine cables, nuclear reactor control systems and life support systems. If customers intend to use NEC devices for above applications or they intend to use "Standard" quality grade NEC devices for applications not intended by NEC, please contact our sales people in advance.

Application examples recommended by NEC Corporation

Standard: Computer, Office equipment, Communication equipment, Test and Measurement equipment, Machine tools, Industrial robots, Audio and Visual equipment, Other consumer products, etc.

Special: Automotive and Transportation equipment, Traffic control systems, Antidisaster systems, Anticrime systems, etc.

M4 92.6

FIP[®] is a trademark of NEC Corporation. MS-DOS TM is a trademark of Microsoft Corporation. PC DOS TM is a trademark of IBM Corporation.